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Abstract

Metabolism is essential for life, and its alteration is implicated in multiple human diseases. The transformation from

a normal to a cancerous cell requires metabolic changes to fuel the high metabolic demands of cancer cells,

including but not limited to cell proliferation and cell migration. In recent years, there have been a number of new

discoveries connecting known aberrations in oncogenic and tumour suppressor pathways with metabolic

alterations required to sustain cell proliferation and migration. However, an understanding of the selective

advantage of these metabolic alterations is still lacking. Here, we review the literature on mathematical models of

metabolism, with an emphasis on their contribution to the identification of the selective advantage of metabolic

phenotypes that seem otherwise wasteful or accidental. We will show how the molecular hallmarks of cancer can

be related to cell proliferation and tissue remodelling, the two major physiological requirements for the

development of a multicellular structure. We will cover different areas such as genome-wide gene expression

analysis, flux balance models, kinetic models, reaction diffusion models and models of the tumour

microenvironment. We will also highlight current challenges and how their resolution will help to achieve a better

understanding of cancer metabolism and the metabolic vulnerabilities of cancers.

Background

The hallmarks of cancer [1] highlight major processes

and mechanisms required for cancer development. They

are divided into core hallmarks, major phenotypes

needed to form a cancer, and the enabling hallmark of

genomic instability, a molecular mechanism driving the

acquisition of the core hallmarks. In the most recent up-

date to this system [2], metabolism is described as an

emerging hallmark because metabolism is commonly al-

tered in cancer. The designation “emerging” reflects a

sense of ambiguity (neither core nor enabling) concern-

ing the role of metabolism in cancer development. In-

deed, the authors note that the metabolic alterations

observed in cancer could simply be a consequence of ac-

quisition of the core hallmarks.

The hallmarks describe the aberrations from a normal

functioning organism that define cancer as a disease.

There is a complementary view based on the physiology

of cancer as a developing tissue ([3], Fig. 1). In this

physiological view, the core hallmarks are interpreted as

the molecular pathways necessary to establish two

essential requirements for the development of a multi-

cellular structure: cell proliferation and tissue remodel-

ling. In the following, we refer to these as physiological

hallmarks. In a tumour, cell proliferation is required to

expand populations of cells with molecular alterations.

Tissue remodelling is required to form a consolidated

tumour, bringing nutrient supplies, invading nearby tis-

sues and evading the immune system. Both physiological

hallmarks require energy and biosynthetic precursor-

s—albeit in possibly different distributions and total

amounts—and therefore, metabolism becomes an enab-

ling hallmark in this conceptual framework (Fig. 1). In

other words, metabolism is the engine fuelling cell pro-

liferation, tissue development and homeostasis.

Here, we review some attempts to harness this metab-

olism centric framework into mathematical descriptions

and quantifiable metrics. The mathematical models are

divided into five major categories based on the tech-

niques used and their focus on cell or tumour metabol-

ism. First, we discuss genome-wide gene expression

analysis, as our major tool to investigate the heterogen-

eity of metabolism across cancers of different types. Sec-

ond, we focus on flux balance models that aim to

understand cell metabolism at a steady state. This is

followed by a third section reviewing kinetic models of

selected cell metabolic pathways and the path to
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genome-scale models with kinetics. Fourth, we go over

metabolic models that take into account the spatial di-

mensions of the cell, revealing metabolic phenomena

that could be determined by spatial heterogeneity within

the cell. Finally, we discuss different tumour microenvir-

onment models, focusing on how metabolic interactions

between cancer and stroma cells impact tumour growth,

invasion and metastasis.

Review

Genome-wide gene expression analysis

Gene expression profiles are a unique resource to under-

stand the differential utilization of metabolic pathways

across cancers and genome-wide. As of March 2015, ex-

pression profiles from about 300,000 samples were de-

posited in the Gene Expression Omnibus (GEO)

database. In spite of a number of caveats, gene expres-

sion profiles have the advantage that they have been ob-

tained using a few standard microarrays and that they

interrogate gene expression at a genomic level. Addition-

ally, the abundance of data accumulated by now allows

researchers to interrogate metabolic expression patterns

in a larger context.

Gene expression analysis can be utilized to identify

metabolic genes associated with cancer. An investigation

of 1981 microarray samples from 19 cancer types identi-

fied metabolic genes whose expression is most com-

monly altered in cancers [4]. Many of the altered

metabolic genes have well-known roles in cell prolifera-

tion, including one-carbon and nucleotide metabolism,

and tissue remodelling, including hypoxia and glyco-

sylation metabolism. Interestingly, the one-carbon me-

tabolism genes SHMT2 and MTHFD2, coding for

mitochondrial serine hydromethyltransferase and

methylene-tetrahydrofolate dehydrogenase/cyclohydro-

lase, were identified among the 50 most commonly

overexpressed genes. However, the genes SHMT1 and

MTHFD1 coding for the corresponding cytosolic en-

zymes were not. This observation resonates with a

previous report indicating that high expression of the

mitochondrial one-carbon metabolism enzymes corre-

lates with gene signatures of cell proliferation and

Myc activation and is predictive of a good response

to the antiproliferative agent methotrexate [5].

Gene expression analysis can also be utilized to un-

cover metabolic subtypes. The gene expression pattern

of metabolism genes in a cancer tissue sample should re-

flect its metabolic state. Although there are many regula-

tory mechanisms at the post-translational level, there is

generally a subset of metabolic genes that is regulated at

the transcriptional level. In fact, many transcription fac-

tors with relevance to cancer regulate metabolic genes,

including Myc [6], HIF1α [7] and p53 [8]. The analysis

of the expression patterns of metabolic genes across can-

cers should therefore uncover major metabolic subtypes.

