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Abstract

Martensitic microstructures are studied using variational models based on nonlinear elasticity.
Some relevant mathematical tools from nonlinear analysis are described, and applications given
to austenite-martensite interfaces and related topics.
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1 Introduction

This article reviews some mathematical contributions to the study of martensitic microstructures
via continuum models based on nonlinear elasticity. These contributions have exploited techniques
from branches of mathematics such as nonlinear analysis, the calculus of variations, partial differ-
ential equations and geometry. As often happens, however, when different disciplines come into
contact, their interaction is a two-way process. This is particularly striking for continuum models of
martensitic microstructure, which have suggested quite new mathematical questions, for example of
multi-dimensional calculus, and for which the relation of experimental observation to fundamental
unresolved mathematical issues is strikingly immediate.

This is not intended to be, and space prevents it from being, a comprehensive review of the
field. Rather it emphasises some issues which have concerned the author and collaborators over
recent years, together with other related research. For a broader view, the reader is referred to the
books Bhattacharya [19], Dolzmann [28], Müller [45], Pitteri & Zanzotto [49] and Ball & James [10].
Some specific issues not considered here (together with representative references), to which similar
mathematical techniques have provided insight, include the mechanical behaviour of polycrystals (see
Bhattacharya & Kohn [21], Kohn & Niethammer [40], Paroni [47]), magnetoelastic materials (see
James & Kinderlehrer [34], DeSimone & James [27]), hysteresis induced by incompatibility between
parent and product phases (Ball, Chu & James [9, 8], Ball & James [11], Forclaz [32]), thin films
(see Bhattacharya & James [20], Luskin [42]), and generalizations of the Hadamard jump condition
(Ball & Carstensen [5], Iwaniec, Verhota & Vogel [33]).
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2 NONLINEAR ELASTICITY MODEL 2

2 Nonlinear elasticity model

We describe the elements of the nonlinear elasticity model used by Ball & James [12, 13]. Consider
a single crystal occupying in a reference configuration the bounded region Ω of three-dimensional
Euclidean space R3. In a deformed configuration the material point at x ∈ Ω in the reference
configuration is displaced to the point y(x) ∈ R3. Here we are considering statics, so there is no
dependence on the time t. Thus the deformation of the crystal is described by a mapping y : Ω → R3.

We denote the set of real 3× 3 matrices by M3×3, and set |A| = (tr AT A)
1

2 , M3×3
+ = {A ∈ M3×3 :

det A > 0}. Here tr E =
∑3

i=1 Eii denotes the trace of E ∈ M3×3. Wherever it is defined, the
deformation gradient ∇y(x) = (∂yi/∂xj) is required to satisfy det∇y(x) > 0, so that ∇y(x) ∈ M3×3

+ .
The relation of this condition to the invertibility of y, and thus to non-interpenetration of matter, is
somewhat subtle and is discussed in Ball [2], Ciarlet & Necas [25], Šverák [52].

Because we want to include deformations y whose deformation gradients can jump across a
smooth surface, such as a twin plane, it is important to specify precisely what such singularities
in y will be allowed. This choice of function space is part of the mathematical model, and affects
its predictions. For example, we could decide to allow deformations y which are discontinuous and
allow the crystal to fracture. Because fracture is not the main issue for martensitic transformations,
however, we will not allow such singularities. Instead we will suppose that y belongs to the Sobolev
space W 1,1 = W 1,1(Ω;R3), which roughly speaking is the set of mappings y : Ω → R3 such that

∫

Ω

(|y(x)| + |∇y(x)|) dx < ∞. (1)

Here, ∇y(x) is the weak derivative of y, which is defined except possibly for a set of points x having
zero volume. The precise definition and properties of weak derivatives, the integral in (1), and the
Sobolev spaces W 1,p, 1 ≤ p ≤ ∞, can be found in numerous standard texts, for example, Adams &
Fournier [1]. For the purposes of understanding the main points of this article, it is enough to think
of the allowed deformations as including piecewise continuously differentiable mappings.

