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Abstract: The Leaf Area Index (LAI) strongly influences crop biomass production and yields. The
variation characteristic of LAI and the development of crop growth models can provide a theoretical
basis for predicting crops’ water consumption, fruit quality and yields. This paper analyzes the
relationship between measurements of aboveground grape biomass and trends in LAI and dry
biomass production in grapes grown in the Turpan area. The LAI changes in grapes were estimated
using the modified logistic model, the modified Gaussian model, the log-normal model, the cubic
polynomial model, and the Gaussian model. Universal models of LAI were established in which
the applied irrigation quota was applied to calculate the maximum LAI. The relationship between
the irrigation quota and biomass production, yields, and the harvest index was investigated. The
developed models could accurately predict the LAI of grapevines grown in an extremely arid area.
However, the Gaussian and cubic polynomial models produced less accurate results than the other
models tested. The Michaelis–Menten model analyzed the relationship between biomass and LAI,
providing a numerical method for predicting dynamic changes in grapevine LAI. Moreover, the crop
biomass increased linearly with the irrigation quota for quotas between 6375 and 13,200 m3/hm. This
made it possible to describe the grape yield and harvest index with a quadratic polynomial function,
which increases during the early stages of the growing season and then decreases. The analyses of
the relationship between yield and harvest index provide important theoretical insights that can be
used to improve water use efficiency in grape cultivation and to identify optimal irrigation quotas.

Keywords: simulation model; grape; LAI; biomass; yield; harvest index

1. Introduction

Grapes are a valuable commercial crop used to produce both wine and raisins. Conse-
quently, there is great interest in identifying the factors that govern their growth. It is known
that grapevine yields and biomass growth are closely linked to their leaf area index (LAI,
the total one-sided leaf area per unit of crop ground surface). The LAI influences biomass
accumulation and transpiration, whilst the partitioning of the biomass affects the yield.
Moreover, the LAI is a critical variable in the various process models, such as evapotranspi-
ration and canopy photosynthesis. It also affects the size of the plant-atmosphere interface
and thus plays a key role in the exchange of energy and mass between the canopy and the
atmosphere. During the early stages of the growing season, LAI is low and increases slowly.
However, as the season progresses, it begins to increase rapidly. It peaks before the leaves
start to senesce, and the plants reach physiological maturity. Studies of trends in LAI can
provide technical support for simulations of dynamic changes in grape biomass and yields.
There have been several techniques to predict LAI using crop simulation models [1–3] and
generic crop models [4–7].

A few input parameters should be necessary for an ideal simulation model for LAI
development and crop yields. The model should be based on the underlying physiological
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and phenological processes observed in real plants. Estimation [8–14] and species growth
models [15,16] are two methods for this problem explored. Estimating methods rely on
remote sensing [17–20] or direct measurements [10,21] to determine the LAI. On the other
hand, species growth models are proposed by a theoretical foundation, such as the logistic
model, the Gompertz model, the Richards model, and the Chanter model. One or more
parameters in these models indicate some physical properties, and the models are used
to describe how population sizes and biomass change over time. The logistic model is a
well-known mathematical model for predicting population growth [22–26] with a high
accuracy level. However, one of the major drawbacks of logistic models is that they can only
depict growth under specified conditions because the values of their parameters change
depending on the environment. Temperature, for example, affects the growth curve of
bacteria. In principle, logistic models can be used to simulate any growth process. However,
in this case, the relationship between the temperature and the bacterial growth rate means
that such models cannot be summarized by creating a synthetic model [27]. When the
temperature is included as a variable in the model, it can be used to predict population
growth and restrictions imposed by environmental factors.

