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Mathematical Models of Binary
Spherical-Motion Encoders

David Stein, Edward R. Scheinerman, and Gregory S. Chirikjian, Member, IEEE

Abstract—This paper presents several algorithms that solve the
problem of determining the orientation of a freely rotating ball
that is partially enclosed in a housing. The ball is painted in two
colors (black and white) and the housing has a number of sensors
that detect these colors. The question we answer is: Knowing
how the ball is painted, knowing the location of the sensors,
and given a complete set of sensor measurements, how does one
determine the orientation of the ball to within an acceptable error
threshold? The algorithms we present to solve this problem are
based on methods and terminology from geometric control theory.
Essentially, we generate dynamical systems that evolve on the
group (3). These dynamical systems are constructed so as to
attract the computed orientation of the ball to the actual one being
detected by the sensors. Solving this spherical decoding problem
is important in applications where spherical motion must be
detected. One such application is the feedback control of spherical
motors.

Index Terms—Gradient descent, nonsmooth optimization, op-
tical encoder, rotation group, spherical motion.

I. INTRODUCTION

C
ONSIDER the following problem. A sphere is held in a

cradle, but is free to rotate arbitrarily. How can the ori-

entation of the sphere be determined? This paper explores the

development of reliable decoding algorithms for a spherical en-

coder that does not use a mechanical link to the rotating sphere.

The encoder itself is constructed by painting the surface of the

sphere with two colors (black and white). Fixed point sensors

are located in the cradle and the orientation of the sphere is de-

termined from the binary feedback of each of these sensors.

Sensing devices such as this spherical encoder have applica-

tions in the control of spherical motors, such as those developed

in [1]–[15]. We have also developed a spherical motor [16], and

our original motivation to study spherical encoders was in the

context of control of this motor [17], [18]. Potential applications

of spherical motors include spacecraft attitude control, omni-di-

rectional vehicle propulsion, and actuation of haptic interfaces,

just to name a few. In all of these applications, the feedback loop
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can only be closed if knowledge about the current orientation of

the rotating ball can be sensed.

In contrast to the relatively large literature on spherical mo-

tors, very little work has been reported on encoders for spherical

motion. The few spherical orientation systems used in industry

today rely on mechanical links connected to the rotating sphere

to determine its orientation. They are greatly limited by their in-

accuracy as well as the need to be in contact with the rotating

sphere. However, there has been some previous work on sensors

that do not rely on a mechanical coupling to the sphere. In 1993,

Pettypiece [19] patented a spherical optical encoder for motion

about three mutual orthogonal axes. This system is based on

three orthogonal gradient encoders that enable the system to de-

tect the orientation of the sphere over a small range. Lee [20] has

developed a machine-vision-based orientation system which is

very accurate but needs a great amount of computing power and

utilizes more complicated components than the techniques de-

veloped in this paper.

The spherical encoders investigated in this paper are based on

the following operating principle first proposed and developed

in [17]. The spherical body to be encoded is free to move in a

cradle that overlaps the sphere. A two-color pattern (painting) is

fixed on the sphere’s surface (hence the name “binary encoder”).

Discrete state sensors, which are in one of two states determined

by the color they detect, are placed in known locations within

the cradle structure. The state of these sensors is constantly up-

dating depending on the color they detect on the surface of the

spherical body. For any orientation of the sphere there will be a

corresponding binary string constructed from the sensor output.

If there are sensors placed in the cradle then this binary string

has up to possible combinations. The resolution of this en-

coder is bounded by the fact that there are an infinite number of

possible orientations of the sphere and only a finite number of

binary strings with which to represent them. An ideal painting

of the sphere will result in the output of all the possible com-

binations of sensor values when the sphere is moved through

all of its possible orientations. The larger the number of unique

strings that can be output by the sensors, the higher the potential

resolution of the encoder.

The remainder of this paper is broken down into several sec-

tions. Section II explores various paintings of the sphere; Sec-

tion III investigates how the characteristics of specific sphere

paintings and the number and location of sensors in the housing

relate to the resolution of the encoder; Section IV presents two

algorithms for decoding the orientation of the sphere from point

sensor data. Section V presents two techniques for initializing

the encoder.

1083-4435/03$17.00 © 2003 IEEE
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Fig. 1. Grey code rotary encoder.

