
Chapter 12
Mathematical Models in Infectious Disease
Epidemiology

Mirjam Kretzschmar and Jacco Wallinga

12.1 Introduction

The idea that transmission and spread of infectious diseases follows laws that can
be formulated in mathematical language is old. In 1766 Daniel Bernoulli pub-
lished an article where he described the effects of smallpox variolation (a precursor
of vaccination) on life expectancy using mathematical life table analysis (Dietz
and Heesterbeek 2000). However, it was only in the twentieth century that the
nonlinear dynamics of infectious disease transmission was really understood. In
the beginning of that century there was much discussion about why an epidemic
ended before all susceptibles were infected with hypotheses about changing vir-
ulence of the pathogen during the epidemic. Hamer (1906) was one of the first
to recognize that it was the diminishing density of susceptible persons alone that
could bring the epidemic to a halt. Sir Ronald Ross, who received the Nobel prize
in 1902 for elucidating the life cycle of the malaria parasite, used mathemati-
cal modeling to investigate the effectiveness of various intervention strategies for
malaria.

In 1927, Kermack and McKendrick published a series of papers in which they
described the dynamics of disease transmission in terms of a system of differen-
tial equations (Kermack and McKendrick 1991a; Kermack and McKendrick 1991b;
Kermack and McKendrick 1991c). They pioneered the concept of a threshold
quantity that separates different dynamic regimes. Only if the so-called basic repro-
duction number is above a threshold value can an infectious disease spread in a
susceptible population. In the context of vaccination this leads to the concept of
herd immunity, stating that it is not necessary to vaccinate the entire population
to eliminate an infectious disease. This theory proved its value during the eradica-
tion of smallpox in the 1970s. Vaccination coverage of around 80% worldwide in
combination with ring vaccination was sufficient for eradication of this virus.
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Only towards the end of the twentieth century did mathematical modeling come
into more widespread use for public health policy making. Modeling approaches
were increasingly used during the first two decades of the AIDS pandemic for pre-
dicting the further course of the epidemic and for trying to identify the most effective
prevention strategies. But the real impact of mathematical modeling on public health
came with the need for evaluating intervention strategies for newly emerging and re-
emerging pathogens. In the first instance it was the fear of a bioterrorist attack with
smallpox virus that sparked off the use of mathematical modeling to combine his-
torical data from smallpox outbreaks with questions about vaccination in modern
societies (Ferguson et al. 2003). Later the outbreak of the SARS virus as a newly
emerging pathogen initiated the use of mathematical modeling for analyzing infec-
tious disease outbreak data in real time to assess the effectiveness of intervention
measures (Wallinga and Teunis 2004).

Analysis of historical data about pandemic outbreaks of influenza A have led to
the important insight that the basic reproduction number of influenza has been low in
historical outbreaks, but the serial interval is short (Mills et al. 2004). This implies
that in principle an outbreak of influenza can be stopped with moderate levels of
intervention, but measures have to be taken very rapidly in order to be effective. In
contrast, for an infection such as measles with a high basic reproduction number,
very high levels of vaccination coverage are needed for elimination. Such insights
gained from mathematical analysis are extremely helpful for designing appropriate
intervention policy and for the evaluation of existing interventions.

12.2 Basic Concepts in Mathematical Modeling

The central idea about transmission models, as opposed to statistical models, is a
mechanistic description of the transmission of infection between two individuals.
This mechanistic description makes it possible to describe the time evolution of an
epidemic in mathematical terms and in this way connect the individual level process
of transmission with a population level description of incidence and prevalence of
an infectious disease. The rigorous mathematical way of formulating these depen-
dencies leads to the necessity of analyzing all dynamic processes that contribute to
disease transmission in much detail. Therefore, developing a mathematical model
helps to focus thoughts on the essential processes involved in shaping the epidemi-
ology of an infectious disease and to reveal the parameters that are most influential
and amenable for control. Mathematical modeling is then also integrative in com-
bining knowledge from very different disciplines like microbiology, social sciences,
and clinical sciences.