Growing degree days (GDD) is an important meteorological factor affecting the crop
growth indexes such as plant height, leaf area index, biomass and harvest index [28]. To col-
lect and analyze the crop growth data in 50 regions of China, Liu et al. [24], Wang et al. [29],
Su et al. [30] and Liu et al. [31] proposed the normalized logistic models of potato, winter
wheat, summer maize, rice, and cotton by using growing degree days as a key variable,
respectively. Wang et al. [25] established the logistic cotton growth model under drip
irrigation with film mulch in Xinjiang, China. They discussed the relationships between
maximum leaf area index, maximum dry matter accumulation, the harvest index (HI),
and total irrigation amount. Irrigation and nitrogen application are also the key environ-
mental factors in crop growth. Overman et al. [32–36] used the logistic model to simulate
the biomass production of forage grasses by incorporating harvest timing and water use
efficiency in different years as functions of nutrition and water content. Yang et al. [37]
used fruit growth data to develop an improved logistic model that explained the individual
tomato fruits growth depending on the environmental parameters such as different plant-
ing densities and seasons. Munitz et al. [38] established the relationship between LAI and
crop coefficient of mature Vitis vinfera cv., which was the basis for developing a comprehen-
sive irrigation model considering climate conditions, canopy area and grapevine-specific
characteristics. Chen et al. [39] used the logistic model to fit the dynamic change of summer
maize leaf-area index based on GDD under different nitrogen, phosphorus and potassium
nutrition levels.

The logistic model is usually used to simulate the crop growth available, but it is not
appropriate for predicting the late stable and decline periods. A few mathematical models,
such as the modified logistic model, the cubic polynomial model and the exponential
growth model (also known as the Gaussian model, the modified Gaussian model and
the log-normal model) [40,41], have been devised to address this flaw. However, these
models are originally developed to simulate the growth process of maize [31,39,42,43],
wheat [23,24,31,44] and cotton [25,45,46], and there have been few investigations into their
applicability to Thompson Seedless grapevines. The leaves are the primary organs involved
in photosynthesis and transpiration in grapevines, and dynamic changes in leaf mass have
an impact on grape yields. Therefore research aimed at modelling dynamic changes in the
aboveground biomass of grapevines can provide important data that has the potential to
improve water use efficiency and predict grape yields.

The objective of this study was to develop an approach to simulate LAI and yield
of grape plants using mathematical models and irrigation quotas. The LAI of grapevines
in the Tu-ha basin was simulated using the modified logistic model, modified Gaussian
model, log-normal model, Gaussian model and cubic polynomial model. The accuracy
and practicality of the models were assessed in each situation. According to the Michaelis–
Menten equation, a given crop’s maximum dry matter yield can be estimated based on its
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maximum LAI. Moreover, a relationship between grapes’ harvest index and peak LAI was
established. Finally, a mathematical model to predict grape yields in Turpan was developed
based on the relationship between LAI and yield.

2. Materials and Methods
2.1. Experimental Fields

The experiments were conducted in an area used for table grape cultivation in TieTier
village, located 12 km to the southeast of Turpan city (42.87◦ N, 89.20◦ E, 32.8 m above
sea level) in Xinjiang, China. Extreme weather such as whole gale and low temperatures
are experienced between February and June. The mean annual precipitation in this region
is 16.5 mm, and the mean annual evaporation is 3600 mm. The experimental fields were
planted with grapevines from the Thompson seedless cultivar. The vines were grown on
trellises and were 12 years old at the start of the experiment. The cultivation pattern and
the schematic drawing for grapevines are shown in Figures 1 and 2. The average spacing
between adjacent rows was 1.2 m, and the average spacing between vines within a row was
3 m. The soil texture of the experimental field is clay loam and uniform within a one-meter
depth. The average soil bulk density is 1.47 g/cm3, and the average saturated soil water
content is 0.39 cm3/cm3.
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2.2. Experimental Design

To analyze the effect of different irrigation quotas on grape biomass and yields, six
irrigation treatments based on surface drip irrigation (see Table 1) were evaluated. The
irrigation scheme was set up with three water pipes in a single ditch with a drip flow of
2.7 L/h. Adjacent water droppers were separated by 40 cm. The first irrigation quota is
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60 mm for every treatment before the growth period. The six treatments differed in terms
of their irrigation frequency. Treatments X1 to X3 involved irrigation every 4.5, 9, and
13.5 days, respectively. In treatments X4 to X6, the irrigation frequency was higher during
the period of high water demand than at other times. Thus, treatment involved irrigation
every 4.5 days during the period of high water demand and every 9 days at other times;
treatment X5 involved irrigation every 4.5 and 13 days, respectively; and treatment X6
involved irrigation every 9 and 13.5 days, respectively. Numerical data on the different
irrigation schemes are presented in Table 1.

