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Abstract
The establishment of a functioning neuronal network is a crucial step in neural development. During this process, neurons 
extend neurites—axons and dendrites—to meet other neurons and interconnect. Therefore, these neurites need to migrate, 
grow, branch and find the correct path to their target by processing sensory cues from their environment. These processes 
rely on many coupled biophysical effects including elasticity, viscosity, growth, active forces, chemical signaling, adhesion 
and cellular transport. Mathematical models offer a direct way to test hypotheses and understand the underlying mechanisms 
responsible for neuron development. Here, we critically review the main models of neurite growth and morphogenesis from 
a mathematical viewpoint. We present different models for growth, guidance and morphogenesis, with a particular emphasis 
on mechanics and mechanisms, and on simple mathematical models that can be partially treated analytically.
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“!Como el entomólogo a caza de 
mariposas de vistosos matices, mi 
atención perseguía, en el vergel 
de la substancia gris, células de 
formas delicadas y elegantes, las 
misteriosas mariposas del alma, 
cuyo batir de alas quién sabe si 
esclarecerá algún día el secreto 
de la vida mental!”
Santiago Ramón y Cajal, 
Recuerdos de mi vida, 1917.

1 Introduction

The human brain contains an estimated ∼ 86 billion neurons 
(Azevedo et al. 2009) that interconnect through numerous 
slender processes, axons and dendrites, globally known as 
neurites. A typical nerve cell has one long axon, that trans-
mits nervous signals, and multiple branching dendrites, that 
receive signals (Striedter 2016, p. 35), see Fig. 1. During 
early neuron development, multiple neurites sprout from 

the cell body (or soma). During this phase, typically, one 
incipient neurite comes to outgrow the others and differen-
tiates into an axon (Kiryushko et al. 2004). This axon then 
migrates through the extracellular matrix in order to make 
synaptic connections with other distant neurons or tissues.

It is now understood that this fundamental and robust 
process depends on many different genetic, biochemical 
and physical factors. Mathematical modeling has become a 
prominent actor of developmental biology and is crucial to 
achieve a rational organization of the intricate physical pro-
cesses involved in neuronal development. Here, we provide 
a critical, but not exhaustive, review of about three decades 
of mathematical modeling of axon and dendrite develop-
ment. This paper is meant to complement existing reviews 
that emphasize physical and chemical mechanisms of growth 
and guidance (O’Donnell et al. 2009; Franze and Guck 2010; 
Franze 2020; Seo et al. 2020; Suter and Miller 2011; Miller 
and Suter 2018; Mortimer et al. 2008; McCormick and 
Gupton 2020; Abuwarda and Pathak 2020; Dickson 2002; 
Franze et al. 2013; Dent and Gertler 2003). computational 
and numerical models (Simpson et al. 2009; Kiddie et al. 
2005; Graham and Van Ooyen 2006; Van Ooyen 2011, 
2003; Ascoli 2002; Maskery and Shinbrot 2005; Goodhill 
2018), or mechanical models (Goriely et al. 2015a). Our 
particular emphasis is on analytically tractable mathematical 
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models that provide key insights into possible mechanisms 
and properties emerging from nonlinear couplings, and the 
combination of different physical phenomena such as mate-
rial transport, growth and mechanics.

2  Biological background

Neurite motility is mediated by the growth cone (Fig. 1), a 
highly dynamic actin-supported extension at the tip of the 
neurite that performs both sensory and locomotory func-
tions. Within the growth cone, the cytoskeleton is mostly 
constituted of actin filaments (F-actin) that organize in 
a lamellipodium-like structure. Centrifugally arranged 
actin filaments polymerize at the periphery of the growth 
cone (P-domain) and undergo a treadmill-like retrograde 
flow mediated by myosin II motors in a transition zone 
(T-domain), where actin depolymerizes. Combined with 
focal adhesions that mechanically couple F-actin with the 
substrate (Chan and Odde 2008), this continuous movement 
generates forces that propagate through a connecting region 
(C-domain) to the trailing part of the neurite, the neurite 
shaft (Franze 2020), and mediate neurite motility.

