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Abstract: A general population model with variable carrying capacity consisting of a coupled system
of nonlinear ordinary differential equations is proposed, and a procedure for obtaining analytical
solutions for three broad classes of models is provided. A particular case is when the popula-
tion and carrying capacity per capita growth rates are proportional. As an example, a generalised
Thornley–France model is given. Further examples are given when the growth rates are not propor-
tional. A criterion when inflexion may occur is also provided, and results of numerical simulations
are presented.
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1. Introduction

The logistic model has been extensively used to study the cause and effect relationship
between the ‘carrying capacity’ (i.e., the population size that available resources can support)
and the population size. See, for instance, the references in Brauer & Castillo-Chávez [1],
Gotelli [2], Pastor [3], as well the seminal papers by Verhulst [4] and Pearl & Reed [5].

It is typically assumed that the carrying capacity does not vary with time and, therefore,
the logistic model exhibits a sigmoidal shape when the population size is plotted as a
function of time. However, many phenomena such as human population growth exhibit
more complex behaviours, unlike population species grown in laboratory cultures, for
example. Thus, it is of theoretical and practical interest to investigate mathematical models
that incorporate variable carrying capacities. One of the main objectives of studying such
models is to explore how different functional forms of the carrying capacity influence the
dynamics of the population variable and its long-term behaviour.

Meyer [6] and Meyer & Ausubel [7] studied a bi-logistic model derived from a logistic
model but with a sigmoidal time-dependent carrying capacity. Cohen [8] proposed a
human population growth model with a variable carrying capacity that is a function of the
population size itself. The aforementioned models make the case that the inclusion of a
variable carrying capacity is more reflective of the human condition.

Safuan et al. [9] proposed a coupled system of ordinary differential equations (ODEs)
to describe the interaction between the population and its carrying capacity. The model they
considered does not require prior knowledge of the carrying capacity, nor does it impose
constraints on the initial conditions. Assuming a special form of the carrying capacity in
the logistic equation, the same authors obtained an analytical solution in series form [10].

As pointed out by Cohen [8], there is no consensus with regards to appropriate models
for human carrying capacity. However, most would accept that human carrying capacity
is influenced by food availability, amongst other factors. Hopfenberg [11] postulated that
food production data are the sole variable that influences human carrying capacity, and
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a simple linear relationship between human carrying capacity and the food production
index is assumed. More recently, Zulkarnaen & Rodrigo [12] proposed three classes of
human population dynamical models of logistic type where the carrying capacity is a
function of the food production index. They employed an integration-based parameter
estimation technique [13] to derive explicit formulas for the model parameters. Using
actual population and food production index data, the results of numerical simulations of
their models suggested that an increase in food availability implies an increase in carrying
capacity, but the carrying capacity is ‘self-limiting’ and does not increase indefinitely.

Thornley & France [14] proposed an ‘open-ended’ form of the logistic equation by
considering a system of two ODEs representing the coupled processes of growth and
development. Their model is ‘open-ended’ in the sense that dynamic changes in nutrition
and environment can influence growth and development, which, in turn, may affect the
asymptotic carrying capacity value. Subsequently, Thornley et al. [15] found an analytical
solution to the Thornley–France model in the case of constant parameters. The solution
of the system of ODEs is expressed in terms of the solution of a single ODE of power-law
logistic type, also referred to as the θ-logistic model, which frequently arises in ecology and
elsewhere [16]. A related article by Wu et al. [17] formulated the variable carrying capacity
by exploring a resource dynamic-based feedback mechanism underlying the population
growth models. The inclusion of variable carrying capacities in interacting species such as
in predator–prey models have been considered in Al-Moqbali et al. [18], Al-Salti et al. [19].