For many infections – such as influenza and smallpox – individuals can be
categorized as either “susceptible,” “infected” or “recovered and immune.” The sus-
ceptibles that are affected by an epidemic move through these stages of infection
(Fig. 12.1).
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susceptible infected recovered and immuneFig. 12.1 Transition of an
individual through different
stages of infection

initial state generation 1 generation 2 generation 3 final state

1 infected 3 infected 3 infected 2 infected 0 infected

Fig. 12.2 Propagation of infection through a small population

A key quantity in infectious disease epidemiology is the reproduction number,
denoted by the symbol R, which is defined as the number of secondary cases that
are infected by one infectious individual. As an example we can sketch the typical
course of an epidemic if the reproduction number R = 3 (here the generation time
equals the duration of infectivity; Fig. 12.2).

In the illustration of Fig. 12.2, the number of new infections increases in the first
generation by a factor equal to the reproduction number R. The number of available
susceptible individuals is depleted in the course of the epidemic. When the last
infected person fails to contact any susceptible person, the epidemic dies out.

The infection attack rate is the total proportion of the population that is eventually
infected during the epidemic, and it is denoted by A. This infection attack rate is
completely determined by the reproduction number R and the contact process that
describes who contacts whom (Fig. 12.3). To illustrate the basic shape of the relation
between the reproduction number R and the infection attack rate A, we suppose that
infectious contacts are made at random.

This provides us with a simple and robust relation that indicates what would
happen if a new infection were to hit a completely susceptible population: if the
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Fig. 12.4 Differences in
duration of the infectious
period and varying
infectiousness during the
course of an infection for
influenza and smallpox. Dark
gray and black areas
symbolize periods with
medium to high
infectiousness, light gray no
or low infectiousness

new infection is like influenza, with a reproduction number of about R = 1.5, we
expect that more than half of the population will be infected; and if the new infection
is like smallpox, with a reproduction number of about R = 5, we expect that almost
the entire population will be infected during an epidemic without interventions.

To capture the epidemic dynamics over time, we need to incorporate the natural
course of infection of an individual host. As time proceeds, an infected host moves
from the incubation period through the prodromal phase and the infectious period
to recovery and immunity (Fig. 12.4). For influenza and smallpox, such timelines
are depicted in Fig. 12.4. The duration of the incubation period and the relative
infectiousness in the stages before symptom onset (the prodromal phase) and the
symptomatic stage are crucial in determining the success of control strategies such
as contact tracing and isolation of symptomatic cases.

The timelines determine another epidemiological key quantity, the generation
time T. This generation time is defined as the typical duration between the time of
infection of a source and the time of infection of its secondary case(s). For influenza,
the generation time is in the order of T = 3 days. For smallpox, the generation time
is in the order of T = 20 days.

The chain reaction nature of the epidemic process leads to exponential growth
in real (calendar) time during the initial phase of the epidemic, once the number of
infected individuals has become large enough to avoid chance events that lead to
an early extinction of the epidemic. The exponential growth rate r is determined by
the precise timelines of infection. There is a lower limit to the growth rate r that
is set by both the reproduction number R and the generation time T (specifically,
r > ln (R)/T).

To illustrate the strength of this basic approach to epidemic modeling, we use it to
assess the impact of border closure on epidemic spread. The number of infected per-
sons that will try to cross the border from an infected country into a country that is
not yet infected will increase exponentially with a growth rate r. Closing the borders
will stop most infected persons, but a proportion p might slip through. Therefore,
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closing the borders will result in a reduction by a factor p of the exponential growth
of number of imported cases. This reduction corresponds to a delay in the expo-
nential growth of the number of imported cases (specifically, the delay is at most
(–ln p /ln R) T). Therefore, border closure will only postpone the import of cases
for a few generations of infection. For example, if closure was to reduce all of those
infected travelers who would ordinarily have crossed the border to 1%, the introduc-
tion of an influenza epidemic may be delayed by about a month, and the introduction
of a smallpox epidemic may be delayed by about 2 months.

