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Abstract. Inspired by the recent work of Bertalmio et al. on digital inpaintings [SIGGRAPH
2000], we develop general mathematical models for local inpaintings of nontexture images. On smooth
regions, inpaintings are connected to the harmonic and biharmonic extensions, and inpainting orders
are analyzed. For inpaintings involving the recovery of edges, we study a variational model that is
closely connected to the classical total variation (TV) denoising model of Rudin, Osher, and Fatemi
[Phys. D, 60 (1992), pp. 259–268]. Other models are also discussed based on the Mumford–Shah
regularity [Comm. Pure Appl. Math., XLII (1989), pp. 577–685] and curvature driven diffusions
(CDD) of Chan and Shen [J. Visual Comm. Image Rep., 12 (2001)]. The broad applications of the
inpainting models are demonstrated through restoring scratched old photos, disocclusion in vision
analysis, text removal, digital zooming, and edge-based image coding.
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1. Introduction. To inpaint a damaged image or an ancient painting with miss-
ing regions is to guess and fill in the lost image information in such a consistent way
that the restored image or painting seems as natural as its original version. (See
Figure 1.1.)

D

u
Dc is given

(inpainting domain)

Fig. 1.1. Inpainting is to paint the missing u
∣∣
D

on an inpainting domain D based on the image
information available outside.

The word “inpainting” was initially invented by museum or art restoration work-
ers [17, 47]. The concept of digital inpainting was only recently introduced into digital
image processing by Bertalmio et al. [1], who were the first group to develop inpaint-
ing models based on high order PDEs. Earlier related works based on second order
PDEs and variational techniques can be found in Caselles, Morel, and Sbert [4] and
Masnou and Morel [31]. Meanwhile, in computer science, much research similar to
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the inpainting problem has also been carried out in the context of image interpo-
lation [26], image replacement [22], and error concealment [23, 27], although these
works are more based on statistical and algorithmic approaches.

Important applications of digital inpainting include (a) digital restoration of an-
cient paintings for conservation purposes [17, 47], (b) restoring aged or damaged
photographs and films [25, 26], (c) text removal and object removal in images for
special effects [1], (d) disocclusion in vision research [31, 36], (e) digital zooming and
edge-based image coding (sections 8 and 9).

Mathematically, what makes the inpainting problem so challenging is the com-
plexity of image functions. Unlike many traditional interpolation or boundary value
problems, the target image functions to be inpainted typically lie outside the Sobolev
category. Some examples include: (a) natural images (clutters) are modeled by dis-
tributions (Mumford [33]); (b) texture images contain very rich statistical content
and are modeled by Markov random fields and Gibbs fields (Geman and Geman [18],
Brémaud [3]); and (c) most nontexture images can be well approximated by func-
tions with bounded variations (Rudin and Osher [40], Rudin, Osher, and Fatemi [41],
Chambolle and Lions [5]) and the celebrated Mumford and Shah object-boundary
model [34]. Such multilevel complexities of image functions force researchers to de-
velop inpainting schemes targeted at specific classes of images. As a result, these
inpainting models are of low levels. The ultimate goal, of course, as in the blueprint
of vision and artificial intelligence, is eventually to be able to combine and integrate all
the low-level inpainting components into an ideal program that can well approximate
human inpainters.

The current paper represents a first systematic step toward this goal, and the
restrictive words “local” and “nontexture” in the title clearly indicate the low-level
nature of all inpainting models developed in this paper. The crucial concept and
principle of “locality” will be explained in the next section. And the reason that the
current paper does not touch texture inpainting is that all inpainting models here are
based on the variational principle or PDEs, and the resulting regularity requirement
is unsuitable for general statistical textures. For inpaintings of textures, some recent
work has been accomplished by Wei and Levoy [48] and Igehy and Pereira [22].

The paper is organized as follows. Section 2 clarifies the meaning of locality
through two examples connected to human visual inference. In section 3, we study
inpainting models and their accuracy analysis for smooth images. The key tool is
Green’s second formula, which leads to linear and cubic schemes realized by harmonic
and biharmonic inpaintings. In section 4, we propose three inpainting principles for a
realistic low-level inpainting model. In this spirit, the total variation (TV) inpainting
model is formulated in section 5, which extends the classical TV denoising model of
Rudin and Osher [40] and Rudin, Osher, and Fatemi [41]. The digital implementation
of the TV inpainting model is also presented. In section 6, we propose a segmentation-
based inpainting scheme, as inspired by the well-known image model of Mumford and
Shah [34]. Section 7 introduces the so-called connectivity principle and the recent
model of Chan and Shen [11] on inpaintings based on curvature driven diffusions
(CDD). In section 8, for the first time in the literature of image processing, we make
the link between digital zoom-ins and TV inpaintings. A digital zoom-in model almost
identical to the continuous TV inpainting model is constructed based on the self-
contained digitized PDE method developed by Chan, Osher, and Shen [9]. Section 9
explains another new important application of the inpainting technique to edge-based
image coding schemes. The last section demonstrates many interesting applications
of the inpainting models developed in the paper.
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2. Why local inpaintings. We discuss the concept of locality for low-level
inpainting models from the viewpoint of human visual inference.

Local inference. First, the locality condition means that the models do not rely
on global feature or pattern recognition. Inpainting is thus based only on local (with
respect to the inpainting domain) information. For nontexture images, a pattern is a
class of spatial or color symmetry, such as mirror symmetry, translation invariance,
and periodicity. For example, most human faces are almost mirror symmetric along
the mouth-nose central line. Though apparent to human visual perception, such
patterns are much more difficult and costly to catch via digital intelligence, due to
the rich variation in scales and structures for general images.
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Fig. 2.1. A local inpainting scheme does not require global pattern recognition.

A classical example in vision analysis as shown in Figure 2.1 can clarify the above
discussion. For the image to be inpainted on the left, the inpainting (or occluded)
domain is the gray square at the intersection. Human observers can usually easily
“see” a complete black cross and thus fill in the black color. Most of us would agree
that it gives the best guess. In the right panel, the image on the left is embedded into
a larger structure. One can easily recognize the global chessboard pattern and thus
fill in the white color to complete the spatial symmetry. Therefore, human perceptual
inference depends on the global context.