Power-law logistic models have been investigated by von Bertalanffy [20] and Richards [21].
The principal (nonnegative) parameter of these models is denoted by θ. The Gompertz
model and the logistic model are recovered when θ = 0 and θ = 1, respectively. Larger
values of θ behave like a logistic model but with an increasingly sharper cessation of
growth as the asymptote (i.e., the constant carrying capacity limit) is approached [15]. As a
fraction of the asymptote, inflexion can occur over the range from 1

e (Gompertz) through
1
2 (‘ordinary’ logistic) and then to 1 (for large θ). Determining the point where inflexion
takes place can be especially important when fitting the model to actual data that exhibit
a sigmoidal trend. See Banks [22] for a detailed analysis of the θ-logistic model. More
recently, Albano et al. [23] considered a general growth curve that includes the Malthus,
Richards, Gompertz and other models. Their generalised model is essentially a Bernoulli
ODE, which is well known to be analytically tractable. They investigated the analytical and
numerical properties of the solution as the parameters varied.

Here we propose a general population model with a variable carrying capacity,
which includes the Thornley–France [14], Safuan–Jovanoski–Towers–Sidhu [9] and Meyer–
Ausubel [7] models as special cases. Moreover, when the carrying capacity is kept constant,
the proposed model system reduces to a single ODE population model and recovers the
Gompertz, ‘ordinary’ logistic and θ-logistic models, amongst others. The idea is to extract
the essential properties of such models without getting ‘bogged down’ by particular cases.
We provide a procedure for obtaining, when possible, the analytical solution of this general
population model. Different models can then be chosen depending on the particular phe-
nomenon being studied. An important tractable special case is when the per capita growth
rates of the population and carrying capacity are proportional to each other. We give a
criterion for when inflexion may occur. Several illustrative examples are also provided.

2. Population Models with Variable Carrying Capacities

Consider the initial value problem (IVP)

dN
dt

= N f (N, K),
dK
dt

= Kg(N, K), N(0) = N0, K(0) = K0, (1)

where N(t) and K(t) are the population and carrying capacity, respectively, at time t.
The initial values N0 and K0 are positive and given. Let f and g be sufficiently smooth
bivariate functions on R+ ×R+, where R+ = (0, ∞). Denote by Dj, where j = 1, 2, the
partial derivative with respect to the independent variable in the jth position. We assume
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that the population per capita growth rate 1
N

dN
dt decreases with increasing population

(D1 f (x, y) < 0) and increases with increasing carrying capacity (D2 f (x, y) > 0). As
for the signs of D1g(x, y) and D2g(x, y), it is not obvious what these should be since
the behaviour of the carrying capacity per capita growth rate 1

K
dK
dt may depend on the

particular population species.
When g is identically zero, then K(t) = K0 and (1) reduces to

dN
dt

= N f (N, K0), N(0) = N0.

A well-known example is the θ-logistic model [22]

f (N, K0) =
r
θ

[
1−

( N
K0

)θ
]

,

where r > 0 is the intrinsic growth rate, and θ > 0 is a parameter related to the point of
inflexion of the solution. The case θ = 1 gives the ‘ordinary’ logistic model. In the limit as
θ → 0+, the θ-logistic model reduces to the Gompertz model [24]

f (N, K0) = r log
(K0

N

)
.

In the case of a variable carrying capacity, the Thornley–France model [14] takes
the form

f (N, K) = a
(

1− N
K

)
, g(N, K) = −b

(
1− N

K

)
, (2)

where a, b > 0. Note that D1g(x, y) > 0 and D2g(x, y) < 0. Safuan et al. [9] proposed
the model

f (N, K) = a
(

1− N
K

)
, g(N, K) = b− cN, (3)

where a, b, c > 0. Here we see that D1g(x, y) < 0 and D2g(x, y) = 0. Meyer [6] and Meyer
& Ausubel [7] assumed that

f (N, K) = a
(

1− N
K

)
, g(N, K) = b− cK,

where a, b, c > 0. This time, D1g(x, y) = 0 and D2g(x, y) < 0.

