Contents

Acknowledgments

PART I DISCRETE PROCESS IN BIOLOGY

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Theory of Linear Difference Equations Applied to Population Growth</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>Biological Models Using Difference Equations</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Cell Division</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>An Insect Population</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Propagation of Annual Plants</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Stage 1: Statement of the Problem</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Stage 2: Definitions and Assumptions</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Stage 3: The Equations</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Stage 4: Condensing the Equations</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Stage 5: Check</td>
<td>11</td>
</tr>
<tr>
<td>1.3</td>
<td>Systems of Linear Difference Equations</td>
<td>12</td>
</tr>
<tr>
<td>1.4</td>
<td>A Linear Algebra Review</td>
<td>13</td>
</tr>
<tr>
<td>1.5</td>
<td>Will Plants Be Successful?</td>
<td>16</td>
</tr>
<tr>
<td>1.6</td>
<td>Qualitative Behavior of Solutions to Linear Difference Equations</td>
<td>19</td>
</tr>
<tr>
<td>1.7</td>
<td>The Golden Mean Revisited</td>
<td>22</td>
</tr>
<tr>
<td>1.8</td>
<td>Complex Eigenvalues in Solutions to Difference Equations</td>
<td>22</td>
</tr>
<tr>
<td>1.9</td>
<td>Related Applications to Similar Problems</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Problem 1: Growth of Segmental Organisms</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Problem 2: A Schematic Model of Red Blood Cell Production</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Problem 3: Ventilation Volume and Blood CO₂ Levels</td>
<td>27</td>
</tr>
<tr>
<td>1.10</td>
<td>For Further Study: Linear Difference Equations in Demography</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Nonlinear Difference Equations</td>
<td>39</td>
</tr>
<tr>
<td>2.1</td>
<td>Recognizing a Nonlinear Difference Equation</td>
<td>40</td>
</tr>
<tr>
<td>2.2</td>
<td>Steady States, Stability, and Critical Parameters</td>
<td>40</td>
</tr>
<tr>
<td>2.3</td>
<td>The Logistic Difference Equation</td>
<td>44</td>
</tr>
<tr>
<td>2.4</td>
<td>Beyond (r = 3)</td>
<td>46</td>
</tr>
</tbody>
</table>
Contents

2.5 Graphical Methods for First-Order Equations 49
2.6 A Word about the Computer 55
2.7 Systems of Nonlinear Difference Equations 55
2.8 Stability Criteria for Second-Order Equations 57
2.9 Stability Criteria for Higher-Order Systems 58
2.10 For Further Study: Physiological Applications 60
Problems 61
References 67
Appendix to Chapter 2: Taylor Series 68
Part 1: Functions of One Variable 68
Part 2: Functions of Two Variables 70

Chapter 3 Applications of Nonlinear Difference Equations to Population Biology 72
3.1 Density Dependence in Single-Species Populations 74
3.2 Two-Species Interactions: Host-Parasitoid Systems 78
3.3 The Nicholson-Bailey Model 79
3.4 Modifications of the Nicholson-Bailey Model 83
Density Dependence in the Host Population 83
Other Stabilizing Factors 86
3.5 A Model for Plant-Herbivore Interactions 89
Outlining the Problem 89
Rescaling the Equations 91
Further Assumptions and Stability Calculations 92
Deciphering the Conditions for Stability 96
Comments and Extensions 98
3.6 For Further Study: Population Genetics 99
Problems 102
Projects 109
References 110

PART II CONTINUOUS PROCESSES AND ORDINARY DIFFERENTIAL EQUATIONS 113

Chapter 4 An Introduction to Continuous Models 115
4.1 Warmup Examples: Growth of Microorganisms 116
4.2 Bacterial Growth in a Chemostat 121
4.3 Formulating a Model 122
First Attempt 122
Corrected Version 123
4.4 A Saturating Nutrient Consumption Rate 125
4.5 Dimensional Analysis of the Equations 126
4.6 Steady-State Solutions 128
4.7 Stability and Linearization 129
4.8 Linear Ordinary Differential Equations: A Brief Review 130
First-Order ODEs 132
Second-Order ODEs 132
A System of Two First-Order Equations (Elimination Method) 133
A System of Two First-Order Equations (Eigenvalue-Eigenvector Method) 134

4.9 When Is a Steady State Stable? 141
4.10 Stability of Steady States in the Chemostat 143
4.11 Applications to Related Problems 145
 Delivery of Drugs by Continuous Infusion 145
 Modeling of Glucose-Insulin Kinetics 147
 Compartmental Analysis 149

Problems 152
References 162

Chapter 5 Phase-Plane Methods and Qualitative Solutions 164

5.1 First-Order ODEs: A Geometric Meaning 165
5.2 Systems of Two First-Order ODEs 171
5.3 Curves in the Plane 172
5.4 The Direction Field 175
5.5 Nullclines: A More Systematic Approach 178
5.6 Close to the Steady States 181
5.7 Phase-Plane Diagrams of Linear Systems 184
 Real Eigenvalues 185
 Complex Eigenvalues 186
5.8 Classifying Stability Characteristics 186
5.9 Global Behavior from Local Information 191
5.10 Constructing a Phase-Plane Diagram for the Chemostat 193
 Step 1: The Nullclines 194
 Step 2: Steady States 196
 Step 3: Close to Steady States 196
 Step 4: Interpreting the Solutions 197
5.11 Higher-Order Equations 199

