
Mathematical representation and analysis of infectious 
diseases has been central to infectious disease epidemiol-
ogy since its inception as a discipline more than a century 
ago1,2. In recent years, detailed electronic surveillance of 
infectious diseases has become widespread owing to the 
advent of improved computing, electronic data man-
agement, the ability to share and deposit data over the 
internet, and rapid diagnostic tests and genetic sequence 
analysis. These ongoing developments have increased the 
application of mathematical models to both the generation 
and testing of basic scientific hypotheses and the design 
of practical strategies for disease control. Mathematical 
analyses and models have successfully explained previ-
ously puzzling observations and played a central part in 
public health strategies in many countries3,4.

Fundamental to the growing importance of math-
ematical epidemiology has been the integration of 
mathematical models with rigorous statistical methods 
to estimate key parameters of these models and test 
hypotheses using available data. In the absence of reli-
able data, mathematics can be used to help formulate 
hypotheses, inform data-collection strategies and deter-
mine sample sizes, which can permit discrimination of 
competing hypotheses. In this way, mathematics is “no 
more, but no less, than a way of thinking clearly about 
the problem in hand” (REF. 5). The extent and quality 
of available data can be variable. Ideally, data should 
be analysed using models that adequately describe the 
observed dynamics and patterns of interest, and the 
mechanisms that generate these observations. Models 
should be as simple as possible, but not so simple that 
the conclusions drawn are altered by the consideration of 

additional realistic complexity. Unnecessary complexity 
can obscure fundamental results and is almost as unde-
sirable as over-simplification. Indeed, model choice 
— the process of deciding which model complexities are 
necessary — is a central part of mathematical modelling 
of infectious diseases.

The aim of this Review is to provide an introduction 
to mathematical modelling of infectious disease trans-
mission and demonstrate how a pathogen’s natural his-
tory and ecology determine the outcome of epidemics.

Disease transmission

Epidemics of infectious diseases among humans 
and other animals result from the transmission of a 
pathogen either directly between hosts or indirectly 
through the environment or intermediate hosts. The 
efficiency of transmission depends on the infectiousness 
of the infected host (or hosts) and the susceptibility of 
uninfected individuals who are exposed to infection. 
Infectiousness comprises three major components: 
biological, behavioural and environmental.

Biological infectiousness depends on the excretion 
of infectious pathogens and can relate simply to viral or 
bacterial load in specific anatomical sites or in a more 
complex way to the pathogen’s life cycle (for example, the 
periodic release of Plasmodium spp. gametocytes during 
human malaria) (FIG. 1). The dynamics of the pathogen in 
the body depend, in turn, on the features of an individual 
host’s immune system, including innate and acquired 
immunity; features of the pathogen, such as the dynam-
ics of pathogen replication and spread within the host, 
the initial infectious dose, virulence factors or sensitivity 
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Abstract | Mathematical analysis and modelling is central to infectious disease epidemiology. 

Here, we provide an intuitive introduction to the process of disease transmission, how this 

stochastic process can be represented mathematically and how this mathematical 

representation can be used to analyse the emergent dynamics of observed epidemics. 

Progress in mathematical analysis and modelling is of fundamental importance to our 

growing understanding of pathogen evolution and ecology. The fit of mathematical models 

to surveillance data has informed both scientific research and health policy. This Review is 

illustrated throughout by such applications and ends with suggestions of open challenges in 

mathematical epidemiology.
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Superspreading

An individual who infects an 

‘unusually large’ number of 

secondary individuals. The 

definition of unusually large 

can be subjective or be more 

formally defined with respect 

to the expectation under a 

random (Poisson) process.

Index case

The earliest infected individual 

who goes on to infect other 

individuals in the sample of 

cases that are being examined.

to drugs; and the interaction between the genetic deter-
minants of disease progression in both the pathogen and 
the host.

Behavioural infectiousness depends on the contact pat-
terns of an infected individual and, if relevant, the contact 
patterns of intermediate hosts or vectors. The nature of 
these contacts varies depending on the disease and route 
(or routes) of transmission. For the intimate contacts that 
are required for the transmission of sexually transmitted 
infections, the frequencies of contact are highly dispersed, 
such that a few individuals have multiple contacts whereas 
most have few6. For the more casual conversational con-
tacts or handshakes that can result in the transmission of 
respiratory infections, the frequencies of contact are typi-
cally less dispersed and the number of such contacts that 
are reported by individuals cluster around the average7.

Environmental infectiousness depends on the location 
and environment of the infected individual. The environ-
ment is important for the survival of the pathogen outside 
the host and for the survival of intermediate hosts and 
vectors, which can affect the efficiency of transmission8. 
Climatic variation in temperature or rainfall drives sea-
sonal patterns of disease incidence for many infections 
(for example, cholera, influenza and polio)9,10. In some 
cases, the environmental component of infectiousness 
can result in an unusually large number of secondary 
infections. For example, the ‘superspreading’ event that led 
to various secondary severe acute respiratory syndrome 
(SARS) infections among residents of the Amoy Gardens 
estate in Hong Kong in 2003 was the result of unusual 
environmental conditions and airflow dynamics that 
spread the virus through aerosolized faeces11.

