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Continuing the presentation of a theory of growth models for filamentous 
organisms, the treatment is extended to cases where inputs are received 
by each cell from both directions along the filament, and the change of 
state and the output of a cell is determined by its present state and the 
two inputs it receives. Further symbolism is introduced to take care of 
branching filaments as well. Two entirely different models are constructed 
for a particular branching organism, resembling one of the red algae. 
These models are compared with reference to the number of states 
employed, and the presence or absence of instructions for unequal 
divisions and for inductive relationships among the cells. The importance 
of a morphogenetic control theory concerning these relationships is 
emphasized. 

1. Introduction 
The theory constructed in the preceding paper (Lindenmayer, 1968) could 
cope only with simple filaments, linear arrays of cells, with outputs by the 
cells transmitted only in one direction along the filament. Although there 
are developmental situations in which this simple theory can be useful, e.g. 
when a hormone-like auxin travels in an organ in one direction only, as 
auxin is known to behave in shoots of vascular plants, but in many more 
cases it is desirable to be able to carry out computations on the basis of 
two-directional input-output relationships, Such cases include not only fila- 
mentous organs, but also ring structures. 

Ever since Turing (1952) proposed his famous morphogenetic models for 
shoot apices based on peaks and troughs of concentrations of morphogenetic 
substances which react with each other and diffuse around a ring, many 
developmental biologists have expressed interest in these kinds of explanatory 
hypotheses (e.g. Wardlaw, 1953), but no further use has been made of 
them. One of the reasons for this may be the mathematical complexity of 
dealing with simultaneous first- and second-order differential equations, as 
in Turing’s approach. The advantage of the theory proposed in the present 
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papers is that only finite mathematics is used, and consequently it lends itself 
more readily to combinatorial manipulations, such as programming for 
digital computers, and the theoretical framework can be kept at a rudimentary 
level. At the same time results are obtainable which could be just as meaning- 
ful for morphogenetic considerations as those based on differential equations. 

The present paper explores a theory for the growth of filaments under 
two-sided inputs, and extends it to branching filaments. The mathematical 
theory of sequential machines is being used throughout, as outlined in the 
previous paper. As a demonstration, individual models are constructed for 
a particular branching filamentous organism. The problem of equivalence 
among models yielding the same growth pattern is then introduced. 

2. Theory B: Simple Filaments with Two-sided Inputs 

The formal assumptions in this theory are partly identical to those in 
theory A of the previous paper, and these will be referred to by their original 
number. The assumptions which need to be modified will have a “B” prefix 
with the number that the corresponding assumption has in theory A. The 
first such modified statement replaces (A6), to read: 

(B6) The 6, x and x functions are to be non-empty mappings from 
Sx S x S into S, with the restriction that the sequences inserted 
into the second and third places of the arguments of the functions 
must be of the same G-length. 

The next-state and output functions have three variables in their arguments, 
the first for the present state, the second for the input from the left, and the 
third for the input from the right. Thus we have expressions like 

6(p, q, r) = s or i(p, 4, r) = t or i(p, q, r) = w, 

in each of which the restriction placed on the functions requires that 
9(q) = g(r)* 

We are postulating two different output functions, x for the right output, 
and 2 for the left output of a sequence under its inputs. The following 
diagram shows these relationships. 

output 

left input 

= %i(p, 47 right output 
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The rules for concatenated input sequences are analogous to those in 
theory A. 

(B7a) 6(p, ww, WZ) = S(6(p, U, u), W, zj 

(B7b) A(p, ww, v*z) = i(p, u, u) * @(p, u, u), w, z) 

l(p, u*w, u*z) = i(p, u, u) * i@(p, 2.4, u), w, z) 

for all p, a, u, w, z in S such that g(u) = g(u) and g(w) = g(z). 
Unfortunately, the rules for concatenated state sequences cannot be given 

in analogous manner to (A7c) and (A7d). The problem is centered on the 
fact that if we try to provide a completely specified substitution for an 
expression like 6(p*q, u, u) we immediately discover that we are sucked into 
an infinite regress. This is because we would have to write something like 
the following 

&p*q, u, 4 = %P, u, k kP, k,~ . . jj, 4) * &I, GP, u, k, %P,. . . N, a, 
where the “. . . ” stands for an infinitely long expression of alternating left 
and right outputs. Yet, it is perfectly clear that computations with two-sided 
inputs can be carried out, or programmed for a computer, if it is done line- 
by-line. The difficulty lies only in trying to find general expressions for input 
and output sequences of any length. Thus, we shall avoid the above predica- 
ment by stating substitution rules only for unit-length inputs and outputs. 