Table 1. The design of the irrigation experiments.

Irrigation
Treatment

Irrigation Frequency Irrigation Quota for
Each Application

(mm)

Irrigation Quota
(mm)

Drip Irrigation Tape Parameters
Critical Watering

Time
Non-Critical

Watering Time Drip Flow (L/h) Dripper Spacing
(cm)

X1 4.5 4.5 52.5 1215

2.7 40

X2 4.5 9 52.5 1005
X3 4.5 13.5 52.5 900
X4 9 9 52.5 847.5
X5 9 13.5 52.5 690
X6 13.5 13.5 52.5 637.5

New shoots start growing during the budding period and continue growing until the
vine reaches maturity. The growth of all shoots on the experimental vines was recorded
from their first appearance until the point when their growth stopped or became so slow
that their length could be assumed to be constant. The results presented in this work are
based on measurements acquired between 1 April and 1 October 2009. The growing season
was divided into a period of critical water demand, which corresponds to the time the
fruits inflate, and periods of non-critical water demand, which cover the remainder of the
growing season.

Grape biomass data were collected from three grapevines in each treatment. The
upper, lower, and middle shoots (see Figure 1) in the selected grapevines were chosen to
record the growth characteristic indexes separately. The recorded indexes included: the
number of shoots, the length of the shoot (measured by rulers), the number of leaves on
each shoot, and the main vein length of recorded leaves (measured by rulers). Finally, nine
groups of recorded data were averaged for each treatment. The method used to calculate
LAI was defined by the function

LAI =
B× L×A
10.000× S

(1)

where B is the number of shoots; L is the number of leaves; S is the average area covered by
a single grapevine, m2; and A is the average area of each leaf, cm2 and can be estimated by
the power function of the main vein length as shown in Figure 3.
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Aboveground dry matter mass was measured by the oven drying method. In each
irrigation treatment, all shoots and leaves were collected in the unit areas, and the oven
dried these samples. Because of the dried sample’s mass in the unit areas, the aboveground
dry matter mass can be estimated by multiplying by the treatment area.

2.3. GDD Calculations

The GDD was calculated by the difference between Tavg and Tbase [24]:

GDD = ∑
i

(
Tavg,i − Tbase,i

)
(2)

where Tavg is the daily average temperature, and Tbase is the base temperature that the
crops need to grow. Tbase = 10 ◦C for the grapevines. Tavg was calculated by the arithmetic
mean of the daily maximum (Tx) and minimum (Tn) temperatures, subject to the limitation
that it could not exceed Tupper (the temperature above which no further increase in plant
growth rate is observed, and 38 ◦C for the grapevines) or be less than Tbase. The method
proposed by the Food and Agriculture Organization (FAO) was used [47]:

Tavg =
(T∗x + T∗n)

2
(3)


T∗x = Tupper if T∗x ≥ Tupper
T∗x = Tbase if T∗x ≤ Tbase
T∗x = Tx else

(4)

T∗n = Tupper if T∗n ≥ Tupper (5)

2.4. Leaf Area Index Growth Models

In this paper, five mathematic models (the modified logistic model, the Gaussian
model, the modified Gaussian model, the log-normal model and the cubic polynomial
model) were used to describe the changes in the LAI over the experimental period. The
modified logistic model [37,40,41] is defined as follows:

LAI =
LAIm

1 + ea+b·GDD+c·GDD2 (6)

where LAI is the leaf area index; LAIm is the maximum leaf area index; and GDD is growing
degree days, ◦C. a, b, and c are experience coefficients.

The log-normal model [41] is defined as follows:

LAI = LAIm exp

[
−0.5

(
ln(GDD/GDD0)

α

)2
]

(7)

where LAIm is the maximum leaf area index, GDD0 represents the growing degree days on
which the leaf area index reaches the maximum value, ◦C. α is an experience coefficient. It
can be seen from Equation (7) that when GDD = GDD0, LAI = LAIm.