The key epidemiological variables that characterize spread of infection are the
generation time T and the reproduction number R. If a novel infection starts spread-
ing, such as SARS in 2003, these key variables are unknown. But even if an outbreak
of a more familiar infection occurs, such as norovirus, we might be groping in the
dark about the precise values of these key variables. Yet, if modeling is to be helpful
in infectious disease control, it is crucial to have the best possible estimates for the
generation time and the reproduction number, along with other quantities such as
the incubation time and hospitalization rate. Estimation would be easy if we had
perfect information about the outbreak. If we would know exactly who had infected
whom, and if we know precisely who was infected when, we could simply measure
the duration of each time interval from infection of a case back to time of infection
of its source, and the distribution of the length of these time intervals would inform
us about the generation interval. Similarly, we could simply count for each infected
individual how many others were infected by this individual, and the distribution of
such counts would inform us about the reproduction number. Of course, in a real
world such information is not available and we have to deal with incomplete obser-
vations, proxy measures, and reporting delays. But real-time estimating procedures
have been proposed that attempt to reconstruct the likely patterns of who infected
whom, and who was infected when, from the incomplete data and proxy measures,
using standard statistical techniques for dealing with missing data and censoring
(Wallinga and Teunis 2004; Cauchemez et al. 2006). The main message is that dur-
ing an outbreak it is important to collect data on cases (time of symptom onset) and
about the relation between cases (existence of an epidemiological link). The more
accurate this data is, the more useful it is to estimate the key model ingredients, the
generation time T and the reproduction number R, and the more helpful this data
can be in predicting the likely future course of the epidemic without intervention
and the required control effort to curb the epidemic.

Many of the above ideas can be formalized mathematically in the so-called SIR
model that describes the dynamics of different states of individuals in the pop-
ulation in terms of a system of ordinary differential equations. The variables of
the system are given by the compartments described above: the group of suscepti-
ble persons (denoted by S), the group of infected persons (denoted by I), and the
group of removed persons (removed from the process of transmission by immunity)
(denoted by R). The mathematical model provides a precise description of the move-
ments in and out of the three compartments. Those movements are birth (flow into
the compartment of susceptible individuals), death (flow out of all compartments),
transmission of infection (flow from S into I), and recovery (flow from I into R)
(Fig. 12.5).
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Fig. 12.5 Flow chart of the SIR model

Transitions between compartments are governed by rates, which in the simplest
version of the model are assumed to be constant in time. The birth rate ν describes
the recruitment of new susceptibles into the population, the death rate μ the loss
of individuals due to a disease-unrelated background mortality, and γ denotes the
recovery rate of infected individuals into immunity. The key element of the model
is the term describing transmission of infection according to a rate β using a mass
action term. The idea behind using a mass action term to describe transmission is
that individuals of the population meet each other at random and each individual
has the same probability per unit time to meet each other individual. Therefore, for
a susceptible person the rate of meeting infected persons depends on their density
or prevalence in the population, or in mathematical terms λ = βI, where λ is the
so-called force of infection. The force of infection is a measure of the risk of a
susceptible person to become infected per unit time. It depends on prevalence, either
in an absolute sense on the number of infected people in the population, or in a
relative sense on the fraction of infected people in the population. In the latter case
we would get λ = βI / N with N denoting the total population size. The parameter
β is a composite parameter measuring the contact rate κ and the probability of
transmission upon contact q, so β= κq. The flow chart in Fig. 12.5 can be translated
into a system of ordinary differential equations as follows:

dS

dt
= v − βS

1

N
− μS

dI

dt
= βS

I

N
− γ I − μI

dR

dt
= γ I − μR

with N = S+I+R. For a full definition of the model the initial state of the system
has to be specified, i.e. the numbers or fractions of the population in the states S, I,
and R at time t = 0 have to be prescribed. Values for the parameters ν, μ, γ , and
β have to be chosen either based on estimates from data or based on assumptions.
Then standard numerical methods can be used to compute the time evolution of the
system starting from the initial state.
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Up to now the model describes disease transmission without any possible inter-
vention. We now incorporate vaccination of newborns into this simple system
to obtain some important insights into the effect of universal newborn vaccina-
tion. We denote the fraction of newborns that are vaccinated immediately after
birth by p. Then instead of having a recruitment rate of ν the recruitment is now
(1-p)ν into the susceptible compartment, while pν is recruited directly into the
immune compartment. In terms of model equations this leads to

dS

dt
= v(1 − p) − βS

1

N
− μS

dI

dt
= βS

I

N
− γ I − μI

dR

dt
= vp + γ I − μR

with 0 ≤ p ≤ 1.
We will now derive some basic principles using this model as an example.