An unsupervised clustering analysis of more than 2500

microarray samples from 22 different tumour types re-

vealed that the metabolic gene expression profiles of tu-

mours are in fact closer to their corresponding normal

tissues than to other tumours [9]. This shows that tissue

of origin has a major impact on metabolic gene expres-

sion profiles even under oncogenic transformation.

Additional information can be obtained after correct-

ing for tissue type. We analysed about 4000 microarray

samples from five cancer types that were linked to clin-

ical outcome reports [3]. The signal of tissue type was

removed after subtracting the average log2 expression of

each gene across all samples of each cohort. Working

under the hypothesis that cell proliferation and tissue re-

modelling are the physiological hallmarks characterizing

tumour probes on the molecular level (Fig. 1), we inves-

tigated the differential expression of gene signatures as-

sociated with proliferation and remodelling across

cancers. We noted that gene signatures quantifying pro-

liferation exhibit a low but consistently negative correl-

ation with those quantifying remodelling. Next, we

performed a supervised clustering of cancers based on

Fig. 1 The hallmarks of cancer. The core hallmarks of cancer are

arranged around the circle. Given their function, the molecular

hallmarks are divided into those promoting cell proliferation (white

background) and those promoting tissue remodelling (grey

background). Genome instability has a special location in between

because it is the molecular mechanism driving the emergence of the

other hallmarks and the same time the potential transition between

the physiological states of proliferation and remodelling. Deregulated

metabolism has also a special location in between because it is a

necessary requirement for both cell proliferation and tissue

remodelling, and at the same time, metabolic alterations may be the

cause or drive transitions between proliferation and remodelling
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their degree of cell proliferation (P) and tissue remodel-

ling (R). This resulted in four distinct subtypes, inde-

pendently of tissue type: P−/R−, P−/R+, P+/R− and P

+/R+. We did not observe significant changes in the per-

centage or occurrence of either subtype with regard to

tissue of origin, suggesting that the physiological hall-

marks are features of all (solid) cancers. The P/R sub-

types also exhibit distinct survival outcomes. The group

with low proliferation-remodelling signatures (P−/R−)

has the best outcome independently of the tissue of ori-

gin. In contrast, the group with high proliferation-

remodelling signatures (P+/R+ group) has the worst out-

come, again independently of the tissue of origin. There

is however a tissue difference regarding the survival of

the intermediate P−/R+ and P+/R− groups. In brain,

breast, lung and prostate cancers, the patients in the P

+/R− group die earlier than those in the P−/R+ group.

In contrast, in colorectal and ovarian cancers, the pa-

tients in the P+/R− group die later than those in the P

−/R+ group. This shows that the expression of the

physiological hallmarks has a severe impact on the most

global clinical phenotype of the disease, survival.

The existence of large subsets of tumours expressing

predominantly one physiological hallmark may be rooted

in metabolic constraints [3]. Highly vascularized tu-

mours may have sufficient nutrient supply to support

proliferation, while poorly vascularized ones may devote

their limited nutrient resources to remodel the environ-

ment to increase the nutrient supply. Indeed, pathways

required for cell proliferation, including glycolysis, the

pentose phosphate pathway, the TCA cycle, OxPhos,

one-carbon metabolism and ribosomes, are positively

correlated with the signature for cell proliferation

(Table 1). In contrast, a lysosome gene signature is posi-

tively correlated with the tissue remodelling signature

(Table 1), indicating that autophagy is more active in tu-

mours undergoing tissue remodelling. We also noticed

that fatty acid metabolism does not exhibit any specific

pattern (Table), indicating that fatty acid metabolism ei-

ther is a requirement for all proliferative and remodel-

ling subtypes or is associated with a yet unidentified

physiological hallmark.

Cancer cell lines grown in vitro for several passages re-

tain the antagonism between cell proliferation and tissue

remodelling types [10], suggesting that P/R signatures

are indeed quite stable. In fact, cancer cell lines range

from small, highly proliferative cells expressing the epi-

thelial marker E-cadherin but not the mesenchymal

marker vimentin, to another extreme of large, mesen-

chymal cells expressing vimentin but not E-cadherin.

These two groups of cell lines respond differently to an-

ticancer drugs [10]. As expected, the highly proliferative

cell lines are more sensitive to antifolates and other anti-

metabolites. On the other hand, the mesenchymal cells

are more sensitive to treatment with cholesterol synthe-

sis inhibitors (statins) and mammalian target of rapamy-

cin (mTOR) inhibitors. This is a surprising observation.

One would expect that the highly proliferative cells

would be more dependent on most biosynthetic path-

ways. While this is indeed the case for one-carbon me-

tabolism (targeted by antifolates) and nucleotide

metabolism (targeted by antimetabolites), it seems to be

the opposite for protein synthesis (targeted by mTOR in-

hibitors) and cholesterol synthesis (targeted by statins).

Mesenchymal cells are actually dependent on de novo

cholesterol synthesis while epithelial cells can scavenge

cholesterol from the media [11]. E-cadherin expression

to the membrane is required for resistance to statin

treatment, but it is not clear whether this localization is

required for cholesterol transport into the cells.

Table 1 Association of metabolism with proliferation and

remodelling signatures. The Pearson correlation coefficient

between the listed gene signatures (rows) and the gene

signatures of cell proliferation and tissue remodelling (columns),

as obtained from the analysis of about 4000 samples from five

cancer types [3]. The genes on the tissue remodelling and cell

proliferation and first two groups of signatures were obtained

from gene ontology annotations, and they are reported in ref.

