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Abstract: This paper considers the maximum coverage location problem (MCLP) in a continuous
formulation. It is assumed that the coverage domain and the family of geometric objects of arbitrary
shape are specified. It is necessary to find such a location of geometric objects to cover the greatest
possible amount of the domain. A mathematical model of MCLP is proposed in the form of an
unconstrained nonlinear optimization problem. Python computational geometry packages were used
to calculate the area of partial coverage domain. Many experiments were carried out which made
it possible to describe the statistical dependence of the area calculation time of coverage domain
on the number of covering objects. To obtain a local solution, the BFGS method with first-order
differences was used. An approach to the numerical estimation of the objective function gradient
is proposed, which significantly reduces computational costs, which is confirmed experimentally.
The proposed approach is shown to solve the maximum coverage problem of a rectangular area by a
family of ellipses.

Keywords: geometric object; coverage; optimization; computational geometry software; Python

1. Introduction

The maximum coverage problem is a classical problem in computer science, computa-
tional complexity theory, and operations research. In the original formulation, the problem
is as follows.

There are a family of sets Ω = {S1, . . . , Sn} and integer number 1 ≤ k ≤ n. Sets may
have some elements in common. The objective is to find such a family Ω̃ ⊆ Ω of k sets
from Ω so that the maximum number of elements is covered, i.e., the union ∪

Si⊆Ω̃
Si of the

selected sets has the maximum size.
The great interest of scientists in the problem of maximum coverage is associated

with a wide range of its practical applications. The concept of coverage is associated with
video surveillance cameras, emergency warning systems, mobile communications and
the Internet, radio stations, environmental sensors, service systems, etc. This leads to the
need to cover certain areas and is associated with an analysis of the location of objects of
various nature. A major category of location analysis approaches involves coverage when
an entity provides services based on spatial proximity. This may be based on travel time,
line-of-sight, or hearing factors. These spatial footprints reflect services and may be regular
or irregular, contiguous, or fragmented in area. One of the most common approaches to
location modeling is the maximum coverage location problem (MCLP). Such a problem is
the subject of study for both operations research theory and computational geometry. In
this case, the goal is to place several objects in a given region in such a way as to maximize
(minimize) some objective function associated with the considered type of objects.
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In most of these problems, a demand point is considered to be covered by a facility
if the distance or travel time between them is less than a given predetermined value. It is
desirable that all points of demand are served by at least one enterprise. However, often
full coverage of demand in the region is impossible due to restrictions on the possible
number of objects to be placed. In this case, the task is to cover the maximum possible area
of demand through the efficient use of limited resources.

Note that the problems associated with determining the location of objects are both
discrete and continuous in nature. In the discrete case, there is a finite set of possible
locations of potential objects, and it is required to choose their optimal location. Such tasks
arise in the placement of physical services, when it is possible to predetermine a finite set of
admissible locations. At the same time, there is a wide class of problems when it is allowed
to place objects in the entire space or its continual subdomain. Such tasks are continuous
(for example, in telecommunications networks, when placing sensors or radar stations,
etc.). In this case, continuity conditions can be imposed not only on the sets of admissible
locations, but also on the service area. This article is devoted to mathematical modeling
and solving these coverage optimization problems.

2. Background

Reviews [1–5] are devoted to the issues of object location analysis based on the model-
ing of coverage problems. The main approaches to location analysis consider coverage in
the sense that an object provides services within spatial proximity, i.e., each object has a
spatial footprint that defines a service area. Article [6] provides extended overview of the
maximal covering location problem, highlighting the use, application, solution, evolution,
and generalization of this important location analytic approach.

The problem of placing a certain number of objects within an acceptable service
distance to maximize demand in a given region was posed and formalized by Church and
ReVelle [7]. This problem is called the maximum coverage location problem (MCLP). To
solve this problem, two sets of discrete locations were considered, representing demand and
possible locations. As a result, the MCLP is formulated as an integer linear programming
problem that can be solved in various ways. Variations arise due to the use of different
methods for determining the area of coverage of a potential object or assigning weights to
sites on several factors and parameters.