12.3 Basic Concepts: Reproduction Number, Final Size,
Endemic Steady State, and Critical Vaccination Coverage

The most important concepts of epidemic models can be demonstrated using the
SIR model. Let us first consider an infectious disease which spreads on a much
faster time scale than the demographic process. Then, on the scale of disease trans-
mission the birth rate ν and the death rate μ can be considered to be close to zero.
When can the prevalence in the population increase? An increase in prevalence is
equivalent with dI/dt > 0, which means that βSI/N > γ I. This leads to βS/N >
γ or equivalently to βS/(γ N)>1. In the situation that all individuals of the pop-
ulation are susceptible we have S = N; this means that an infectious disease can
spread in a completely susceptible population if β/γ >1. The quantity R0 = β/γ is
also known as the basic reproduction number and can in principle be determined
for every infectious disease model and can be estimated for every infectious dis-
ease. In biological terms the basic reproduction number describes the number of
secondary infections produced by one index case in a completely susceptible pop-
ulation during his entire infectious period (Diekmann et al. 1990; Diekmann and
Heesterbeek 2000). The effective reproduction number R – as mentioned in Section
12.2– describes the number of secondary cases per index case in a situation where
intervention measures are applied or where a part of the population has already been
infected and is now immune.

If R0 > 1 the infection can spread in the population, because on average
every infected individual replaces himself by more than one new infected person.
However, this process can only continue as long as there are sufficiently many sus-
ceptible individuals available. Once a larger fraction of the population has gone
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through the infection and has become immune, the probability of an infected person
to meet a susceptible person decreases and with it the average number of secondary
cases produced. If – as we assumed above – there is no birth into the population, no
new susceptible individuals are coming in and the epidemic outbreak will invariably
end. Analysis of the model shows, however, that the final size of the outbreak will
never encompass the entire population, but there will always be a fraction of sus-
ceptible individuals left over after the outbreak has subsided. It can be shown that
the final size A (attack rate in epidemiological terms) is related to the basic repro-
duction number by the implicit formula A = 1 – exp(–R0 A). In other words, if the
basic reproduction number of an infectious disease is known, the attack rate in a
completely susceptible population can be derived.

The situation changes when we consider the system on a demographic time scale
where births and deaths play a role. Assuming that ν and μ are positive, with the
same arguments as above we get that R0 = β/(γ +μ). Now if R0 > 1 the system can
develop into an equilibrium state where the supply of new susceptible persons by
birth is balanced by the transmission process and on average every infected person
produces one new infection. This so-called endemic equilibrium can be computed
from the model equations by setting the left-hand sides to zero and solving for the
variables S, I, and R in terms of the model parameters. First one obtains the steady
state population size as N ∗ = ν/μ (the superscript ∗ denotes the steady state value).
The steady state values for the infection-related variables are then given by

S∗ = (γ + μ)v

βμ
= v

μR0

I∗ =
(

v

μ

) (
μ

γ + μ

) (
1 − 1

R0
− p

)

R∗ = v

μ
− S∗ − I∗

Hence the fractions of the population that are susceptible, infected and recovered
in an endemic steady state are given by

S∗

N∗ = γ + μ

β
= 1

R0

I∗

N∗ =
(

μ

γ + μ

) (
1 − 1

R0
− p

)

R∗

N∗ = 1 − S∗

N∗ − I∗

N∗

Note that the fraction of susceptible individuals S∗/N∗ in the endemic steady state
is independent of the vaccination coverage p. On the other hand, the prevalence
of infection I∗/N∗ depends on p: the prevalence decreases linearly with increasing
vaccination coverage until the point of elimination is reached. This means we can
compute the critical vaccination coverage pc, i.e., the threshold coverage needed
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for elimination from 0 = 1–1 / R0 – pc as pc = 1 – 1 / R0. As we would expect
intuitively, the larger the basic reproduction number, the higher the fraction of the
population that has to be vaccinated in order to eliminate an infection from the
population. However, it also follows that elimination can be reached without vacci-
nating everybody in the population. The reason is that with an increasing density of
immune persons in the population, the risk for those who are not yet vaccinated to
be exposed decreases. This effect – the indirect protection of susceptible individu-
als by increasing levels of immunity in the population – is known as herd immunity.
Besides the positive effect of decreasing the risk of infection for non-vaccinated per-
sons, herd immunity has the sometimes adverse effect of increasing the mean age at
first infection in the population. This can lead to an increased incidence of adverse
events following infection, if the coverage of vaccination is not sufficiently high.