Such complexity of human visual inference parallels that of inpainting models.
Any high-level inpainting scheme must be able to carry out pattern recognition. In this
paper, the inpainting models should be considered as low-level ones—the inpainting
outputs are independent of global patterns. Therefore, even for the right panel in
Figure 2.1, the inpainted color for the missing square domain will still be black.

The factor of scale or aspect ratio. Scale plays a universally significant role in
image and vision analysis. Thus it also does in the problem of inpainting.

Consider Figure 2.2. In the left panel, the inpainting scale L is much larger than
that of the characteristic feature (denoted by l), and the left part “E” and right part
“3” seem to be more uncorrelated. We thus tend to accept the figure as two separated
letters “E 3.” The image on the right, on the other hand, has an inpainting scale L
smaller than l. Accordingly, we are more likely to believe that the figure is a broken
letter “B.” In this example, the nonuniqueness is not caused by global patterns, but
by our guess on the correlation among features left there. The controlling parameter
is thus the scale or aspect ratio. The TV inpainting model and the segmentation-based
inpainting model developed later can both imitate this effect. However, as discussed
in section 7, for many applications in image processing, due to the large dynamic
range of scales present, the connectivity principle must be enforced regardless of the
scale factor. Therefore, the major inpainting models developed in the current paper
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Fig. 2.2. The effect of the inpainting scale L.

see their best performance in inpainting problems whose inpainting domains are small
or local, as in the right panel of Figure 2.2.

3. Inpaintings of smooth images and Green’s second formula. To develop
a rigorous mathematical framework for inpaintings, as is well practiced in numerical
analysis, we start from a simple setting, in which the accuracy of inpainting can be
well studied. This is the case when the target image functions are smooth, or the
inpainting domains are contained in the interior of smooth two-dimensional (2-D)
objects. This simple model serves as the first step toward more general and realistic
inpainting models.

Let u0 be a smooth image function defined on a 2-D domain Ω (a rectangular
domain, typically). Denote the domain to be inpainted by D, its diameter by d,
and the restriction of u0 on D by u0

∣∣
D
. Then to inpaint is to construct a good

approximation uD to u0
∣∣
D
.

An inpainting scheme is said to be linear if for any smooth test image u0, as the
diameter d of the inpainting region D shrinks to 0,

‖uD − u0
∣∣
D
‖∞ = O(d2).(3.1)

Similarly, an inpainting scheme is said to be of kth order if

‖uD − u0
∣∣
D
‖∞ = O(dk+1).(3.2)

3.1. Smooth inpainting via Green’s second formula. Recall that for the
1-dimensional (1-D) case, harmonic functions on an interval have to be linear func-
tions. Therefore, 1-D linear inpaintings may be carried out equivalently by harmonic
extensions, which provide the key to 2-D smooth inpaintings. Here we propose to
apply Green’s second formula.

Let ∆ denote the Laplacian

∆u :=
∂2u

∂x2
+
∂2u

∂y2
.

Then Green’s second formula on D is∫
D

(u∆v − v∆u)dxdy =
∫

Γ

(
u
∂v

∂n
− v ∂u
∂n

)
ds,(3.3)

where
(a) u and v are any C2 functions defined on the closure of D;
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(b) n is the outward (w.r.t. D) normal direction of Γ, and s the length parameter.
Take G(z0, z) to be the Green’s function for the grounded Poisson equation on D.

That is, for any “source” point z0 = (x0, y0) ∈ D, as a function of the “field” point
z = (x, y) ∈ D, G(z0, z) solves

−∆G = δ(z − z0), G
∣∣
Γ
= 0.

Applying Green’s second formula to (u = u0(z), v = −G(z0, z)), we have

u0(z0) =

∫
Γ

u0(z(s))
∂(−G(z0, z))

∂n
ds+

∫
D

G(z0, z)
(−∆u0(z)

)
dz,(3.4)

where dz = dxdy. (More rigorously, we should have used the symbol (dz ∧ dz)/2i.)
In (3.4), denote the first term on the right by uh(z0), and the second term by

ua(z0). Then u
h is the harmonic extension of f = u0

∣∣
Γ
, and

dωz0 =
∂(−G(z0, z))

∂n
ds

is the harmonic measure of Γ associated with a source point z0 (Nevanlinna [35]).
The antiharmonic component ua := u0 − uh satisfies the Poisson equation

∆ua(z) = ∆u0(z), z ∈ D, and ua
∣∣
Γ
= 0.(3.5)

Computationally, the Poisson equation is favored over the direct integration formula-
tion since one can profit from many numerical PDE schemes and their fast solvers.

To establish a rigorous result on the inpainting accuracy for smooth images, we
turn to the geometry of a 2-D domain encoded into its associated Green’s function.
The following results on Green’s functions are indeed standard. We include them
here due to the increasingly important role played by the complex potential theory
in signal and image processing. (For example, recent applications of the complex
potential theory to digital signal processing have been studied in [42, 43].)

Theorem 3.1. Let d denote the diameter of a domain D and G(z0, z) the asso-
ciated Green’s function for the Poisson equation. Then∫

D

G(z0, z)dxdy ≤ d2

4
.

The proof is based upon two simple lemmas.
Lemma 3.2 (comparison lemma). Suppose D1 ⊂ D2, and G1(z0, z) and G2(z0, z)

are their associated Green’s functions. Then for all z0, z ∈ D1,

G1(z0, z) ≤ G2(z0, z).

Proof. For any z0 ∈ D1, define

g(z) = G2(z0, z)−G1(z0, z).

Then along the boundary of D1,

g(z) = G2(z0, z) ≥ 0,

since the grounded Green’s function is always nonnegative. Moreover, g(z) is harmonic
inside D1 because the logarithm singularities at z0 are canceled out. Therefore g(z) ≥
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0 for all z ∈ D1 due to the maximum principle of harmonic functions: The minimum
is always achieved along the boundary (Gilbarg and Trudinger [19]). This proves the
lemma.

Lemma 3.3. Suppose B1 is the unit disk centered at 0, and G1(z0, z) its Green’s
function. Then ∫

B1

G1(z0, z)dxdy =
1− |z0|2

4

for all z0 ∈ B1.
Proof. Consider the Poisson equation on B1

−∆u = 1, u
∣∣
∂B1

= 0.