The cubic polynomial model is defined as follows:

LAI = a0 + a1GDD + a2GDD2 + a3GDD3 (8)

where a0, a1, a2, and a3 are experience coefficients corresponding to meaningless empiri-
cal parameters.
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The German mathematician Gauss proposed the Gaussian model, defined by Equation (9),
and the model curve has a single peak and 3 parameters. The modified Gaussian model is
derived from the Gaussian model and is defined by Equation (10) [41].

LAI = LAIm exp

[
−0.5

(
GDD−GDD0

β

)2
]

(9)

LAI = LAIm exp
[
−0.5

(
|GDD−GDD0|

β

)γ]
(10)

where β and γ are experience coefficients. The parameters in the above models were
obtained by the genetic algorithm as implemented in Matlab.

2.5. Statistical Analysis

The root-mean-square error, the coefficient of determination, and the relative error
were used to evaluate the performance of the different models. The root-mean-square
error (RMSE) is a statistical method used to analyze the deviation between measured and
calculated values. The smaller the RMSE, the better the simulated results. The RMSE is
defined by the function

RMSE =

√√√√√ n
∑

i=1
(Oi − Si)

2

n
(11)

where Oi is the measured values, Si is the predicted values, and n is the sample size.
The coefficient of determination (R2) is another method for evaluating the difference

between the measured and calculated values.

R2 = 1−

n
∑

i=1
(O i − Si)

2

n
∑

i=1
(O i −Oi

)2
(12)

In this work, the relative error (Re) is defined as follows:

Re =

√√√√√√√
n
∑

i=1
(Oi − Si)

2

n
∑

i=1
O2

i

(13)

3. Results and Discussion
3.1. Leaf Area Index Simulation Models

LAI values calculated using Equation (1) for the different irrigation treatments are
shown in Figure 4. While no treatments have identical LAI values in any growth period,
the trends of all treatments in the LAI over growing degree days are similar: it increases
rapidly between 200 ◦C and 1400 ◦C, then gradually between 1400 ◦C and 2200 ◦C. After
this point, it starts to decrease slowly. As shown in Figure 4, there are two prunings in the
grapevine’s growth period. The first pruning begins when the GDD is over 400 ◦C; the
second pruning begins when the GDD is over 700 ◦C. The maximum LAI was observed
when GDD was about 1690 ◦C.
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Figure 4. Relationship between leaf area index (LAI) and growing degree days (GDD) for different
irrigation treatments.

We sought to identify a simple method for normalizing the LAI values to simplify
subsequent analyses. This was done using the following equation:

RLAI =
LAI

LAIm
(14)

where RLAI denotes the relative LAI, and LAIm is the maximum LAI. Table 2 indicates
that all treatments yielded different RLAI values in 2009. The highest standard deviation
(0.0680) occurred on day 144 or growing degree day 883 ◦C, caused by pruning. Overall,
the trends in RLAI were fairly similar for the six irrigation treatments. Consequently, a
universal RLAI model was developed based on the mean RLAI values for all six treatments.

Table 2. Relative leaf area index (RLAI) values for the six different treatments at different points in
time and mean RLAI values for all treatments in 2009.

Time/Days GDD/◦C
RLAI

Mean RLAI Standard
DeviationX1 X2 X3 X4 X5 X6

97 190 0.0619 0.0336 0.0250 0.0204 0.0416 0.0313 0.0356 0.0148
101 243 0.0927 0.0790 0.0954 0.1011 0.0835 0.0836 0.0892 0.0085
104 289 0.1619 0.1283 0.1263 0.1613 0.1734 0.2010 0.1587 0.0283
109 358 0.2025 0.1991 0.2328 0.2225 0.2397 0.2327 0.2215 0.0170
113 414 0.1860 0.1391 0.1551 0.1756 0.2258 0.2370 0.1864 0.0386
117 468 0.1988 0.1654 0.1659 0.1848 0.2467 0.2416 0.2006 0.0361
123 543 0.3480 0.2633 0.2561 0.2961 0.2776 0.2377 0.2798 0.0388
129 638 0.4253 0.4203 0.4237 0.3348 0.3331 0.2652 0.3671 0.0663
135 729 0.5289 0.4142 0.4857 0.4061 0.3732 0.3534 0.4269 0.0674
144 883 0.5094 0.4706 0.4946 0.4156 0.3377 0.3811 0.4348 0.0680
152 1024 0.6992 0.6283 0.6994 0.6122 0.6297 0.6112 0.6467 0.0415
165 1288 0.8467 0.8383 0.8518 0.8294 0.8921 0.8525 0.8518 0.0216
182 1639 0.9885 0.9943 0.9519 0.9766 0.9513 0.9351 0.9663 0.0236
185 1691 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0
217 2540 0.8644 0.9067 0.9223 0.9427 0.8826 0.9053 0.9040 0.0278