II. SPHERE PAINTING

A concept which is fundamental to all forms of encoders is

the marking of the moving component to create reference points

for the sensors to detect. The marking can be as simple as par-

allel lines placed on a moving slide, or can be as complex as

the highly irregular sphere paintings that will be outlined later

in this paper. Unfortunately, a simple, regular painting of the

sphere is unacceptable; such paintings often have symmetries

and consequently, different orientations of the sphere produce

identical sensor readings. On the other hand, a highly irreg-

ular coloring might be difficult to describe and be inefficient

to handle computationally. We examine these and other issues

in the subsections that follow.

A. Geometric Painting

A classical method used to encode rotary motion about a fixed

axis is to use a Grey Code/deBruijn encoder. The top of Fig. 1

shows a standard encoding wheel for optical encoding. For this

encoder the sensors must be able to see the interior of the disk.

An alternative method, shown on the bottom of Fig. 1, is based

on a de Bruijn sequence. It allows the determination of the angle

of the disk using colors and sensors along the edge of the disk.

Let be a positive integer. A de Bruijn sequence is a sequence

of zeros and ones arranged so that each of the possible

-bit binary numbers appears (cyclically) exactly once in the

sequence. For example, the sequence

contains all length-four binary numbers. The binary number

0011 appears starting at the third element of the sequence, and

the binary number 0100 appears starting at the next-to-last el-

ement of the sequence (and wrapping around to the start). By

painting the edge of the disk according to a de Bruijn sequence

as in the lower portion of Fig. 1, all bit patterns appear ex-

actly once and different rotations of the disk can be resolved.

See [21], [22].

Now, the idea of a nonrepeating pattern can be applied to the

sphere. To reiterate, the chief requirement of a sphere painting is

for it to result in the highest possible resolution for the number of

discrete sensors used in the spherical encoder. If a nonrepeating

simple geometric pattern is placed on each hemisphere with the

borders between the two colors parallel to lines of constant lon-

gitude, can an acceptable sphere painting be created? The an-

swer is yes and a simple example is shown in Fig. 2. An initial

prototype of our encoder is shown in Fig. 3.

The problem with this type of painting is that since it has

large areas of solid color, small movements of the spherical

body have a very limited effect on the bit pattern received from

the sensors. This limited change greatly reduces the resolution

of the encoder. Methods to optimize the resolution of the en-

coder are presented in Section III. For the prototype presented in

[18] this simple geometric painting can be made finer for better

resolution.

B. Random Voronoi

In general, the more random the coloring the better, so a tech-

nique called random Voronoi coloring has been developed as

follows. Let be a positive integer, choose anchor points

independently and uniformly at random on the surface of the

sphere; call these points . Assume these points

lie on a unit sphere, so all and . Next assign

a color to each of these points; independently, color point ei-

ther black or white, each with probability 1/2. Let be the

color of . It is convenient to take if is black and

if the point is white.

Now, let be an arbitrary point on the surface of the sphere.

Color to match the color of its nearest anchor point. That is,

choose so that for all , where

is the length of the shortest geodesic connecting

and . Let . Such a coloring is mildly ambiguous.

If is nearest to two (or more) points of different colors, we

assign arbitrarily (e.g., to match the nearest anchor point of

lowest index). Such a coloring of the sphere is shown in Fig. 4.

The anchor points partition the surface of the

sphere into regions based on nearest neighbor. That is, each

point is assigned to a region based on which of the anchor points

is nearest to it. The boundaries of these regions (points that are

nearest to two or more anchor points) are arcs of great circles.

Such a partitioning of the sphere is known as a Voronoi de-

composition. Thus, given random anchor points, independently

color each region of the Voronoi decomposition black or white

(each with probability 1/2).

III. DESIGN OPTIMIZATION OF A NONCONTACT

SPHERICAL ENCODER

The optimization of any design boils down to tweaking the

variables most important to the performance of the system. This
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Fig. 2. Simple geometric sphere painting.

section explores how the three basic design variables used in the

construction of a noncontact spherical encoder using discrete

point sensors affect the encoders resolution. The three design

variables are: 1) pattern used to paint the sphere; 2) location of

these sensors; and 3) number of sensors used. The effect of these

three variables will be explored by looking at “resolution slices”

enumerated for individual encoder designs.