(B7c) For all p, u and u in G, and r and s in S, 

@*p*r, u, 4 = W, 4 P) * &p, j;(s, u, P), kr, P, 4) * Q, p, u>, 

(B7d) I(s*p*r, u, u) = A(r, p, u), 

i(s*p*r, u, u) = i(s, u, p). 

The rules for empty sequences are similar to their counterparts in 
theory A. 

Wa) &e, P, d = k~, e, 4 = %P, e, e) = e, 

(BW &P, e, 4 = ice, P, d = ke, 4, P) = P, 
for all p and q in S such that g(p) = g(q). 

As it turns out, the statements in this theory, that would correspond to 
(A9), are derivable from (B7d) and (B8b), thus we list them as parts of our 
first theorem in theory B. 

(TBl) If p, u and u are in G, and r and s are in S, then 

I(s+p, u, u) = i(p*r, u, u) = p. 



DEVELOPMENTAL MODELS. II. BRANCHING FILAMENTS 303 

Proof is by substituting e for r or s in (B7d). The significance of this 
theorem is that the right output of a non-empty sequence is the right-most 
component of that sequence, and its left output is its left-most component. 
Of course, if this is not the desired arrangement then the above assumptions 
need to be changed. A similar theorem can be obtained for state sequences, 
also by substituting e for r or s in (B7c). 

(TB2) If p, u and u are in G, and r and s are in S, then 

Gv, cl,4 = 6, u, P) * &P, k, u, PI, 4 and 

%p*r, u, 4 = @P, u, k-, P, 4) * %r, p, ~1. 

The assumptions (B6), (B7a-d) and (B8a-b) are the only ones necessary 
to complete theory B, in addition to statements (Al) to (A5), and (AlO) 
to (Al3), except for a definition corresponding to (Allb) which can be 
readily added : 

(Bllb) Generating 2 and ‘li functions are 2 and i functions with 
arguments restricted to members of G. 

Then, by (TBl), we have the statement that I(p, u, u) = >(p, u, v) = p 

for all p, u and D in G. Thus generating 3. and 1 functions must be mappings 
from G x G x G into G. 

An interesting question is how theory A is related to theory B. First of 
all it can be noted that the transition from statements in one to those in the 
other may be accomplished by adopting the following transformation rule: 

(ABl) We can assert in theory A that 6(p, q) = s and A(p, q) = t if and 
only if we can assert in theory B that 6(p, q, r) = s and 

l(p, q, r) = t for every r such that g(r) = g(q). 

It is the case then that every statement in theory A is derivable in theory B. 
In particular, it can be shown that (ARC), which was that 

6(q*p, r) = 6(q, r) * 6(p, i(q, r)), for all p, q and r in S, 

is derivable from the transformed version of (B~c), namely that 

G(s*p*r, u) = 6(s, u) * 6(p, L(s, u)) * 6(r, p), for all p and u in G, and s and r in S. 

Similarly, (A7d) and (A9) are derivable from the transformed version of 
(B7d), provided that the other assumptions of theory A are available. 
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The reverse relationship, however, does not hold, i.e. not all statements 
in B can be derived from those in A. Clearly, theory B is a richer system in 
which many patterns can be expressed which cannot in theory A. 

As an example for statements in theory B, a theorem is presented for the 
development of banded patterns under two-sided inputs. 

(TB3) If &, r, q) = r for every q such that g(q) = g(r), and if 
6(p, r, r) = pm, and if m 9 0 and n + 0, then 6(p, P, r”) = pm”. 

This theorem is closely analogous to (TA13) in the preceding paper, and 
its proof follows essentially along the same lines. 

The next theorem, on the other hand, has no counterpart in theory A. 
We introduce it by way of a concrete example. Figure 1 shows the computer 
expansion of the sequence 111 under left and right input sequences consisting 
of 1’s. The generating 6 function is presented in the form of two matrices, 
the first for present state 0, and the other for present state 1. The left inputs 
are in the vertical column on the left, and the right inputs are in the horizontal 
row on top, the rest of the matrix showing the next states for each triple 
combination of present state, left input and right input. The generating 
set G = (0, l}. 