It is easy to see that the unique solution is

u(z) =
1− |z|2

4
=

1− x2 − y2
4

.

On the other hand, by Green’s second formula,

u(z0) =

∫
B1

G1(z0, z)(−∆u(z))dxdy =
∫
B1

G1(z0, z)dxdy.

This verifies the lemma. (Note: Since we do know that

G1(z0, z) =
−1
2π

ln

∣∣∣∣ z − z01− z0z
∣∣∣∣,

the lemma can also be worked out by evaluating the integral explicitly.)
We are now ready to give a proof of Theorem 3.1.
Proof. Take any single point w ∈ D, and let Bd denote the disk centered at w

and with radius d. Then

D ⊂ Bd.
Let Gd(z0, z) denote the Green’s function for Bd. Then Lemma 3.2 shows that

G(z0, z) ≤ Gd(z0, z),
for all z0 and z in D. For simplicity, let us assume that w = 0. Then we have the
scaling law

Gd(z0, z) = G1

(z0
d
,
z

d

)
,(3.6)

where G1, as in Lemma 3.3, is the Green’s function for B1. (This scaling law is true
only for the 2-D case.) Therefore, by Lemma 3.3, for any z0 ∈ D,∫

D

G(z0, z)dxdy ≤
∫
D

Gd(z0, z)dxdy ≤
∫
Bd

Gd(z0, z)dxdy

=

∫
Bd

G1

(z0
d
,
z

d

)
dxdy = d2

∫
B1

G1

(z0
d
, z′

)
dx′dy′

= d2
1− |z0/d|2

4
≤ d2

4
,
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as asserted by the theorem. (The last step is due to our assumption that w = 0 ∈ D
and z0 ∈ D. If this is not the case, then simply replace z0 and z by z0 −w and z−w,
and the proof still holds.) This completes the proof.

Based on this theorem, we can easily establish the accuracy orders for inpaintings
based on Green’s second formula.

(a) Linear inpainting via harmonic extension. Suppose we inpaint u0
∣∣
D
simply

by the harmonic extension, i.e., uD = uh. We now show that this is a linear
inpainting scheme, i.e.,

‖uh − u0
∣∣
D
‖∞ = O(d2)

as the diameter d→ 0.
According to (3.4), the error of the harmonic inpainting is exactly the anti-
harmonic component ua. Since u0 is a fixed smooth function, there exists a
constant M such that

|∆u0(z)| ≤M

for all z ∈ D. Then for any z0 ∈ D, by Theorem 3.1,

|ua(z0)| ≤M
∫
D

G(z0, z)dz ≤ Md2

4
.

This validates the assertion.
(b) Cubic inpainting via Green’s formula. To improve the accuracy, we must also

inpaint the “detail” component ua missed by the harmonic inpainting. (This
idea is very close to the multiresolution synthesis in wavelet decomposition
or coding [14, 44].)
Let u∆

D be any linear inpainting of ∆u0
∣∣
D

(via the harmonic scheme, for

example). Then we inpaint ua
∣∣
D
by uaD according to the integration formula

uaD(z0) =

∫
D

G(z0, z)(−u∆
D(z))dz,(3.7)

or equivalently, by solving the grounded Poisson equation

−∆uaD(z) = −u∆
D(z), z ∈ D; uaD

∣∣
Γ
= 0.

Finally, by adding this new detail to the harmonic inpainting, we derive a
more accurate inpainting uD to the original smooth test image u0:

uD(z) = u
h(z) + uaD(z).(3.8)

Theorem 3.4 (cubic inpainting). If u∆
D is a linear inpainting of ∆u0 on D, then

(3.7) and (3.8) define a cubic inpainting of u0, i.e.,

‖uD − u0
∣∣
D
‖∞ = O(d4).

Proof. By Green’s second formula, for any z0 ∈ D,

uD(z0)− u0
∣∣
D
(z0) =

∫
D

G(z0, z)
(−u∆

D(z) + ∆u0(z)
)
dxdy.
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Since u∆
D(z) is a linear inpainting of ∆u0(z), there exists a constant M , independent

of the inpainting domain D, such that

|u∆
D(z)−∆u0(z)| ≤Md2

for all z ∈ D. Hence,

|uD(z0)− u0
∣∣
D
(z0)| ≤Md2

∫
D

G(z0, z)dxdy.

The proof is then complete by Theorem 3.1.
Remark 1. In the above cubic inpainting process, if the linear inpainting u∆

D of
∆u0

∣∣
D

is realized by the harmonic inpainting, then the cubic inpainting is in fact
a biharmonic inpainting. That is, uD(z) solves the following biharmonic boundary
value problem:

∆2uD = 0, uD
∣∣
Γ
= u0

∣∣
Γ
, ∆uD

∣∣
Γ
= ∆u0

∣∣
Γ
.

4. Three principles for a practical inpainting scheme. As in the classical
approximation theory, the smooth inpainting models have allowed us to study rig-
orously the inpainting accuracies. They also shed some light on the nature of the
inpainting problem. In most applications, however, such models are less practical for
the following reasons:

(a) Images (even nontexture ones) are deterministically not smooth functions.
They contain edges and discontinuities (see Figure 4.1).

(b) Images are often statistically corrupted by noise.

A smooth test image to be inpainted Harmonic inpainting

An ideal step edge to be inpainted Harmonic inpainting

Fig. 4.1. Harmonic inpaintings of a smooth image (u = r =
√

x2 + y2) and an ideal step edge.

Human inpainters seem to have no difficulty in dealing with these two factors,
and we intend to design more realistic low-level inpainting models that can at least
imitate such functions. Thus we propose the following three inpainting principles for
the next step of model construction.

(a) Inpainting principle I. The model shall be local. Since we restrict ourselves
to models which do not require global learning, the inpainting uD must be
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completely determined by the existing information of u0 in the vicinity of the
inpainting domain D.

(b) Inpainting principle II. The model must be able to restore narrow broken
smooth edges. We must take care of edge inpainting, since edges are crucial for
object recognition and image segmentation, and in most practical examples
they are indeed broken or occluded due to the large dynamic range of scales
in images. However, generally, we shall not expect to restore widely broken
edges because of the scale factor discussed in section 2.