The susceptibility of an individual also has biological, 
behavioural and environmental components: for example, 
susceptibility might depend on immune memory, patterns 
of contact and location. After contact between an infec-
tious pathogen and a susceptible individual, transmission 
occurs with a probability that is a function of infectious-
ness and susceptibility. For example, the probability of 
transmission of HIV-1 during unprotected heterosexual 
intercourse depends on the viral load of the infectious 
individual and whether either individual has an ulcerative 
sexually transmitted disease12.

Mathematical models of disease transmission

Mathematical models can be used to link the biological 
process of transmission and the emergent dynamics of 
infection at the population level. At its simplest, an epi-
demic can be described by enumerating who infected 
who and when. At the root of this transmission tree 
there is at least one index case. Two key statistical proper-
ties of an epidemic that can be linked to the underlying 
infection process are the offspring distribution and the 
generation-time distribution (FIG. 2).

Offspring distribution

If Y is the number of secondary infections that are gener-
ated by a single infected individual, then the probability 
function that describes the distribution of Y is referred 
to as the offspring distribution, denoted p(y) (that is, the 
probability that the number of secondary infections Y 
that are caused by a single infectious individual is equal 
to y). The number of secondary infections depends on 
the infectiousness of the index case over time τ  since 
they themselves became infected. We represent this 
quantity by a function that is denoted β(τ). In some 
cases, it might be useful to explicitly decompose β(τ) as 
a product of biological, behavioural and environmental 
infectiousness. For example, β(τ)might be the product 
of biological infectiousness (FIG. 1) and contact rates. It 
would then be of interest to predict the impact of an 
intervention that modifies contact rates.

Infectiousness can be used as a basis for modelling the 
transmission process by specifying that the probability 
that an infected person will infect another person during 
a small time interval between τ  and τ +δτ  as β(τ)sδτ, 
in which δτ is an arbitrary small measure of time and s 
is the probability that the other person is susceptible to 
infection. Summing up or integrating infectiousness over 
the time since infection provides the expected number of 
offspring (Equation 1).

E(Y) = s (1)( )dβ∫

8

0

τ τ

In a population in which the pattern of contact 
between infectious and susceptible individuals is ran-
dom, the expected number of offspring E(Y) is exactly 

Figure 1 | Biological infectiousness over time after infection for three different human pathogens. a | Influenza A; 

based on viral shedding in experimental human infections89. b | HIV-1; based on retrospective analysis of HIV-1-discordant 

couples and viral-load data33. c | Malaria; infectiousness to mosquitoes of infected humans based on the detection of 

infectious gametocytes in the blood after therapeutic treatment of syphilis by inoculation with Plasmodium vivax90.
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R
0

The basic reproduction 

number, which is typically 

defined as the expected 

number of secondary 

infections that result from a 

single infected individual in an 

entirely susceptible (non-

immune) population. The key 

property of R
0
 is its use as a 

threshold parameter, such that 

a major epidemic can only 

occur if R
0
 is more than one. In 

demography, ecology and the 

epidemiology of 

macroparasites (which typically 

do not multiply within the 

host), R
0
 has the analogous 

interpretation of the expected 

number of female offspring 

that result from a single female 

during her entire life in the 

absence of density-dependent 

constraints.

equivalent to the reproduction number for an infection 
R3,13,14. In a naive, entirely susceptible population (s = 1), 
this is called the basic reproduction number (R

0
). In a 

population with non-random mixing, the reproduction 
number is a more complex function of the offspring 
distribution and patterns of mixing.

The reproduction number is a fundamental quantity 
in infectious disease epidemiology that relates to the 
individual but is also a fundamental determinant of  

the dynamics of infection at the population level. 
Crucially, an epidemic can only occur if the reproduction 
number R is greater than one. This threshold property 
means that estimation of R provides important informa-
tion about the potential for disease transmission and the 
impact of disease control15–19.

If a group of individuals all have the same infectious-
ness, then the number of secondary infections that 
are caused by each infectious individual is a random  

Figure 2 | Offspring and generation-time distribution for an epidemic. If each individual infects, on average, more 

than one additional individual then an epidemic can occur. A transmission tree is provided that shows who has infected 

who during a computer-generated epidemic in a closed population of 5,000 individuals. a | The expanded part of the 

transmission tree shows more clearly who infected who: in this example the index case infects five individuals, only one 

of whom goes on to infect other individuals. The branch lengths have been drawn to scale for the time between infection 

events. b | The generation-time distribution w(τ ) follows the exponential distribution. The distribution of new infections 

that are generated by each infected individual is known as the offspring distribution. c | The offspring distribution (bars) 

is compared to the geometric distribution (line) that is expected for an infection with a constant infectiousness and 

constant rate of recovery from infection. If epidemiological data are available to link cases to their probable infection 

source, a transmission tree (or network if re-infection occurs) can be constructed and the generation time and offspring 

distribution estimated. d | A transmission tree for a severe acute respiratory syndrome (SARS) epidemic in Singapore 

based on 182 cases with sufficient epidemiological data to link cases15,91. e | The generation-time distribution (with a 