[3]. The genes in the remaining metabolic signatures were

obtained from the KEGG annotations reported in the Molecular

Signatures Database (MSigDB) [16]

Signature Tissue remodelling Cell proliferation

G1/S transition −0.07 0.85

DNA replication −0.12 0.87

Telomere organization −0.14 0.75

DNA packaging −0.17 0.81

Chromosome segregation −0.15 0.81

G2/M transition −0.15 0.80

Cell division −0.06 0.87

Cell junction organization 0.66 −0.05

Cell adhesion 0.81 −0.15

Cell migration 0.86 −0.05

Angiogenesis 0.77 −0.04

Cytokine production 0.62 −0.02

Inflammatory response 0.67 −0.07

Response to wounding 0.82 −0.05

Glycolysis 0.08 0.37

Pentose phosphate pathway 0.02 0.37

Oxidative phosphorylation −0.22 0.34

TCA cycle −0.12 0.41

Serine, glycine, 1C metabolism −0.16 0.48

Ribosome −0.13 0.14

Lysosome 0.38 0.09

Fatty acid metabolism −0.02 −0.02
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Gene expression analysis can further be utilized to in-

terrogate the activity of specific metabolic pathways and

relations between the activities of different pathways.

Pathway analysis is based on the annotation of genes

that are related to specific pathways and some measure

of pathway activity based on the expression of genes an-

notated for each pathway. Most pathway annotation da-

tabases such as Gene Ontology [12] and Kyoto

Encyclopedia of Genes and Genomes (KEGG) [13] con-

tain categories associated with metabolism. Several mea-

sures of pathway activity based on gene expression can

be used, going from simple quantities like mean or me-

dian expression to more sophisticated quantifications

from median polish analysis (MPA) [14, 15] or Gene Set

Enrichment Analysis (GSEA) [16]. The outcome is a

quantification of the activity of each metabolic pathway

considered on each sample analysed. A study in the con-

text of one-carbon metabolism in cancer cells shows that

pathway activity, as quantified from gene expression, is a

good predictor of metabolic flux, as estimated from 13C

tracing experiments [17]. Thus, pathway activity can be

used as a surrogate of pathway metabolic flux.

The discussions above about metabolic signatures as-

sociated with tissue of origin, cell proliferation and tissue

remodelling are examples of pathway analysis applica-

tions to investigate the differential utilization of meta-

bolic pathways across cancer subtypes. There have been

several other studies using metabolic pathway analysis to

generate hypotheses about the use of specific metabolic

pathways in specific contexts. Examples include the de-

pendency of p53 tumours on the mevalonate pathway

[18], the increased activity of mitochondrial serine, one-

carbon and glycine metabolism in cancer [17, 19, 20]

and the regulation of serine biosynthesis by p73 [21].

There are currently other high-throughput platforms

besides gene expression microarrays to interrogate me-

tabolism genome-wide. The development of next-

generation sequencing technologies has lowered the

costs of DNA sequencing (DNAseq), providing the

means to investigate the patterns of DNA alterations

genome-wide across several cancer samples. Next-

generation sequencing can also be applied to interrogate

the whole or subsets of expressed RNAs (RNAseq), and

it is replacing microarrays for the quantification of RNA

expression. DNAseq and RNAseq, together with micro-

RNA (miRNA) and methylation arrays, have been de-

ployed to characterize the samples collected by The

Cancer Genome Atlas (TCGA) project as well as the

International Genome Consortium (IGC) project. This

provides a unique opportunity to investigate cancer me-

tabolism across multiple cancer subtypes and multiple

genomic platforms. The analysis of RNAseq data linked

to the TCGA samples corroborates the gene expression

microarray analysis: the expression of metabolism genes

is primarily dominated by tissue of origin [22]. It is

worth noticing that the dominance of the tissue of origin

signals extends beyond metabolism-related genes and

beyond gene expression. An unsupervised clustering

analysis of the TCGA samples revealed that whether it is

RNAseq gene expression quantification, DNA sequen-

cing, DNA methylation or all profiles together, the sam-

ples cluster by tissue type [23]. At the same time,

RNAseq provides more detailed and more accurate data

that produces high-throughput information in better

alignment with low-throughput experimental techniques

such as PCR. Thus, it is much more suitable particularly

for in-depth mechanistic analyses within tissues or tissue

classes.

Current challenges

RNAseq is rapidly replacing gene expression arrays as

the standard technique for gene expression profiling.

RNAseq provides a better quantification of transcript

abundance, and the technology can be tailored to inter-

rogate specific RNA subsets such as miRNAs and long

non-coding RNAs. On the other hand, current estab-

lished methods for gene signature analysis were tailored

for gene expression arrays. They assume that the expres-

sion distribution for each probe across samples is close

to a normal distribution or at least symmetric. RNAseq

data violates these assumptions and may require new

methodologies to conduct pathway analysis. The capabil-

ity of RNASeq to resolve the expression of different gene

isoforms together with the fact that different isoforms

may have different enzymatic activities indicates that fur-

ther developments are also required from the point of

view of gene annotation. This could imply changes to

commonly used databases like Gene Ontology, KEGG

and other pathway annotation systems.

Most published cancer gene expression analyses focus

on a snapshot and cell population average sampling of

cancer tissue, potentially missing the dynamics and

spatial heterogeneity of metabolism. Single-cell expres-

sion analysis and collection of samples at multiple time

points could overcome this limitation, albeit with a dra-

matic increase in cost and effort. Therefore, statistical

models are needed to infer the expression patterns of

mixed cell types in a cancer sample, their metabolic state

and their stage of progression.

Genome-scale flux balance models

The metabolic pathway analyses described above are

based on pathway annotations and gene expression alone.