The resolution of this type of encoder is measured by the mag-

nitude of rotation in any direction the sphere can undergo be-

fore the output string from the sensors change. To completely

characterize the resolution of a spherical encoder, the resolu-

tion has to be determined for all orientations of the sphere,

. A convenient way to parameterize orientations

is to use Euler Angles. Euler angles are generated

by three successive rotations about independent axes. While

the singularities of the Euler angles are well known to cause

problems in kinematic and dynamic simulations (see, e.g., [23,

Ch. 5]), they suffice in the context of the current problem; we

can think of as being parameterized with Euler angles

as . However, any method to pa-

rameterize orientation of the sphere could be used.

To begin, lets first review the operating principles of the en-

coder system. The orientation of a sphere free to rotate in a

cradle is determined by reading the color at various points on

its surface. That is, an array of sensors is placed in the device’s

cradle. Each sensor is capable of detecting the color (black or

white) at a point on the surface of the sphere. The locations of

the sensors correspond to points on the sphere. If there are sen-

sors, let be the points on the sphere (so

and ) corresponding to the sensors.

Fix a particular orientation of the sphere as a home orienta-

tion. Every orientation of the sphere can then be specified by a

rotation matrix . If the sphere has been rotated from

the home position via a rotation , then the color detected by
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(a) (b)

(c) (d)

Fig. 3. Prototype geometric sphere painting. (a) Bottom of sphere. (b) Top of sphere. (c) Stator housing with embedded rings of light sensors. (d) One of the
sensor rings.

Fig. 4. Random Voronoi painting of the sphere with 200 anchor
points/regions.

sensor is . The color vector of a rotation is defined

to be the following vector whose entries are 1 for black and

for white:

(1)

Of course, the color vector depends not only on the rotation

, but also on the painting of the sphere and the placement

of the sensors . However, only the orientation changes; the

painting and sensor placement are fixed in each system.

The resolution of a spherical encoder of this type is the largest

angular distance between two orientations that produces iden-

tical sensor outputs. In an encoder with sensors the resolution

can be calculated for the sphere in a specific orientation, , by

using the following method.

1) Calculate for the current orientation of the sphere.

2) The sphere is now rotated from its current orientation, ,

to a new orientation , where .

is a rotation about the global direction by a magnitude

of , etc. For increments of 0.1 in all three variables is

calculated for ranging from 10 to 10 . We denote

this discrete subset of as . The values of can

be increased if the encoder has a very low resolution. At each

orientation the dot product between and is calcu-

lated. If the dot product between the two-color vectors equals

then the two orientations produce the same sensor output and

the angular distance between and is calculated by

(2)

This distance measure can be further simplified using the fact

that , so

(3)

where is the identity matrix. The final simplified relation is

(4)
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Fig. 5. Example of a random Voronoi painting with randomly placed anchor points. The resulting encoder has a resolution of 1 or better for any orientation
when 192 sensors are placed uniformly in a hemisphere. Also shown is one slice of a resolution plot when only 96 sensors are used.

3) The largest angular distance calculated for which

is the resolution of

the encoder in orientation .

Using this formalism, we varied the number, shape, and size

of the black and white regions on the sphere. We also varied the

number and location of the sensors. As one would expect, the

increase in the number of sensors increases the resolution of the

encoder. We found that with 192 sensors packed into an area

smaller than a hemisphere, we were able to obtain a resolution

of 1 or better when the ball was at any orientation when using

paintings such as those in Figs. 5 and 6.

IV. ENCODER ALGORITHMS

A. Gradient Descent Encoder

To resolve the orientation of the sphere from the sensor data,

the problem that needs to be solved is: Given a color vector

, determine [17]. The problem does not have a unique

solution. Because there are only sensors, there are at most

possible color vectors, but there are infinitely many different ro-

tation matrices . Therefore, the problem that is actually solved

is, given a color vector , find a rotation matrix so that

, and is close to . Exactly how close will

depend on the resolution dictated by the painting and sensor

layout.

The first algorithm presented to resolve the orientation of the

sphere will be called the Gradient Descent Algorithm. This al-

gorithm was introduced in [17]. The problem it solves is: Given

, find a so that . To this end, a

function is defined by

(5)

The factor is not strictly necessary, but simply rescales

the image of the function so that it always lies in regardless

of the size of [since the entries of and are , the

value of is at most ].

The problem can then be restated: find so that

. Equivalently, since is nonnegative, this problem

can be thought of as the search for a (global) minimizer of .