(c) Inpainting principle III. The model must be robust to noise. This is because
to human vision it is an easy task (when the noise is below a reasonable level)
to detect clean features from the existing noisy image data and then extend
them into the inpainting domain.

Both the linear harmonic inpainting and cubic biharmonic inpainting are models
for smooth images. Hence they do not fit with inpainting principles II and III, although
they are indeed local since only the behavior of u0 near a neighborhood of Γ is needed
(for digitally obtaining the traces of u0 and ∆u0 along Γ).

In what follows, we shall study inpainting models that conform to these three
principles.

5. The total variation (TV) inpainting model.

5.1. Formulation of the TV inpainting model. Let D be an inpainting
domain with piecewise smooth boundary Γ, and E any fixed closed domain in the
complement Dc, so that Γ lies in the interior of E ∪D (Figure 5.1). Such a setting is
motivated by the inpainting principles on locality and robustness to noise.

(inpainting domain)
D

Γ (boundary)

E (an extended ring)

Fig. 5.1. The TV inpainting model finds the best guess for u
∣∣
D

based on the TV norm on the
extended domain E ∪D and the noise constraint on E.

We assume that u0
∣∣
E
is contaminated by homogeneous white noise (modeled by

the Gaussian distribution). The variational inpainting model is to find a function
u on the extended inpainting domain E ∪ D such that it minimizes an appropriate
regularity functional,

R[u] :=

∫
E∪D

r(|∇u|)dxdy,(5.1)

under the fitting (or denoising) constraint on E

1

Area(E)

∫
E

|u− u0|2dxdy = σ2.(5.2)

Here,
(i) r is an appropriate real function which is nonnegative for nonnegative inputs;
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(ii) σ is the standard deviation of the white noise.
Remark 2. IfD is empty, the above variational formulation belongs to the classical

denoising models such as the H1 model if r(s) = s2, and the total variation model of
Rudin, Osher, and Fatemi [41] if r(s) = s.

The variational formulation (5.1) plus (5.2) has been designed to satisfy inpainting
principle I on locality and inpainting principle III on robustness to noise. To meet
the second principle on the capability of restoring broken edges, we need to choose an
appropriate regularity functional R[u] or r(s). Along a step edge, ∇u is a 1-D delta
function δ1 (like δ(x) as a function of x and y). Thus, to be able to restore a broken
step edge, we have to require ∫

E∪D
r(δ1)dxdy

to be finite. This implies that if

r(s) = sα + (lower order terms)

for some power α as s → +∞, then α ≤ 1. To ensure near convexity, α = 1 is the
ideal choice. It leads to the well-known TV restoration model of Rudin, Osher, and
Fatemi [41], where r(s) is taken to be s exactly. In this paper, we shall make the
same choice, and call the inpainting model the TV inpainting model. It conforms to
all three inpainting principles.

As practiced in the variational methodology [34, 41], it is more convenient to solve
the unconstrained TV inpainting problem

Jλ[u] =

∫
E∪D

|∇u|dxdy + λ
2

∫
E

|u− u0|2dxdy,(5.3)

where λ plays the role of the Lagrange multiplier for the constrained variational
problem (5.1)–(5.2).

The Euler–Lagrange equation for the energy functional Jλ is

−∇ ·
( ∇u
|∇u|

)
+ λe(u− u0) = 0(5.4)

for all z = (x, y) ∈ E ∪D, plus the Neumann boundary condition [10, 41]. Here the
extended Lagrange multiplier λe is given by

λe =

{
λ, z ∈ E,
0, z ∈ D.

The infinitesimal steepest descent equation for Jλ[u] is therefore given by

∂u

∂t
= ∇ ·

( ∇u
|∇u|

)
+ λe(u

0 − u).(5.5)

Since λe takes two different values, (5.4) or (5.5) is a two-phase problem, and the
interface is the boundary Γ of the inpainting domain.

From the numerical point of view, in all of the above differential equations we
replace the curvature term

∇ ·
( ∇u
|∇u|

)
by ∇ ·

( ∇u
|∇u|a

)
,(5.6)
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where the “lifted” absolute value is defined by

|s|a :=
√
s2 + a2

for some (usually small) positive lifting parameter a. This corresponds to the choice
of r(s) =

√
s2 + a2 for the regularizer R[u] in (5.1). We are thus actually minimizing

Jaλ [u] =

∫
E∪D

√
a2 + |∇u|2 dxdy + λ

2

∫
E

|u− u0|2dxdy.

As in most processing tasks involving thresholdings (like denoising and edge detec-
tion), the lifting parameter a also plays a thresholding role. In smooth regions where
|∇u| � a, the model tries to imitate the harmonic inpainting, while along edges where
|∇u| � a, the model resumes the TV inpainting.

On the other hand, from the theoretical point of view, the lifting parameter a
also better conditions the TV inpainting model (5.3). In a noise-free situation, (5.3)
is reduced to a boundary value problem:

∇ ·
( ∇u
|∇u|

)
= 0, x ∈ D; u

∣∣
∂D

= u0
∣∣
∂D
.(5.7)

As explained in [4], this boundary value problem, unlike harmonic extensions, is
generally ill-posed and may fail to have or to uniquely have a solution. The parameter
a plays a conditioning role as follows. For the lifted model,

∇ ·
( ∇u
|∇u|a

)
=

1

|∇u|3a
(|uy|2auxx + |ux|2auyy − 2uxuyuxy

)
.

As a second order equation, its local symbol σa is

σa =
1

|∇u|3a

[ |uy|2a −uxuy
−uxuy |ux|2a

]
=

a2

|∇u|3a
I2 +

|∇u|3
|∇u|3a

σ0,

where σ0 is the symbol for the original TV model. Then it is easy to show the
following.

Proposition 5.1 (the conditioning effect of a). The TV symbol σ0 has eigen-
values 0 and |∇u|−1, while the lifted TV symbol σa satisfies

|∇u/a|−3
1

a
I2 ≤ σa ≤ 2

a
I2.

Therefore, at each pixel away from the edges (where |∇u| is finite), the lifted TV
equation is strongly elliptic; if u has a bounded gradient, then the lifted TV equation
is in fact uniformly strongly elliptic. This is the conditioning effect of a.