The mean RLAI values were fitted using the leaf area index growth models. The
genetic algorithm was used to fit the model’s parameters, and the fitted results of five
models were shown in Figure 5. It can be seen from Figure 5 that the results of the models
agreed well with the observed data of LAI, especially during the late stable period and the
period of decline; in all cases, the correlation of determination between the fitted data and
the experimental data were above 0.96.



Agronomy 2022, 12, 988 8 of 17

Agronomy 2022, 12, x FOR PEER REVIEW 8 of 17

185 1691 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 
217 2540 0.8644 0.9067 0.9223 0.9427 0.8826 0.9053 0.9040 0.0278 

The mean RLAI values were fitted using the leaf area index growth models. The 
genetic algorithm was used to fit the model’s parameters, and the fitted results of five
models were shown in Figure 5. It can be seen from Figure 5 that the results of the mod-
els agreed well with the observed data of LAI, especially during the late stable period
and the period of decline; in all cases, the correlation of determination between the fitted 
data and the experimental data were above 0.96. 

Figure 5. Comparisons of the measured and simulated mean relative leaf area index (RLAI): (a) 
modified Logistic model; (b) modified Gaussian model; (c) log-normal model; (d) Gaussian model; 
(e) cubic polynomial model. Measured values are the average RLAI values of six treatments, and 
simulated values are calculated by the five models and growing degree days (GDD). 

Table 3 shows the fitted result of experience parameters in the five models. The co-
efficient of determination of all models is larger than 0.967, and the relative errors are small-
er than 10.6%. This indicates that the simulated results of models are in good agreement with 
the measured data in the late stable period and the declining period of growth. Overall, the 
modified Gaussian model appears to be more accurate than the other models.

Figure 5. Comparisons of the measured and simulated mean relative leaf area index (RLAI): (a) modi-
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polynomial model. Measured values are the average RLAI values of six treatments, and simulated
values are calculated by the five models and growing degree days (GDD).

Table 3 shows the fitted result of experience parameters in the five models. The
coefficient of determination of all models is larger than 0.967, and the relative errors
are smaller than 10.6%. This indicates that the simulated results of models are in good
agreement with the measured data in the late stable period and the declining period of
growth. Overall, the modified Gaussian model appears to be more accurate than the
other models.



Agronomy 2022, 12, 988 9 of 17

Table 3. Fitted values and simulated errors of five leaf area index growth models. Re is the relative
error, R2 is the coefficient of determination, and RMSE is the root-mean-square error.

Model Expression Re/% R2 RMSE Parameter
Number

Modified Logistic
Model RLAI = 1.4

1+e3.7437−4.8303×10−3 ·GDD+1.2340×10−6 ·GDD2 7.45 0.9837 0.0414 4

Modified Gaussian
Model RLAI = 1.0146 · exp

[
−0.5

(
|GDD−1983.1|

983.96

)2.5757
]

6.49 0.9877 0.0361 4

Log-Normal
Model RLAI = 0.9771 · exp

[
−0.5

(
ln(GDD/2274.5)

0.9142

)2
]

8.16 0.9805 0.0454 3

Cubic Polynomial
Model

RLAI = −1.6672× 10−10 ·GDD3 + 4.2137× 10−7 ·GDD2

+3.6610× 10−4 ·GDD− 0.01356
6.37 0.9881 0.0354 4

Gaussian Model RLAI = 1.0924 · exp
[
−0.5

(
GDD−1979.6

862.44

)2
]