This section presents an iterative method that leads to a so-

lution provided it is given an initial that is close (within 15

degrees) to the desired solution. This assumption is justifiable

for two reasons. First, as the sphere turns in its cradle, the sen-

sors continuously track its progress and the previously known

orientation of the sphere can be used as an initial guess for the

current orientation. Second, methods are described in Section V

that provide initial guesses reasonably close to the solution

value.
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Fig. 6. Example of a random Voronoi painting with regularly spaced anchor points. The resulting encoder has 1 resolution for any orientation when 192 sensors
are placed uniformly in a hemisphere. Also shown is one slice of a resolution plot when only 96 sensors are used.

Begin by examining a plot of where is restricted to

a single axis of rotation; such a plot is presented in Fig. 7. To

create this figure, a sphere painting with only 75 black and white

regions and 44 sensors was used.

Notice that the graph of is piecewise flat. This happens

because, as the sphere rotates, sensors cross the boundaries

between the colored regions and suddenly change state. This

causes a step-jump in the value of . Also notice that within 15

of the actual position, the graph of decreases (stepwise) to the

minimum value. Thus, a sensible approach to minimizing

would be to follow a steepest-descent trajectory. However, to

make this precise, one needs to be clear on what is meant by

the gradient of , and then deal with the fact that wherever the

gradient is defined, its value is zero.

Because the domain of is , concepts from Lie

groups/algebras [23]–[26] are used to speak carefully of the

gradient of ; see [27]. Let be a 3 3 skew-symmetric

matrix. Define the differential operator

(6)

can be thought of as a (right) directional derivative of in

the direction . The superscript is to distinguish this operator

from the matrix and the “left” differential operator defined in

[23] (which is not used here).

Define the (right) gradient of at to be the three-dimen-

sional vector (with th scalar entry ) as

(7)

where

(8)

The gradient points in the direction of steepest ascent, so

following a path in the opposite direction leads to a (local)

minimum of the function. However, for the function under

consideration, the gradient of at is for almost all

, and is undefined otherwise.
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Fig. 7. Plot of f(B) as B varies through a single axis of rotation. On the horizontal axis, 0 corresponds to the home orientation.

One solution is to use approximate gradients, replace the

right derivatives (with ) with finite difference

approximations

(9)

Begin with a specific step size for (e.g., ). Knowing

the encoder resolution as a function of sphere orientation could

also be used here to choose the initial step size. If the approx-

imate gradient calculated is , increase by a constant factor.

Do this until the approximate gradient is some nonzero vector

, then update by a step of size in the negative gradient

direction, i.e.,

(10)

where is the finite difference approximation to .

This is an iterative process. At each successive step, decrease

by a constant factor so as not to overrun the minimum.

Ideally, this procedure is continued until a is found for

which . Of course, this process could get trapped

at a local minimum. In this case, if is fairly small (say

) it is actually quite close to the minimum and the

algorithm can terminate.

B. Jacobian-Based Determination of Orientation

This technique for decoding the sphere orientation was in-

spired by the resolved-rate numerical inverse kinematics tech-

nique commonly used for robot arms. Namely, we iteratively

solve a system of equations similar to for where

is Jacobian matrix, then update . Only now,

is a set of parameters describing rotational motion, and is a

vector of differences of sensor measurements at two different

times. Since our Jacobian matrix is due to sensors

and three parameters to describe rotations, it is an overdeter-

mined system, and hence we use the appropriate psuedoinverse

to isolate the best possible . In the following subsections, the

details of this procedure are reviewed.

1) Algorithm Applied to a Spherical Encoder: The analogy

of the forward kinematics for this system is the sensor output

that is produced for specific orientations of the sphere. This

output is a discontinuous function of the sphere’s orientation,

hence a derivative cannot be taken directly. Instead, a finite-dif-

ference approximation is used as in the gradient descent algo-

rithm. This is accomplished by first defining a function

which returns the color viewed by sensor with the

painted sphere in orientation . Following the technique pre-

sented in Section IV-A the right gradient of is the vector

(11)

as defined in (6)–(9).

Since the painting is represented by a value of 1 for points

on the sphere that are white and 1 for black points the values

returned for are either 0 or . Since for small

changes in orientation, there is no change in the sensor values,

the most common value returned is zero. This produces a Jaco-

bian for the sphere painting that is very sparse with only

and 0s occupying it. A Jacobian of this structure is of limited

use in this numerical technique.