Weibull curve fitted) inferred from the transmission tree. f | The highly skew offspring distribution inferred from the 

transmission tree.
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Stochastic

Involves random processes;  

the opposite of deterministic.

number drawn from the Poisson distribution with mean R.  
In reality, however, the infectiousness and susceptibil-
ity of an individual are influenced by many different 
factors. Individuals can be categorized by any factors 
that are considered to be important for infectious 
disease transmission and can be labelled i = 1,2,...n  
(n denotes the number of different categories of indi-
viduals; Diekmann and Heesterbeek13 refer to these 
as h-states). In a randomly mixing population, the 
offspring distribution is derived from the mixture of 
the distributions for each individual, weighted accord-
ing to their frequency. For example, the susceptible– 
infected–recovered (SIR) model assumes a constant 
infectivity β while an individual remains infected and a 
constant rate of recovery from infection α such that the 
time that is spent infectious is exponentially distributed20. 
Infectious individuals can therefore be categorized by 
their infectious period, and summing over the distribu-
tion of infectious periods provides an offspring distribu-
tion that follows a geometric distribution with mean 
R

0 
= β/α (a mixture of Poisson distributions with expo-

nentially distributed means). This distribution is highly 
skew and over-dispersed compared with the Poisson 
distribution (the variance is more than the mean). 
Therefore, the stochastic SIR model shows considerable 
variability between individuals in their contribution  
to transmission.

The offspring distribution has been estimated from 
surveillance data for outbreaks of several infectious 
diseases, including SARS, foot-and-mouth disease, 
measles, smallpox and plague18,21. Typically, these esti-
mates indicate variation in the number of secondary 
infections that is equivalent to, or even greater than, 
that of the geometric distribution. This is broadly con-
sistent with the more general observation that a dispro-
portionate amount of disease transmission results from 
a small fraction of all infected individuals22.

Knowledge of the offspring distribution is crucial 
to understanding disease dynamics if the number of 
infected individuals is small23–26. For example, outbreaks 
can occur even when R is less than 1, owing to the ran-
dom nature of the transmission process. A description 
of the size distribution of these outbreaks follows from 
knowledge of the offspring distribution27–29.

Generation-time distribution

If τ  is the time that has elapsed between one person 
being infected and that person infecting someone else, 
then the probability distribution of these times is the 
generation-time distribution, denoted w(τ)30. This dis-
tribution is related to infectiousness through a simple 
rescaling of infectiousness by the reproduction number 
(Equation 2).

w( ) =                  (2)(  )/Rβ ττ

In randomly mixing populations, in which 
individuals vary in their infectiousness, the gen-
eration-time distribution is a weighted sum across 
these individuals. However, if mixing patterns are 
not random with respect to infectiousness, the 
relationship between infectiousness and the gen-

eration-time distribution is more complex, and  
work remains to be done in this area31,32.

Estimation of the generation-time distribution is 
rarely easy. A first approach is to estimate it directly from 
β(τ) by defining a pathogen-shedding or excretion score 
and measuring it longitudinally after infection (for exam-
ple, FIG. 1). The problem with this approach is that the 
relationship between shedding and infectiousness can be 
complicated, and behavioural effects are not considered. 
A second approach is to track infectious individuals who 
have known times of infection and observe subsequent 
transmission events within defined risk groups30. Such 
an approach has been followed, for example, for HIV-1 
(REF. 33) and SARS15. Care needs to be taken to account 
for immunity of contacts to infection, to adjust for the 
fact that transmission events are not usually observed, 
but rather some surrogate of infection is recorded (such 
as symptoms or microbiological diagnosis) and for 
censored observations (when individuals cannot be fol-
lowed up for a particular reason or have not completed 
their infectious period).

From individuals to epidemics

The dynamics of an infectious disease at the population 
level represent an average of all infected individuals. 
Even if the contribution of an infected person to the 
epidemic is unpredictable, the emergent population 
dynamics often conform to mathematical expectations. 
The random effects among individuals tend to cancel 
each other out as the number of infected individuals 
increases — the law of large numbers. Therefore, even 
if the underlying distribution of the number of sec-
ondary cases is highly skew, an epidemic will progress 
smoothly as long as the expected incidence at each 
observation is reasonably large. If the incidence of infec-
tion is small, however, more complex and resurgent  
epidemic dynamics might be expected (FIG. 3).

Even if the probability distribution for the number 
of secondary infections varies between individuals in 
a systematic way, reflecting, for example, underlying 
behavioural tendencies or biological differences, the 
change in these characteristics over the course of an epi-
demic is often gradual and predictable. For example, the 
behavioural and demographic characteristics of indi-
viduals who are infected during a heterosexual HIV-1 
epidemic typically change in a gradual and predictable 
way as the infection moves from individuals who are at 
high risk, such as sex workers, to individuals at lower 
risk, such as those in stable partnerships34,35.