We consider the problem of minimizing the total free energy of the crystal

Iθ(y) =

∫

Ω

ψ(∇y(x), θ) dx (2)

among y ∈ W 1,1 satisfying suitable boundary conditions, for example that y is specified on a portion
∂Ω1 of the boundary ∂Ω of Ω, so that y(x) = ȳ(x) for all x ∈ ∂Ω1, where ȳ is a given mapping. The
meaning to be ascribed to this boundary condition for y ∈ W 1,1 can be found in the previously cited
texts. The fact that no boundary condition is specified on the remainder ∂Ω2 of the boundary corre-
sponds to the surface tractions being zero there, this formally being a ‘natural boundary condition’
for the variational problem.

In (2), ψ = ψ(A, θ) is the free-energy density of the crystal, and θ is the temperature, regarded
as a constant parameter (that is, independent of x). We assume that ψ is frame-indifferent, that is

ψ(RA, θ) = ψ(A, θ) for all R ∈ SO(3), (3)

where SO(3) denotes the set of proper orthogonal matrices (rotations), and that ψ satisfies the
material symmetry condition

ψ(AQ, θ) = ψ(A, θ) for all Q ∈ S, (4)

where S is the point group of the crystal, which is a subgroup of SO(3). A well-known argument
using the polar decomposition theorem for matrices implies that ψ satisfies (3) if and only if it has

the representation ψ = ψ(U, θ), where U = (AT A)
1

2 , and then (4) reduces to the requirement that

ψ(QUQT , θ) = ψ(U, θ) for all Q ∈ S. (5)
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An important role is played by the set

K(θ) = {A ∈ M3×3
+ : A minimizes ψ(A, θ)} (6)

of energy-minimizing deformation gradients. By adding to ψ a suitable function of θ we may and do
assume that the minimum value of ψ(A, θ) is zero for all θ, so that K(θ) = {A ∈ M3×3 : ψ(A, θ) =
0}. From (5) it follows that if U ∈ K(θ) then QUQT ∈ K(θ) for all Q ∈ S. For a martensitic
transformation with transformation temperature θc, and transformation strain U(θ), θ < θc, the N
distinct matrices QU(θ)QT for Q ∈ S describe the N variants of martensite with strains

U1(θ), . . . , UN(θ).

Taking the reference configuration Ω to be undistorted austenite at the temperature θc, we then
assume (see Fig. 1) that K(θ) has the form

K(θ) =







α(θ)SO(3) θ > θc

SO(3) ∪
⋃N

i=1 SO(3)Ui(θc) θ = θc
⋃N

i=1 SO(3)Ui(θ) θ < θc,

(7)

where the thermal expansion coefficient α satisfies α(θc) = 1. Thus for θ < θc the ith variant of
martensite is associated with an energy-well that locally rises above its zero set SO(3)Ui.

U1(θc) U2(θc)

θ > θc

θ = θc

θ < θc

U3(θc)1

Figure 1: Schematic of the assumed energy-well
structure for the free-energy density ψ showing the
exchange of stability as the temperature θ passes
through θc.

∇y(j) = A
B

A
B

A
B

λ/j

(1 − λ)/j

Figure 2: Simple laminate formed from layer-
ing compatible gradients A, B with volume fractions
λ, 1 − λ respectively

For cubic austenite we have that S = P24, the group consisting of the 24 rotations of a cube into
itself. For a cubic to tetragonal transformation we find that N = 3, and that

U1(θ) = diag (η2, η1, η1), U2(θ) = diag (η1, η2, η1), U3(θ) = diag (η1, η1, η2),

where η1 = η1(θ) > 0, η2 = η2(θ) > 0 are the deformation parameters. Other transformations give
rise to different values of N ; for example, N = 6 for cubic to orthorhombic and N = 12 for cubic to
monoclinic transformations.
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Why is it preferable to use nonlinear elasticity, rather than linear elasticity, as a model for
martensitic transformations? To understand this, one should remember that linear elasticity is not
a special case of nonlinear elasticity, but a linearization of it about a natural state. Not only the
stress-strain behaviour, but also rotations, are linearized, so that the frame-indifference condition
(3) no longer holds. In fact a rigid rotation of a body in a stress-free state, which according to
nonlinear elasticity correctly results in another stress-free state, produces non-physical ‘phantom’
stresses according to linear elasticity. In martensitic transformations, rotations of several degrees are
commonplace, so this becomes an important issue. It is possible to construct a ‘linearized’ theory of
martensitic transformations, in which the austenite and each variant of martensite are assigned their
own linearized stress-strain law, as was done by Khachaturyan [35], [36], Khachaturyan & Shatalov
[37], and Roitburd [50], [51]. Since the regions occupied by each phase are unknowns, this theory is
still nonlinear, but in certain cases is more tractable. It is not easy to give this linearized theory a
satisfactory status with respect to the nonlinear one, though an attempt to do this was made in Ball
& James [12, Section 9], and of course in situations where there are significant rotations it will not
give good results (for a comparison of the theories see Bhattacharya [18, 19]).