Further elements are required to move from qualitative

predictions (active/inactive) to quantitative predictions of

the metabolic pathway rates. In principle, the pathway an-

notations, combined with a quantification of the cell bio-

mass composition and metabolic objectives, could be used

Markert and Vazquez Cancer & Metabolism  (2015) 3:14 Page 4 of 13



to determine which metabolic pathways should be active

and at what rate, under specified culture conditions [24]

(Fig. 2). Any attempt to model the system dynamics will

require kinetic parameters characterizing the kinetic

models for each reaction. Given that kinetic parameters

are not available for most reactions, we first focus on me-

tabolism at a steady state. By a steady state, we mean that

the concentration of metabolites and the rate of biochem-

ical reactions remain constant in time. The metabolic

models that are constructed under the steady-state as-

sumption are often called flux balance models.

The steady-state rate of biochemical reactions (change

in concentration per unit of time) is often called flux, al-

though it is not a flux as defined in physics and chemis-

try (rate of flow per unit area). The collection of steady-

state rates of all reactions is called flux vector. At a

steady state, the rate of production and consumption of

every metabolite balances (flux balance constraint).

Bound constraints on individual metabolic fluxes can be

applied whenever available. For example, exchange

fluxes of nutrients between the culture media and cells

can be estimated from changes in the media metabolite

concentrations and the cell number, also known as con-

sumption and release (CORE) profiles [25]. Using the

flux balance and bound constraints, we can attempt to

identify the metabolic flux distribution that satisfies the

cell metabolic objective at the specified rate and make

use of the specified nutrient composition of the extracel-

lular media. However, because cell metabolism is highly

redundant, there are several flux distributions satisfying

the typical metabolic objectives of mammalian cells (e.g.

energy, proliferation) for the typical composition of the

extracellular media (glucose, amino acids, etc.).

From an evolutionary point of view, we hypothesize

that redundancy evolved to “efficiently” cope with differ-

ent environmental conditions and constraints acting on

cell metabolism. For example, cells with a metabolic flux

vector that minimizes nutrient consumption while

achieving a specified metabolic objective will be able to

carry on that metabolic objective for longer times. In the

context where only one nutrient is limiting the metabolic

rate, minimizing the nutrient uptake given the metabolic

objective rate is equivalent to maximizing the metabolic

objective rate given the nutrient uptake rate. In one of the

earlier applications of flux balance modelling to study

mammalian cell growth, Savinell and Palsson investigated

the flux distributions that satisfied a specified growth de-

mand while minimizing the nutrient uptake [26, 27]. The

minimization of nutrient uptake was implemented as a

linear optimization objective with non-zero coefficients

for every nutrient. They considered two scenarios of nutri-

ent cost, molar cost where all the nutrient coefficients

were set to 1 and mass cost where the nutrients cost were

set to their molar masses. Some differences were noted re-

garding the differential utilization of glucose and amino

acids depending on whether the molar or mass cost was

applied. In either case, the energy requirements were satis-

fied by OxPhos in the mitochondria [26]. It is well known

that for most nutrients, energy can be generated only

through OxPhos. Although glucose has anaerobic fermen-

tation to lactate as a second alternative, OxPhos has a

higher yield of ATP per molecule of glucose than glycoly-

sis to lactate. Therefore, the prediction of OxPhos as the

main pathway for energy generation under aerobic condi-

tions is in agreement with our intuition of efficiency per

unit of nutrient.

Fig. 2 Core schema of genome-scale flux balance models. The construction of a core genome-scale flux balance model requires the specification of

three major ingredients: the nutrients that are present in the extracellular media, the set of biochemical reactions that are encoded by the genome of

the cells under study and the cell metabolic objective
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However, most cancer cells generate a significant

amount of energy from the metabolism of glycolysis to

lactate even when growing in aerobic conditions (aerobic

glycolysis, Warburg effect [28]). The failure to recapitu-

late the Warburg effect using flux balance and

minimization of nutrient uptake alone indicates that a

key ingredient is missing. It has been observed that the

respiration rate remains approximately constant at high

proliferation rates in spite of the increased energy re-

quirements of biosynthesis [29]. This observation can be

translated to the model adding a constraint to the oxy-

gen consumption rate. As expected, when an upper

bound is imposed in the oxygen consumption rate, aer-

obic glycolysis is predicted to become active when the

oxygen consumption of OxPhos exceeds the imposed

threshold (in E. coli [30] and unpublished data for mam-

malian cells).

The observed saturation in the oxygen consumption

rate could be due to a limitation in the oxygen supply or

a limitation in the oxidative phosphorylation capacity.

Work in the context of muscle cell metabolism has

shown that a further increase in the oxygen supply dur-

ing aerobic conditions does not alter the respiration and

aerobic glycolysis rates [31, 32], ruling out a limitation

in the oxygen supply. Regarding the other alternative, a

limitation in the oxidative phosphorylation capacity, cells

could in principle increase their mitochondrial content

to satisfy their higher energy demands. The crucial point

is however that there is a limit on mitochondrial

content.

The cell volume is crowded with cytoskeletal fila-

ments, ribosomes, metabolic enzymes and organelles.

Overexpression of any component is only possible at the

expense of degradation of others. This macromolecular

allocation constraint is analogous to the concept of solv-

ent capacity in chemistry, reflecting the limited amount

of solute that can be dissolved in a solvent. It was origin-

ally introduced under the name of molecular crowding

[33] or solvent capacity constraint [34, 35]. We would

like to introduce the name macromolecular capacity

constraint because it reflects the limited amount of mac-

romolecules that can be allocated in the cell volume.