For an infection such as smallpox with an estimated basic reproduction number
of around 5, a coverage of 80% is needed for elimination, while for measles with a
reproduction number of around 20 the coverage has to be at least 96%. This provides
one explanation for the fact that it was possible to eradicate smallpox in the 1970 s
whereas we are still a long way from measles eradication. There are some countries,
however, that have been successful in eliminating measles based on a consistently
high vaccination coverage (Peltola et al. 1997).

12.3.1 Advanced Models

Building on the basic ideas of the SIR framework, numerous types of mathematical
models have been developed in the meanwhile, all incorporating more structure and
details of the transmission process and infectious disease dynamics.

12.3.1.1 More Complex Compartmental Models

A first obvious extension is the inclusion of more disease-specific details into a
model. Compartments describing a latent period, the vaccinated population, chronic
and acute stages of infection, and many more have been described in the literature
(Anderson and May 1991). Another important refinement of compartmental mod-
els is to incorporate heterogeneity of the population into the model, for example, by
distinguishing between population subgroups with different behaviors or population
subgroups with differences in susceptibility or geographically distinct populations.
Heterogeneity in behavior was first introduced into models describing the spread of
sexually transmitted infections by Hethcote and Yorke (Hethcote and Yorke 1994).
Later, during the first decade of the HIV/AIDS pandemic, models were proposed
that were able to describe population heterogeneity in sexual activity and mixing
patterns between population subgroups of various sexual activity levels (Koopman
et al. 1988). Models of this type are used frequently for assessing the effects of
intervention on the spread of sexually transmitted infections. Age structure has also
been modeled as a series of compartments with individuals passing from one com-
partment to the next according to an aging rate, but this requires a large number
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of additional compartments to be added to the model structure. This also shows
the limitation of compartmental models: with increasing structure of the population
the number of compartments increases rapidly and with it the necessity to define
and parameterize the mixing between all the population subgroups in the model.
The theory of how to define and compute the basic reproduction number in het-
erogeneous populations was developed by Diekmann et al. (1990). Geographically
distinct population groups with interaction among each other have been investigated
using the framework of meta-populations for analyzing the dynamics of childhood
infections (Rohani et al. 1999).

12.3.1.2 Models with Continuous Age Structure

Age structure can best be described as a continuous variable, where age progresses
with time. Mathematically this leads to models in the form of partial differential
equations, where all variables of the model depend on time and age (Diekmann
and Heesterbeek 2000). Analytically, partial differential equations are more dif-
ficult to handle than ordinary differential equations, but numerically solving an
age-structured system of model equations is straightforward.

12.3.1.3 Stochastic Transmission Models

In a deterministic model based on a system of differential equations it is implicitly
assumed that the numbers in the various compartments are sufficiently large such
that stochastic effects can be neglected. In reality this is not always the case. For
example, when analyzing epidemic outbreaks in small populations such as schools
or small villages, typical stochastic events can occur such as extinction of the infec-
tion from the population or large stochastic fluctuations in the final size of the
epidemic. In contrast to deterministic models, stochastic models are formulated in
terms of integers with probabilities describing the transitions between states. This
means that outcomes are given in terms of probability distributions such as the final
size distribution. Questions of stochastic influences on infectious disease dynam-
ics have been studied in various ways, starting with the Reed–Frost model for a
discrete time transmission of infection up to a stochastic version of the SIR model
introduced above (Bailey 1975; Becker 1989). Finally, stochastic models have been
investigated using simulation techniques also known as Monte Carlo simulations.
An important theoretical result from the analysis of stochastic models is the distinc-
tion between minor and major outbreaks for infectious diseases with R0 >1. While in
a deterministic model a R0 larger than unity always leads to an outbreak if the infec-
tion is introduced into an entirely susceptible population, in a stochastic model a
certain fraction of introductions remain minor outbreaks with only a few secondary
infections. This leads to a bimodal probability distribution of the final epidemic size
following the introduction of one infectious index case. The peak for small outbreak
sizes describes the situation that the infection dies out after only a few secondary
infections, the peak for large outbreak sizes describes those outbreaks that take off
and affect a large part of the population. The larger the basic reproduction number,
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the larger the fraction of major outbreaks in the susceptible population (Andersson
and Britton 2000).