The neurite shaft is a filament-like section that con-
tains the neurite cytoplasmic compartment (Kevenaar and 
Hoogenraad 2015), composed mainly of stabilized micro-
tubules cross-linked by microtubule-associated proteins 
(MAP) (Maccioni and Cambiazo 1995), F-actin and neu-
rofilaments. Microtubules are vital for intracellular traf-
ficking (Caviston and Holzbaur 2006) and for the neurite’s 
structural integrity. The microtubule array is itself coated 
with an actomyosin cortical sheath generating contractile 
stresses (Franze 2020; Jülicher et al. 2007) that under cer-
tain circumstances may cause neurite retraction (Recho et al. 
2016; Franze et al. 2009a). The inner and outer layers of the 
neurite shaft are connected through special proteins ensur-
ing force transmission between the two structures (Coles 
and Bradke 2015).

We define neurite growth as the irreversible elongation of 
the neurite shaft supported by addition of new cellular mate-
rial (Goriely 2017; Goriely et al. 2015a). The precise mecha-
nisms underlying neurite growth have been debated for about 
40 years and remain controversial. An important idea in the 
80s–90s was that microtubules are stationary during neurite 
extension (Miller and Joshi 1996; Lim et al. 1990; Okabe 
and Hirokawa 1990; Takeda et al. 1995; Sabry et al. 1995) 
and assemble at the neurite distal tip to elongate the shaft 
(Dent and Gertler 2003; Goldberg and Burmeister 1986; 
Bamburg et al. 1986), a process regulated through growth 
cone traction forces (Buxbaum and Heidemann 1988, 1992; 
Lamoureux et al. 1989; Heidemann et al. 1990). Thus, a 
vast literature has focused on slow axonal transport (Miller 
and Heidemann 2008; Roy 2014, 2020), the general pro-
cess by which cytoskeletal proteins, such as neurofilaments, 
actin and tubulin (the building unit of microtubules), transit 
along the neurite. The mechanisms of slow axonal transport 
have been debated for decades and remain relatively poorly 
understood (for a review of models, see Bressloff and Newby 
2013).

To date, direct observation of this tip growth process is 
lacking. Moreover, this hypothesis seems in apparent con-
tradiction with the finding that neurites isolated from a sub-
strate may stretch rapidly when subject to externally applied 
deformation or force, a process which does not seemingly 
involve the growth cone (Dennerll et al. 1989; Bray 1984; 
Rajagopalan 2010; Zheng et al. 1991; Lamoureux et al. 
2010; Heidemann et al. 1997).

The idea that the shaft is stationary has been dramatically 
challenged by more recent investigations which have clearly 
evidenced that the neurite shaft stretches during growth cone 
migration (Miller and Suter 2018; Athamneh et al. 2017; 
Lamoureux et al. 2010; O’Toole et al. 2008a; Miller and 
Sheetz 2006). These observations are partly consistent with 
a viscoelastic creep of the shaft under prolonged traction, 
mediated by adhesion (O’Toole et al. 2008a). It is now gen-
erally understood that neurite growth is largely controlled by 

Fig. 1  Schematic of a typical neuron showing the soma, the dendrites 
and the axon with its growth cone, prior to synaptogenesis. Close-up 
shows a schematic representation of the cytoskeleton in a migrating 
neurite. The shaft (on the left) is essentially composed of cross-linked 
microtubules surrounded by an actomyosin sheath. The growth cone 
is a lamellipodium-like structure that confers motility to the neurite, 
probes its environment using sensory filopodial protrusions and pro-
duces traction forces applied to the shaft promoting neurite extension
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mechanics and depends on the complex interplay of active 
pushing and pulling forces mediated by growth cone trac-
tion, microtubule assembly, shaft viscoelasticity and con-
tractility, and adhesion (Recho et al. 2016; Franze 2020; 
Miller and Suter 2018; Suter and Miller 2011).

To reach their functional targets, axons must extend along 
precise paths. This early phase, known as axon guidance (or 
pathfinding), crucially relies on cues from the environment 
which are processed to instruct growth cone trajectory. This 
includes chemotaxis primarily, i.e., guidance of axons by 
gradients of diffusing chemicals like Slits or Netrins (Mor-
timer et al. 2008; Plachez and Richards 2005; Chilton 2006); 
but also haptotaxis, i.e., guidance by gradients in adhesion 
or substrate-bound chemicals (Sundararaghavan et al. 2011); 
durotaxis (or mechanotaxis), i.e., guidance by gradients in 
substrate stiffness (Abuwarda and Pathak 2020; Koser et al. 
2016; Espina et al. 2021); electrotaxis (or galvanotaxis), 
i.e., guidance by electric field (Yao and Li 2016; Hamid and 
Hayek 2008; Gokoffski et al. 2019; Shapiro et al. 2005); 
curvotaxis, i.e., guidance by substrate curvature (Smeal 
et al. 2005); or guidance assisted by guidepost cells such 
as radial glial cells (Franze et al. 2009b; Rakic 1972) or 
Schwann cells (Thompson and Buettner 2006). The growth 
cone is the main sensory structure at play in all these guid-
ance modalities.