The expected evolution of an epidemic in which 
transmission follows the mathematical representation 
described in Equation 1 was first examined in detail by 
Kermack and McKendrick in 1927 (REF. 36). If I(u) is a 
function that describes the number of individuals who 
are newly infected at time u (incidence) and at some later 
time t = u+τ  the infectiousness of these individuals is
β(τ), then the number of people they will infect over the 
next incremental time step of duration δτ will be Poisson 
distributed with mean I(u)β(τ)δτ = I(t-τ)β(τ)δτ. The 
total expected number of people infected at time t, which 
must take account of possible secondary infections for all 
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previously infected individuals, is obtained by summing 
this quantity over all possible values of τ. This statement 
can be expressed as a sum or integral that is known as 
the renewal equation (Equation 3).

∫

8

0

I(t) =                 (3)βI(t– )   ( )d ττ τ

The infectiousness function can be seen from 
Equation 2 to be the product of the reproduction number 
and the generation-time distribution, and substituting 
this relationship into the renewal equation immediately 
provides an estimator for the reproduction number32 
(Equation 4).

∫

8

0

R(t) =                   (4)
I(t)

I(t– )w( )d τ ττ

This estimator assumes that the generation-time dis-
tribution does not change over time. However, this is not 
always the case — for example, patient isolation shortens 
generation times — and in these cases the estimator needs 
to be adjusted for this effect32.

Equation 4 was used recently to estimate the extent 
of seasonal variation in polio transmission in India and 
to analyse the effect of the vaccine programme in reduc-
ing transmission17. Related estimators have been used 
to explore the transmission dynamics of SARS37, of the 
2001 United Kingdom foot-and-mouth disease epidemic 
in cattle and sheep flocks19 and of HIV-1 epidemics in 
Europe38,39.

Of particular interest has been the estimation of the 
basic reproduction number R

0
 of influenza pandem-

ics. Although historical data have been too limited for 
detailed analysis of incidence trends, it has been possible 
to estimate the exponential growth rate r of the early epi-
demic from weekly incidence data. Substituting an expo-
nential function for growth in the number of infections 
— I(t) = I(t

0
)exp(r(t–t

0
)) — into the renewal equation 

(Equation 3) yields the so-called Lotka–Euler estimating 
equation32,40 (Equation 5).

∫

8

0

R
0
 =                 (5)

1

w( )e–rtd τ τ

This equation easily yields analytical forms for the 
relationship between R

0
 and r for a given generation-time 

distribution. For the growth rate that was observed in 
London during the 1918 pandemic of r = 0.20 per day, 
reported estimates of the reproduction number have 
ranged from 1.6 to 2.5 depending on the assumed genera-
tion-time distribution, which is poorly quantified from 
historical data (FIG. 4).

Assessing the potential impact of interventions

In a susceptible population, each individual initially infects 
R

0
 new individuals on average, and so any intervention 

must prevent at least R
0
–1 out of every R

0
 infections to 

result in a reproduction number R ≤1 and control of the 
infection. In other words, the critical efficacy of interven-
tions in reducing transmission must be Equation 6.

p
c
 =            = 1–                 (6)

R
0
–1

R
0

1

R
0

This does not vary linearly with R
0
; for example, the 

effort required to control an infection with R
0 
= 2 is 50% 

greater than the effort required to control an infection with 
R

0 
= 1.5, despite infectiousness being only 33% higher. 

Detailed simulations of influenza pandemic control and 
mitigation policies are consistent with this simple analyti-
cal insight, demonstrating the limited impact of control 
for values of R

0
 that are greater than ~2 (REFS 41–43). 

This highlights the crucial importance of estimates of 
this parameter such as those that are presented in FIG. 4. 
Estimates from other historical data vary on either the 
higher or lower side of this number depending on the data 
and assumptions that are made44,45.

The renewal equation (Equation 3) can be used to 
predict the impact of interventions during an epidemic 
that modify infectiousness. For example, Fraser et al.46 
used this model to explore the impact of isolation or 
treatment and contact-tracing measures for SARS, 
smallpox, influenza and HIV-1 epidemics, which are 

Figure 3 | The emergent dynamics of infectious diseases. a | The distribution of the 

average number of secondary infections for n = 1, 10 and 100 infected individuals when 

the underlying offspring distribution is highly skew (following the negative binomial 

distribution with mean 2 and dispersion parameter k = 0.1, which corresponds to the 

estimates for severe acute respiratory syndrome (SARS) and measles from REF. 21). b | In a 

small population of 500 individuals, the simulated emergent population dynamics of a 

susceptible–infected–recovered (SIR) model of infection can show complex, resurgent 

behaviour owing to the small number of infected individuals at any time. c | The resulting 

transmission tree shows a similar pattern to that observed for SARS in Singapore, where a 

few individuals were responsible for most new infections91. d | In a larger simulated 

population of 10,000, the daily incidence of infection is sufficiently large for the average 

number of new infections to approach the normal distribution and the emergent 

population dynamics to show a classic epidemic pattern. Stochastic effects might still be 

important, however, in the early stages of the epidemic, as shown here by three simulated 

epidemics that were initiated at the same time with identical parameters but produced 

different epidemic timing.
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only triggered after the infected individuals develop 
symptoms. If S(τ) is the probability that an individual 
has not developed symptoms at time τafter infection, 
then effective and immediate isolation will reduce 
infectiousness to its pre-symptomatic component of 
β(τ)S(τ). The proportion of infections that occur before 
symptoms develop (Equation 7) was shown to be a good 
predictor (along with the basic reproduction number R

0
) 

of how easy an infection is to control using these simple  
intervention measures.