Present Right input Present Right input 
state 0 0 1 state 1 0 1 

--___ 

Left ~__~ 
0 0 1 Left ’ 1*1 I*1 

--~ 
input 1 1 1 input 1 0 0 

--~ 
In Fig. 1 the left-most and right-most symbols in each row represent the 
environmental inputs, which are arbitrarily set rather than computed. The 
left column of the computed sequences can be seen to consist of alternating 
l’s and O’s, and no divisions take place in this column. Thus we can take 
this column and consider it to be the left environmental input sequence. 
Then we notice that in the column to its right there is a regularly repeated 
sequence of 1001 sequences. This is an indication that we are dealing with 
a repetition of certain patterns in every fourth row, as we have seen this to 
happen in Figs 3 and 4 of the previous paper. We make a new plot of Fig. 1, 
therefore, showing only every fourth row, with the inputs from row to row 
consisting of 1010 on the left and of 1111 on the right. This is shown in Fig. 2. 

A certain kind of constant apical pattern is evident in Fig. 2. This, how- 
ever, is unlike those in Figs 1 and 4 of the preceding paper, in that the 
apical pattern is only partially repeating because of influences from the right 
input encroaching on it. No expression similar to (TAlO) is available for 
this behavior, but some other regularities can be pointed out. 
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Row 

1 11111 

2 10001 
3 11011 

4 101111 
5 1111001 

6 1000111 
7 11011101 

8 101110011 
9 11110011111 

10 100011110001 
11 1101110001011 

12 1011100101111111 
13 1111001111111OOOOO1 

14 10001111OOOOOO1m11 
15 11011100010000111101111 

16 101110010111100111000111001 
17 11110011111110001111001011100111 

18 10001111OOOOOO10111000111111100111101 
19 110111000100001111110010111OOOOOO111100011 

20 101110010111100111OOOOO11111110010000111000101111 
21 11110011111110001111001000111OOOOOO11111001110010111111001 

22 10001111OOOOOO10111000111110111001000011100001111001111111OOOOO111 
23 110111ooO1oooO1111110010111oooO11100111110011100100111ooO1111OOOOOO1OOO111 

01 
24 101110010111100111OOOOO1111111OO1OO111OO1111OOOO11110011111111O10111OOO10 

000111101110011 
25 11110011111110001111OOlOOO111OOOOOO11111111001111OOO1OO111OOO1111O11 

-1111100101111001110001110011111 
26 1ooO1111ooOooO101110111110111001oooO11100000001111OOO101111111OO10111OOO 

1000001110OOOOO1111111000111100101110011110001 
27 110111ooO1oooO11111100101110ooO111001111100111001OOOOO111O10111111OOOOOO 

111111100101111ooo111010ooo111OOOOOO101110001111111OO1111OOO1011 
28 101110010111100111ooO00111111100100111001111oooO11110011111ooO111001011111 

1OOOOO1OOO01110000001111111OOO10111OO11111OO111OOlOOOO11111100101110000001111OOO 
101111111 

29 11110011111110001111001ooo11100000011111111001111OOO1OO111OOO1111OOOO10111 
0011111110oooo1ooo111100111001oooo111010111111001111oooo1111001111100111ooo 

001111111001OOOo11100010111111OOOOO1 
30 1ooo1111ooo00010111000111110111001oooo111OOOOOOO1111OOO101111111OO10111OOO 

100111111001111000000100011110111OOO1111OO11111OO111OO1O111111OOOOO1111OOO1OO 
111000111100001111001000111OOOOOO11111001110010111111OoOOO100011 

FIG. I 
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Left 
Row input 

1 1010 
5 
9 

13 
17 
21 
25 

29 

Right input 

111 1111 
116@ 
llooiiiii 
11001111iii6G@o 
1100111111100011110010~1110011 
11001111111000111100100011mooooo11111~00111001011111100 
110011111110001111001000111oooooO11111111001111ooo100111ooo 

1111oooq00011111110010111100111ooo111001111 
110011111110001111001000111oooooO11111111001111ooo100111ooo 

1111oooo1011100.. . 