The impact of the macromolecular capacity constraint

is determined by the size of the macromolecules of

interest. In this context, metabolic efficiency aims to

minimize the impact of molecular crowding or, equiva-

lently, to maximize metabolic rate per unit of volume

occupied by the metabolic machinery. Based on data for

in vitro reconstituted glycolysis at 30 °C, aerobic glycoly-

sis can produce 0.73 mol ATP/min/(liters of glycolysis

enzymes), calculated as 0.58 mmol lactate/min/(grams of

glycolysis enzymes) [36] divided by a protein specific

volume of 0.79 mL/g [37]. For cancer cell mitochondria,

we obtain values equal or below 0.042–0.049 mol ATP/

min/(liters of mitochondria), calculated as 0.11–

0.13 mmol ATP/min/(grams of mitochondria protein)

[38, 39], divided by a mitochondria specific volume of

2.63 mL/(grams of mitochondria protein) [40]. In this

sense, aerobic glycolysis is 10 times more efficient than

cancer cell mitochondria.

A mathematical model of energy metabolism based on

flux balance, the minimization of nutrient utilization to-

gether with the macromolecular capacity constraint, is

sufficient to explain the Warburg effect [41]. At low en-

ergy demands, the macromolecular capacity is irrelevant

and energy is generated from OxPhos, the pathway with

the highest yield of ATP per molecule of glucose. In con-

trast, at high energy demands, when the required mito-

chondrial content would exceed the macromolecular

capacity, aerobic glycolysis must become active, producing

ATP with a low requirement of intracellular space at ex-

penses of a low yield of ATP per molecule of glucose.

The flux balance modelling approach described above

has been applied to genome-scale reconstructions of the

human metabolic network. Most of the work has been

based on the human metabolic network reconstruction

from the Palsson group (Recon 2, [42]), although alter-

native reconstructions have been reported [43]. Simula-

tions of genome-scale flux balance models of human

metabolism demonstrate that the macromolecular cap-

acity constraint implies metabolic changes beyond en-

ergy metabolism [44–46] (Fig. 3). In addition to

increased glucose consumption (Fig. 3a), the genome-

scale models predict the activation of glutamine uptake

as cells increase their proliferation rate [44, 45] (Fig. 3c).

At low proliferation rates, when glutamine uptake is

predicted inactive, pyruvate carboxylase is predicted

to satisfy the anaplerotic requirements of the TCA

cycle [46] (Fig. 3d). This prediction agrees with the

requirement of pyruvate carboxylase in glutamine-free

media [47]. These additional metabolic changes are a

consequence of another feature of synthesis of bio-

mass precursors (e.g. amino acids, AcCoA) from glu-

cose: NADH production [48]. The biosynthesis of

biomass precursors from glucose involve some NAD
+-dependent dehydrogenases resulting in a net pro-

duction of NADH. The generated NADH can be used

via OxPhos to generate energy. However, once again,

when the OxPhos capacity is exceeded, cells should

find other means to synthesize precursor metabolites

without NADH generation. This can be achieved by

importing non-essential amino acids from the media

and by synthesizing AcCoA for alternative sources.

Among amino acids, only glutamine, glutamate,

phenylalanine and tyrosine can be used to produce

AcCoA without NADH generation [48].

The genome-scale models also predict an increase in

the rate of serine, one-carbon and glycine (SOG)

Markert and Vazquez Cancer & Metabolism  (2015) 3:14 Page 6 of 13



metabolism [45] (Fig. 3f, e). The rate of the SOG path-

way is predicted to further increase when the pyruvate

kinase reaction is removed from the model or when the

pyruvate kinase activity is uncoupled from ATP produc-

tion [45]. That prompted us to postulate the SOG path-

way as a novel pathway for ATP generation. The ATP

generation step is given by the reverse activity of 10-

formyl-tetrahydrofolate synthase (FTHFL, Fig. 3f ). ATP

production by FTHFL is supported by kinetic analysis of

C. cylindrosporum FTHFL [49] and by kinetic modelling

of mammalian FTHFL [45]. Treatment of cancer cells

with the antifolate methotrexate induces an energy

stress, providing indirect evidence of energy production

by folate metabolism [20]. However, further experimen-

tal evidence is required to ascertain the contribution of

SOG pathway to ATP generation in mammalian cells.

The SOG pathway also contains dehydrogenase steps

that could contribute to NADPH production (Fig. 3f ).

The importance of this observation was not recognized

until recently [20, 50]. It has been experimentally vali-

dated that NADP+ dehydrogenases from one-carbon me-

tabolism contribute to NADPH generation in the cytosol

and the mitochondria [50].

Flux balance models can be further constrained to take

into account metabolic enzyme expression patterns that

are specific to a given tissue or that are the consequence

of molecular alterations present in cancer cells. For ex-

ample, a given cancer may have a homozygous deletion

of a genomic region containing one or more genes cod-

ing for metabolic enzymes. A more accurate metabolic

model of these cancer cells should have the correspond-

ing biochemical reactions removed. Furthermore, as

Fig. 3 Predicted metabolic switch. Steady-state metabolic fluxes as a function of the proliferation rate, as predicted from simulations of a

genome-scale flux balance model with the macromolecular capacity constraint [45]. The model contains kinetic parameters that are unknown

and were sampled from a specified distribution. The line represents the median behaviour and the error bars the 90 % confidence intervals. a) Glucose

uptake. b) Lactate excretion. c) Glutamine uptake. d) Pyruvate carboxylase. e) Glycinine cleavage. f) FTHFL. Sum of the reverse FTHFL flux of the

cytosolic and mitochondrial enzymes
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shown above, the analysis of gene expression patterns

across cancers and normal tissues reveals that the me-

tabolism of cancer cells closely resembles the metabol-

ism of the tissue of origin [9]. These molecular

alterations and tissue of origin biases may have a signifi-

cant impact on the cancer cell metabolism.