Remark 3. In the most recent work of Chan, Kang, and Shen [6], the existence
of solutions to the variational TV inpainting model (5.3) has been established in the
space of functions with bounded variations. The issue of uniqueness is also discussed
from the vision research point of view.

Remark 4. So far, the TV inpainting model has been solely motivated by the
three inpainting principles. We now further justify the TV inpainting model through
a well-known class of illusions in visual perception.

The vision phenomenon we are to discuss is best illustrated through the example
of Kanizsa’s entangled woman and man, which is one of the many artistic inventions
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Kanizsa’s entangled man

Fig. 5.2. Can the TV inpainting model explain Kanizsa’s entangled man?

of Kanizsa [24]. Its importance for the mathematical understanding and modeling
of human vision was first emphasized in Nitzberg, Mumford, and Shiota’s systematic
work on disocclusion [36]. We have plotted a simplified version in Figure 5.2, which
we call “Kanizsa’s entangled man.”

Figure 5.2 shows how our visual perception can subconsciously contradict common
knowledge in life. What we perceive is a man entangled in the fence. Knowing by
common sense that he is behind the fence does not erase this false perception. As
Nitzberg, Mumford, and Shiota [36] wrote, “Simply put, we navigate in the world
successfully by seeing what’s in front of what independently of knowing what’s what.”
We now apply the TV inpainting model to explain such a “stubborn best guess” by
our visual perception.

The contradiction occurs inside the circled region in Figure 5.2: the “fact” is that
the upper body of the man is behind the fence, while our perception strongly prefers
the opposite scenario. This disjunction is apparently caused by the presence of a color
shared by the fence and the man’s upper body. So the puzzle is, Why does human
perception prefer to assign the controversial intersection to the upper body?

Kanisza’s original explanation was based on the modal and amodal completion
accomplished by the shortest edge continuation between T-junctions. Here we show
that the TV inpainting model offers another similar explanation. While in practice
the detection of T-junctions often relies on the sharpness of edges, our functional
approach based on the variational principle seems to be more general.

First we simplify the problem to that of the left image in Figure 5.3. The vertical
and horizontal bars separately model the man’s upper body and the fence. Notice
the length scales L > l; in Figure 5.2, L is roughly a triple of l. Assume that the two
bars share the same gray level ub = uf = 1/2 (with “b” and “f ” tracking the “body”
and “fence” variables). The uncertain region is denoted by D.

Outside D, let us make a small perturbation of the two gray levels:

ub = 1/2 → ub = 1/2 + ε, uf → uf = 1/2− ε
for some small positive gray value ε (see the image in the right panel of Figure 5.3).
Now treat D as an inpainting domain and denote by uD the optimal solution on D
obtained from the TV inpainting model with λ = ∞ (since there is no noise) and E
the complement of D. A simple calculation shows that

uD = ub = 1/2 + ε,(5.8)
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L

l

Ub =.5

Uf
=.5

Perturbed to 
DD

Ub =.5+ ε

Uf
=.5 - ε

L > l

Fig. 5.3. The model for Kanizsa’s entangled man.

which coincides with our “stubborn” perception. In other words, the TV model is
consistent with the “algorithm” performed by our visual neurons.

In fact, it is easy to see that the optimal solution uD must be a constant, say c.
Then the maximum principle [9] requires that uf ≤ c ≤ ub. The total variation of uD
on the closure of D concentrates along the four edges and equals (Giusti [20])

2× (|uf − c| ∗ l + |ub − c| ∗ L) = [(1 + 2ε)L− (1− 2ε)l]− (L− l)c.(5.9)

We do not care about the TV measure on E because it is a fixed quantity for this
noise-free inpainting problem. To minimize the TV norm as given in (5.9), the only
choice is c = ub = 1/2 + ε, since L > l. This proves the claim.

5.2. Numerical implementation. If the inpainting domain D is empty, then
(5.4) and (5.5) together comprise exactly the Rudin–Osher–Fatemi [41] denoising and
deblurring restoration model. Its theoretical study can be found in Chambolle and
Lions [5]. Numerical investigations and discussions can be found in [2, 8, 15, 41],
and more recent ones in [9, 29, 38]. New applications of the TV model for restoring
nonflat image features such as optical flows and chromaticity have appeared in the
recent works of Perona [39]; Tang, Sapiro, and Caselles [45, 46]; Chan, Kang, and
Shen [7]; and Chan and Shen [10].

In this paper, we have adopted the following numerical scheme for the TV in-
painting model (5.4). Here we look for the steady solution directly, instead of by time
marching (5.5), which is usually slow due to the time step constraints imposed by
numerical stability.

O

N

E

S

W

SE

NENW

SW

e

n

w

s

Fig. 5.4. A target pixel O and its neighbors.

As in Figure 5.4, at a given target pixel O, let E,N,W, S denote its four adjacent
pixels, and e, n, w, s the corresponding four midway points (not directly available from
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the digital image). Write

ΛO = {E,N,W, S}.

Let v = (v1, v2) = ∇u/|∇u|. Then the divergence is first discretized by central
differencing:

∇ · v =
∂v1

∂x
+
∂v2

∂y
(5.10)

� v1e − v1w
h

+
v2n − v2s
h

,(5.11)

where h denotes the grid size, which is always taken to be 1 in image processing. Next,
we generate further approximations at the midway points, where image information
is not directly available. Take the midpoint e, for example:

v1e =
1

|∇ue|
[
∂u

∂x

]
e

� 1

|∇ue|
uE − uO
h

,(5.12)

|∇ue| � 1

h

√
(uE − uO)2 + [(uNE + uN − uS − uSE)/4]2.(5.13)

Namely, we approximate [∂u/∂x]e by the central difference scheme, and [∂u/∂y]e by
the average of (uNE − uSE)/2h and (uN − uS)/2h. Similar discussion applies to the
other three directions N,W, and S.