FIG. 2 

It is possible to show for this particular 6 function that for all sequences r, 

if the G-length of r is 4, then z(11, 1010, r) = 1001, which was the regularly 
repeated sequence in the second computed column of Fig. 1. That this is 
so can be shown most easily by an incomplete calculation under an unknown 
right input of length 4: 

1 11 r1 
0 00 r2 
1 0.. r3 
0 1.. r4 

11.. 

Beside the fact that the first column has 1001 in its first four places, we also 
obtained the fact that there is an s such that 6(11, 1010, r) = 11~ for 
any r of length 4. 

A theorem can now be formulated, asserting that whenever we have a p 
such as 11, a q such as 1010 and a t such as 1001 behaving as they do in the 
above example, any n repetition of q as the left input to p will result in a 
left output sequence of n-times repeated t, under any right input sequence 
whatever; and the next-state sequence, under these conditions will always 
begin with p. 

(TB4) If, for every r such that g(r) = g(q), >(p, q, r) = t and 
E![&p, q, r) t p], then for every non-negative integer n and 
every w  such that g(w) = n.g(q), it is the case that 

i(p, q”, w) = t” and E![6(p, q”, w) t p]. 

Proof is by mathematical induction and requires no lemmas. 



DEVELOPMENTAL MODELS. II. BRANCHING FILAMENTS 307 

That the type of right input influences the extent of self-replicating 
left portions in these arrays is illustrated by a comparison of Fig. 3 with 
Fig. 2. In Fig. 3 each new array is computed under a left input of 1010, 

Left 
Row input 

1 1010 
5 
9 

13 
17 
21 
25 
29 

Right input 
11 0000 
111 
1110 
llTqOl0 
1100@0011110 
11001111111~1001111oooooO10 
11001111111ooo1~0111001111111ooooO10111ooo111110 
11001111111ooo1111001ooo111101110010111111ooo1111001011100 

111110111001oooo111ooooooO10 

FIG. 3 

as is the case in Fig. 2, but the right input in Fig. 3 consists of O’s rather than 
of l’s as in the other one. The self-replicating part is increasing at a much 
slower rate in Fig. 3 than in Fig. 2 (its right boundary is indicated by the 
stepwise line). It may be noticed that we have a set of successive self-replicating 
sequences, each longer than the previous one: 

6(110, 1010, Y1) = 1 lOOl*s, 
6(11001,1010, r-2) = 110011111*s, 

and so on. These sequences represent the minimum self-replicating left-hand 
portion we can obtain under any right input sequences, provided that the 
right input consists of repetitions of 1010. 

3. Theory C: Branching Filaments 

Branching filaments can be handled within the already available theoretical 
framework with the addition of only one more formal concept. Left and 
right brackets, [ 1, will be used to delimit each branch, while the entire 
organism is described by a single linear array as before. The state symbols 
of each primary branch are enclosed in brackets and inserted into the array 
after the basal cell in the main filament, and, similarly, the symbols of each 
secondary branch are enclosed in brackets and inserted after its basal cell 
on the primary branch, and so on. If there are more than two branches on 
a basal cell, then their expressions simply follow consecutively after the state 
symbol of the basal cell. Relative positions of the branches to each other and 
to the main filament cannot be indicated in this system, in the sense that 
left and right branches cannot be distinguished. 
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Since with any desired number of branches we still have a single linear 
array, we can use the same concatenation operator * and work with the 
6 and 1 functions, as before, provided that we specify rules for dealing with 
the bracketed expressions. Such rules are presented now for two-sided 
inputs, those for one-sided inputs are easily derivable from them. In some of 
these rules a constant c must be invoked in order to provide environmental 
inputs at the tips of branches, for which the inputs would otherwise remain 
unknown or would have to be specified by other conventions. 