10.60 0.9671 0.0589 3

The modified Gaussian, log-normal and Gaussian models are the exponential func-
tions. The parameter GDD0 in models is the growing degree days at the maximum relative
leaf area index (RLAImax = 1). The deviation between the value of LAImax in the three
models is 0.0146 for the modified Gaussian model, −0.0229 for the log-normal model, and
0.0924 for the Gaussian model. That is to say, the predicted LAImax value calculated by the
modified Gaussian model is smaller than the measured value. In contrast, those obtained
with the log-normal and Gaussian models are larger. However, it should be noted that
the absolute deviation of LAImax can represent the predictive accuracy, and the modified
Gaussian model has the best performance in this respect.

The parameter number is highly sensitive to the flexibility and applicability of a model.
The fewer parameters have the potential to increase the applicability of the model but
may decrease the accuracy of its predicting results. As shown in Table 3, there are three
parameters in the log-normal and Gaussian models and four parameters in the modified
logistic model, the modified Gaussian model and the cubic polynomial model. However,
the greater number of parameters makes them more complex to obtain. Therefore, in cases
where high precision is not required, it may be preferable to use the log-normal model to
simulate LAI.

3.2. The Relationship between Water Consumption and LAI

Equations (6) and (9) indicate that the maximum leaf area index, LAIm, is an important
parameter when simulating changes in LAI. Therefore, the general applicability of the
models presented is dependent on the ability to quickly and easily calculate LAIm. However,
the leaf area index is sensitive to a number of factors, including the temperature, the
number of growing degree days that have elapsed [41], the applied irrigation regime, water
consumption, and so on. Some of these factors are difficult to measure regularly, so the
ability to compute the LAI using readily obtained data plays a very important role in
making a given method useful in day-to-day work. For example, LAIm can be directly
measured when the GDD is about 1690 ◦C, as shown in Table 2. We selected the water
consumption to estimate the LAIm. The relationship between the water consumption
and LAIm, as determined by analysis of the results obtained in this work is presented in
Figure 6.
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It is clear that the six tested irrigation regimes all yielded different LAIm values and
that LAIm increases in direct proportion to the volume of water applied. The relationship
between LAIm and the irrigation regime is described by the following linear equation:

LAIm = 0.0056 ·WS − 0.7418 (15)

where LAIm is the theoretical maximum LAI value, and WS is the water consumption. The
coefficient of determination of the relationship between the measured and fitted values
is 0.9654.

If we let
LAIm = 0 (16)

it follows that
WS = 132.46 (17)

This means that if WS≤ 132.46, LAIm = 0. Therefore, to achieve a non-zero LAI during
the growth period, the volume of water consumption must exceed 132.46 mm.

The relationship between LAI and the water consumption can be determined using
Equations (14) and (15):

LAI = RLAI× LAIm = RLAI× (0 .0056 ·WS− 0 .7418) (18)

where RLAI is the relative LAI, and WS is the water consumption. By combining the
models in Table 2 with Equation (18), the universal mathematical models of LAI can be
established. For example, the modified logistic model for calculating the LAI would be
as follows:

LAI =
1.4

1 + e3.7437−4.8303×10−3·GDD+1.2340×10−6·GDD2 · (0 .0056 ·WS− 0 .7418) (19)

Equation (19) indicates that the LAI of grapevines over the growing season can be
estimated based on the applied irrigation regime and GDD. Figure 7 shows the fitted results
for LAI in Turpan calculated by five developed universal models. The fitted results for the
LAI values of grapevines grown in the Turpan area under the different irrigation regimes
tested are shown in Table 3.