The standard form of MCLP considers a finite set of potential locations for objects,
and a set of discrete points represents demand. The paper [8] proposes a generalization
that allows both facilities and demand points to be placed continuously on a plane. Such a
problem is called planar MCLP. An exact planar MCLP solution, assuming that the need for
coverage exists anywhere in the surrounding area and that objects can also be arbitrarily
placed in this area, is impossible due to the NP-hard nature of the problem [9]. Several
heuristic methods have been proposed in an attempt to obtain acceptable solutions. For
example, paper [9] describes a greedy algorithm for MCLP that selects at each step the
location containing the largest number of uncovered elements. This greedy algorithm is
claimed to be the best approximation algorithm in polynomial time.

In the work [10], a planar MCLP with partial coverage and rectangular demand
and service zones is studied. The problem is to position a given number of rectangular
service zones on the two-dimensional plane to partially cover a set of existing (possibly
overlapping) rectangular demand zones such that the total covered demand is maximized.
Based on the properties of the model, the possibility of a significant reduction in the search
space is theoretically substantiated and a modification of the branch and bound algorithm
for solving the problem is presented. The authors of [10,11] use a computational geometry
approach to study partial coverage with rectangular and circular service areas. However,
according to [12], optimality is guaranteed only in some special cases.

The paper [13] presents a fuzzy maximally covering location problem in which travel
time between any pair of nodes is considered to be a fuzzy variable. A hybrid algorithm
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of fuzzy simulation and simulated annealing is used to solve MCLP. Some numerical
examples are solved and analyzed to show the performance of the proposed algorithm.

In the article [14], a mixed integer non-linear programming model was formulated for
distributing the position of a number of rectangular objects of unequal area in a continuum
of a planar plant site with a predetermined fixed area. A continuous approach to the
problem is taken. Constraints are developed to eliminate the possible overlap between
the different facilities. A novel simulated annealing algorithm is developed to solve large
instances of the problem. A unique heuristic algorithm is used for initial solution.

We especially note the work [15], in which the continuous setting of MCLP is analyzed.
Continuity conditions are imposed on the location of objects, however, the discrete structure
of the service domain is preserved, taking into account the graph of relations between
enterprises. The problem of mixed integer non-linear programming is formulated. At the
same time, taking into account the geometric properties, the authors propose its equivalent
reformulation as an integer linear programming problem.

Other approaches use the division of demand into several smaller regions and the
ratio between fully covered or uncovered areas [8,16–18]. A facility is assumed to cover the
demand for a region if it covers the entire region. Partially covered areas are considered
as uncovered areas. Such coverage is called binary. Consideration of the binary coverage
makes it possible to obtain a finite set of potential service points determined by the set
of polygon intersection points. As a result, an integer linear programming problem is
formulated. However, although binary coverage makes planar MCLP manageable, this
approach is prone to significant errors because all partially covered regions, which may
have a significant coverage area, are left out and ignored in the final solution [12].

Note that obtaining even a partial maximum coverage is not trivial. Therefore, as an
auxiliary problem, one often considers partial coverage by only one object. In the paper [19],
a method for solving the problem of determining the location of a circular service area in a
polygonal zone is described based on the calculation of the mean axis of the zone. Taking
into account partial coverage, in the work [20] it is proposed to approximate the optimal
position of a single circular footprint with bounded error in an unconnected area with
holes bounded by line or circle segments. The authors describe an efficient algorithm for
accurately calculating the overlap area of a circle and a polygon, and introduce the concept
of a coverage map for more information. The paper [21] presents improved algorithms for
matching two polygonal shapes to approximate their maximum overlap. The run time of
algorithms is studied.

The article [22] describes an approach to solving the problem of locating a disk so that
its overlap area with a piecewise circular domain is near-optimal when considering partial
coverage. The concept of an overlap area map is introduced. Parallel algorithm on graphics
processing units are discussed for calculating the overlap area map and deriving a set of
near-optimal locations from the overlap area map. Particular attention is paid to the process
of calculating the overlap area. The authors visualize the information obtained, highlighting
the optimal location, and analyze the experimental results obtained by implementing the
proposed algorithms.

The study [23] presents an approach to the maximum coverage of a polygonal area
by disk services of a given radius. Of particular interest is a parallel optimization method
using simulated annealing based on a perturbation strategy and a probabilistic estimate
of the covered area of a polygon. The system provides in a reasonable run time fairly
good location of disks, starting with an arbitrary initial solution. The paper [24] considers
the problem of covering compact polygonal set by identical circles of minimal radius.
A mathematical model of the problem based on Voronoi polygons is constructed and its
characteristics are investigated. A modification of the Zoutendijk feasible directions method
is developed to search local minima. A special approach is suggested to choose starting
points. Many computational examples are given.