(W &q*[Pl, u, 4 = k 4 4 * C&P, kz, u, u>, cg’“‘>] 

(Q-) &[pl*r, u, u) = [%P, 4 ~~(“91 * W, u, v> 

(C3) &*cPl, u, 0) = 24, u, 4 

(C4) i([p]*r, u, u) =;(r, u, 0) 

(C5) k*[Pl, tl, u> = k u, u> 

(C6) i([p]*r, u, u) = i(r, u, u) 

for all p, q, r, u, u in S, and some c in G. 
(C7) [e] = e 

By substituting e for q or r in the above formulas we obtain: 

UC11 @[PI, u, u> = [&P, u, @))I 

W2) 4[pl, u, 4 = u 

(TC3) i([p], u, u) = u, for all p, u, u in S. 
Under the assumptions of theory C the basal cell of a primary branch 

receives inputs only from its two neighbors along the main filament, not 
from the adjacent cell on the branch, and similarly for all higher order 
branches. This is evident from (Cl), where q may stand for the state of the 
basal cell of branch [p]. If it would be desirable for biological reasons to let 
the cells of the branches contribute to the input of the basal cells, in other 
words, to let each basal cell receive inputs from each of its three or more 
neighbors, then a somewhat more complex theory has to be constructed in 
which sets of inputs determine the next states and outputs. 

4. Models for a Branching Filamentous Organism 
Two models are presented which were constructed to simulate the develop- 

ment of a particular red alga, Cullithamnion roseum Harvey. Detailed 
developmental descriptions are available for this organism (Konrad- 
Hawkins, 1964), certain aspects of which were followed in this exercise. 
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We plan to produce a developmental pattern with the following features: 
(a) the main filament should have at its base one to three cells which do not 
bear branches; (b) each successive cell above these on the main filament 
should bear one branch; (c) in all stages three or four cells below the tip of 
the main filament should have no branches; (d) each primary or higher order 
branch should repeat the pattern of the main filament. Certain important 
details of the growth of C. roseum are purposely omitted from this 
list of requirements. Most notably, while the position of the transverse walls 
in the filaments appears to have a significance in determining the branch- 
ing points, this aspect has been ignored in these models. Actually, more 
complex models have been constructed which take wall characteristics into 
account, but these will be reported on at a later time. 

Two entirely different 6 functions are presented, both giving rise to 
essentially the same growth pattern. The first model has a generating set of 
nine symbols, the integers from 1 to 9, for the set of state sequences. The 
next state is specified independently from the input received. In other words, 
in the generating 6 matrix the same next-state sequence should be entered 
under all nine inputs. This is shown in an abbreviated form in the following 
table : 

Present states 
1 2 3 4 5 6 7 8 9 

Under any input 2*3 2 2*4 2~5 6*5 7 8 9*[3] 9 
qEG 

This table could also be expressed by a series of statements such as: 

vu, 4)14 E ~1 = (2*3), 
{V, q)lq E G) = {2}, etc. 

If we adopted the following transformation rule 
S,(p) = q if and only if {6(p, r)lg(r) = n} = {q}, 

then only the following concatenation and branching rules were needed: 

4h*q) = ~“(I4 * Ud 
4l(bl) = MPN. 

This is the case of no inputs passing in either direction in the filament, and 
could be called “the theory of zero-sided inputs”. It is embedded in theory A, 
just as theory A is embedded in theory B. 

Making use of the above generating matrix, a sample calculation is 
carried out for 15 lines in Fig. 4, with a diagrammatic representation of the 
resulting organism shown in Fig. 5. Each cell in Fig. 5 has in it the symbol 
for the state in which the cell is in at line 15 of the calculation. The branches 
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Row 

1 
2 111 1 i23 
3 1224 
4 12225 
5 122265 
6 1222765 
7 12228765 
8 12229 [3] 8765 
9 12229 [24] 9 [3] 8765 

10 12229 [225] 9 [24] 9 [3] 8765 
11 12229 [2265] 9 [225] 9 [24] 9 [3] 8765 
12 12229 [22765] 9 [2265] 9 [225] 9 [24] 9 [3] 8765 
13 12229 122876519 [22765] 9 [2265] 9 [225] 9 [24] 9 [3] 8765 
14 12229 [229 [3] 876519 [228765] 9 [22765] 9 [2265] 9 [225] 9 [24] 9 [3] 8765 
I5 2229 [229 12419 [3] 876519 [229 [3] 876519 [228765] 9 [22765] 9 [2265] 9 122519 [24] 9 [3] 8765 

FIG. 4 

FIG. 5 

are drawn alternately to the left and to the right of the filament that bears 
them; this is purely arbitrary as it has already been pointed out. It is clear 
that if we start the computation with a single cell in state 1 then the model 
fulfills the requirements stated at the beginning. 