Therefore, at a pixel O, (5.4) is discretized to

0 =
∑
P∈ΛO

1

|∇up| (uO − uP ) + λe(O)
(
uO − u0

O

)
,(5.14)

where, for example, if P = E, then p denotes e. Define

wP =
1

|∇up| , P ∈ ΛO,(5.15)

hOP =
wP∑

Q∈ΛO
wQ + λe(O)

,(5.16)

hOO =
λe(O)∑

Q∈ΛO
wQ + λe(O)

.(5.17)

Then (5.14) becomes

uO =
∑
P∈ΛO

hOPuP + hOOu
0
O,(5.18)

with ∑
P∈ΛO

hOP + hOO = 1.

Equation (5.18) is in the form of a low pass filter, which is of course a system of
nonlinear equations since the filter coefficients all depend on u.



MODELS FOR LOCAL NONTEXTURE INPAINTINGS 1033

Freezing the filter coefficients (to linearize the equations), and adopting the Gauss–
Jacobi iteration scheme for linear systems, at each step n, we update u(n−1) to u(n)

by

u
(n)
O =

∑
P∈ΛO

h
(n−1)
OP u

(n−1)
P + h

(n−1)
OO u

(n−1)
O ,(5.19)

where h(n−1) = h(u(n−1)). Since h is a low pass filter, the iterative algorithm is stable
and satisfies the maximum principle [9]. In particular, the gray value interval [0, 1] is
always preserved during the iterating process.

Useful variations of the algorithm can be obtained by altering the definition wP
or |∇up| in (5.15). For instance, instead of (5.13), we can also try

|∇ue| � 1

h

√
(uE − uO)2 + [(uNE − uSE)/2]2.

Experiments show that such variations sometimes work better for inpainting sharp
edges in the digital setting.

In implementation, as in (5.6), the weights wP are “lifted” to

wP =
1

|∇up|a =
1√

a2 + |∇up|2
(5.20)

for some small number a, to avoid a zero divisor in smooth regions. Notice that
choosing a large a brings the TV model closer to the harmonic inpainting (especially
computationally, since the spatial step size h is set to 1, and u takes values from the
finite gray-scale interval [0, 1]). In addition, as a gets bigger, the convergence of the
iteration scheme speeds up.

The size of the extension domain E is also easily determined. If the image is
clean, E can simply be the boundary of the inpainting domain D. Otherwise, to
clean up statistical noise and extract reliable image information near the boundary,
one can choose E with a reasonable size, e.g., several pixels wide, as practiced in
image processing [21]. If, as for the inpainting of an old photo, the entire image
is contaminated by noise, then one should take E to be the complement of D, to
simultaneously clean and inpaint the photo.

6. Segmentation-based inpainting. The key to image inpainting is the right
model for image functions. Image models play a universally crucial role for image
restoration problems, such as image denoising, deblurring, and segmentation. In terms
of the Bayesian methodology, this is the significance of figuring out an appropriate
prior model. The link between the Bayesian approach and the variational method is
clearly explained in Mumford [32].

In the previous section, the inpainting model has been constructed based on
the total variation norm. The main merits of the total variation prior model are its
permission of edges and its convenient numerical PDE implementation. In this section,
we briefly discuss an inpainting model that is based on Mumford and Shah’s [34]
object-boundary image model.

An image is considered as the union of a collection of 2-D smooth objects, which
meet each other along their edges. Thus in the variational formulation, the regularity
functional is no longer in the simple form of

R[u] =

∫
Ω

r(|∇u|)dx
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as in (5.1). Instead, it imposes the regularity condition on both the edge curves and
individual objects:

Rseg[u] =

∫
Ω\Γ

r(|∇u|, |∆u|)dxdy + µlength(Γ).(6.1)

For example, in the Mumford–Shah segmentation model, r(s, t) is taken to be s2/2.
(Here we have replaced the Hausdorff measure of Γ by the length, for simplicity.)
Thus the unconstrained energy for the segmentation-based image inpainting is

Jλ,µ[u,Γ] =

∫
Ω\Γ

r(|∇u|, |∆u|)dxdy + µlength(Γ) + λ
2

∫
Ω\D

(u− u0)2dxdy,(6.2)

where D is the inpainting domain. Apparently, it also upholds the three principles.
This segmentation-based inpainting model is a free-boundary problem. Its algo-

rithm and numerical implementation are much more involved than the TV inpainting
model. Among the many existing computational methods, recent progress has been
made by Chan and Vese [12] based on the level-set method of Osher and Sethian [37].

We now point out the close connection between the TV inpainting model and the
segmentation-based inpainting model. In fact, for images which are nearly cartoons,
i.e., |∇ui| is negligibly small on each Ωi, the two models employ almost the same
mechanism. Consider the regularity functionals on a test image that represents a
black (u0) disk with radius r0 in a white background (u1). Then the TV regularity is

TV[u] =

∫
Ω

|∇u|dxdy = 2π

∫ ∞

0

|ur|rdr = 2πr0(u1 − u0),

where we have used the polar coordinates (r, θ). Similarly, the segmentation regularity
(for the perfect segmentation) is

Rseg[u] =

∫
Ω\Γ

r(|∇u|, |∆u|)dxdy + µlength(Γ) = µ2πr0.

Up to a multiplicative constant (i.e., the edge contrast), the two measures are equiva-
lent. This equivalence holds even for more complex and general image topology as long
as the image remains nearly a cartoon. But in terms of numerical implementation,
the TV inpainting model is much easier and faster.

7. The connectivity principle and CDD inpainting. Both TV inpainting
and segmentation-based inpainting share one drawback. That is, they both fail to
realize the so-called connectivity principle of the human disocclusion process [11]. See
Figure 7.1 for a typical case.

The example in the figure easily explains why the TV and segmentation-based
inpainting models fail to realize the connectivity principle when the inpainting scale
becomes large. Let udis and ucon denote the disconnected and connected inpainting
reconstructions as in the figure. Suppose that l > w. Then the TV model prefers udis

to ucon, since

TV[ucon]− TV[udis] = 2l − 2w = 2(l − w) > 0,

assuming that the black bar has u0 = 0 and the white background u1 = 1. In the
same fashion, under the segmentation regularity, we have

Rseg[ucon,Γcon]−Rseg[udis,Γdis] = µ(2l − 2w) = 2µ(l − w) > 0.
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Answer from most humans Answer by the TV modelWhat is behind the box?