12.3.1.4 Network Models

Some aspects of contact between individuals cannot easily be modeled in com-
partmental models. In the context of the spread of sexually transmitted diseases
models were developed that take the duration of partnerships into account, the so-
called pair formation models (Hadeler et al. 1988). Extending those models to also
include simultaneous long-term partnerships leads to the class of network models,
where the network of contacts is described by a graph with nodes representing indi-
viduals and links representing their contacts (Keeling and Eames 2005). Different
network structural properties have been related to the speed of spread of an epi-
demic through the population. In the so-called small world networks, most contacts
between individuals are local, but some long-distance contacts ensure a rapid global
spread of an epidemic (Watts and Strogatz 1998). Long-distance spread of infec-
tions is becoming increasingly important in a globalizing world with increasing
mobility – as the example of the SARS epidemic in 2003 demonstrated. Recently
the concept of scale-free networks where the number of links per node follows a
power law distribution (i.e., the probability for a node to have k links is propor-
tional to k –γ with a positive constant γ ) was discussed in relation to the spread of
epidemics. With respect to the spread of sexually transmitted diseases a network
structure where some individuals have very many partners while the majority of
people have only few might lead to great difficulties in controlling the disease by
intervention (Liljeros et al. 2001). Network concepts have also been applied to study
the spread of respiratory diseases (Meyers et al. 2003).

12.4 Use of Modeling for Public Health Policy

Mathematical models have been widely used to assess the effectiveness of vac-
cination strategies, to determine the best vaccination ages and target groups, and
to estimate the effort needed to eliminate an infection from the population. More
recently, mathematical modeling has supported contingency planning in prepara-
tion for a possible attack with smallpox virus (Ferguson et al. 2003) and in planning
the public health response to an outbreak with a pandemic strain of influenza A
(Ferguson et al. 2006). Other types of intervention measures have also been eval-
uated such as screening for asymptomatic infection with Chlamydia trachomatis
(Kretzschmar et al. 2001), contact tracing (Eames and Keeling 2003), and antiviral
treatment in the case of HIV. In the field of nosocomial infections and transmission
of antibiotic-resistant pathogens modeling has been used to compare hospital-
specific interventions such as cohorting of health workers, increased hygiene, and
isolation of colonized patients (Grundmann and Hellriegel 2006). In health eco-
nomic evaluations it has been recognized that dynamic transmission models are a
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necessary requisite for conducting good cost-effectiveness analyses for infectious
disease control (Edmunds et al. 1999).

It is a large step from developing mathematical theory for the dynamics of infec-
tious diseases to application in a concrete public health-relevant situation. The latter
requires an intensive focusing on relevant data sources, clinical and microbiolog-
ical knowledge to make a decision about how to design an appropriate model.
Appropriate here means that the model uses the knowledge available, is able to
answer the questions that are asked by policy makers, and is sufficiently simple so
that its dynamics can be understood and interpreted. In the future it will be important
to strengthen the link between advanced statistical methodology and mathematical
modeling in order to further improve the performance of modeling as a public health
tool.

12.5 Further Reading

One of the first comprehensive texts on epidemic modeling is Bailey (Bailey 1975).
Bailey treats both deterministic and stochastic models and links them to data. A
more recent, but also classic text for infectious disease modeling is Anderson and
May (1991); however, it deals mainly with deterministic unstructured models. Its
strength is a good link with data and discussion of public health relevant questions.
In Diekmann and Heesterbeek (2000) the mathematical theory of deterministic mod-
eling is laid out with many exercises for the reader. A focus of the book is the
incorporation of population heterogeneity into epidemic modeling and a generaliza-
tion of the basic reproduction number to heterogeneous populations. In Andersson
and Britton (2000) an introduction to stochastic epidemic modeling is given. Becker
(1989) describes advanced statistical methods for the analysis of infectious disease
data taking the specific characteristics of these data into account. A recent text incor-
porating case studies from applications of epidemic modeling was published by
Keeling and Rohani (2007).

References

Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis. New York:
Springer

Anderson RM, May RM (1991) Infectious disease of humans: dynamics and control. Oxford:
Oxford University Press

Bailey NTG (1975) The mathematical theory of infectious diseases and its applications. 2nd ed.
London: Griffin

Becker NG (1989) Analysis of infectious disease data. London: Chapman and Hall
Cauchemez S, Boelle PY, Thomas G, Valleron AJ (2006) Estimating in real time the efficacy of

measures to control emerging communicable diseases. Am J Epidemiol; 164(6):591–7
Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases.