The second model has a generating set of only four members: G = 
(0, 1,2, 3}, and two-sided inputs are assumed (theory B), as well as branching 
(theory C). The generating 6 function is given as three matrices; 0 is used 
exclusively as an input symbol, thus no values are required for it in the 

6 function. The 2 and 1 generating functions are defined by (Bl lb), (TC2) 
and (TC3). 
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Present 
state Right input 

10123 
-- 

Left 1 1 1 
input --- 0!2 ~-~ 

112 2 1 1; 
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2 0 123 

0 l*l 1 1 1 

1 1*1 2 2 2 
---~ 

2 1*1 1 3 1 
_____ 

3 l*l 3 3 3 

3012 3 

0211 11 

1123 31 

A computation, beginning with a cell in state 1 under constant environ- 
mental inputs from both sides of O’s, is shown in Fig. 6. If we would start 
with a cell in state 2 or 3 instead, we would get the same results except for 
the first few lines. Figure 7 shows the diagrammatic view of the organism 
corresponding to line 28 of the calculation. 

Row 

1 010 
2 020 
3 0110 
4 0120 
5 01110 
6 0 1220 
I 0 12110 
8 0 12220 
9 0 123110 

10 0 122220 

:: 0 0 1233110 1233220 
13 0 12333110 
14 0 1231 [l] 3220 
15 0 1223 [2] 33110 
16 01213[11]1[1]3220 
17 0 1212 [22] 3 [2] 33110 
18 01212[311]3[11]1[1]3220 
19 01212[222]2[22]3[2]33110 
20 0 1212[3311]1[311]3 [ll] 1[1]3220 
21 0 1212 [3322] 1 [222] 2 [22] 3 [Z] 331 IO 
22 01212[33311]1[2311]2[311]3[11]1[1]3220 
23 01212[31 [1]322]1 [2222]2[222]2[22]3[2]33110 
24 01212[23[2]3311]1[23311]2[3311]1[311]3[11]1[1]3220 
25 01212[13 [ll] 1 [1]322]1 [23322]2[3322]1[222]2[22]3 [2]33110 
26 01212[12[22]3[2]3311]1[233311]2[33311]1 [2311]2[311]3[11]1 [1]3220 
27 01212[12[311]3[11]1 [I]32211 [231 [1]322]2[31 [1]322]1 [2222]2[222]2[22]3[2]33110 
28 1212[12[222]2[22]3[2]3311]1[223[2]3311]2~23[2]3311]1 [23311]2[3311]1 [311]3[11] 

1 [l] 322 

FIG. 6 
T.B. 21 
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Comparing the growth patterns of these two models, we fmd a structural 
similarity between Figs 5 and 7. What we mean by this is that the origins 
and lengths of the branches are approximately the same in the two pictures. 
What this corresponds to in the original linear arrays from which these 
pictures were drawn is the distribution of the brackets along the arrays. 

FIG. 7 

Thus we have constructed two roughly similar growth models with respect 
to the distribution of the branches, but certainly not with respect to distri- 
bution of states along the filament. There is “branching equivalence” 
between the two G&functions, but no equivalence between the functions in 
the sense of Ginsburg (1962). In the latter sense, for each state in the first 
model there is a state in the second one such that the outputs under all 
inputs are identical for both states, and, similarly, for every state in the 
second model there is a state in the first one such that the outputs under all 
inputs are identical. This is certainly not the case for our models. 

The most interesting aspect of the comparison of the two models is the 
presence or absence in them of unequal divisions and of induction processes 
among cells. This is discussed in the following section. 

5. Discussion 

The central problem in these papers is the relationship between the 
controls of cell division and cell induction, and morphogenesis. Before 
discussing what this theory tells us about this relationship, we have to make 
a few comments about the division and induction processes we are concerned 
with. 

Cell division may be equal (equational) or unequal according to the 
respective states of the mother and daughter cells. As mentioned before, by 
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states we understand any physiological or morphological aspect of the cells 
which have a significant influence on the life of the cell. “Differentiation” 
is the usual term employed to designate a change in states. It has been 
stated (by H. Holzer in a lecture at the 1966 AIBS meetings) that differentia- 
tion is always accompanied by cell division. Holzer proposed that basically 
four types of cell divisions may be distinguished: 

x 
d-t Ai JA J L 
x x Y Y x Y Y 2 

The first two are equal divisions, the last two are unequal. The last three 
give rise to differentiation. Whether or not Holzer’s thesis on the connection 
of differentiation and division is correct, these concepts are worth further 
exploration. 