2) Rounded Painting Model: What can be done to construct

a useful Jacobian? Can the actual painting of the sphere be

modeled to capture its discrete nature, while also having

derivatives that give information about the painting? This leads

to a new way to model the painting of the sphere. This painting
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Fig. 8. Rounded painting model based on prototype painting.

Fig. 9. Slice of the rounded prototype painting (not to scale).

model is called the rounded painting model and is constructed

by rounding the edges of each solid painted region. In this

rounded model the locations in the center of the painted regions

are still given the full value of , but the value of the painting

is increased/decreased smoothly toward 0 by a small amount

as the evaluation point moves toward the edge of the painted

region. A rounded painting model based on the prototype

sphere painting is shown in Fig. 8 with elevation on the

axis and azimuth on the axis, and the value of the painting

on the axis. In this painting, the regions are only rounded

in the direction. A slice of the northern hemisphere of the

rounded painting model is shown in Fig. 9. This figure shows

both a slice of the actual discrete painting and an exaggerated

representation of the rounding used in the model.

Now the derivative of the rounded painting model gives feed-

back on how specific rotations of the painted sphere affect the

value of a fixed observation location. Since the edges of the

painting are rounded toward zero, they “point” in the direction

of the next painted region as shown in Fig. 10. The derivative can

Fig. 10. Derivative “pointing” of rounded model (not to scale).

be said to “point” because it returns values of the derivative that

tell whether rotation about a specific axis will bring the value of

the point under observation toward a region of a different color

or deeper into the same region. Only a very slight rounding of
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Fig. 11. f(A) as A varies along two orthogonal axes.

the regions is used because excessive rounding would affect the

ability of the model to converge by adding artificial forcing to

the system.

Note that in this rounding model, the actual physical painting

of the ball and sensor measurements are the same as before.

The rounding only exists in the computer model to condition

the Jacobian appropriately.

3) Numerical Jacobian-Based Orientation Decoding Algo-

rithm: The numerical Jacobian-based orientation decoding al-

gorithm starts by initializing the spherical encoder system at an

orientation . is the unknown orientation that the

sphere assumes an instant later. is the vector of sensor data

with entries . It is analogous to the end-effector position

for a manipulator arm. is the vector of sensor values

calculated from the rounded model evaluated in the initial orien-

tation. The difference between the measured and modeled color

vectors is set equal to the product of a Jacobian and a vector of

changes in orientation parameters

(12)

where

Here, is the magnitude of rotation in the direction.

The system has more inputs than variables so the Jacobian is

not square. The Jacobian is inverted using a pseudo-inverse as

follows.

First, both sides of the equation are multiplied on the left by

(13)

Next, both sides of the equation are multiplied on the left by

to yield:

(14)

The last know orientation is updated with a rotation ma-

trix constructed from . The orientation estimate is updated

as . The algorithm is repeated until

the magnitude of the error is reduced to a threshold value that

depends on the amount of rounding added to the painting model.

If the ball continues to move, the value of is updated also.

V. GLOBAL ENCODER

The previous section presented techniques to find a

that solves the equation provided that a

starting sufficiently near (within 15 ) is provided. The pre-

viously presented methods fail if they are started too far from the

solution because of the presence of many local minima and the

highly nonsmooth nature of the functions and . For

example, Fig. 11 illustrates as varies along two orthog-

onal axes.

This creates a need to come up with a “rough” global spher-

ical encoder technique to produce a close approximation to the

orientation of the sphere. A global encoder is also needed if

the sphere doesn’t have a “home” configuration that can be

used to initialize the encoder. The global orientation algorithms
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can then be used as the starting point for the models outlined

in the previous sections. The problem with the global encoder

techniques is that they require a lot of memory/storage. The

following subsections outline two techniques for constructing

global encoders. Detailed numerical and experimental studies

performed on these techniques can be found in [29].

A. Matrix Decomposition

Since is compact and since the techniques outlined in

the previous sections just need a starting value that is reasonably

close to the correct value, can be evaluated over a discrete

subset of . That is, choose a threshold (say 10 ) and find

a finite subset so that for all there is a

such that the rotational difference between and is

below the threshold.

The technique starts by precomputing the set

[17]. Record in a table the vector for all . Sup-

pose . Create a matrix whose

th-entry is ; i.e., this entry is the color observed

by the th sensor if the sphere is rotated by from its home

position.

Let be arbitrary. Then choose in so

that is as large as possible (best possible match).