A recent community-driven effort has combined the

annotation of the human metabolic network together

with protein expression data to obtain 65 cell-type-

specific metabolic models (Recon X, [24]). Several meth-

odologies have been developed to tailor a reconstruction

of the human metabolic network to a specific cell type

(personalized model), using as input expression profiles,

proteomics or other genomic data [51–55]. Personalized

flux balance models have been tailored to investigate the

metabolism of cancer cells with specified alterations. In

the simplest case scenario, one can model metabolism in

the context of inactivation of one or more enzymes, sim-

ply removing the corresponding reaction from the

model. This approach led to the identification of heme

oxygenase as an essential reaction in cancers with fu-

marate hydratase deficiency [56]. Moving to a genome-

wide approach, gene expression profiles can be used to

personalize generic genome-scale flux balance models

and obtain a more accurate representation [57, 58].

These personalized flux balance models find flux distri-

butions that satisfy the constraints of generic flux bal-

ance models (as described above) and that are more

consistent with the expression patterns of genes coding

for the enzymes catalysing the corresponding reactions.

Personalized metabolic flux balance models have been

used to investigate tissue-specific metabolism [57], to

predict cell line-specific metabolic vulnerabilities [58]

and to identify putative oncometabolites [59].

Current challenges

It is becoming evident that a realistic flux balance model

of cell metabolism should incorporate the macromolecu-

lar capacity constraint. However, a precise implementa-

tion of the molecular capacity constraint requires

reliable estimates of kinetic parameters. Current imple-

mentations sample the kinetic parameters from a speci-

fied distribution [30], reporting typical fluxes and

confidence intervals (see for instance Fig. 3). However,

there are intracellular pathways with a high degree of re-

dundancy, where the model predictive power is dramat-

ically reduced. For example, the complementarity

between cytosolic and mitochondrial folate metabolism

results into confidence intervals as wide as the average

flux values for folate metabolism reactions [20]. This re-

dundancy can be also linked to the existence of alterna-

tive pathway for the formation of an end product. For

example, aerobic glycolysis and the putative SOG path-

way can both generate ATP, resulting in wide confidence

for the lactate by-product of aerobic glycolysis (Fig. 3b)

and the FTHFL reverse flux (Fig. 3f ).

Personalized flux balance models can be also limited

by the lack of relevant data to constraint the model. In

the path from gene expression, protein expression and

enzyme activity to reaction rate, there are regulatory

points. Post-transcriptional regulation may result in the

lack of proportionality between gene expression and re-

action rate. This caveat is in part corrected by the fact

that the flux balance model searches for solutions with

the best consensus agreement between all reaction rates

and the expression of genes coding for the correspond-

ing enzymes. In fact, inconsistency between gene expres-

sion and predicted reaction flux can be used to infer

reaction steps where post-translational regulation may

be taking place [57]. Future work should address this

point in further detail by using as input proteomics and

phospho-proteomic data [60].

The application of personalized flux balance models to

cancer samples extracted from animal models or pa-

tients is subject to the additional caveat of cells with

mixed metabolic phenotypes. The gene expression pro-

files, or proteomic profiles, represent an average over all

cells present in the extracted sample. This average ex-

pression is informative only if most cells exhibit a dom-

inant expression pattern. However, in the context of two

or more population of cells in significant proportions

and metabolic differences, any prediction based on

population averages can be misleading. To tackle this

scenario, we need mathematical methodologies to infer

the different cell subtypes and disentangle their expres-

sion profiles or to deploy experimental protocols to sep-

arate and profile the different cell populations.

Genome-scale flux balance models with kinetics

Whenever available, the kinetic model of biochemical re-

actions and estimates of the corresponding kinetic pa-

rameters can significantly improve model predictions.

Kinetic models have been used extensively in the past to

investigate selected metabolic pathways. Some examples

are highlighted in Table 2. The next step is to bring a

kinetic description to genome-scale models. This prob-

lem can be divided in two major challenges: kinetic an-

notation and model solution.

For the kinetic annotation, we can start compiling all

reported kinetic models and parameters in studies like

those highlighted in Table 1. For reactions with no anno-

tations, we can deploy generic kinetic models. Generic

kinetic models of biochemical reactions aim to capture

the key features of enzyme kinetics [61–65]. The key fac-

tors are the enzyme turnover rate, the enzyme concentra-

tion, a substrate saturation term and a thermodynamics

term associated with the enzyme properties at
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equilibrium. Even these generic kinetic models contain

kinetic parameters that must be estimated. To address

that problem, we first need to discuss how to solve

genome-scale kinetic models.

Flux balance models can be generalized to include kinetic

data and improve the estimation of steady-state metabolic

fluxes. As before, a metabolic objective (e.g. proliferation),

metabolic constraints (e.g. available nutrients, macromol-

ecular capacity) and an efficiency principle (e.g. minimize

nutrient uptake) are specified. But now we take into ac-

count that the amount of enzyme needed to maintain a

specified reaction rate depends on the concentration of

substrates and products via the corresponding kinetic

model. With this, the optimization problem searches not

only for the optimal steady-state fluxes but also for the opti-

mal metabolite concentrations.

Flux balance models with kinetics have been applied to

the study of yeast [35] and E. coli [66, 67] glycolysis. In

these studies, the kinetic models and parameters for every

reaction were specified and the optimal metabolite con-

centrations were determined. In both yeast and E. coli,

there was a good agreement between the predicted opti-

mal metabolite concentrations and the typical reported

values. The optimal metabolite concentrations depend to

a great extent on the reactions equilibrium constant.

Current challenges

The extension of flux balance models with kinetics to

genome scale is on its way. The major challenge is the

estimation of missing kinetic parameters or other infor-

mation. Workflows to address this problem have been

reported and applied to genome-scale models of differ-

ent organisms [65, 68, 69]. An iterative reconstruction

approach has been also proposed for the reconstruction

of the metabolic network, reaction kinetic laws and kin-

etic parameters [70]. Therefore, it seems just a matter of

time for the deployment of those methods to develop a

genome-scale flux balance model with kinetics of a hu-

man cell. In the meantime, an interesting mathematical

result demonstrates that we are walking on solid ground.