Access to and solution of the MCLP is also possible in GIS software packages. For
example, structuring and solving an MCLP application instance in ArcGIS and TransCAD,
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among others, is easily accomplished. In ArcGIS, there are location-allocation functions in
network analyst, and, in particular, “maximize coverage” would enable an MCLP to be set
up as the problem type. Similarly, in TransCAD, one would use “facility location analysis”
to accomplish this. There are in fact a number of reported application studies that have
relied on this basic approach using GIS, such as [25,26]. It is important to note that GIS
packages facilitating access to the MCLP typically solve problems using a heuristic [4].

The evolution of the application of MCLP has occurred concurrently in concert with
the development, growth, and maturation of GIS. The MCLP access and solution is possible
in various GIS software packages. The authors of [3,27] discuss that GIS is a combination
of hardware, software, and procedures enabling data management and spatial query. Key
components of GIS include data capture, modeling, management, manipulation, analysis,
and display. It is important that in addition to generating and working with spatial
information, GIS supports a number of analytical functions, many of which facilitate the
MCLP specification and application. In the paper [4], the capabilities of a GIS for carrying
out suitability analysis, as well as operations associated with containment, overlay, distance,
buffering, and spatial interpolation, among others. Much spatial information now exists,
expediting coverage location analysis as well.

3. Materials and Methods
3.1. Mathematical Model of Continuous Maximum Coverage Location Problem

Let us formulate the continuous MCLP as a geometric problem. In the space Rd, d = 2, 3
there are a certain domain S0 and a family of geometric objects {S1, . . . , Sn} of a given
shapes and sizes. We will say that a family of objects {S1, . . . , Sn} covers some subdomain
S̃ ⊆ S0 if each point S̃ belongs to at least one of the objects of the family. The problem is
to find such a location of objects S1, . . . , Sn that they cover as much of the domain S0 as
possible. S0 is called the coverage domain, and S1, . . . , Sn—the covering objects.

To formalize the continuous MCLP we make the following notations: Jn = {1, . . . , n},
J0

n = Jn ∪ {0} = {0, 1, . . . , n}. Geometric object Si ⊂ Rd, i ∈ J0
n means a geometric set of

points P ∈ Rd that satisfy inequalities fi(P, mi) ≥ 0. The equation fi(P, mi) = 0 defines
the boundary of the object Si and determines its shape. In the general case, functions
fi(P, mi), i ∈ J0

n contain constants mi = (mi
1, . . . , mi

αi
), which are called metric param-

eters of the shape of the object Si. These parameters determine the linear sizes of the
corresponding objects.

Consider a fixed Cartesian coordinate system in space Rd, d = 2, 3, and with each
object Si ⊂ Rd, i ∈ J0

n, connects own coordinate system, the beginning of which is called the
pole of this object. The relative position of these system will be characterized by parameters
pi = (pi

1, . . . , pi
βi
) = (vi,θi), i ∈ J0

n, where vi—a coordinate vector of the pole of the object

Si in a fixed coordinate system, and θi—a vector of angular parameters that determine
the relative position of the axes of own and fixed coordinate systems. The coordinates of
the vector pi = (pi

1, . . . , pi
βi
) indicates the position of the object Si in Rd, d = 2, 3 and are

called placement parameters. In this case, the position of the object Si relative to the fixed
coordinate system is given by the equation of the general position, which has the form

Fi(P, mi, vi,θi) = fi

(
A(p− vi), mi

)
= 0, (1)

where A is the orthogonal operator expressed through angular parameters θi.
In the papers [28,29], methods for constructing configurations of geometric objects are

described, and classes of packing, layout, and covering configurations are identified. A
configuration space of geometric objects is constructed, the generalized variables of which
are placement parameters and metric parameters of objects.