Once an axon has reached its target, typically neurons or 
other target effector cells, it forms synapses (synaptogen-
esis) and is therefore bound to these cells. Then, the axon 
shaft must extend to accommodate the subsequent growth 
of the surrounding tissue. In this stretch growth phase, spec-
tacularly fast axon extension may take place, dictated by the 
growth of the animal’s body (Smith 2009) and governed by 
forces (Pfister et al. 2004). It is now understood that main-
taining a proper tension along the neurite is important in 
normal function (Siechen et al. 2009). Body growth imposes 
strong kinematic constraints on the neuron, which must then 
sustain sufficient cell material supply while performing fast 
remodeling along the stretched neurite in order to maintain 
its structural integrity and avoid traumatic levels of strain. 
Several authors have modeled and studied this problem, e.g., 
O’Toole and Miller (2011); O’Toole et al. (2008b); Purohit 
and Smith (2016), who have examined the role of stretch-
ing in controlling the flux of material along the shaft (see 
Sect. 3.3). However, this problem remains poorly under-
stood; yet, it is nonetheless crucial for instance in the design 
of nerve regeneration therapies.

3  Modeling neuritic growth

Neurite growth involves different coupled mechanisms 
that have not been fully resolved. Initially, growth was 
approached from the point of view of transport, mass supply 

and addition, i.e., as a process entirely governed by the avail-
ability of given substances required for growth. In particular, 
many authors have focused extensively on the transport and 
assembly of tubulin at the tip of the neurite, long viewed 
as the main growth determinant. Alternatively, experi-
ments have clearly shown that neurons grow in response to 
applied mechanical forces. It is then natural to model growth 
in terms of forces, strains, stresses and rheology. Here, we 
consider both approaches, starting with transport models.

3.1  Transport‑limited growth

By definition, growth is related to the notion of mass uptake 
(Goriely 2017). One of the main growth determinants is 
soluble tubulin that was assumed to assemble at the end 
of the neurite. In young neurites, the new cell material is 
supplied by the soma. Therefore, the cell must first produce 
new tubulin units (and other cell constituents) and then carry 
them along the shaft, using diffusion and active transport, to 
reach the end of the neurite where growth takes place. This 
process is at the core of numerous mathematical works (see 
the reviews by Kiddie et al. 2005; Graham and Van Ooyen 
2006; Van Ooyen 2011, 2003).

3.1.1  Zero‑dimensional models

A first approach consists in modeling the neurite by a small 
number of compartments (Janulevicius et al. 2006; Samuels 
et al. 1996; Purohit and Smith 2016; Van Veen and Van Pelt 
1994; Lin et al. 2020). Each compartment is associated with 
one or more chemical concentrations and exchanges material 
with other compartments via diffusion and/or active trans-
port by motor proteins. For instance, in a model such as the 
one proposed by Van Veen and Van Pelt (1994), the neurite 
is modeled by two compartments, the soma, where the tubu-
lin dimer concentration c0 is defined, and the growth cone 
with tubulin concentration c1 (Fig. 2a). The two compart-
ments are virtually separated by a distance � that represents 
the neurite length.

Growth relies on assembly and disassembly of tubulin 
at the neurite tip, following a polymerization reaction of 
the type

where Tn denotes a microtubule of length n for n > 1, or a 
tubulin dimer if n = 1 ; and k+ and k− are rate constants. This 
process implies the kinetic law

(1)Tn + T1

k+

−⇀
↽−
k−

Tn+1,

(2)
1

e

d�

dt
= k+c1 − k−,
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where e represents the typical elongation due to the addition 
of one tubulin dimer (in unit length per mole of tubulin). 
Growth is coupled to c1 since it consumes tubulin ( k+ ), and 
conversely, disassembled tubulin is reintroduced ( k− ) in the 
available pool of tubulin at the tip. In addition, tubulin is 
supplied by the soma through diffusion. A Fickian flux J is 
assumed, where tubulin diffuses with diffusion constant D as

with A the cross-sectional area of the neurite’s cytoplasmic 
compartment. Summing up all contributions, we obtain

with V a typical volume where reaction takes place. To close 
the system, we take into account the production of tubulin 
by the soma with rate S:

where we have used the same volume V introduced previ-
ously. Choosing the time, length and concentration units 
to be, respectively, A/D, SAe/D and SA/VD, we obtain the 
non-dimensionalization