2.1. Construction of Analytically Tractable Population Models with Variable Carrying Capacities

Suppose that there exists a positive C1-function F such that y = F(x) solves the IVP

yg(x, y)dx− x f (x, y)dy = 0, y = K0 when x = N0. (4)

Define
G(x) =

∫ x

N0

1
z f (z, F(z))

dz. (5)

We claim that
G(N(t)) = t, K(t) = F(N(t)) (6)

gives the formal solution of (1) in implicit form. Indeed, (4) and (6) imply that

F′(x) =
F(x)g(x, F(x))

x f (x, F(x))
, F′(N(t)) =

K(t)g(N(t), K(t))
N(t) f (N(t), K(t))

.
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Implicitly differentiating G(N(t)) = t with respect to t yields

1 = G′(N(t))N′(t) =
1

N(t) f (N(t), K(t))
N′(t)

or dN
dt = N f (N, K). Hence

K′(t) = F′(N(t))N′(t) =
K(t)g(N(t), K(t))
N(t) f (N(t), K(t))

N′(t) = K(t)g(N(t), K(t))

or dK
dt = Kg(N, K). It is clear that G(N(0)) = G(N0) = 0 and K(0) = F(N(0)) = F(N0) =

K0. This proves the claim. Therefore, the task of finding an analytical solution of (1)
essentially reduces to solving the first-order ODE (4).

2.2. Determination of Inflexion Points for the Population Species Variable

Before we consider some examples, let us first investigate where inflexion may occur
for the population species variable. As mentioned previously, this is particularly relevant
during model fitting. Using (6) and differentiating the first ODE in (1) with respect to t,
we have

d2N
dt2 = [ f (N, F(N)) + ND1 f (N, F(N)) + ND2 f (N, F(N))F′(N)]

dN
dt

.

Therefore, inflexion for the function N may occur at some positive root N∗ of the equation

H(z) = f (z, F(z)) + zD1 f (z, F(z)) + zD2 f (z, F(z))F′(z) = 0. (7)

If this occurs, it will be when t = t∗, where

t∗ = G(N(t∗)) = G(N∗) =
∫ N∗

N0

1
z f (z, F(z))

dz. (8)

2.3. First Class of Analytically Tractable Models: f and g Are Proportional

Suppose that there exists α ∈ R \ {0} such that g(x, y) = α f (x, y). This basically as-
sumes that the per capita growth rates 1

N
dN
dt and 1

K
dK
dt are proportional. Then (4) and (5) give

y = F(x) = K0N−α
0 xα, G(x) =

∫ x

N0

1
z f (z, K0N−α

0 zα)
dz,

respectively. From (6) we obtain the exact solution

∫ N(t)

N0

1
z f (z, K0N−α

0 zα)
dz = t, K(t) = K0N−α

0 [N(t)]α (9)

of the system (1).

Example 1. Let

f (x, y) =
a
θ

[
1−

( x
y

)θ
]

, g(x, y) = − b
θ

[
1−

( x
y

)θ
]

, (10)

where a, b > 0 and θ ≥ 0. Then g(x, y) = α f (x, y), where α = − b
a < 0. Thus, (1) becomes

dN
dt

=
a
θ

N
[

1−
(N

K

)θ
]

,
dK
dt

= − b
θ

K
[

1−
(N

K

)θ
]

, N(0) = N0, K(0) = K0. (11)
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The ‘value’ when θ = 0 is meant to be understood as the limit when θ → 0+; this is related to the
Gompertz model in the case of a constant carrying capacity. The Thornley–France model (2) is a
special case of (10) if we take θ = 1. From the first equation of (9), we obtain

t =
θ

a

∫ N(t)

N0

1
z[1− (K0N−α

0 )−θzθ(1−α)]
dz =

1
a(1− α)

∫ (K0 N−α
0 )−θ [N(t)]θ(1−α)

(K0 N−α
0 )−θ Nθ(1−α)

0

1
u(1− u)

du.