The energy functional (2) ignores, among other things, the interfacial energy associated with
surfaces of discontinuity of ∇y, such as twin boundaries. As a consequence the theory based on (2)
predicts infinitely fine microstructures, whereas including small interfacial energy will typically set a
length-scale for these microstructures resulting from the balance between bulk and interfacial energy.
Expressed differently, the theory based on (2) has no preferred length-scale; if, for example, the
deformation y : R3 → R3 describes a deformation with ∇y(x) ∈ K(θ) for all x (excepting, perhaps,
a set of points of zero volume), the deformation

yε(x) = εy(x/ε) (8)

defines for arbitarily small ε > 0 another deformation with the same properties, since ∇yε(x) =
∇y(εx). Nevertheless the zero interfacial energy theory based on (2) is of interest because its sim-
plified, though singular, mathematical structure leads to explicit predictions of certain features of
observed microstructures that can be compared, often successfully, to experiment. The situation is
analogous to the relationship of the Navier-Stokes equations for flow of a viscous fluid, with those for
inviscid flow and gas dynamics obtained by setting the viscosity to be zero; these equations likewise
have a singular structure, with solutions representing vortices and shock-waves, for example, that
can give a good description of, and much insight concerning, the flow of fluids with small viscosity.

The theory based on (2) also, through the assumption (7), ignores the symmetries of the free-
energy density ψ corresponding to lattice invariant shears associated to slip and plastic flow (cf.
Ericksen [29]). Including these symmetries in a naive way leads to the material behaving like an
elastic fluid (see Fonseca [30]). It is not clear how to give the theory described here, with the smaller
point group as symmetry group, a clear status with respect to that with the full symmetry group, or
to developing theories of elasto-plasticity (cf. Ortiz [46]). Likewise, reconstructive transformations
are not covered.

Consider now a smooth surface S containing the point z ∈ R3 and having unit normal N there.
If ∇y is continuous on either side of S with limits ∇+y(z) = A, ∇−y(z) = B from above and below
S respectively, then equating the tangential derivatives at z leads to the Hadamard jump condition

A − B = a ⊗ N. (9)

for some a ∈ R3, where the right-hand side of (9) is the 3 × 3 matrix of rank one (provided a 6= 0)
with entries (a ⊗ N)ij = aiNj. An important special case is when S is a plane {x · N = k}. In this
case it is worth making the following remark. Suppose that y : R3 → R3 has bounded gradient, so
that |∇y(x)| ≤ M < ∞ for all x, and that

lim
x·N→+∞

∇y(x) = A, lim
x·N→−∞

∇y(x) = B. (10)
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Then (9) still holds. In fact, using the elasticity scaling (8) we obtain a sequence of deformations
yε : R3 → R3 with bounded gradient converging to a deformation y satisfying ∇y(x) = A if x·N > 0,
∇y(x) = B if x · N < 0, so that (10) follows.

Because of the Hadamard jump condition, zero-energy interfaces between variants are in one-
to-one correspondence with rank-one connections between the sets SO(3)Ui. More generally, given
U = UT > 0, V = V T > 0, we seek rank-one connections between SO(3)U and SO(3)V . That is, we
ask when there are rotations R1, R2 and vectors a,N such that

R1U = R2(V + a ⊗ N). (11)

Theorem 2.1. Let D = U2 − V 2 have eigenvalues λ1 ≤ λ2 ≤ λ3. Then SO(3)U and SO(3)V are
rank-one connected if and only if λ2 = 0. There are exactly two solutions up to rigid rotation provided
λ1 < λ2 = 0 < λ3, and the corresponding normals N1, N2 are orthogonal if and only if tr U2 = tr V 2,
that is λ3 = −λ1.