Problems 200
References 209

Chapter 6 Applications of Continuous Models to Population Dynamics 210

6.1 Models for Single-Species Populations 212
 Malthus Model 214
 Logistic Growth 214
 Allee Effect 215
 Other Assumptions; Gompertz Growth in Tumors 217
6.2 Predator-Prey Systems and the Lotka-Volterra Equations 218
6.3 Populations in Competition 224
6.4 Multiple-Species Communities and the Routh-Hurwitz Criteria 231
6.5 Qualitative Stability 236
6.6 The Population Biology of Infectious Diseases 242
Contents

6.7 For Further Study: Vaccination Policies
 Eradicating a Disease
 Average Age of Acquiring a Disease

Chapter 7 Models for Molecular Events

7.1 Michaelis-Menten Kinetics
7.2 The Quasi-Steady-State Assumption
7.3 A Quick, Easy Derivation of Sigmoidal Kinetics
7.4 Cooperative Reactions and the Sigmoidal Response
7.5 A Molecular Model for Threshold-Governed Cellular Development
7.6 Species Competition in a Chemical Setting
7.7 A Bimolecular Switch
7.8 Stability of Activator-Inhibitor and Positive Feedback Systems
 The Activator-Inhibitor System
 Positive Feedback
7.9 Some Extensions and Suggestions for Further Study

Chapter 8 Limit Cycles, Oscillations, and Excitable Systems

8.1 Nerve Conduction, the Action Potential, and the Hodgkin-Huxley Equations
8.2 Fitzhugh’s Analysis of the Hodgkin-Huxley Equations
8.3 The Poincaré-Bendixson Theory
8.4 The Case of the Cubic Nullclines
8.5 The Fitzhugh-Nagumo Model for Neural Impulses
8.6 The Hopf Bifurcation
8.7 Oscillations in Population-Based Models
8.8 Oscillations in Chemical Systems
 Criteria for Oscillations in a Chemical System
8.9 For Further Study: Physiological and Circadian Rhythms
 Appendix to Chapter 8. Some Basic Topological Notions
 Appendix to Chapter 8. More about the Poincaré-Bendixson Theory

PART III SPATIALLY DISTRIBUTED SYSTEMS AND PARTIAL DIFFERENTIAL EQUATION MODELS

Chapter 9 An Introduction to Partial Differential Equations and Diffusion in Biological Settings

9.1 Functions of Several Variables: A Review
9.2 A Quick Derivation of the Conservation Equation
9.3 Other Versions of the Conservation Equation
 Tubular Flow
 Flows in Two and Three Dimensions
9.4 Convection, Diffusion, and Attraction
 Convection
 Attraction or Repulsion
 Random Motion and the Diffusion Equation
9.5 The Diffusion Equation and Some of Its Consequences
9.6 Transit Times for Diffusion
9.7 Can Macrophages Find Bacteria by Random Motion Alone?
9.8 Other Observations about the Diffusion Equation
9.9 An Application of Diffusion to Mutagen Bioassays

Appendix to Chapter 9. Solutions to the One-Dimensional Diffusion Equation

Chapter 10 Partial Differential Equation Models in Biology

10.1 Population Dispersal Models Based on Diffusion
10.2 Random and Chemotactic Motion of Microorganisms
10.3 Density-Dependent Dispersal
10.4 Apical Growth in Branching Networks
10.5 Simple Solutions: Steady States and Traveling Waves
 Nonuniform Steady States
 Homogeneous (Spatially Uniform) Steady States
 Traveling-Wave Solutions
10.6 Traveling Waves in Microorganisms and in the Spread of Genes
 Fisher's Equation: The Spread of Genes in a Population
 Spreading Colonies of Microorganisms
 Some Perspectives and Comments
10.7 Transport of Biological Substances Inside the Axon
10.8 Conservation Laws in Other Settings: Age Distributions and the Cell Cycle
 The Cell Cycle
 Analogies with Particle Motion
 A Topic for Further Study: Applications to Chemotherapy
 Summary
10.9 A Do-It-Yourself Model of Tissue Culture
 A Statement of the Biological Problem
 Step 1: A Simple Case
 Step 2: A Slightly More Realistic Case
 Step 3: Writing the Equations
 The Final Step
 Discussion
10.10 For Further Study: Other Examples of Conservation Laws in Biological Systems

Chapter 11 Models for Development and Pattern Formation in Biological Systems

11.1 Cellular Slime Molds
11.2 Homogeneous Steady States and Inhomogeneous Perturbations
11.3 Interpreting the Aggregation Condition
11.4 A Chemical Basis for Morphogenesis
11.5 Conditions for Diffusive Instability
11.6 A Physical Explanation
11.7 Extension to Higher Dimensions and Finite Domains
11.8 Applications to Morphogenesis 528
11.9 For Further Study:
 Patterns in Ecology 535
 Evidence for Chemical Morphogens in Developmental Systems 537
 A Broader View of Pattern Formation in Biology 539

Selected Answers 556
Author Index 571
Subject Index 575