(12)
Recall the formula

I(u) =
∫ 1

u(1− u)
du = log

( u
1− u

)
, 0 < u < 1.

If I(b0)− I(a0) = c0, where 0 < a0 < b0 < 1 and c0 > 0, then it is not difficult to show that

b0 =
1

1 + 1−a0
a0

e−c0
.

Taking a0 = (K0N−α
0 )−θ Nθ(1−α)

0 = (K−1
0 N0)

θ , b0 = (K0N−α
0 )−θ [N(t)]θ(1−α) and

c0 = a(1− α)t, we deduce that the exact solution of (11) is

N(t) =

[
(K0N−α

0 )θ

1 + 1−(K−1
0 N0)θ

(K−1
0 N0)θ

e−a(1−α)t

] 1
θ(1−α)

, K(t) = K0N−α
0 [N(t)]α. (13)

As a, b > 0 and α = − b
a < 0, we have from (13) that

N∞ = lim
t→∞

N(t) = (K0N−α
0 )

1
1−α , K∞ = lim

t→∞
K(t) = (K0N−α

0 )
1

1−α .

This is consistent with the fact that f (N∞, K∞) = g(N∞, K∞) = 0 in (11) yields that any
equilibrium of (11), and there are infinitely many, lies on the curve K∞ = N∞.

Let us now look at the inflexion points of N by studying the roots of H(z) = 0 in (7).
Straightforward calculations give

D1 f (x, y) = − a
x

( x
y

)θ
, D2 f (x, y) =

a
y

( x
y

)θ
, xF′(x) = αF(x),

xD1 f (x, y) = −a + θ f (x, y), yD2 f (x, y) = a− θ f (x, y).

If we define
H0(x, y) = f (x, y) + xD1 f (x, y) + αyD2 f (x, y),

then H(z) = 0 if and only if H0(z, F(z)) = 0. However, H0(x, y) = [1 + θ(1− α)] f (x, y)−
a(1− α), so that H0(z, F(z)) = 0 if and only if

a
θ

[
1−

( z
F(z)

)θ
]
= f (z, F(z)) =

a(1− α)

1 + θ(1− α)
.

This is equivalent to

[
1

1 + θ(1− α)

] 1
θ

=
z

F(z)
=

z
K0N−α

0 zα
=
( z

K∞

)1−α
, K∞ = (K0N−α

0 )
1

1−α .

Thus H(N∗) = 0 if and only if

N∗ = K∞

[
1

1 + θ(1− α)

] 1
θ(1−α)

. (14)
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Finally, we see from (8) that

t∗ =
1

a(1− α)

[
I
((N∗

K∞

))θ(1−α))
− I
(( N0

K∞

)θ(1−α))]
. (15)

As I is an increasing function of u, and assuming that N0 < N∗, it follows that t∗ > 0.
It was already noted that θ = 1 in (10) reduces to the Thornley–France model (2). Then, if

θ = 1, (13) recovers the analytical solution found in Thornley et al. [15]. Equation (14) indicates
where inflexion occurs as a fraction of the asymptotic carrying capacity, while (15) gives the time of
inflexion (compare with (17) and (18), respectively, found in Thornley et al. [15] with an appropriate
renaming of parameters).

On the other hand, when we let θ → ∞, then (14) shows that N∗
K∞

tends to unity so that,
similar to the Thornley–France model when θ = 1, exponential growth is sustained for longer and
the inflexion value N∗ moves closer to the asymptotic carrying capacity value K∞.

If θ > 0 and α = 0 (corresponding to b = 0 in (10)), then K(t) = K0 and (1) reduces to a
single ODE

dN
dt

=
a
θ

N
[

1−
( N

K0

)θ
]

,

which is the θ-logistic model. In particular, if θ = 1 and α = 0 (i.e., the ‘ordinary’ logistic model),
then (14) shows that the inflexion value is one-half of the asymptotic carrying capacity value, which
is well known. If θ → 0+, then we deduce from (14) that N∗

K∞
tends to 1

e for any α = − b
a < 0.