Chichester: Wiley
Diekmann O, Heesterbeek JA, Metz JA (1990) On the definition and the computation of the basic

reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math
Biol; 28(4):365–82



12 Mathematical Models in Infectious Disease Epidemiology 221

Dietz K, Heesterbeek JA (2000) Bernoulli was ahead of modern epidemiology. Nature;
408(6812):513–4

Eames KT, Keeling MJ (2003) Contact tracing and disease control. Proc Biol Sci; 270(1533):
2565–71

Edmunds WJ, Medley GF, Nokes DJ (1999) Evaluating the cost-effectiveness of vaccination
programmes: a dynamic perspective. Stat Med; 18(23):3263–82

Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS (2006) Strategies for
mitigating an influenza pandemic. Nature; 442(7101):448–52

Ferguson NM, Keeling MJ, Edmunds WJ, Gani R, Grenfell BT, Anderson RM, et al. (2003)
Planning for smallpox outbreaks. Nature; 425(6959):681–5

Grundmann H, Hellriegel B (2006) Mathematical modelling: a tool for hospital infection control.
Lancet Infect Dis; 6(1):39–45

Hadeler KP, Waldstatter R, Worz-Busekros A (1988) Models for pair formation in bisexual
populations. J Math Biol; 26(6):635–49

Hamer WH (1906) Epidemic disease in England – the evidence of variability and persistency of
type. Lancet; 1:733–39

Hethcote HW, Yorke JA (1984) Gonorrhea transmission dynamics and control. New York: Springer
Verlag

Keeling MJ, Eames KT (2005) Networks and epidemic models. J R Soc Interface; 2(4):295–307
Keeling MJ, Rohani P (2007) Modeling infectious diseases in humans and animals. Princeton:

Princeton University Press
Kermack WO, McKendrick AG (1991a) Contributions to the mathematical theory of epidemics–II.

The problem of endemicity.1932. Bull Math Biol; 53(1–2):57–87
Kermack WO, McKendrick AG (1991b) Contributions to the mathematical theory of epidemics –

I. 1927. Bull Math Biol; 53(1–2):33–55
Kermack WO, McKendrick AG (1991c) Contributions to the mathematical theory of epidemics–

III. Further studies of the problem of endemicity.1933. Bull Math Biol; 53(1–2):89–118
Koopman J, Simon C, Jacquez J, Joseph J, Sattenspiel L, Park T (1988) Sexual partner selective-

ness effects on homosexual HIV transmission dynamics. J Acquir Immune Defic Syndr; 1(5):
486–504

Kretzschmar M, Welte R, van den Hoek A, Postma MJ (2001) Comparative model-based analysis
of screening programs for Chlamydia trachomatis infections. Am J Epidemiol; 153(1):90–101

Liljeros F, Edling CR, Amaral LA, Stanley HE, Aberg Y (2001) The web of human sexual contacts.
Nature; 411(6840):907–8

Meyers LA, Newman ME, Martin M, Schrag S (2003) Applying network theory to epidemics:
control measures for Mycoplasma pneumoniae outbreaks. Emerg Infect Dis; 9(2):204–10

Mills CE, Robins JM, Lipsitch M (2004) Transmissibility of 1918 pandemic influenza. Nature;
432(7019):904–6

Peltola H, Davidkin I, Valle M, Paunio M, Hovi T, Heinonen OP, et al. (1997) No measles in
Finland. Lancet; 350(9088):1364–5

Rohani P, Earn DJ, Grenfell BT (1999) Opposite patterns of synchrony in sympatric disease
metapopulations. Science; 286(5441):968–71

Watts DJ, Strogatz SH (1998) Collective dynamics of ′small-world′ networks. Nature;
393(6684):440–2

Wallinga J, Teunis P (2004) Different epidemic curves for severe acute respiratory syndrome reveal
similar impacts of control measures. Am J Epidemiol; 160(6):509–16


	12 Mathematical Models in Infectious Disease Epidemiology
	12.1 Introduction
	12.2 Basic Concepts in Mathematical Modeling
	12.3 Basic Concepts: Reproduction Number, Final Size, Endemic Steady State, and Critical Vaccination Coverage
	12.3.1 Advanced Models
	12.3.1.1 More Complex Compartmental Models
	12.3.1.2 Models with Continuous Age Structure
	12.3.1.3 Stochastic Transmission Models
	12.3.1.4     Network Models


	12.4 Use of Modeling for Public Health Policy
	12.5 Further Reading
	References