β

β

∫

8

0

∫

8

0

   =                 (7)

( )d

( )S( )d
θ

τ τ

ττ τ

This explains, in part, why SARS, which has a small θ, 
was comparatively easy to control and why influenza pan-
demics can be harder to control than released smallpox, 
despite a lower infectiousness, owing to a larger θ.

Mixing patterns

We have so far focused on populations in which infec-
tious contacts between individuals are assumed to occur 
at random. This assumption of random mixing is fre-
quently made and rarely accurate, although the resulting 

model often captures the essence of the infectious disease 
dynamics and parameter estimates may be relatively unbi-
ased. Consequently, the assumption of random mixing 
should always be tested, and we now discuss situations in 
which this assumption must be relaxed to ensure robust 
conclusions from mathematical analyses.

Restricted mixing might occur as a result of geo-
graphical, behavioural or social factors. The implica-
tion of such population structures for the spread of 
disease depends on the natural history of the infection 
and routes of transmission. For example, infections 
that are transmitted by insect vectors depend less on 
the distribution of individuals among households than 
infections that require direct contact. Similarly, for 
directly transmitted infections, the patterns of contact 
that are important will vary, from the intimacy that is 
required for sexually transmitted infections to the less 
intimate handshake or conversation that can lead to the 
transmission of respiratory infections.

In the simplest case of non-random mixing, indi-
viduals may be similar with respect to their infectious-
ness and susceptibility to infection, but the population 
may be divided into distinct communities, with infre-
quent contacts between communities. This could be 
considered to approximate the situation for childhood 
infections, such as measles, among different towns or 
villages. If infection is introduced to each community 
simultaneously, the resulting epidemic will follow the 
expected pattern of spread for an unstructured popula-
tion20. If communities are distributed across a landscape 
and infection is introduced to just one community, 
however, travelling waves of infection can occur20,47, as 
shown for the spread of measles before the introduction 
of vaccination in the United Kingdom48. Waves of infec-
tion during the epidemic season spread out from large 
cities to smaller towns.

Non-random mixing has important implications for 
the impact of vaccination. If individuals who are missed 
by a vaccination programme tend to be from the same 
community, coverage must be greater than the critical 
threshold p

c
 (Equation 6), as transmission can be sus-

tained within the unvaccinated community49. In The 
Netherlands, for example, overall vaccine coverage against 
measles is high, but low coverage in specific communities 
owing to parental refusal to vaccinate children has led to 
localized disease outbreaks, with a reproduction number 
that is greater than one50.

Populations typically consist of individuals that vary 
in their infectiousness and susceptibility to infection. If 
patterns of mixing result in a correlation between the 
infectiousness of individuals and the infectiousness of 
the individual who infected them (infectiousness cor-
relates with susceptibility), then it becomes important 
to capture this heterogeneity and patterns of mixing in 
the mathematical representation of transmission, as they 
affect both R

0
 and the long-term dynamics of infection51. 

Such correlations might arise because of age-related or 
social determinants of behaviour, or from environmental 
factors, such as the slums that facilitate faecal–oral trans-
mission of diarrhoeal disease. If infectiousness and sus-
ceptibility correlate, then the basic R

0 
can be calculated  

Figure 4 | Estimating R
0
 for influenza during the 1918 

pandemic. a | Pneumonia and influenza deaths during 

the H1N1 influenza epidemic in London in 1918 plotted 

on a log scale92. The line shows a good-fit exponential-

growth curve with a slope of r = 0.20 per day. Similar 

rates of spread have been observed in cities in the United 

States44. b | Four different published choices of the 

generation-time distribution, which produce, for the 

same growth rate of r = 0.20 per day, estimates that 

range from R
0
 = 1.61 (blue line; mean generation time 

Tg = 2.7 days)93, R
0
 = 1.74 (red line; Tg = 2.9 days; 

assuming a gamma distribution with a variance and mean 

reported in REF. 40), R
0
 = 2.26 (green line; Tg = 5.3 days)3 

to R
0
 = 2.51 (black line; Tg = 6.0 days)44.
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from the next-generation matrix3,13. In such cases, R
0
 

is typically greater than the weighted average of the 
individual reproduction numbers (as for random mix-
ing) because early in the epidemic the most infectious 
individuals dominate transmission.

If a control programme is applied uniformly across 
the population, the critical reduction in transmission that 
will bring R below the threshold in a structured epidemic 
model with non-random mixing is still determined by 
p

c
 = 1–1/R

0
, and, as R

0
 is typically greater in a heteroge-

neous population, p
c
 is generally greater if there is het-

erogeneity. If, however, it is feasible to target the most 
highly infectious individuals, then this critical threshold 
declines. The challenge is to identify the more infectious 
individuals before they transmit infection and to inter-
vene appropriately. An example of a strategy that uses 
information on heterogeneity is the targeting of larger 
households for vaccination against smallpox, which was 
shown to be significantly more effective than random 
vaccination52.