This is similar in behaviour to the case when α = 0 (i.e., b = 0 in (10)), so that K(t) = K0 and (1)
recovers the Gompertz model

dN
dt

= aN log
(K0

N

)
.

Thus N∗
K∞

tends to 1
e as θ → 0+ even for the variable carrying capacity system (11).

Here we include some results of numerical simulations of (11) (equivalently, (13)). Let a = 0.2,
b = 0.1, N0 = 5 and K0 = 20. Take four different values of θ = 0.01, 1, 5, 20 to see and compare the
population dynamics, as shown in Figure 1, as well as the carrying capacity behaviour in Figure 2.

As can be seen in both figures, the larger the value of θ, the longer it takes for the population
and carrying capacity to reach equilibrium.

0.000 50.000 100.000 150.000
0.000

6.667

13.333

20.000

inflexion point

Figure 1. Profiles of N(t) in (13) for θ = 0.01, 1, 5, 20 (with a = 0.2, b = 0.1, N0 = 5 and K0 = 20) and
inflexion points calculated from (14) and (15).
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0.000 50.000 100.000 150.000

0.000

6.667

13.333

20.000

Figure 2. Profiles of K(t) in (13) for θ = 0.01, 1, 5, 20 (with a = 0.2, b = 0.1, N0 = 5 and K0 = 20).

Figure 3 (θ = 0.01) and Figure 4 (θ = 1.2) depict some trajectories in the NK-plane and
illustrate that the carrying capacity experiences a decline as the population grows larger. This is a
consequence of the proportionality of the per capita growth rates with a negative proportionality
constant. Moreover, when the initial conditions are varied, the trajectories approach the equilibrium
line K∞ = N∞. This behaviour is typical for other values of θ as well.
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Figure 3. Representative solution trajectories of (11) in the NK-plane with θ = 0.01, a = 0.2 and
b = 0.1.
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Figure 4. Representative solution trajectories of (11) in the NK-plane with θ = 1.2, a = 0.2 and
b = 0.1.

2.4. Second Class of Analytically Tractable Models: f and g Are Homogeneous Functions

Suppose that f and g in (1) are homogeneous functions, i.e.,

f (λx, λy) = λ f (x, y), g(λx, λy) = λg(x, y) for every λ > 0.

Let v = y
x in (4), so that g(x, y) = g(x, xv) = xg(1, v) and f (x, y) = f (x, xv) = x f (1, v).

Then (4) is transformed into the separable ODE

x
dv
dx

= v
g(1, v)− f (1, v)

f (1, v)
,

whose general solution is

Φ(v) = Φ
( y

x

)
= log(x) + log(C), Φ(v) =

∫ f (1, v)
v[g(1, v)− f (1, v)]

dv, (16)

where C > 0 is an arbitrary constant of integration. Hence, assuming that Φ is invertible,
we deduce that the solution of (4) is

y = F(x) = xΦ−1(log(Cx)), log(C) = Φ
(K0

N0

)
− log(N0). (17)

Next, we determine G. From (5), we see that

G(x) =
∫ x

N0

1
z f (z, zΦ−1(log(Cz)))

dz. (18)

Finally, (6) implies that the exact solution of (1) in the case when both f and g are homoge-
neous functions is∫ N(t)

N0

1
z f (z, zΦ−1(log(Cz)))

dz = t, K(t) = N(t)Φ−1(log(CN(t))). (19)

Example 2. Let
f (x, y) = a

(
1− x

y

)
, g(x, y) = a− cx

y
,
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where 0 < a < c, so that (1) becomes

dN
dt

= aN
(

1− N
K

)
,

dK
dt

= K
(

a− cN
K

)
, N(0) = N0, K(0) = K0; (20)

compare with model (3) proposed by Safuan et al. [10]. Observe that f and g are homogeneous
functions but are not proportional since a < c. Then (16) gives