Thanks to the macromolecular capacity constraint, the

optimal metabolic flux distributions are elementary flux

modes satisfying the metabolic objective [71, 72]. Elem-

entary flux modes were defined as minimal metabolic

flux distributions that are both stoichiometrically and

thermodynamically feasible [73]. Therefore, the molecu-

lar capacity constraint forces cell metabolism into elem-

entary flux modes. Whether this represented a selective

advantage for the evolution of molecular crowding is an

open question.

Reaction diffusion models

Some metabolites may exhibit significant concentration

gradients within cellular compartments. Accounting for

those concentration gradients can increase the level of

realism of metabolic models, albeit with increased model

complexity. To model metabolism in this context, we

need to resort to reaction diffusion models, characteriz-

ing the spatio-temporal variations of the metabolite

concentrations coupled to the reaction dynamics con-

suming/producing metabolites.

It has been recently proposed that glycolytic enzymes

and mitochondria are located in different cell regions to

satisfy different energetic demands [74]. In this model,

mitochondria localize to the peri-nuclear area where

OxPhos efficiently supplies the sustained energy demand

of biosynthesis, while glycolysis is necessary to supply

rapid energy demands primarily to support membrane

pumps. The mathematical description of this scenario

requires reaction diffusion equations accounting for the

existence of gradients from the cell membrane to the

peri-nuclear area [74]. Although this model may sound

appealing, the reported experimental evidence is not suf-

ficient to prove its validity. Increased glycolysis following

overexpression of a cell membrane ATPase was taken as

evidence that the role of glycolysis is to supply rapid en-

ergy demand at the cell membrane. However, what

“rapid”means is not clear since aerobic glycolysis remained

high after chronic overexpression of the cell membrane

ATPase. More importantly, a control experiment where an

Table 2 Kinetic models. Selected kinetic models of metabolic pathways, focusing on reaction kinetics and parameters for

mammalian cells

Pathway Tissue Major conclusion Reference

Glycolysis Cancer cells Glycolysis has different control steps depending on cell line [88]

Glycolysis Cancer cells GAPDH is the rate limiting step of glycolysis [89]

Pentose phosphate pathway Hepatocytes G6P dehydrogenase controls the oxidative rate and transketolase the non-oxidative rate [90]

One-carbon metabolism Hepatocytes Mitochondrial formate is the major source of cytosolic one-carbon units in proliferating
hepatocytes

[91]

H2O2 elimination Endothelial cells GSSG reductase controls the NAPDH dependent H2O2 elimination [92]

Mitochondria Hepatocytes The rate of superoxide generation is a function of the proton electrochemical potential [93]

Central metabolism Cancer cells Repression of transaldolase and succinyl-CoA ligase and the synergistic combination of
transaldolase and serine hydromethyltransferase significantly reduce growth rate

[94]
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ATPase is overexpressed at some other cell compartment

was not provided.

Current challenges

The point that subcellular localization of the molecular

machinery producing/consuming energy may result in

concentration gradients should be taken into consider-

ation. Membrane pumps are indeed major sites of en-

ergy consumption during osmotic stress as hypothesized

above [74]. During osmotic stress, there are additional

energy requirements associated with cytoskeleton re-

modelling and biosynthesis of metabolites involved in

cell volume regulation [75]. Patterns of subcellular

localization have been also observed during cell migra-

tion. Mitochondria localize at the leading edge of mi-

grating cancer cells and a causal relation between the

degree of that localization and the migration speed has

been demonstrated [76]. Finally, different hexokinase

isoenzymes localize to the cytosol or the mitochondrial

membrane in a context-dependent manner [77]. Future

work should focus on the development of reaction diffu-

sion models aiming to understand the consequences of

this subcellular localization patterns.

Tumour microenvironment models

Tumour microenvironment models aim to understand

how properties of cancer and tumour stroma cells and

their cellular interactions determine macroscopic param-

eters such as tumour growth rate. The remodelling of

the tumour microenvironment requires cancer and

stroma cells to acquire metabolic capabilities beyond cell

proliferation. Furthermore, cancer cells located in differ-

ent tumour regions may experience different microenvi-

ronments, and they may require different metabolic

strategies to survive, proliferate and disseminate. In the

following, we describe different approaches to model tu-

mours with an emphasis on tumour metabolism.

Reaction diffusion models

In reaction diffusion models, tumour and stroma cells

are represented by spatio-temporal distributions (fields)

quantifying the density of normal and cancer cells. The

evolution in time and space of these distributions is de-

scribed by partial differential equations accounting for

relevant processes and constraints. The processes/con-

straints most commonly considered are cell proliferation,

characterizing the cell population growth, and cell motil-

ity, characterizing the migratory movements depending

on limited resources. Additional partial differential equa-

tions can be added to model different aspects of metab-

olism, including the spatio-temporal variations of

nutrients and excreted by-products.

Using a reaction diffusion model with one type of

stroma cell, one type of cancer cell and a spatio-

temporal distribution of tumour-secreted protons (a sur-

rogate of acidification), Gatenby et al. were able to re-

produce characteristic features of tumours [78, 79],

including tumour wave front velocity, pH gradient and

crossover from localized to invasive tumour. This work

emphasizes the relevance of acidification due to the

Warburg effect in tumour development.

Soft matter models of tumours

The properties of tumours can be investigated focusing

on their mechanical behaviour, building on soft matter

models of developing tissues [80]. The major challenge

here is to identify relationships between properties char-

acterizing cells and cell-cell interactions to the tumour

mechanical properties [81, 82]. Using soft matter

models, it has been shown that tumours behave like

viscoelastic fluid [83]. Following quick small perturba-

tions, the tumour reacts as an elastic material but it be-

haves like liquid for steady and/or large stresses.