Saturation

Infection with a pathogen can, in some cases, kill the 
host, induce host protective immune responses or 
activate immune memory, which reduces the chance 
of subsequent re-infection. The resulting decline in the 
number of individuals that are susceptible to infection 
is known as saturation. If the immune response is inef-
fective and the infection is long-lived, such as in some 
chronic infections, repeat infection with the same species 
of pathogen can result in ‘super-infection’. For infections 
such as intestinal nematodes, flukes, filarial nematodes 
and tapeworms, usually referred to as macroparasites, 
this process of super-infection results in an aggregated 
distribution of the parasites among the host population 
and enables sexual reproduction of the parasite. For 
these macroparasitic infections, mathematical models 
that focus on the number of parasites and their distribu-
tion among hosts tend to yield more insight compared 
with models that take the number of infected hosts as 
their fundamental unit3.

Saturation leads to non-linear disease dynamics, in 
which the incidence of infection is a function of both 
the current number of infected individuals and the 
number of susceptible individuals. What this function 
should be is still debated3,53. Two of the most com-
mon approaches are to assume density dependence, 
in which the number of contacts that are made by an 
individual increases with population numbers, such 
that incidence depends on the number of infected 
individuals (incidence = βxy, in which β is infectious-
ness, x is the number of susceptible individuals and y 
is the number of infected individuals), and to assume 
frequency dependence, in which the number of con-
tacts is independent of population size and incidence 
depends on the fraction of contacts that are infected 
(incidence = βxy/n). Tests of the fit of these functions 
for the incidence of childhood infections and sexually 
transmitted diseases have typically found support for 
largely frequency-dependent transmission, with limited 
dependence on population numbers3,54.

Saturation in an epidemic can be global if a sig-
nificant fraction of the overall population is no longer 
susceptible, or local if non-random mixing results in a 
cluster of infected or immune individuals. Local satura-
tion is most clearly illustrated by the important phe-
nomenon of clustering of infections within households. 
The distribution of individuals among households is a 
crucial determinant for the spread of many directly 
transmitted infections, such as influenza, trachoma, 
measles and smallpox. Within a household, all sus-
ceptible individuals could become infected following 
the initial infection event and the potential for further 
transmission of disease is therefore restricted, despite 
the ongoing infectiousness of household members. 
This can complicate estimation of the generation-time 
distribution for an infectious disease. The spread of 
infection in this case might be more easily described 
by the time between the initial infection of households 
(the household generation-time distribution) and the 
average number of households that are infected by a 
single infected individual in a household (the household 
reproduction number)32,55,56.

Simple models that assume random mixing do not 
readily capture the effects of local saturation in limit-
ing the spread of infection. Much recent work has 
focused on measuring and describing contact patterns 
and examining the impact of local contact-network 
structure on infectious disease dynamics7,57–65. Usually, 
local saturation occurs rapidly, and subsequent dynam-
ics are driven by global contacts, which means that an 
epidemic in a highly structured population can show 
rapid initial growth, suggesting a high R

0
, even though 

subsequent dynamics can be consistent with a much 
lower reproduction number58.

The effect of global saturation is to slow and even-
tually reverse the growth in the number of infections. 
If the susceptible population is not replenished, global 
saturation gives rise to the classic bell-shaped epidemic 
curve and the infection will become extinct20. If individ-
uals recover to an immune class, an epidemic in a closed 
population will not necessarily infect all susceptible 
individuals. The relationship between R

0
 and the final 

fraction of the population that is infected (z) is provided 
by the transcendental equation36 (Equation 8).

z = 1–exp(–R
0
z)                 (8)

 

This final-size equation is surprisingly robust to the 
consideration of additional infectious stages, latency, 
arbitrarily distributed transmission rates for infected 
individuals and certain types of spatial contact proc-
esses, and allows the potential scale of an epidemic to 
be estimated as soon as an estimate for R

0
 is available66. 

However, for more complex patterns of contact its appli-
cation is limited, and it no longer applies if susceptible 
individuals are introduced to the population through 
births, uptake of risk behaviour, recovery from infec-
tion (for example, bacterial infections such as trachoma 
or gonorrhoea; susceptible–infective–susceptible  
(SIS)-type infection), during the waning of protective 
immunity (for example, polio; susceptible–infected–
recovered–susceptible (SIRS)-type infection) or after 
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antigenic changes in the pathogen population (for 
example, influenza antigenic shift). Such factors allow 
an infection to become endemic in the population.