Φ(v) =
a

a− c
[v− log(v)], Φ

( y
x

)
=

a
a− c

[ y
x
− log

( y
x

)]
= log(Cx) (21)

and, therefore,( c
a
− 1
)

log(CN0) = log
(K0

N0

)
− K0

N0
or (CN0)

c
a−1 =

K0

N0
e−

K0
N0 . (22)

The second equation in (21) can be rewritten as

− y
x

e−
y
x = − exp

(
− a− c

a
log(Cx)

)
= −(Cx)

c
a−1. (23)

Let us recall some properties of the Lambert W-function. Suppose that u, z ∈ R. Then z = W(u)
satisfies the equation zez = u if u ≥ − 1

e . Furthermore, W(u) < 0 for − 1
e ≤ u < 0 and

W ′(u) =
W(u)

u[1 + W(u)]
, u 6= −1

e
, 0. (24)

Identifying
z = − y

x
, u = −(Cx)

c
a−1,

and assuming that 0 < x ≤ 1
C e

a
a−c so that u ≥ − 1

e , we obtain from (23) that

y = F(x) = −xW(−(Cx)
c
a−1).

We see that F(x) > 0 since the W-function is negative here because − 1
e ≤ u < 0. Following a

similar argument, we deduce from (21) that

Φ−1(z) = −W(−e−
a−c

a z), Φ−1(log(Cz)) = −W(−(Cz)
c
a−1).

Therefore, (18) yields

G(x) =
1
a

∫ x

N0

W(−(Cz)
c
a−1)

z[1 + W(−(Cz)
c
a−1)]

dz =
1

c− a

∫ −(Cx)
c
a−1

−(CN0)
c
a−1

W(u)
u[1 + W(u)]

du

=
1

c− a
[W(−(Cx)

c
a−1)−W(−(CN0)

c
a−1)],

where we used (24) in the last step. Equation (22) gives

W(−(CN0)
c
a−1) = W

(
− K0

N0
e−

K0
N0

)
= −K0

N0

since z = W(u) = W(zez) if u = zez. Hence the exact solution of (20) from (19) is

W(−[CN(t)]
c
a−1) = −K0

N0
+ (c− a)t, K(t) = −N(t)W(−[CN(t)]

c
a−1). (25)

Example 3. Suppose that

f (x, y) = a log
( y

x

)
, g(x, y) = a log

( y
x

)
+ b,
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where a, b > 0. Therefore, (1) becomes

dN
dt

= aN log
( K

N

)
,

dK
dt

= K
[

a log
( K

N

)
+ b
]

, N(0) = N0, K(0) = K0. (26)

We see that f and g are homogeneous functions but are not proportional as b > 0. Then (16)
implies that

Φ(v) =
a

2b
[log(v)]2, Φ

( y
x

)
=

a
2b

[
log
( y

x

)]2
= log(Cx)

and

log(C) =
a

2b

[
log
(K0

N0

)]2
− log(N0), [log(CN0)]

1
2 =

( a
2b

) 1
2

log
(K0

N0

)
. (27)

Since

Φ−1(v) = exp
((2b

a
v
) 1

2
)

, Φ−1(log(Cv)) = exp
([2b

a
log(Cv)

] 1
2
)

,

Equation (17) yields

y = F(x) = x exp
([2b

a
log(Cx)

] 1
2
)

.

Furthermore,

f (z, zΦ−1(log(Cz))) = a
[2b

a
log(Cz)

] 1
2
= (2ab)

1
2 [log(Cz)]

1
2

and from (18), we obtain

G(x) =
1

(2ab)
1
2

∫ x

N0

1

z[log(Cz)]
1
2

dz =
1

(2ab)
1
2

∫ log(Cx)

log(CN0)
u−

1
2 du

=
( 2

ab

) 1
2
[log(Cx)]

1
2 −

( 2
ab

) 1
2
[log(CN0)]

1
2 .