Theorem 2.1 is taken from Ball & James [12] (see also Khachaturyan [36]). However, the simple
observation concerning the orthogonality of the normals seems to be new. In the case of martensitic
variants we have U = Ui, V = Uj, and since Uj = QUiQ

T for some rotation Q the requirement
tr U2

i = tr U2
j is automatically satisfied, and the condition λ1 < λ2 = 0 < λ3 holds if and only if

det(U2
i −U2

j ) = 0. If this condition holds then up to rigid rotation there are exactly two such rank-one
connections (twins) and the corresponding twin planes are orthogonal. For example, for the case of
a cubic to tetragonal transformation, taking U = U2, V = U1 and R2 = 1, the two twins are given by

a =
√

2
η2

2
−η2

1

η2

1
+η2

2

(−η2, κη1, 0), N = 1√
2
(1, κ, 0), where κ = ±1. An equivalent condition for the existence

of twins, due to Forclaz [31], is that det(Ui − Uj) = 0.

3 Mathematical tools

We briefly describe some mathematical tools that prove useful for describing and analyzing marten-
sitic microstructures at the continuum level. The first is weak convergence, or convergence in the
sense of averages. Consider a sequence of deformation gradients ∇y(j), which for simplicity we as-
sume to be uniformly bounded independently of j, i.e. |∇y(j)(x)| ≤ M < ∞ for all j and x ∈ Ω
(again with the possible exception of a set of points of zero volume). We say that ∇y(j)converges
weakly to the deformation gradient ∇y, written ∇y(j) ⇀ ∇y, if

∫

E

∇y(j)(x) dx →
∫

E

∇y(x) dx

for all open subregions E of Ω (equivalently, for all balls, or all cubes, contained in Ω). For example
consider the simple laminate shown in Fig. 2 formed from gradients A, B satisfying A−B = c⊗N with
separating interfaces with normal N , the A layers having thickness λ/j and the B layers thickness
(1− λ)/j, where 0 < λ < 1. Then ∇y(j) has weak limit ∇y(x) = λA + (1− λ)B. Note that ∇y(j)(x)
does not converge to ∇y(x) in the usual sense for any x.

Next we describe the Young measure corresponding to a sequence of gradients ∇y(j). This concept
was introduced by Young (see [56]), while Tartar [54] drew attention to its importance for nonlinear
partial differential equations and for carrying information from microscales to macroscales. To define
it, we act like a microscopist, fixing j and a point x ∈ Ω, and looking at the deformation gradients
in a ball B(x, δ) with centre x and small radius δ > 0. We pick points z distributed uniformly at
random from B(x, δ), and look at the corresponding probability distribution of the matrices ∇y(j)(z).
The probability that ∇y(j)(z) belongs to a subset G ⊂ M3×3 is given by

νx,j,δ(G) =
Volume {z ∈ B(x, δ) with ∇y(j)(z) ∈ G}

Volume B(x, δ)
. (12)
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Now we let j → ∞, to obtain the limiting value of this probablility, and finally δ → 0, to localize
the probability to the point x. Thus we expect to obtain a probability distribution on 3× 3 matrices
given by

νx(G) = lim
δ→0

lim
j→∞

νx,j,δ(G). (13)

In fact it is a theorem (see for example Ball [3]) that such a limiting probability exists for any
sequence of gradients satisfying a suitable bound such as |∇y(j)(x)| ≤ M < ∞, provided we extract
a suitable subsequence of the ∇y(j). We call (νx)x∈Ω the (gradient) Young measure corresponding to
∇y(j). The Young measure contains exactly the information needed to determine the weak limit of
h(∇y(j)) for any continuous function h. In fact this weak limit is given by the expectation of h with
respect to the Young measure, that is

h(∇y(j)) ⇀ 〈νx, h〉 =

∫

M3×3

h(A) dνx(A). (14)

In particular, taking h(A) = A for all A ∈ M3×3 we have that ∇y(j) ⇀ ∇y(x), where ∇y(x) = ν̄x

and the centre of mass ν̄x is defined by

ν̄x =

∫

M3×3

Adνx(A). (15)

From the definition we see immediately that the Young measure corresponding to the simple laminate
in Fig 2 corresponds to a limiting probability λ of finding the matrix A, 1 − λ of finding the matrix
B, and zero of finding any other matrix. That is

νx = λδA + (1 − λ)δB, (16)

where for any matrix C the Dirac mass δC is defined for any G ⊂ M3×3 by

δC(G) =

{

1 if C ∈ G,
0 if C 6∈ G.