Endemic infections can show complex dynamics. 
Changes in incidence can be a function of factors that 
are extrinsic to the infection, such as host behavioural 
change or environmental fluctuations (for example, sea-
sonal changes in climate or changes in behaviour during 
school holidays). However, even in the absence of these 
external factors, the intrinsic non-linear interaction 
between the number of susceptible and infected indi-
viduals can drive complex boom–bust, periodic or even 
chaotic dynamics67. The intrinsic non-linear dynamics 
of endemic infections can be simple and predictable, or 
complex and unpredictable, depending on the natural 
history of the infection and the host immune response 
(oscillations in disease incidence often occur, such as 
those demonstrated for syphilis in the United States68). 
Seasonal variation in transmission can further complicate 
patterns of incidence; for example, increases in seasonal 
variation in transmission are associated with a higher 
number of years between epidemics69. The interaction 
of seasonality, non-linear dynamics and stochasticity can 
lead to very complicated dynamics70–72, which can make 
the interpretation of infectious disease surveillance data 
a difficult task, with transient dynamics not necessarily 
reflecting underlying trends. The challenge in these cases 
is to distinguish the complex intrinsic dynamics from 
changes in extrinsic factors that might be of interest, such 
as changes in behaviour or vaccine coverage.

Model choice

The criteria that define an appropriate mathemati-
cal model with which to address a scientific question 
should be based on the principle of parsimony — choose 
the simplest model that explains the data — and the 
ability of the model to answer the question of inter-
est. Inevitably, there will be an element of subjectivity 
in the choice of model, and in some cases the model 
might need to be revised in the light of new observa-
tions, which would lead to an iterative process of model 
development. The ability of a model to explain data 
can be formally assessed using methods for statistical 
inference. These can be categorized into three broad 
approaches: frequentist, Bayesian and information theo-
retic (reviewed in REFS 73–75). All three approaches are 
based on different uses of the concept of likelihood. The 
likelihood of a model based on an observed set of data 
is proportional to the probability of the observed data if 
that model is true, the constant of proportionality being 
arbitrary. Likelihood can be used to estimate parameters 
and compare models. In particular, likelihood is a key 
measure in deciding whether additional complexity in 
model structure is warranted in terms of improving 
our ability to describe data. The exact comparison will 
depend on the inference framework (for measures such 
as the likelihood ratio, the Akaike and Bayesian infor-
mation criteria73–75), but all these methods balance the 
gain in likelihood that is achieved by extending a model 
with the increase in the number of parameters that are 
needed to describe that model.

To calculate a likelihood, the transmission model must 
be stochastic and capable of predicting the probability of 
different outcomes (as the likelihood is the probability 
that the data was generated by that model). A formal 
starting point for defining a likelihood for a time series of 
observations of an infectious disease system could there-
fore be a stochastic model that predicts the distribution 
of the number of people in different states at different 
times. The sources of stochasticity could arise from the 
transmission process itself (the offspring distribution) 
and from the observation or sampling process. Infection 
events depend on prevalent infectious cases, which, in 
turn, depend on earlier infection events, as clearly shown 
by the renewal equation (Equation 3). Therefore, all 
observations in an epidemic time series are correlated 
and should be viewed as part of a single observation of the 
epidemic process. For example, random effects that occur 
early in an epidemic, when the number of infections is 
small, significantly affect subsequent epidemic spread 
and can lead to different epidemic dynamics for the same 
underlying parameters (FIG. 3d). For this reason, repeated 
and possibly incomplete observations of independent 
epidemics are often easier to assess than detailed, but 
temporally correlated data, from a single epidemic. The 
difficulty of dealing with temporally correlated data is 
that, even for small epidemics, the likelihood can be dif-
ficult to write down and thus calculate for a given model 
and data. Several exact and approximate approaches 
have been reviewed in REFS 76,77. In particular, Bayesian 
methods are beginning to result in progress in this area, 
by treating unknown events, such as individual infection 
times, as random variables to be estimated.

A particular simplification arises for ‘memoryless’ 
(‘Markovian’) transmission models. These are equivalent 
to SIR and related models, in which individuals occupy 
‘compartments’ (for example, infectious or recovered) 
and the rate of leaving the compartment depends only 
on the current state of the epidemic and not its history. 
In such models, if the state variables, such as the number 
of susceptible individuals, are known at a point in time, 
then incidence over the next time step is an independ-
ent random variable76,78. The problem then requires 
inference of the unknown state variables, rather than 
disentangling the likelihood for the whole epidemic. 
For example, this approach has been applied to data on 
Ebola79, hospital-acquired infections80 and measles81.

Studies have often simplified and approximated 
the problem of estimating a true likelihood by treating 
observations as being independent despite the bias that 
this can introduce. For example, a deterministic model 
can be made to fit observed data by assuming that the 
model prevalence or incidence corresponds to the expec-
tation of an underlying distribution. Observations are 
then assumed to be drawn from this distribution, which 
is typically chosen to reflect some sort of random sam-
pling process. This approach has been used by the United 
Nations to estimate HIV-1 prevalence and AIDS mortal-
ity over time from national seroprevalence data82. To our 
knowledge, little work has been done to assess the biases 
that are caused by using such approximate likelihoods  
or least-squares to fit epidemic models.
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Mass action

The law of mass action states 

that the rate at which 

individuals of two types 

contact one another in a 

population is proportional to 

the product of their densities. 

Thus, the rate of increase in 

infected individuals accelerates 

early in an epidemic as the 

number of infected individuals 

increases and then declines as 

the number of susceptibles 

decreases, which often leads to 

a bell-shaped epidemic curve.