Substituting into (19) gives [log(CN(t))]
1
2 = [log(CN0)]

1
2 + ( ab

2 )
1
2 t, which simplifies to

log(CN(t)) = log(CN0) + at log
(K0

N0

)
+

ab
2

t2

using (27). Thus,

N(t) = N0

(K0

N0

)at
e

ab
2 t2

.

Moreover, (19) also implies that

K(t) = N(t) exp
([2b

a
log(CN(t))

] 1
2
)

,

so that

log(K(t)) = log(N(t)) +
[2b

a
log(CN(t))

] 1
2

= log(N(t)) +
(2b

a

) 1
2
[log(CN0)]

1
2 +

(2b
a

) 1
2
( ab

2

) 1
2
t

= log(N(t)) + log
(K0

N0

)
+ bt.



AppliedMath 2022, 2 476

Hence

K(t) =
K0

N0
ebtN(t) =

K0

N0
ebtN0

(K0

N0

)at
e

ab
2 t2

= K0

(K0

N0

)at
e

ab
2 t2+bt.

Thus, the exact solution of (26) is

N(t) = N0

(K0

N0

)at
e

ab
2 t2

, K(t) = K0

(K0

N0

)at
e

ab
2 t2+bt. (28)

2.5. Third Class of Analytically Tractable Models: f and g Determine an Exact ODE

Assume that f and g are such that

∂

∂x
[x f (x, y)] +

∂

∂y
[yg(x, y)] = f (x, y) + xD1 f (x, y) + g(x, y) + yD2g(x, y) = 0. (29)

This implies that (4) is an exact ODE whose general solution is Ψ(x, y) = C = Ψ(N0, K0),
where C is an arbitrary constant of integration and

D1Ψ(x, y) = −yg(x, y), D2Ψ(x, y) = x f (x, y). (30)

Then
Ψ(x, y) = −

∫
yg(x, y)dx + Q(y) =

∫
x f (x, y)dy + P(x), (31)

where P = P(x) and Q = Q(y) are arbitrary functions of integration. Differentiating Ψ
in (31) with respect to y and using the second equation in (30) and then (29), we get

Q(y) =
∫ [

x f (x, y)−
∫

f (x, y)dx−
∫

xD1 f (x, y)dx
]

dy. (32)

An analogous calculation yields

P(x) =
∫ [
−yg(x, y)−

∫
f (x, y)dy−

∫
xD1 f (x, y)dy

]
dx. (33)

Assuming that Ψ(x, y) = C = Ψ(N0, K0) can be solved for y = F(x), then we have
from (5) and the second equation in (30) that

G(x) =
∫ x

N0

1
z f (z, F(z))

dz =
∫ x

N0

1
D2Ψ(z, F(z))

dz. (34)

Therefore, (6) expresses the exact solution of (1) as

∫ N(t)

N0

1
D2Ψ(z, F(z))

dz = t, K(t) = F(N(t)). (35)

Looking at condition (29) more closely, we conclude that

yg(x, y) = −
∫

f (x, y)dy−
∫

xD1 f (x, y)dy + R(x) (36)
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for some arbitrary function R = R(x). Hence the exactness condition (29) necessarily
implies the above form for g. Thus from (31) and (36), we have

Ψ(x, y) =
∫ [∫

f (x, y)dy + x
∫

D1 f (x, y)dy− R(x)
]

dx

+
∫ [

x f (x, y)−
∫

f (x, y)dx−
∫

xD1 f (x, y)dx
]

dy

=
∫

x f (x, y)dy−
∫

R(x)dx.

This simplified form for Ψ is then substituted into the first equation in (35).