Finally, we describe the deeper idea of quasiconvexity due to Morrey [43, 44]. An integrand
f = f(A) is quasiconvex if

∫

Ω

f(∇z(x)) dx ≥
∫

Ω

f(A) dx = (Volume Ω)f(A) (17)

whenever z : Ω → R3 is smooth with z(x) = Ax for all x ∈ ∂Ω. Despite appearances, the condition
does not depend on Ω. Quasiconvexity of f has important implications for whether or not the
functional

I(y) =

∫

Ω

f(∇y) dx

attains a minimum subject to given boundary conditions. If the minimum is not attained then
although there are admissible y for which I(y) becomes arbitrarily close to its greatest lower bound,
there is no y which realizes this lower bound (just as there is no real number t > 0 that realizes
the lower bound zero of the function 1/t). In fact under suitable technical conditions quasiconvexity
implies that I attains a minimum, while lack of quasiconvexity is suggestive of nonattainment. If f
is quasiconvex then f is rank-one convex, that is the function g(t) = f(A + tc ⊗ N) is convex (i.e.
the tangents to the graph of g never lie below the graph) for any A, c and N . However the converse
is false (Šverák [53]).
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For martensitic transformations, the existence of twins implies immediately that ψ(·, θ) is not
rank-one convex, since in the corresponding rank-one directions the function g is minimized at exactly
two points. Hence ψ(·, θ) is not quasiconvex, suggesting that the minimum of Iθ is not in general
attained. In this case, we expect the deformation gradients ∇y(j) of a minimizing sequence for Iθ to
have a nontrivial Young measure corresponding to an infinitely fine microstructure, thus explaining
in the context of the elasticity model why fine microstructures are formed.

Even though ψ(·, θ) is not quasiconvex, quasiconvexity plays an important role in analyzing Iθ.
Let ψqc be the quasiconvexification of ψ, that is the greatest quasiconvex function less than or equal
to ψ(·, θ), defined by

ψqc(A, θ) = sup{f(A) : f quasiconvex, f(B) ≤ ψ(B, θ) for all B}. (18)

Then ψqc can be interpreted as being the macroscopic free-energy function corresponding to ψ.
(This interpretation follows from the relaxation theorem of Dacorogna [26], which, however, does not
strictly speaking apply to elasticity; for a discussion see Ball [4].) In particular we can consider the
quasiconvexification K(θ)qc of K(θ), namely the set defined equivalently as

K(θ)qc = {A : A minimizes ψqc(A, θ)}
= {ν̄ : ν an x-independent gradient Young measure with supp ν ⊂ K(θ)}.

More generally, gradient Young measures are characterized (see Kinderlehrer & Pedregal [38, 39]) by
the fact that ν̄x is a gradient and

∫

M3×3

f(A) dνx(A) ≥ f(ν̄x) (19)

for all quasiconvex f . Now the minors (subdeterminants) of A are up to linear combinations the
only functions f for which equality holds in (17). Thus from (19) applied to f + ±J we deduce the
minors relations

∫

M3×3

J(A) dν(A) = J(ν̄) (20)

for any minor J = J(A), that is for J(A) = Aij, J(A) = (cof A)ij, or J(A) = det A. These useful
and nontrivial relations can be verified explicitly for the special case of the Young measure (16) of a
simple laminate.

For martensitic transformations with θ < θc, K(θ)qc can be interpreted as the set of stress-free
macroscopic deformation gradients corresponding to zero-energy microstructures.

Unfortunately, there is no known tractable characterization of quasiconvexity, and it has been
shown by Kristensen [41] that there is no such local characterization. Thus, for example, there can
be no set of inequalities on f and its derivatives at an arbitrary matrix A which is necessary and
sufficient for f to be quasiconvex. Thus we are in the awkward position that the key mathematical
concept for the analysis of microstructure is shrouded in mystery.