Let us apply these results to build a model of the continuous MCLP. Let
Ω = {S1, . . . , Sn} be a family of geometric objects with metric parameters of the shape
mi = (mi

1, . . . , mi
αi
) and placement parameters pi = (pi

1, . . . , pi
βi
) = (vi,θi), i ∈ J0

n. A
parameters gi = (mi, pi) = (mi

1, . . . , mi
αi

, pi
1, . . . , pi

βi
) is called a generalized variable of the
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object Si. The dimension of the vector gi is equal to γi = αi + βi. The object Si with the
generalized variables gi denote by Si(gi), i ∈ J0

n.
Note that, depending on the specifics of the problem, some generalized variables can

be fixed. To indicate this we will use a cap over the corresponding variable. In continuous
MCLP, placement parameters of the coverage domain S0 are assumed to be fixed and
usually equal to p̂0 = (0, . . . , 0). Metric parameters m0 in the general case are variable,
unless otherwise specified by the problem. Considering problems when the sizes of S0 are
known, we will assume m0 = m̂0, so ĝ0 = (m̂0, p̂0).

Using set-theoretic operations, we build a complex object

Ω = S0 ∩
n
∪

i=1
Si. (2)

We assume that Formula (2) determines the structure of a complex object Ω, i.e., the
rule of its formation.

Having determined the generalized variables gi, i ∈ J0
n of the constituent objects Si,

we form a parameterized object

Ω(g) = Ω(ĝ0, g1, . . . , gn) = S0(ĝ0) ∩ ∪
i∈Jn

Si(gi). (3)

In Rd, d = 2, 3, each fixed vector ĝ = (ĝ0, ĝ1, . . . , ĝn) of generalized variables corre-
sponds to a complex geometric object of a given structure

Ω(ĝ) = S0(ĝ0) ∩ ∪
i∈Jn

Si(ĝi). (4)

Depending on the dimension of Rd, d = 2, 3, we calculate the measure (area or
volume) of the formed object Ω(ĝ), which we denote by µ(Ω(ĝ)). Thus, an arbitrary set of
generalized variables g = (ĝ0, g1, . . . , gn) can be associated with a measure of a complex
object Ω(g) of a given structure, i.e., define a function of generalized variables

ωΩ(g) = µ(Ω(ĝ)). (5)

The described class of functions is calledω-functions [30].
For the formalization of theω-function, we introduce the characteristic function

λΩ(P, g) =
{

1, if P ∈ Ω(g);
0, if P /∈ Ω(g).

, (6)

If P ∈ R2, then
ωΩ(g) =

x
λΩ(P, g)dP (7)

and for P ∈ R3

ωΩ(g) =
y

λΩ(P, g)dP. (8)

Properties ofω-functions were considered in the article [31].
Usingω-functions allows us to state the maximum coverage problem as the following

nonlinear unconstrained optimization problem

ωΩ(g)→ max (9)

whereω-function is defined by the Formula (5), and the structure Ω is given as (2).
This statement of the continuous MCLP follows from the fact that the function ωΩ(g)

determines the dependence of the measure (area) of the partial coverage of the domain on
the generalized variables g of the family of covering objects. It is the maximization of this
measure that is the objective of the problem.
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Thus, the solution of the continuous MCLP is inextricably linked, on the one hand,
with methods for calculating the functionωΩ(g), and, on the other hand, with the choice
of an effective method for solving the optimization problem (9).

Therefore, the general scheme for solving the problem includes the following stages:

â Formation of initial data on the coverage domain and the family of covering objects;
â Choice of generalized coverage configuration variables;
â Calculating a measure of the covered part of the coverage area;
â Choice of local optimization method for solving problem (9);
â Estimation of the gradient of the objective function, taking into account the geometric

properties of the problem;
â Choice of global optimization method.

The first two stages were discussed earlier. The next stages are described in the next
subsection.

3.2. Computer Geometry and Optimization Software

To formalize the function, one can use the analytical approach [31], which consists
of constructing an equation for the boundary of a complex geometric object based on the
known equations for the boundaries of composite objects. However, this approach is very
time consuming and requires large computational costs, especially considering that the
objects depend on parameters (generalized variables). The papers [32,33] propose ways
to formalize the coverage conditions using phi-functions, but only for a narrow class of
covering objects, such as rectangles, circles, and spheroids [24,34,35].