(l >> w)

l

w

ba

c d

Fig. 7.1. When l > w, the TV and segmentation-based inpaintings both act against the connec-
tivity principle of human perception—human observers mostly prefer to have the two disjoint parts
connected, even when they are far apart [24, 36].

Thus the segmentation-based inpainting also biases against the connection.
To overcome such a drawback, Chan and Shen [11] recently proposed a new PDE

model based on curvature driven diffusions (CDD), which is closely inspired by the
TV inpainting model (5.5). The CDD inpainting model is governed by the following
PDE:

∂u

∂t
= ∇ ·

[
G(κ, x)

|∇u| ∇u
]
+ λe(u

0 − u), x ∈ Ω,(7.1)

where κ is the scalar curvature ∇· [∇u/|∇u|]. The new ingredient of the CDD model,
compared with the TV inpainting model, is the diffusion coefficient G(κ, x) which is
given by

G(κ, x) =

{
1, x ∈ Ω\D,
g(|κ|), x ∈ D.

The choice of a coefficient value of 1 outside the inpainting domain indicates that
the model carries out the regular TV denoising task outside D. Meanwhile, g(s)
can be any appropriate function that penalizes large curvatures and stabilizes small
curvatures inside the inpainting domain. In Chan and Shen [11], it is argued that
g(s) must satisfy

g(0) = 0, g(+∞) = +∞.

Thus, for example, one can choose g(s) = sα for some α ≥ 1. Under this condition, the
model stretches out bent level lines inside the inpainting domain, outputs connected
objects, and therefore realizes the connectivity principle (see Figure 10.6, for example).

8. Digital zoom-in based on TV inpainting. Digital zoom-in has wide appli-
cations in digital photography, image superresolution, data compression, etc. Zoom-
out is a process of losing details or, in the framework of wavelets and multiresolution
analysis, a process of projections from fine scales to coarser ones [14, 44]. Zoom-in,
on the other hand, is the inverse problem of zoom-out and thus belongs to the gen-
eral category of image restoration problems. The literature on zoom-ins in image
processing has been growing.

One level of zoom-in from a given digital image u0 of size n by m is to reconstruct
a new digital image u of size 2n by 2m (2 is typical but not unique), so that u0 can
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be the one level zoom-out of u. Thus it is important to know the exact form of
the zoom-out operator. Typically, the zoom-out operator consists of two steps: a
low pass filtering (or local smooth averaging) of the fine scale image u, followed by a
subsampling process leading to the zoom-out u0 on a coarser grid, a scenario much less
strange in wavelet theory [44]. In what follows, we shall assume a direct subsampling
zoom-out. That is, the filter is a Dirac δ, and thus the zoom-out is simply a restriction
from a 2n by 2m grid to its n by m double-spaced subgrid.

In contrast to its utility for inpaintings on block domains, continuous modeling
becomes less appropriate for the digital setting of zoom-ins. A similar problem has
been addressed by Chan, Osher, and Shen [9] for image denoising and enhancement,
where a self-contained digital theory for TV denoising was developed and studied.
Here we follow the same framework to construct a zoom-in model, which is exactly
the digital version of the continuous TV inpainting model.

Let Ω denote the fine grid on which the zoom-in u is to be defined. The grid
for the given coarse scale image u0 is denoted by Ω0, which is a subgrid of Ω. As in
the practice of Markov random fields [3], assign a neighborhood system to Ω, so that
each pixel α ∈ Ω has its neighborhood Nα, a collection of “nearby” pixels (excluding
α itself). For example, we can assign a rectangular neighborhood system so that if
α = (i, j), then Nα consists of the four pixels (i, j ± 1), (i± 1, j).

At each pixel α, define the local variation as

|∇αu| =
√ ∑

β∈Nα

(uβ − uα)2.

Also define the extended Lagrange multiplier λe as a function on the fine grid Ω:

λe(α) =

{
λ, α ∈ Ω0,

0, otherwise.

Then the digital TV zoom-in model attempts to minimize the digital energy Jλ over
all possible fine scale images u:

Jλ[u] =
∑
α∈Ω

|∇αu|+
∑
α∈Ω

λe(α)

2
(uα − u0

α)
2.(8.1)

For the purpose of comparison, one may also try the digital harmonic zoom-in model:

Jhλ [u] =
∑
α∈Ω

1

2
|∇αu|2 +

∑
α∈Ω

λe(α)

2
(uα − u0

α)
2.(8.2)

As established in [9], the minimization of the digital TV zoom-in energy can be carried
out by repeatedly applying the so-called digital TV filter u→ v = F (u): at each pixel
α,

vα = Fα(u) =
∑
β∈Nα

hαβ(u)uβ + hαα(u)u
0
α,

where the exact formulae for the filter coefficients hαβ depend on the input u and λe
and are worked out in [9]. Starting with an arbitrary initial guess u(0) for the zoom-in,
we improve its quality by iterating the digital TV filter u(n) = F (u(n−1)). As n goes
to ∞, u(n) converges to the “best” digital zoom-in of u0.
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As we have noticed, the digital TV zoom-in model (8.1) is almost identical to the
continuous TV inpainting model (5.3). The reason we prefer the self-contained digital
framework lies in the facts that it is independent of the numerical PDE schemes one
applies and always permits a solution (since we are working with finite-dimensional
data). The technical difficulty with continuous modeling is that existence is not
guaranteed, as discussed by Caselles, Morel, and Shert [4]. The most understandable
case is when we choose the H1 regularity, analogous to the digital version (8.2).
Then in the noise-free case, the continuous model is equivalent to finding a harmonic
function u on a continuous 2-D domain Ω, which interpolates the given data u0 on a
finite set of pixels. But for harmonic extensions, it is a well-known ill-posed problem
to impose both the boundary condition and the 0-dimensional interior interpolation
constraint.

9. The inpainting approach to edge-based image coding. In this section,
we discuss a very interesting new application of the inpainting technique to edge-based
image coding and compression.

Ever since Marr and Hildreth [30], edge has played a crucial role in vision and
image analysis, from the classical theory of zero crossings to the more recent theory
of wavelets. In image coding, for example, the performance of a scheme is very
much determined by its reaction to edges. This viewpoint is further supported by
mainstream developments in the current wavelet theory for image coding: Donoho’s
invention of curvelets and beamlets [16], Mallat’s bandlets [28], and Cohen et al.’s
tree coding scheme [13].