Figure 7 shows a good agreement between the fitted and measured grape leaf area
index. The R2 values of the fitted LAI values for five developed universal models are 0.97,
0.98, 0.96, 0.97 and 0.98, respectively. The relative errors for these five models are 10.02%,
9.75%, 12.11%, 11.28% and 9.49%, respectively. The RMSE for these five models are 0.9185,
0.8932, 1.1097, 1.0337 and 0.8696, respectively. Thus, the modified logistic or modified
Gaussian model should be considered when fitting the LAI values of grapevines in the
Turpan area.
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3.3. Relationship between LAI and Dry Mass

Because the LAI is close to the photosynthesis and transpiration of plants, the rate of
dry matter production and aboveground dry biomass of the plants is affected by the LAI.
According to the differences in ecological and environmental factors, the rate of dry mass
increases will be affected by the study location and growth period. However, the increases
in dry matter mass will lead to increased LAI values in any growth period. Figure 8 shows
the relationship between LAIm and measured relative dry biomass of treatments X1–X6
in 2009.

Figure 8 indicates a correlation between LAI and aboveground dry biomass, which
can be described using the Michaelis–Menten equation. This means that the rate of increase
in LAI decreases as the amount of dry mass increases. The measured data of dry matter
and LAI in different growth periods are used to build the mathematical model.
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RM(t) = M(t)/M0 (20)

LAI(t) =
P · RM(t)

1 + Q · RM(t)
(21)

where RM is the relative dry biomass; M is the aboveground dry biomass; M0 is the
aboveground dry biomass in a given growth period (here, M0 = 29.33 t/ha, which is the
measured dry mass for X4); t is the time relative to the start of the growing period, in
days; and P and Q are experience parameters. To fit the values of P and Q, Equation (21) is
converted to a linear form as follows:

1
LAI(t)

=
1

P · RM(t)
+

Q
P

(22)

The least-squares method is used to analyze the linear relationship of LAI−1 and RM−1

in Equation (22), and the values of P and Q can be calculated by the curve fitting method.
Thus, the mathematical model in Figure 7 is defined as the following equation:

LAI =
3.9981 · RM

1 + 0.1314 · RM
(23)

where the sample number is 6, and the coefficient of determination is 0.97. The difference
between the measured and fitted values is not significant (p > 0.05).

3.4. Mathematical Model of Yields

The data on crop water productivity in the simulations indicate that the aboveground
biomass is determined by the amount of transpiration that occurs. The crop water produc-
tivity is a measure of the aboveground dry matter (g or kg) produced per unit of land area
(m2 or ha) per unit of water transpired (mm). The relationship between biomass production
and water consumption is highly linear [48,49]. Figure 9 shows the relationship between
biomass and water consumption.

As shown in Figure 9, the total biomass increases linearly with the irrigation quota
according to the following equation:

B = 0.0683 · I + 36.476 R2 = 0.9534 (24)

The LAI is related to the amount and rate of transpiration, which is related to biomass
production by the water productivity parameter. The harvest index (HI) is defined to
describe the harvestable portion of this biomass (yield):

Y = B · HI (25)
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When the total biomass (B) has been measured, the yield will be calculated by B and
the harvest index Equation (18).

In this paper, the total biomass is divided into dry matter (grapevine) and yield (fruit).

B = Mm + Y (26)

where B is the total biomass, Mm is the maximum value of dry mass, and Y is the yield.
Based on Equations (25) and (26), the yield can be calculated by the following equation:

Y =
HI

1−HI
·Mm (27)

where HI is the harvest index.
According to Equation (23), the relationship between Mm and LAIm is defined as follows:

Mm =
LAIm

P−Q · LAIm
·M0 (28)

The mathematical model of grape yields is established based on the parameter
LAIm. The relationship between HI and LAIm is shown in Figure 10 and is defined by
Equation (29):

HI = −0.0071 · LAIm
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Based on Equations (27)–(29), the mathematical yield model was defined as follows:

Y =
−0.0071 · LAI2

m + 0.0033 · LAIm + 0.7556
0.0071 · LAI2

m − 0.0033 · LAIm + 0.2444
· LAIm

3.9981− 0.1314 · LAIm
(30)
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Using the models described in Table 2 and the GDD at the maximum value of LAI,
the LAIm can be fitted and used as input for the yield model. The fitted results of LAIm
obtained by doing this are shown in Table 4. The statistical analysis results showed that the
cubic polynomial model had the best precision of the other models. However, the cubic
polynomial model parameters are meaningless, making the model lack application value.
Thus, it is readily apparent that the modified logistic and modified Gaussian models give
more accurate results than the alternatives.