Example 4. Let a > 0. If

f (x, y) = a
(

1− x
y

)
= a− axy−1, D1 f (x, y) = −ay−1,

then (36) evaluates to yg(x, y) = −ay + 2ax log(y), taking R(x) = 0 for simplicity. Therefore,
(1) becomes

dN
dt

= aN
(

1− N
K

)
,

dK
dt

= −aK + 2aN log(K), N(0) = N0, K(0) = K0. (37)

We have
Ψ(x, y) =

∫
x(a− axy−1)dy = ax[y− x log(y)],

where C = Ψ(N0, K0) = aN0[K0 − N0 log(K0)]. The equation Ψ(x, y) = C gives

log(y)− y
x
= −C

a
x−2, − y

x
e−

y
x = −x−1 exp

(
− C

a
x−2

)
.

Hence, as in Example 2,

y = F(x) = −xW
(
− x−1 exp

(
− C

a
x−2

))
if − x−1 exp

(
− C

a
x−2

)
≥ −1

e
.

Then
D2Ψ(x, y) = ax− ax2y−1, D2Ψ(z, F(z)) = az

[
1− z

F(z)

]
and

1− z
F(z)

=
1 + W(−z−1 exp(−C

a z−2)

W(−z−1 exp(−C
a z−2)

.

From (34) we obtain

G(x) =
1
a

∫ x

N0

W(−z−1 exp(−C
a z−2)

z[1 + W(−z−1 exp(−C
a z−2)]

dz,

which cannot be further evaluated analytically (unlike in Example 2). The exact solution of (37)
using (35) is

∫ N(t)

N0

W(−z−1 exp(−C
a z−2)

z[1 + W(−z−1 exp(−C
a z−2)]

dz = at,

K(t) = −N(t)W
(
− [N(t)]−1 exp

(
− C

a
[N(t)]−2

))
.

(38)
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3. Concluding Remarks

In this article, we proposed population models with variable carrying capacities
modelled by a coupled system (1) of two nonlinear ODEs and found their analytical
solutions. While it was clear that the assumptions D1 f (x, y) < 0 and D2 f (x, y) > 0 are
reasonable since they describe the behaviour of the population per capita growth rate, we
showed through several explicit examples that corresponding assumptions for D1g(x, y)
and D2g(x, y) that describe the carrying capacity per capita growth rate are not obvious
and may be model dependent. One possible reason for this is that carrying capacity is not
directly observable, unlike the population size.

If the per capita growth rates are proportional, as in Example 1, then in addition
to the analytical solution, we also found a criterion for the occurrence of inflexion in
the population profile as a fraction of the asymptotic carrying capacity. This criterion
does not apply to the models in Examples 2 and 3 since they do not have a nontrivial
equilibrium. However, it should apply for the model in Example 4 with a nontrivial
equilibrium (N∞, K∞) = (e−

1
2 , e−

1
2 ). Further classes of analytically tractable models of

the form (1), not necessarily in the context of population growth with variable carrying
capacity, can, of course, be found by considering analytically tractable cases of (4) following
the idea in Rodrigo [25].

Future work would involve a more careful investigation of the assumptions for the
carrying capacity per capita growth rate. While this article focused on the analytical
aspects of population models with variable carrying capacities, fitting the models to actual
population data is the next important step. The estimation of parameters in the models
can be undertaken by adapting the arguments in Zulkarnaen & Rodrigo [12], Holder &
Rodrigo [13]. Parameter estimation using an integration-based technique in population
models with variable carrying capacities that depend on food availability is the subject of
an article by the authors that is currently under review [26]. Another research direction
is the modelling of interacting population species where the carrying capacities are not
fixed anymore but may depend on time and/or space. Results for predator–prey models
have been obtained in Al-Moqbali et al. [18], Albano et al. [23], although spatio-temporal
models (e.g., chemotaxis [27]) can also be considered. Travelling waves are an important
class of biologically relevant solutions for spatio-temporal models described by partial
differential equations. A travelling wave coordinate transformation leads to a system
of higher dimensional ODEs, for which analytically tractable models can potentially be
identified using the techniques in the current article.
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