4 Some successes of the theory

4.1 The crystallographic theory of martensite

As was shown by Ball & James [12], the nonlinear elasticity model incorporates the crystallographic
theory of martensite, due to Wechsler, Lieberman & Read [55] and Bowles & Mackenzie [24]. A
(classical) austenite-martensite interface is described by a minimizing sequence y(j) for Iθc

in which
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a simple laminate comprised of two twin-related martensitic variants with gradients A = R1Ur, B =
R2Us, where R1, R2 ∈ SO(3), meets undistorted austenite, represented by the constant deformation
gradient ∇y(j) = 1 at a habit plane with normal m. Because neither variant is compatible with
the austenite (that is there is in general no rank-one connection between SO(3) and SO(3)Ui), a
boundary layer is required to interpolate between the laminate and the austenite, the volume of this
layer tending to zero as j → ∞ (see Fig. 3).

habit
plane

m

λ/j

(1 − λ)/j

∇y(j) =

N

A
B

A

B
A

B

A
B

A
B

∇y(j) = 1

boundary layer

Figure 3: Mathematical description of an
austenite-martensite interface.

Figure 4: Deformation parameters η1, η2 allowing
classical and nonclassical austenite-martensite inter-
faces

The construction of such a minimizing sequence with Iθc
(y(j)) → 0 is possible if and only if

λA + (1 − λ)B = 1 + b ⊗ m for some λ, 0 < λ < 1 and vectors b,m. Solving for R1, R2, λ, b
and m leads to the formulae of the crystallographic theory. For example, in the case of a cubic to
tetragonal transformation there are 24 possible habit planes with λ = λ∗ or 1 − λ∗, where λ∗ =
1
2

(

1 −
√

2(η2

2
−1)(η2

1
−1)(η2

1
+η2

2
)

(η2

2
−η2

1
)2

+ 1
)

, and

m = (
1

2
χ(δ + ντ),

1

2
χκ(ντ − δ), 1), b = (

1

2
χζ(δ + ντ),

1

2
χζκ(ντ − δ), β), (21)

where ν = 1 for λ = λ∗, ν = −1 for λ = 1 − λ∗. Here δ = [(η2
2 + η2

1 − 2)(1 − η2
1)

−1]
1

2 , τ =

[(2η2
1η

2
2 −η2

1 −η2
2)(1−η2

1)
−1]

1

2 , ζ = (1−η2
1)/(1+η2), β = η2(η

2
1 −1)/(1+η2), χ = ±1. These solutions

exist provided the inequalities η2
1 + η2

2 < 2 if η1 > 1, η−2
1 + η−2

2 < 2 if η1 < 1 hold (see Fig 4).

4.2 The two well problem.

The general question of characterizing K(θ)qc for θ ≤ θc is open. However in the case when there are
just two martensitic variants, such as for orthorhombic to monoclinic transformatios, K(θ)qc can be
calculated using the minors relations (19). In this case we can take

K(θ) = SO(3)U1 ∪ SO(3)U2, (22)

where U1 = diag (η2, η1, η1), U2 = diag (η1, η2, η1) are the first two variants for a cubic to tetragonal
transformation.
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Theorem 4.1 (Ball & James [13, 10]). For K(θ) given by(22) K(θ)qc consists of those A ∈ M3×3
+

such that

AT A =





a c 0
c b 0
0 0 η2

2



 ,

where ab − c2 = η2
1η

2
2, a + b + 2|c| ≤ η2

1 + η2
2.

If y is invertible and ∇y(x) ∈ K(θ)qc for all x then y is a plane strain.

Since a plane strain cannot coincide on the boundary of a three-dimensional region Ω with a
linear mapping unless it is itself linear, this provides a case when we can rigorously prove that the
minimum of the energy is not attained.

Corollary 4.2 (Ball & Carstensen [7]). Let A ∈ K(θ)qc with A 6∈ K(θ). Then the minimum of
Iθ(y) subject to y|∂Ω = Ax is not attained.

4.3 The role of special deformation parameters

Certain microstructures are only geometrically possible if the deformation parameters satisfy special
relations. A case in point is provided by the analysis by Bhattacharya [16] of the wedge microstructure
observed in certain shape-memory alloys, in which austenite surrounds a wedge-shaped region of
martensite consisting of two simply-laminated plates meeting along a midrib plane. Bhattacharya
analyzed this microstructure for cubic to tetragonal and for cubic to orthorhombic transformations
and showed that it was only possible at zero energy if certain special relations held, and that these
relations were indeed nearly satisfied for alloys for which wedges are observed. In the case of a cubic
to tetragonal transformation there is a single relation

η2
1 =

(1 − η2
2)

2 + 4η2
2(1 + η2

2)

(1 − η2
2)

2 + 8η4
2

, (23)

and that the wedge must involve all three variants, with the microtwin planes in each plate meeting
at the midrib at 120◦. For other results in the same spirit see Bhattacharya [17], Pitteri & Zanzotto
[48].