At the same time, considering the issue of working with geometric objects of a given
shape, you can find a powerful list of libraries that allow you to work with such figures, in
particular, SymPy, Shapely, CGAL, SpaceFuncs, and many others. Based on the analysis of
existing libraries, taking into account the necessary functionality to calculate theω-function
of spatial configurations (complex geometric objects), we chose the Shapely library [36].
Shapely is a Python package for theoretical analysis of points set and plane object manipula-
tion using Python ctypes module functions from the well-known GEOS library. Note that
GEOS as a port of the Java Topology Suite (JTS) is the geometry mechanism of the PostGIS
spatial extension for the PostgreSQL database. On the one hand, the Shapely package is
deeply rooted in the conventions of the world of geographic information systems (GIS).
On the other hand, this package seeks to be equally useful for programmers working on
non-traditional issues, including image processing and geometric design. It is with the help
of the Shapely library that it is possible to construct complex shapes through set-theoretic
operations on geometric objects (union, intersection, symmetric difference, product) from a
set of basic shapes (circle, ellipse, polygon, etc.), as well as perform the same operations on
arbitrary complex figures, built with the help of basic. Using the unary_union(·) function
in shapely.ops allows you to build unions at the same time, which is much more efficient
than sequential accumulation using the union(·) operation. The set of affine transformation
functions is contained in the shapely.affinity module, which transforms geometric shapes by
directly assigning coefficients to the affine transformation matrix, or by means of a specially
named transformation (rotation, scale, etc.). Note that geometric objects are created in the
typical Python way, using the classes themselves as instance factories.

The most important feature of the Shapely library is the ability to calculate the area of
any complex object using the area field.

The use of modern computer geometry software allows us to offer new effective
methods for solving problems of maximum coverage. In particular, in Python has developed
a package of applied mathematical procedures SciPy based on the Numpy Python extension.
With SciPy, the Python interactive session becomes the same full-fledged data processing
and prototyping environment for complex systems, such as any versions of MATLAB, IDL,
Octave, R-Lab, and SciLab later than 2015.

On the other hand, the properties of the MCLP make it possible to use gradient
methods of local optimization using first order differences. To do this, consider the k-th
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component of the vector ĝi = (ĝi
1, . . . , ĝi

k, . . . , ĝi
γi
) corresponding to the object Si and give it

an increment δ. Denote

g̃ = (ĝ0, . . . , ĝi−1, ĝi
1, . . . , ĝi

k + δ, . . . , ĝi
γi

, ĝi+1, . . . , ĝn). (10)

Then, to estimate the increment of a function ωΩ(ĝ) at a point
ĝ = (ĝ0, . . . , ĝi−1, ĝi

1, . . . , ĝi
k, . . . , ĝi

γi
, ĝi+1, . . . , ĝn), we obtain

∆ωΩ(ĝ) = µ(Ω(g̃))− µ(Ω(g̃)), i ∈ Jn, (11)

where the vectors ĝ and g̃ are differ in only one coordinate ĝi
k changed to δ.

This approach to determining the increment of a functionωΩ(ĝ) is universal, but it
requires the calculation of the values of function at points ĝ and g̃.

Using the properties ofω-functions, one can propose an approach that has less com-
putational complexity.

Let us form a symmetric matrix of areas of pairwise intersections of objects

M = [µij](n+1)×(n+1)
, (12)

where
µij = µ

(
Si(ĝi) ∩ Sj(ĝj)

)
, i, j ∈ J0

n. (13)

As a rule, such a matrix M is highly sparse. Let us use this property.
For the k-th component of the vector ĝi = (ĝi

1, . . . , ĝi
k, . . . , ĝi

γi
), corresponding to the

object Si, we will increment δ and form the object Sk
i (g̃), where g̃ has the form (10). Then,

the increment of the functionωΩ(g) at the point ĝ = (ĝ0, . . . , ĝn) will be equal to

∆i
kωΩ(ĝ) = ∑

j∈J0
n

(
µ
(

Sk
i (g̃) ∩ Sj(ĝj)

)
− µij

)
(14)

where the summation is over all j ∈ J0
n, such that µij 6= 0.

The experiments described in the next section confirm that it takes an order of magni-
tude less time to evaluate the increment of a function using Formula (14) than when using
Formula (11).

4. Results

To choose and justify the method for solving the optimization problem (9), we studied
the dependence of computational resources on the dimension of the problem, i.e., number
of covering objects. We conducted a series of experiments during which we evaluated:

• Time for calculating the area of a complex object, the structure of which is determined
by Formula (4);

• Run time of local optimization for an arbitrary starting point;
• Run time of forming the area matrix of pairwise intersections of objects.