Interestingly, soft matter models predict that the fluidity

of the tumour increases with increasing rate of cell

proliferation [83], connecting a mechanical property

(tumour fluidity) with a metabolic one (cell

proliferation).

Homeostatic pressure is an interesting concept emer-

ging from soft matter models [84]. The homeostatic

pressure is defined as the pressure that needs to be ap-

plied to keep the tumour volume constant. If the applied

pressure is smaller than the homeostatic pressure, then

the tumour will continue growing; if it is larger, then the

tumour will start shrinking. The homeostatic pressure

may have some advantage over tumour growth rate as a

measure of tumour malignancy. The tumour growth rate

is determined by the difference between the tumour

homeostatic pressure and the pressure being applied by

the surrounding tissue. In that sense, the tumour growth

rate is not an intrinsic property of the tumour; it also de-

pends on its surrounding. In contrast, the homeostatic

pressure is an intrinsic tumour property. However, there

is currently no protocol to measure homeostatic pres-

sure in vivo.

Current challenges

Future work is required to understand how cancer me-

tabolism influences the mechanical properties of tu-

mours. This relation will be in part dictated by the

influence of metabolism on cell proliferation and the re-

lation between cell proliferation and the tumour fluidity

described above. In addition, it is well documented that

metabolic by-products, most notably lactate and pro-

tons, play a role in the remodelling of the tumour micro-

environment. The translation of these relationships to

models and laws will allow us to use tumour mechanical

properties as indirect surrogates to investigate cancer
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metabolism in vivo, using non-invasive techniques such

as ultrasound.

When speaking about the tumour environment, we

tend to focus on the tissue that is in close spatial prox-

imity to the cancer cells (microenvironment). However,

we should not forget that the blood circulation system

connects the metabolism in the cancer tissue with the

organism metabolism (macroenvironment). In other

words, a complete mathematical description of the

tumour microenvironment should take into account the

interaction between cancer cells and distant organs via

the circulatory system and, by extrapolation, with nutri-

tion. The manifestation of the muscle-wasting syndrome

of cachexia in cancer patients is a demonstration of

these distant interactions [85]. Therefore, a definitive

model of cancer metabolism should account for the in-

teractions between cancer cells and distant organs. From

the technical point of view, this will require to link

metabolic models for the cancer cells, the stroma cells

and the relevant distant organs such as the liver. The

good news is that the community efforts in the recon-

struction of the human metabolic network have already

provided the first drafts of tissue-specific metabolic

models [24], and some advanced refinements are already

available for liver metabolism [86].

Conclusions

We have reviewed five major areas in mathematical

models of metabolism, each addressing specific ques-

tions at different scales. First, pathway expression ana-

lysis is probably the best means to understand the

heterogeneity of metabolism across cancers and to create

hypotheses about major cancer metabolism subtypes.

Second, flux balance models are a flexible framework to

investigate the selective advantage of different metabolic

pathways depending on the environmental conditions

and the metabolic objective. Gene expression and other

genomic information can be used to tailor flux balance

models to specific cancer metabolic subtypes, allowing

us to make predictions of their specific metabolic vul-

nerabilities. Third, kinetic modelling is required to ob-

tain an accurate model of cell metabolism, and it is

essential to understand the relationships between meta-

bolic fluxes and metabolite concentrations. Fourth, there

is experimental evidence of patterns of spatial

localization of energy metabolism-related enzyme and

mitochondria. The relevance of this spatial heterogeneity

can only be addressed with reaction diffusion models of

cell metabolism. Finally, tumour microenvironment

models will help us to understand how metabolic alter-

ations can impact the remodelling of the tumour tissue.

Pathway expression analysis indicates that the tissue of

origin is the first dominant signature in the genome-

wide and metabolism-specific gene expression profiles of

cancers. After correcting for the tissue of origin, cell

proliferation and tissue remodelling emerge as secondary

major signatures. Gene signatures associated with key

metabolic pathways such as glycolysis, the pentose phos-

phate pathway, oxidative phosphorylation and one-

carbon metabolism are correlated to a great extent with

the degree of proliferation. In contrast, a gene signature

representing autophagy manifests the strongest expres-

sion in cancers with a high degree of tissue remodelling.

Other parts of the metabolic system, such as fatty acid

metabolism, are not generally associated with these

major factors. This could be due to high levels of redun-

dancy and feedback obscuring the pathway analysis;

however, there could also be other factors associated

with the utilization of these metabolic regimes. More de-

tailed studies within individual tissues and tissue classes

are needed to gain a better understanding of the vari-

ation and dependencies of metabolic pathways.

The evolution of flux balance models is getting closer

to the development of genome-scale flux balance models

with kinetics. It is an exciting time in this area. The in-

crease in model complexity and burden in parameter es-

timation is balanced by a significant reduction of the

space of possible flux distributions to elementary flux

modes. The next step is to develop methods to estimate

large sets of kinetic parameters from proteomic,

phospho-proteomic and metabolomic profiles. Once

these methods have been applied, we will be in a better

position to address open questions regarding the select-

ive advantage of metabolic phenotypes of cancer cells.

The investigation of tumour metabolism using tumour

microenvironment models is in its early days, as it is the

case in the experimental field as well. However, these

models are required to understand the selective advan-

tage of metabolic interactions between cancer cells and

the stroma. There are reports of both glycolytic cancer

cells feeding lactate to the stroma and glycolytic stroma

feeding lactate to the cancer cells [87]. It remains to be

elucidated in which context these opposite metabolic

phenotypes are selected for.
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