5 Towards a more predictive theory

Although much new and useful information can be obtained from the theory described above, it is
not truly predictive of the microstructure morphology that arises in a given experimental situation.
For example, in the analyses of sections 4.1, 4.3 the basic microstructure geometry is assumed (guided
by experimental observation) and this geometry is then shown to be consistent with a zero-energy
microstructure provided various quantitative relations hold. The theory does not tell us why the
assumed microstructure geometry is preferred to others.

Of course, the problem of predicting microstructure geometry is a pattern formation problem,
which can only be satisfactorily treated using appropriate dynamic equations. Such a dynamic theory
should tell us what features of microstructure morphology are predictable, that is which should arise
in repetitions of the same experiment, and which are not. In principle, one might expect the concepts
of dynamical systems theory, such as invariant manifolds and attractors, to be important in such an
analysis. Unfortunately, to carry out such a programme at present seems out of reach, firstly because
it is not clear what dynamic equations to use (a key issue being the laws governing the motion of
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interfaces - see Bhattacharya, Purohit and B. Craciun [22]), and secondly because the mathematical
analysis of such systems is poorly developed. For example, the author is not aware of a satisfactory
three-dimensional treatment of motion of a single austenite martensite interface.

Nevertheless there are examples for which the static theory can be made somewhat more predic-
tive, or give some limited insight into the dynamic formation of patterns of microstructure, and we
discuss two of these.

5.1 Nonclassical austenite-martensite interfaces

Is there a reason why simple laminates of martensite are preferred in austenite-martensite interfaces,
or could a more complicated geometry arise, for example a double laminate (layers within layers
structure) or a fractal-like microstructure which refines in a self-similar way as the habit plane or
surface is approached? From a mathematical perspective, one difference between the double lami-
nate case and the fractal one is that the former can be represented by a gradient Young measure
(νx)x∈Ω that is independent of x in the martensite, whereas the latter corresponds to νx varying as
the habit plane or surface is approached. It turns out that for cubic to tetragonal transformations the
former case can be analyzed. The analysis, which does not make any extra assumptions about the
microstructure morphology in the martensite, reduces to determining the possible rank-one connec-
tions between SO(3) and the quasiconvexification K(θ)qc, where K(θ) = ∪3

i=1SO(3)Ui. Even though
K(θ)qc is unknown in this case, it turns out to be possible to determine the values of the deformation
parameters η1, η2 for which such rank-one connections are possible. In fact (see Ball & Carstensen
[6, 7]) 1 + b ⊗ m ∈ K(θ)qc for some b,m if and only if ηmin ≤ η−1

mid ≤ ηmax, where ηmin ≤ ηmid ≤ ηmax

are the numbers η1, η1, η2 in nondecreasing order (so that ηmid = η1). This region is shown in Fig.
4. Note that in the neighbourhood of the point η1 = η2 = 1 the region for which only nonclassical
interfaces are possible is cusped, suggesting that one is more likely to observe a classical interface
with simply-laminated martensite for such deformation parameters. However, the situation is not
quite as simple as this, since even in the region corresponding to classical interfaces planar nonclas-
sical interfaces are possible with a much larger set of normals m than the 24 allowed for classical
interfaces. Thus a nonclassical interface might be preferred if the conditions of the experiment (such
as the orientation of a temperature gradient) favoured one of these extra normals. Whether these
more complicated austenote-martensite interfaces will arise in suitable experiments, or whether they
are disfavoured for reasons outside the model, such as interfacial energy or dynamic effects, remains
to be determined.