This can be done by a single matrix-vector multiply, ,

and finding the coordinate with largest index.

This calculation is reasonably fast, but the matrix is quite

large (for 100 sensors and 10 000 saved orientations, it has

one million entries). One idea that saves some memory and

speeds up the calculation is to replace by a reduced-rank

approximation.

Let be ’s singular value decomposition [28].

Here, is a real orthogonal matrix, is an real

orthogonal matrix, and is a diagonal matrix whose

diagonal entries are real, nonnegative, and in decreasing order.

Let be a modest positive integer (e.g., ) and let

upper left corner of ;

matrix formed by choosing just the first

columns of ;

matrix formed by choosing just the first

columns of .

Then, . This approximate decomposition can be

computed without finding the full singular value decomposition.

It is a one-time computation that is reasonably fast.

Notice that these three matrices consume a total of

storage. For , and , this is about

100 000 which is significantly less than one million. We then ap-

proximate by , and select the largest com-

ponent(s) to give reasonable starting values to the orientation

decoding algorithms presented in the previous section. Our ex-

perience has been that we need to try a few of the largest starting

values of the approximation to to get a good starting

value.

B. Sorted Tree Lookup

This technique divides the set of unique sensor outputs for dif-

ferent orientations within the resolution of the encoder into sev-

Fig. 12. Lookup tree.

eral groupings. To illustrate this technique, consider an encoder

with 100 sensors. The raw sensor data contains up to pos-

sible combinations. Can grouping the sensors help in searching

such a large space? To start answering this question, the sensor

output is encoded as 1 for black and 1 for white and the out-

puts of any ten sensors are summeed to produce a number be-

tween 10 and 10. The sensors are divided into 10 sets of 10

sensors. Each individual set of 10 sensor outputs are summed

so that the possible combinations of sensor outputs is dramat-

ically less than . This is used to re-sort the original so

that it becomes 13 by 10 000 (10 000 saved orientations), with

each row containing the sum of each group of ten sensors and

three parameters defining the orientation of the sphere.

If is smaller then it is sorted using a tree sort. This is done

by first rearranging so that the entries are placed in ascending

order. All the entries that do not have a first sum matching the

sensor input are removed. The remaining entries which do not

have a second entry matching the sensor input are removed. This

is repeated for the ten groups until is reduced to a very small

number of entries. There will now be a small number of re-

maining entries in so they can now be sorted using direct

comparison. A tree sort is illustrated in Fig. 12 and shows a 4

level sort where the first sensor group sum is 1, the second is 3,

etc.

Even with this regrouping of , the problem is still too big

to be sorted efficiently. Further sorting has to be pre-performed

on so that orientations matching the grouped sensor data can

quickly be retrieved. The technique used to further sort grows

out of the tree sort. For a system with 96 sensors broken down

into 8 sets of 12 (as is done in our prototype), 13 folders are

created. The folders are labeled with 8 numbers. These numbers

correspond to the sums of the sensors groupings; for example

if a folder is labeled 1-4-6-13-0-6-8-8, the first sensor group

sum would be 1, the second sum is 4, etc., is now examined

row by row and the three parameters defining the orientation

of the sphere (Euler angles) are put in the appropriate folder.

By putting only the orientation parameters in their appropriate

folders, the amount of data is reduced further from 13 10 000

to 3 10 000. The real elegance of this technique comes from

the fact that is fully sorted. When the sensor inputs are polled,

the appropriate folder just has to be retrieved and the possible

orientations can then be sorted directly to find which one results

in a bit pattern closest to the encoder input. The best match is

then plugged into one of the algorithms previously presented to

decode the current orientation of the sphere.
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VI. CONCLUSION

Encoding spherical motion is essential in the feedback control

of spherical motor systems. This paper presents mathematical

models of spherical encoders based on a finite number of

binary sensors and a two-color painting of a ball rotating

within a housing. These mathematical models form the basis

for decoding algorithms developed here for determining the

orientation of the ball from sensor measurements. It is shown

that these algorithms, which are for absolute encoders, perform

well in terms of speed and accuracy. Speed is increased when

these absolute encoders are used in an incremental mode in

which the orientation of the ball at a previous instant is assumed

to be known. The accuracy of the encoder depends on the

distribution of sensor locations and the pattern with which the

ball is painted. A methodology for evaluating the quality of

a particular painting is also presented.
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