Open challenges

We expect our understanding of the epidemiology of 
infectious diseases to improve in the near future, but 
progress will depend on multidisciplinary and multi-
level systematic approaches across immunology, genet-
ics, ecology and epidemiology. Mathematical analysis 
and modelling will play a central part, and, although 
difficult to predict in detail, we end by outlining some 
outstanding challenges.

Pathogen evolution. Mathematical analyses of the evo-
lution of pathogens in response to the selective pressure 
of the host immune system will play an important part 
in the design and interpretation of interventions with 
drugs or vaccines that alter pathogen genetic diversity. 
For example, the impact of a vaccine that only targets 
specific pathogen strains (for example, pneumococcal 
vaccines) on subsequent disease dynamics and patho-
gen diversity could be predicted. Progress in this area 
might also lead to an improved ability to match vaccine 
manufacture to circulating pathogen antigenic types 
for rapidly evolving infections, such as influenza83. As 
sensitive genetic typing becomes routine in disease 
surveillance, this will not only improve our understand-
ing of evolutionary processes, but also directly shed 
light on the transmission network. The development 
of coupled evolutionary–epidemic models and joint 
inference methods will be crucial in making the most of  
these data.

Statistical methods. The number of new infections at a 
particular time and place depends on unknown variables, 
such as population immunity, which can be strongly cor-
related over time and space. Furthermore, infections can 
often go unreported or undiagnosed, leading to many 
‘missing’ observations. Statistical methods to estimate 
the parameters of models that describe a disease’s natural 
history and transmission for incomplete, highly corre-
lated surveillance data have yet to be developed. Progress 
in this area is being made (reviewed, for example, in 
REFS 76,77), but much remains to be done, particularly 
in the context of spatial correlations.

Contact patterns. Many ‘laws’ of infectious disease 
epidemiology, such as mass action or the relationship 
between the average age at infection and the basic repro-
duction number, rely to some extent on the assumption 
of random infectious contacts among individuals in a 
population. Non-random mixing leads to local satura-
tion effects that can undermine these laws and lead to 
more complex epidemics that have a range of implica-
tions for control. Mathematical descriptions of non-
random mixing need to go beyond simply dividing the 
population into discrete compartments to a more com-
plete representation of the contact patterns that lead to 
infectious disease transmission. Computer simulations 
could provide insights, but the development of analyti-
cal approximations of the contact process would be far 
more powerful if they could provide simple rules (and 
predictions) for the emergent dynamics of an epidemic. 
This might require a different type of mathematical 

model and language, perhaps motivated by ongoing 
research into network or graph theory61.

The collection and analysis of empirical data that 
describe both the contact process and the transmission 
tree will be central to this research. Empirical data that 
describe the contact process could come from question-
naires, such as those used to investigate conversational 
contacts that are important for the spread of respiratory 
infections7,84, from routine surveys of travel and com-
muting patterns or even from mobile-telephone glo-
bal-positioning data. Empirical data that describe the 
transmission tree will depend on the collection of robust 
information about the contacts of sampled individuals, 
the contacts of these contacts and so on. A major chal-
lenge for theoreticians will be the integration of informa-
tion that has been gathered at all levels, from household 
contacts to the global travel patterns of individuals.

Pathogen ecology. The dynamics of a pathogen and the 
impact of control might depend not only on the interac-
tion of the pathogen with the host population, but also 
on the interaction of the host with other pathogens and 
hosts. It seems that cycles in the incidence of whooping 
cough in the pre-vaccine era were dependent on changes 
in population density that were caused by measles mortal-
ity85. Declines in syphilis in the United States in the 1990s 
have been partly attributed to AIDS mort ality among the 
sexually active core transmission group86. Viral respira-
tory infections can increase shedding of other respiratory 
co-infections, thereby facilitating their transmission87. 
Bacterial and viral sexually transmitted infections can 
increase the transmission of HIV-1 (REF. 12).

Identifying and modelling all the interactions that are 
important for a particular pathogen might be difficult in 
a particular setting owing to their number and complex-
ity. For example, the dynamics of HIV-1 in a population 
can depend on the dynamics of a number of bacterial and 
viral sexually transmitted infections that facilitate HIV-1 
transmission, in addition to changes in risk behaviour 
and patterns of mixing. The dynamics of these other 
infections are, in turn, mutually interdependent, which 
further complicates the analysis. An understanding of 
these dynamics and their underlying determinants could 
be made easier by comparative analysis across different 
settings and time periods that differ only in a small 
number of variables. In some cases, it might be possible 
to gain further insight by experimental manipulation 
of the system88. A more complete understanding of the 
ecology of a pathogen could lead to better policies for 
infectious disease control.

Conclusion

The dynamics of infectious diseases and their hosts 
can be complex and the impact of control programmes 
can be difficult to predict. Underlying this complex-
ity are simple stochastic processes, some of which are 
described in this Review. The challenge to the infectious 
disease epidemiologist is to disentangle the underlying 
determinants of the emergent behaviour of epidemics 
and identify rules that could enable this behaviour to be 
predicted and effective controls to be identified.
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