5.2 Macrotwin formation by coalescence of martensitic plates

Boullay & Schryvers [23] made HRTEM observations of macrotwins in quenched Ni65Al35 polycrys-
tals (Fig 5). The macrotwin interfaces separate a pair of simple laminates of martensite. Although
it is natural to believe that these macrotwins arise via coalescence of impinging martensitic plates,
such a time evolution is too fast to observe. Does the static theory nevertheless provide any sup-
porting evidence for this scenario, or other insights? This alloy undergoes a cubic (bcc) to tetragonal
(bct) transformation. For macrotwins involving just two of the three tetragonal variants in the two
contingent laminates, the corresponding microtwin planes are close to orthogonal. Now the rank-one
connections required for the wedge microstructure are exactly the same as those needed for two
martensitic plates to be simultaneously compatible with the austenite and with each other across
the macrotwin plane. Thus, although the special relationship (23) holds approximately for Ni65Al35,
and macrotwins involving all three variants with microtwins meeting at nearly 120◦ are seen, Bhat-
tacharya’s analysis means that when only two variants are involved the corresponding martensitic
plates are never compatible at zero energy. Note that the precise structure at the macrotwin in-



5 TOWARDS A MORE PREDICTIVE THEORY 11

Figure 5: Low magnification image of crossing-type macrotwins. The insert shows details of the crossing
at twice the magnification. Bands of different grey levels correspond to different variants U1 and U2

Table 1: Rotations Q1 and Q2 that bring Plate II into compatibility with Plate I (κ1 = χ1 = ν1 = 1) and
the corresponding macrotwin normals N1 and N2. The direction of rotation is that of a right-handed screw
in the direction of the given axis. For the case κ2 = ν2 = 1, χ2 = −1 see the text.

Parameter Values Q1 Q2

κ2 χ2 ν2 Axis Angle N1 Axis Angle N2

-1 1 1 (.70,0,-.71) 1.64◦ (0,1,0) (.75,0,.66) 1.75◦ (1,0,0)
-1 -1 1 (0,.99,.16) 7.99◦ (1,0,0) (0,.99,-.14) 7.99◦ (0,1,0)
-1 1 -1 (.65,.48,-.59) 6.76◦ (.59,-.81,0) (.68,.50,.54) 6.91◦ (-.81,-.59,0)
-1 -1 -1 (-.48,.65,.59) 6.76◦ (-.81,-.59,0) (-.50,.68,-.54) 6.91◦ (.59,-.81,0)
1 1 -1 (-.54,.54,.64) 5.87◦ 1√

2
(1,1,0) (-.57,.57,-.59) 6.08◦ 1√

2
(1,-1,0)

1 -1 -1 (.60,.60,-.52) 7.37◦ 1√
2
(1,-1,0) (.62,.62,.47) 7.47◦ 1√

2
(1,1,0)

terface does not affect this conclusion since the jump condition (9) holds under the condition (10),
provided that the deformation is describable by elasticity. However, it turns out that the plates can
be nearly compatible. Without loss of generality we can assume that the first plate, Plate I, is given
by the choice of parameters κ1 = ν1 = χ1 = 1 in (21). Then any other distinct plate, Plate II, with
parameters κ2, ν2, χ2, is compatible with Plate I if subjected to a small prior rigid rotation Q, i.e.

1 + b1 ⊗ m1 = Q(1 + b2 ⊗ m2) + c ⊗ N (24)

for vectors c,N , |N | = 1. In the case κ2 = ν2 = 1, χ2 = −1 the two plates have macroscopic gradients
which are rigid rotations of each other, so that there this only one solution Q to (24) with c = 0. In all
other cases there are exactly two such rotations Q1, Q2 with corresponding vectors c1, N1 and c2, N2

respectively. The rotations Qi and normals Ni are shown in Table 1 taken from Ball & Schryvers
[14].

Note the orthogonality of N1, N2, a consequence of Theorem 2.1. From the table, we see that the
case when the plates are the most compatible, i.e. for which the angle of rotation is the least, is when
κ2 = −1, χ2 = 1, ν2 = 1, which is thus expected to be preferred on energetic grounds. In fact the
macrotwin normals observed for ‘crossing-type’ macrotwins correspond exactly to those in the table
for this case. Further, the larger angles of rotation for the case ν2 = −1 of reversed volume fractions
suggests why this situation was not seen by Boullay & Schryvers. In order to achieve compatibility at
the macrotwin plane, the microtwins bend slightly as they approach this plane. The corresponding
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angles and directions of rotations agree well qualitatively, and fairly well quantitatively, with those
observed, lending further confirmation to the coalescence scenario. For more details the reader is
referred to Boullay, Schryvers & Ball [23], and Ball & Schryvers [15, 14]. Much remains to be done
to complete our understanding of these macrotwins and their genesis.
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