It would be digressing too much if we tried to explore here the vast literature of
image coding and compression. Instead, we now introduce the inpainting approach
to (lossy) image coding and compression based on the edge information.

The encoding stage consists of three steps:
– (Edge detection E) Apply an edge detector (Canny’s, for example) to detect
the edge collection E of a given image u0. E is typically a set of digital pixels
or curves, without good geometric regularities. In addition, we also demand
that the physical boundary of the entire image domain Ω belong to the edge
collection.

– (Edge tube T ) Next, fixing a small constant ε, we generate the ε-neighborhood
T of the edge collection, or as we prefer to call it, an edge tube. Digitally, T
can be a 1- or 2-pixel thickening of E (see Figure 10.9).

– (Encoding) Finally, we encode the addresses of the tube pixels and use a high
bit rate to accurately code the gray values on the tube u0

∣∣
T
.

This encoding scheme creates a large area of “empty seas” where the image in-
formation has been wiped out, and thus achieves a high compression rate. In the
absence of strong textures and small scale features, the edge collection consists of 1-D
piecewise smooth curves. Thus as ε tends to zero, the area of the tube T goes to
zero, which, theoretically, leads to an infinite compression ratio. Inevitably, such a
high compression ratio passes the reconstruction challenge to the decoding scheme.
Here we employ the digital TV inpainting scheme to “paint” the uncoded missing
information.

To decode, we apply the digital TV inpainting model to the tube T and the gray
value data u0

∣∣
T
:

min
u

[∑
α∈Ω

|∇αu|+
∑
α∈Ω

λT (α)

2
(uα − u0

α)
2

]
,(9.1)
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where the extended Lagrange multiplier is

λT (α) = λ, α ∈ T ; 0, α ∈ Ω\T.

Unlike JPEG or JPEG2000, here the decoding is realized by a variational reconstruc-
tion, instead of by a direct inverse transform such as the discrete cosine transform or
fast wavelets transform.

The TV norm here has its intrinsic significance. Since during the encoding stage
we do not demand any regularity condition on the edge collection, E is typically a
messy set without good geometric regularities. Thus the TV norm in the decoding
process can straighten the wiggled edges and improve their visual quality.

In Figure 10.9 of the next section, we show a typical example of image decoding
based on the TV inpainting model (9.1).

10. Applications of inpainting. For all the inpainting examples of this section,
the inpainting domains are given to the algorithm and are initially painted with
random guesses, for both the iterative filtering algorithm and the time marching
scheme.

10.1. Inpainting a noisy step edge and occluded bars. See Figures 10.1
and 10.2. In the first example, a noisy step edge has been inpainted faithfully by the
TV inpainting model. For the second, the occluded bars are recovered as expected.

The noisy image to be inpainted: SNR=20:1

The TV inpainting

Fig. 10.1. Inpainting a noisy edge (10.1).

Occluded black and white bars

The TV disocclusion

Fig. 10.2. Inpainting occluded bars (10.1).

10.2. Inpainting on a topologically complicated domain. See Figure 10.3.
This example can also be found in Bertalmio et al. [1]. One can clearly see that the
missing circular edges have been linearly approximated by the TV model. The figure
easily reminds us the close connection between the TV inpainting model and the
problem of minimal surfaces (Giusti [20]).

10.3. Inpainting a noisy scratched photo. See Figure 10.4. The image rep-
resents the scanned noisy data of an old scratched photo. As promised, the TV
inpainting model can simultaneously denoise the available part of the photo and fill
in the missing features. This is the beauty of the TV inpainting: in both the model
and algorithm, denoising and inpainting are coherently integrated.
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Two disks occluded by a ring

After inpainting

Fig. 10.3. Inpainting two disks (10.2).

The noisy image to be inpainted: SNR=20:1

The inpainted and denoised image

Fig. 10.4. Inpainting a noisy face (10.3).

The image occluded by text

Text removal

Fig. 10.5. TV for text removal (10.4).

The original complete image
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Initially filled in with a random guess
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The output from the CDD Inpainting
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Fig. 10.6. CDD for text removal (10.4).

10.4. Removal of thick text. See Figure 10.5. The text string “Lake & Me”
has been removed, and the original features occluded by these letters are inpainted.
Note that the black rim around the right arm of the T-shirt is not successfully restored
by the TV inpainting. The “failure” is due to the scale factor discussed in section 2.
The inpainting scale (i.e., the width of a letter in this case) is larger than that of
the feature (i.e., the black rim). In Figure 10.6, we have applied the CDD inpainting
scheme (section 7) to the same image. For CDD, the connectivity principle is enforced,
and therefore the broken rim segments are indeed connected.

10.5. Removal of dense text. See Figure 10.7. The dense text strings have
been successfully removed. We feel that this is a very promising application since
(a) such problems are typically local due to the small size of the letters, and (b)
the number of letters and the complexity of their shapes are well handled by the
TV inpainting algorithm since they are easily encoded into the extended Lagrange
multiplier λe.
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Image to be inpainted

The text and inpainting domain

After inpainting

Fig. 10.7. Removal of dense text (10.5).

10.6. Digital zoom-in. See Figure 10.8. We apply both the digital TV zoom-
in (8.1) and harmonic zoom-in (8.2) to the test image “Lamp” from the image bank
of Caltech’s Computational Vision Group. It is clear that the TV zoom-in model pro-
duces much better visual output in terms of edge sharpness and boundary regularity.

10.7. Edge decoding by inpainting. In Figure 10.9, we show an example of
the inpainting approach for image decoding based on edge information. The edge
detector we have employed belongs to Canny, which is now a standard MATLAB
built-in function. The thickening width described in the previous section is one pixel.
This highly lossy coding scheme certainly loses some details of the original image. But
remarkably, it faithfully captures the most essential visual information of the image.
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The original image Zoom−out by a subsampling of factor 4

The harmonic zoom−in The TV zoom−in

Fig. 10.8. Digital harmonic zoom-in and TV zoom-in (10.6).

The TV inpainting

The original image Edge tube from Canny’s detector

The initial guess

Fig. 10.9. Edge decoding by TV inpainting (10.7).
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