Concerning induction processes, the following summary by Lang (1965) 
is useful: “(There are) the following principal cases of contagious differen- 
tiation: (1) the specific character of a differentiated cell or tissue is 
perpetuated by cell division, giving rise to cell or tissue lineages carrying this 
character; (2) the differentiating or differentiated cell or tissue induces 
identical or very similar differentiation in its neighborhood; this is known as 
homeogenetic induction; (3) a differentiated cell or tissue induces or modifies 
differentiation of another type in adjacent cells or tissues, this is called 
heterogenetic induction. . . . It may be noted that one can also speak of 
negative homeo- or heterogenetic induction, i.e. differentiation of a cell or 
tissue may prevent differentiation of identical or of different cells and tissues 
in the same or in another tissue. . . . An example is the (development of) 
stomata1 pattern in dicot leaves.” 

The theories proposed here are able to cope with all of the division and 
induction cases mentioned. The first model in the previous section has several 
unequal divisions in its 6 matrix, belonging to one of the two types given 
above, for instance 

3 5 
I( L and JL 

2 4 6 5 

But this model has no inductive instructions. On the other hand, the second 
model has many inductive instructions, but no unequal divisions. In fact, it 
has division instructions of only the first type 

1 
JL 

1 1 
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Among the inductive instructions of the second model there are some 
representing homeogenetic induction, like 6(1, 2, 1) = 2 and 6(1, 3, 3) = 3, 
and some heterogenetic induction, like 6(3, I, 1) = 2 and 6(2,2, 3) = 1. 
Negative induction is difficult to define, because how does one know whether 
a certain input prevented a change of state in a cell, or simply had no effect 
on that cell. If negative induction should only mean that the present state 
of a cell remains unchanged under an input from a cell in a similar or different 
state, then there are many examples for this in the second model. Thus 
6( 1,2,2) = 1 could be regarded as a case for negative heterogenetic induction, 
and perhaps 6(3, 3,2) = 3 a case for negative homeogenetic induction. 

The two models were constructed by many trials with as few individual 
states (members of the generating set) as possible. The first required nine states, 
while the second only three states plus one environmental input. So, having 
inductive instructions with two-sided inputs seems to be much more 
economical of number of states. Other models, not included here, were con- 
structed with inductive instructions and one-sided inputs, and they seemed 
to require more individual states than the models with two-sided inputs, 
but less than those without inputs (which is the same as having only one 
individual input). An organism obviously has a choice of a very large 
number of different sets of hereditary instructions to reliably produce a 
certain structure which it needs for survival. Some of these instructions may 
specify the occurrence of equal or unequal divisions, others that of induction 
taking place with one or more sided inputs. Roughly speaking, the more 
inductive processes are specified and with inputs coming from more sides, 
the fewer states will be needed and fewer unequal divisions. Which of these 
alternatives is less costly for the organism is difficult to tell, but there may 
be an optimum number of states for a given developmental pattern, which 
requires the smallest total of induction and unequal division instructions 
taken together. Such optimization considerations may eventually lead us to 
more realistic models. 

In view of the large number of possible models which give rise to similar 
morphogenetic patterns the most important problem is that of narrowing 
down the set of possibilities. This can be ultimately done on the basis of 
experimental evidence only. But a better theoretical understanding of equiva- 
lence relationships among models of different types would help considerably 
to sharpen the questions asked in the experiments. 

While branching filaments, no matter how complicated, can be handled 
as linear, one-dimensional arrays, the growth of a shoot apex can be 
described only by a two-dimensional model, and the growth of a gastrula 
probably by one which is at least three-dimensional. The theoretical frame- 
work to cope with more than one-dimensional structures is not available yet. 
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Simplified approaches to morphogenesis in the shoot apex are, however, 
possible on the basis of one-dimensional models of rings (as in Turing’s 
model, 1952) or of contact parastichies (as invoked by Plantefol, 1948). 
Primitive apices with tetrahedral apical cells can also be approached on this 
basis, since the tetrahedral cell and the sister cells of previous tetrahedral 
cells can be considered a filament. Further studies are planned on these and 
related subjects. 
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