Computational experiments were carried out using a computer with the following
configuration: Intel Core i7-5557U processor, CPU Speed 3.1 GHz, 2 cores, 4 threads; RAM
16 GB DDR3 1866 MHz; Graphics processor Intel Iris Graphics 6100 with 1.5 GB of video
memory; SSD 512 GB; and operating system Mac OS X11.0 Big Sur.

The calculations were made using Python packages, such as Shapely and SciPy.
We chose a rectangle as the coverage domain S0, and ellipses as the covering objects

Si, i ∈ Jn. The metric parameters m̂0 = (a0, b0) of S0 are lengths of their sides, and the
placement parameters are p̂0 = (0, 0, 0). The metric parameters mi = (ai, bi), i ∈ Jn of
ellipses are their semi-axis, and the placement parameters pi = (xi, yi, θi), i ∈ Jn are
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the coordinates (xi, yi) of the symmetry centers and the angle of rotation θi. The general
equation of the ellipse in accordance with (1) has the form

1− ((x− xi) cos θi + (y− yi) sin θi)
2

a2
i

+
(−(x− xi) sin θi + (y− yi) cos θi)

2

b2
i

= 0. (15)

So, ĝ0 = (m̂0, p̂0) = (a0, b0, 0, 0, 0), gi = (m̂i, pi) = (ai, bi, xi, yi, θi), i ∈ Jn,
g = (ĝ0, g1, . . . , gn) = (a0, b0, 0, 0, 0, a1, b1, x1, y1, θ1, . . . , an, bn, xn, yn, θn).

For each n from 10 to 500 with step 10, we will randomly form the initial data of the
problem, generating semi-axes (ai, bi), i ∈ Jn of ellipses evenly distributed on the interval
(0, 100). Then, we calculate the total area of the constructed ellipses

Q = π
n

∑
i=1

aibi, (16)

and determine the metric parameters of the coverage domain S0—rectangle with sides
a0 =

√
2Q, b0 =

√
2Q
2 .

Thus, we form 50 tests that differ from each other in the number n of ellipses, their
semi-axis (ai, bi), i ∈ Jn and the sizes (a0, b0) of the coverage domain.

The next step is to generate ellipse placement parameters, which we also choose for
each test evenly distributed on the intervals (− a0

2 , a0
2 ), (−

b0
2 , b0

2 ), (0,π), respectively.
Based on the generated initial data, we calculate the area µ(Ω(g)) of a complex object

Ω(g), the structure of which is determined by Formula (3). The Shapely library was used to
build Ω(g) and calculate its area.

Figure 1 shows the dependence of the average time of calculating the area µ(Ω(g)) on
the number of ellipses Si, i ∈ Jn covering the rectangle S0. Averaging was performed on
20 independent tests.
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The next experiment is to study the time of obtaining a local solution to problem
(9). For local optimization, the SciPy package was chosen, which implements the BFGS
method [37] using first order differences. The gradient was estimated by Formula (14). For
each of the previously formed test tasks, the placement parameters pi = (xi, yi, θi), i ∈ Jn
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randomly generated at the previous stage during the formation of a complex object were
chosen as a starting point.

Figure 2 shows the dependence of the average time to obtain a local solution on the
number of ellipses. Averaging was carried out over 10 independent tests. Formula (14)
was used instead of (11) to estimate first-order differences when calculating the gradient of
functionωΩ(g).
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To substantiate this approach, we studied the dependence of the formation time of the
matrix of pairwise intersections (12) on its dimension. Figure 3 illustrates such dependence.
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The data shown in Figure 3 allows us to estimate the average time for calculating
the area of intersection of two objects. To do this, you need to sum all the elements of the
matrix and divide by their number. Analyzing the obtained results, it can be argued that the
estimation of the gradient using the matrix M requires much less time than by calculating
the function µ(Ω(g)). Indeed, with n=100, the time for calculating the increment of a
function by Formula (11) is 0.04× 2 = 0.08 s, and the average time for the formation of the
upper triangular matrix M is 0.2 s. Therefore, to calculate the area of intersection of each
two objects, 0.2× 2/(100× 101) = 0.000039604 s is required. Since to estimate ∆i

kωΩ(ĝ)
using Formula (14) it is necessary to sum the areas of pairwise intersections of one object
with the other 100, this will require 0.0039604 s. You can see the same when n = 500. The
function ωΩ(ĝ) calculation time is 0.18 s and the matrix M formation time is 2.7 s. The
function increment ∆i

kωΩ(ĝ) according to Formula (14) will be calculated approximately
in 2.7× 2/501 = 0.01078 s.