Table 4. Predicted maximum leaf area index (LAIm) values and associated statistical parameters
for the different models considered in this work. Re is the relative error, R2 is the coefficient of
determination, and RMSE is the root-mean-square error.

Measured
LAIm Value

Predicted LAIm Value

Modified
Logistic Model

Modified
Gaussian

Model

Log Normal
Model

Cubic
Polynomial

Model

Gaussian
Model

X1 5.84 5.81 5.67 5.42 5.87 6.04
X2 5.26 5.23 5.11 4.88 5.28 5.43
X3 4.27 4.25 4.15 3.96 4.29 4.41
X4 3.78 3.75 3.67 3.50 3.79 3.90
X5 3.18 3.16 3.09 2.95 3.19 3.29
X6 2.73 2.71 2.65 2.53 2.74 2.82

Re/% 0.59 2.91 7.29 0.43 3.29
RMSE 0.0255 0.1258 0.3149 0.0184 0.1421

R2 0.9995 0.9868 0.9175 0.9997 0.9832

The grape yields achieved using the tested water treatments in Turpan can be fitted
using the models described in Table 2 and Equation (30), giving the results shown in Table 5.
The relative errors of all models are lower than 3.09%, and it is an adequate precision for
predicting the yields. However, the output of the modified logistic model and modified
Gaussian model correlates better with the experimental data than that of the log-normal
and Gaussian models. It, therefore, seems that the modified logistic model or modified
Gaussian model is optimal for fitting the peak leaf area index and grape yield in this case.

Table 5. Predicted grape yields and associated statistical parameters for the different models when
used in conjunction with Equation (30). Re is the relative error.

Measured
Yield Value

Predicted Yield Value

Modified
Logistic Model

Modified
Gaussian

Model

Log Normal
Model

Cubic
Polynomial

Model

Gaussian
Model

X1 61.7 60.65 61.48 62.83 60.26 59.09
X2 63.3 63.64 64.07 64.67 63.43 62.76
X3 63.2 64.81 64.61 64.06 64.87 65.00
X4 61.7 63.19 62.73 61.71 63.38 63.84
X5 58.8 59.00 58.30 56.86 59.30 60.09
X6 55.3 54.06 53.25 51.63 54.41 55.36

Re/% 1.85 1.92 3.09 1.99 2.74

The results in Table 5 show that the mathematical yield models, which rely on only
a single parameter, LAIm, can be applied to estimate grape yields in Turpan with an
acceptable level of accuracy. While any of the five models described in Table 2 can be
used to obtain a reasonably accurate estimate of LAI, the most reliable estimated grape
yields and fitted trends in LAI are achieved with the modified logistic model or modified
Gaussian model.
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4. Conclusions

Our analyses of aboveground grape LAI and yield data for different irrigation treat-
ments in the Turpan area revealed that:

(1) Normalizing the measured LAI values makes it possible to disregard the impacts
of irrigation quotas on the changes in grapevine LAI. The Linthe universal models
were developed by the modified logistic model, the modified Gaussian model, the
log-normal model, the Gaussian model, and the cubic polynomial model. Results
using these models showed that they accurately fitted the measured data of LAI over
the grapevines growing season in Turpan. However, the Gaussian and log-normal
models yielded less accurate results than the other three models;

(2) Universal LAI models were developed to describe the relationship between the peak
LAI value and water consumption. The models can be used to fit the dynamic changes
of LAI over the growing season for different drip irrigation regimes. To ensure the
yields of grapevine during the growth period, the water consumption must be at least
132.46 mm in the Turpan area;

(3) When the water consumption was in the range of 637.5 mm—11,215 mm, the biomass
increased linearly, and the harvest index for the grapes was a quadratic polynomial
function of the peak leaf area index. According to the relationships between yield, dry
matter and harvest index, a mathematical yield model was proposed that relies on a
single parameter: the peak leaf area index. Such descriptions of the relationship be-
tween yields and the harvest index can provide important information on improving
water use efficiency.
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