Let us apply the described approach to solving the following test problems of maximum
coverage. Let the covering objects be ellipses with semi-axis (ai, bi), i ∈ Jn, n = 100 listed in
Table A1 (Appendix A).

The problems of unconditional local optimization (9) for n = 30, 50, 75, 100 was
solved. Squares with sides 30, 40, 70, and 70 for n = 30, 50, 70, and 100, respectively, were
chosen as the coverage domain. BFGS method using first-order differences was used. The
gradients was estimated by Formula (14). The starting point for BFGS method was chosen
by random generation of ellipse placement parameters by analogy with the experiments
described earlier.

Figures 4–7 show the initial location of the ellipses in the coverage domain and the
placement obtained as a result of local optimization for n = 30, 50, 75, and 100. The run
times to solve the problems are 22 s, 51 s, 79 s, and 103 s, respectively.
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Let us pay special attention to the test problems when n = 50 and n = 75. At n = 50,
due to the large size of the coverage domain, such an placement of ellipses was obtained
in which they do not intersect and are located inside the area. This is a global solution to
problem (9), which corresponds to the so-called packing configuration [28,29]. For n = 75,
each point of the coverage domain belongs to at least one of the covering objects. This
is also a global solution to problem (9), and the resulting location defines the so-called
covering configuration [28,29].

5. Discussion

The maximum coverage location problem is related to the determination of the place-
ment of objects in order to cover as much as possible of the domain served by them. Such
problems are formulated in discrete, continuous, and mixed statements, taking into account
their geometric features.

The choice of one or another model depends on the restrictions on the location of
objects and the properties of the service area. The classical discrete setting assumes that both
object locations and service areas are isolated points. The weakening of the discreteness
conditions leads to continuous and mixed formulations.

This article is perhaps one of the first to raise questions of formalization of completely
continuous MCLP. In this case, both the locations and the service area are continual and
suggest the possibility of their continuous transformation.

Of course, by discretizing the coverage area, for example, by grid methods, one can
reduce continuous problems to discrete formulations. However, in this case, we will rather
talk about the method of solution, and not about an adequate mathematical statement of
the problem.

The geometric features of the continuous MCLP are related to both the shape of
the covering objects and the service area. In turn, the problems go beyond the class of
classical coverage problems, in which each point of the domain must belong to at least one
of the covering objects. Therefore, continuous MCLP require the construction of special
mathematical models and optimization methods that take into account their specifics.

The continuous MCLP model as a non-linear unconstrained optimization problem
opens up prospects for using both modern effective methods for solving them and existing
software in the form of powerful packages for various computer platforms.
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The conducted studies allowed us to approach the analysis of the mathematical model
of the problem from a unified standpoint. On the one hand, knowing the equations of
general position of geometric objects Si(gi), i ∈ J0

n, used in the formation of a complex
object Ω(g), one can write down the equation of its boundary. Therefore, formally we will
find the analytical form of the functionωΩ(g) = µ(Ω(g)) depending on the generalized
variables g. As a result, we will obtain an expression in the form of an integral depending
on a vector parameter, for the calculation of which we will have to use numerical methods.
This approach is very time consuming and is associated with the consideration of various
options for the acceptable location of objects.

The approach proposed in the paper is devoid of these shortcomings. All the diffi-
culties associated with the analytical specification of the functionωΩ(g) are overcome by
using computer geometry packages that work great with geometric objects of complex
spatial shape. As a result, it takes milliseconds to calculate the function value ωΩ(ĝ) for
the fixed ĝ, which is confirmed by the experiments described in the Section 4. This justifies
the possibility of using metaheuristic methods of global optimization [38,39]. The efficiency
of methods increases significantly if it is possible to use local optimization methods. The
simplest is the multistart scheme for generation Ω(ĝ) with subsequent local optimization of
the functionωΩ(g), choosing ĝ as the starting point. With limited time, the data illustrated
in Figure 2 allows an estimate of the number of iterations in the multistart method. If
temporary resources allow, hybrid methods can be proposed, where local optimization is
applied after improvements have been received.

The geometrical features of the continuous MCLP model have made it possible to sig-
nificantly increase the efficiency of local optimization methods using first order differences.
This is confirmed by the data shown in Figure 3.

In general, the proposed approach opens up prospects for the development of new
methods for solving both packing and covering problems. Indeed, in the course of the
experiments, we obtained such locations of objects that corresponded to the packing con-
figuration (Figure 5b) and covering configuration (Figure 6b). Thus, the introduction of
additional conditions on the value of the function will allow us to propose new mathemati-
cal models for classical packing and covering problems and methods for their solution. In
particular, the constraint

ωΩ(g) =
n

∑
i=1
µ(Si), (17)

is the condition for both non-intersection of objects Si(gi), i ∈ Jn, and their inclusion inside
the container S0.

The constraint
ωΩ(g) = µ(S0), (18)

is a condition for covering the domain S0 by a family of geometric objects Si(gi), i ∈ J0
n.

Note that the choice of the BFGS method for local optimization was based on high
user ratings. Of course, further studies of continuous MCLP require a comparative analysis
of modern optimization methods, in particular [40]. Potential decision improvements can
be obtained by using a novel optimization scheme, such as deep learned recurrent type-3
fuzzy system [41].

Another promising direction is the study of optimization problems of packing and
coverage in domains with variable metric parameters. The results described in this article
are directly related to this problem as well.
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Appendix A

Table A1. Metrical parameters of ellipses.

i ai bi i ai bi i ai bi i ai bi

1 1.5 1.3 26 1.5 1.5 51 4.5 2.5 76 4.5 2.0

2 1.9 1.4 27 1.9 1.8 52 4.9 2.8 77 4.9 2.2

3 2.4 2.0 28 2.4 1.2 53 5.4 2.2 78 5.4 3.2

4 2.9 2.0 29 2.9 1.5 54 5.9 3.5 79 5.9 3.5

5 3.3 1,7 30 3.3 1.3 55 6.3 2.3 80 6.3 3.3

6 3.8 1.9 31 3.8 2.9 56 6.8 3.5 81 6.8 2.8

7 4.5 2.0 32 4.5 3.0 57 7.5 3.3 82 7.5 4.0

8 4.9 2.5 33 4.9 2.5 58 7.9 4.5 83 7.9 3.4

9 5.0 2.4 34 5.0 3.4 59 8.0 3.4 84 8.0 4.4

10 5.4 2.3 35 5.4 2.3 60 8.4 2.7 85 8.4 4.1

11 5.9 3.1 36 5.9 2.1 61 8.9 4.1 86 8.9 3.3

12 6.1 3.0 37 6.1 1.5 62 9.1 3.5 87 9.1 4.6

13 6.4 2.8 38 6.4 2.8 63 9.4 3.8 88 9.4 3.2

14 6.6 3.5 39 6.6 2.9 64 9.6 4.5 89 9.6 3.5

15 7.0 3.0 40 7.0 4.0 65 10.1 4.0 90 10.1 5.2

16 7.1 3.5 41 7.1 2.5 66 10.4 2.5 91 10.4 4.5

17 7.3 3.3 42 7.3 3.7 67 10.7 3.7 92 10.7 5.7

18 7.6 2.9 43 7.6 3.9 68 11.0 4.9 93 11.0 3.9

19 7.9 3.5 44 7.9 2.5 69 11.4 3.5 94 11.4 4.5

20 8.1 4.0 45 8.1 3.0 70 11.8 5.0 95 11.8 4.0

21 8.3 5.0 46 8.3 4.0 71 12.1 5.0 96 12.1 4.0

22 8.5 4.5 47 8,5 3.5 72 12.5 4.5 97 12.5 3.5

23 8.8 5.5 48 8.8 4.5 72 13.1 5.5 98 13.1 4.5

24 8.8 3.1 49 8.8 4.1 74 13.6 6.1 99 13.6 4.1

25 9.0 5.9 50 9.0 3.9 75 14.0 4.0 100 14.0 3.9
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