(3)J = AD
c1 − c0

�
,

(4)V
dc1

dt
= J + k− − k+c1,

(5)V
dc0

dt
= S − J,

(6)
dc̃0

dt̃
= 1 − 𝛼

c̃1 − c̃0

�̃
,

(7)
dc̃1

dt̃
= −𝛾 c̃1 + 𝛽 + 𝛼

c̃1 − c̃0

�̃
,

where � = AD∕Se , � = k−∕S and � = Ak+∕VD are dimen-
sionless. For simplicity, we henceforth drop the tildes and 
work with dimensionless variables.

We stress that the length of the neurite � is a dynamical 
variable, and not a spatial dimension of the problem. Hence, 
we have an autonomous system of three nonlinear ordinary 
differential equations for the variables c0 , c1 and � , which can 
be analyzed using dynamical systems theory. This system 
has an exact solution given by

with

see dashed lines in Fig. 2b–d. This solution also fully cap-
tures the asymptotic dynamics, and for positive initial condi-
tions we have that as t → ∞ , c0 ∼ c01t , � ∼ vt and c1 → c00 . 
Another interesting feature of the model that can be observed 
from (8) is that for small initial concentrations c1(0) < 𝛽∕𝛾 
and c0(0) > c1(0) , i.e., when disassembly dominates over 
assembly, we have �̇ < 0 , and hence, we have a transient 
neurite collapse. However, under the same conditions, we 
have ċ1 > 0 . Hence, c1 will increase in time until �̇ ≥ 0 at 
which time the growth of the neurite resumes.

(8)d�̃

dt̃
= 𝛾 c̃1 − 𝛽,

(9)c0(t) = c00 + c01t, c1(t) = c00, �(t) = vt,

(10)c00 =
�

�
+

1

2�

�√
�(� + 4) − �

�
,

(11)c01 = 1 −
1

2

�√
�(� + 4) − �

�
,

(12)v =
1

2

�√
�(� + 4) − �

�
,

(a) (b) (c) (d)

Growth

Collapse

Growth

Numerical
Asymptotic

Fig. 2  Two-compartment model for neurite growth. a Car-
toon of a neuron represented by two compartments, represent-
ing the  soma and the growth  cone (associated with respective con-
centrations c0 and c1 ). b–d Log–log plot of � , c0 and c1 versus time 

t based on (6–8), for different initial concentrations, from left to 
right: b c0(0) = c1(0) = 0.8 < 𝛽∕𝛾 ; c c0(0) = c1(0) = 1 = �∕� ; d 
c0(0) = c1(0) = 2 > 𝛽∕𝛾 . Other parameter values: �0 = 0.1 , � = 10 , 
� = 1 and � = 1
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A drawback of the solution (9) is that both soma concen-
tration c0 and length � increase without bound. In reality, 
tubulin dimers may inhibit the translation of new tubulin 
(Gay et al. 1989), and thus, cells have a limit on c0 and may 
generally use a feedback loop to control it. It is also clear 
that the transported proteins have finite half-lives, which 
imposes a theoretical limit on neurite length (Miller and 
Samuels 1997; McLean et al. 2004).

An interesting extension of the two-compartment model 
is the application to multiple neurites (Van Ooyen et al. 
2001; Samuels et al. 1996; Toriyama et al. 2010; Fivaz et al. 
2008) or neurites with multiple branches (Li et al. 1992; 
Van Veen and Van Pelt 1994; Hjorth et al. 2014). For the 
sake of illustration, consider N > 1 neurites growing from 
the same soma, as illustrated in Fig. 2a. Defining ci to be the 
concentration at the tip of the ith neurite of length �i , the flux 
for neurite i is defined following Samuels et al. (1996) as

where we have added a growth-independent transport con-
trolled by a parameter � , and a growth-dependent transport 
controlled by a parameter � . The last term models a growth-
sensitive feedback loop in which a faster-growing neurite 
receives a larger influx of tubulin. Hence, the N-compart-
ment model leads to a system of 2N + 1 differential equa-
tions for c0 , ci and �i . The last term in (13) introduces nonlin-
earity and possible instabilities. Indeed, this new augmented 
system is very sensitive to the choice of initial lengths (but 
relatively insensitive to differences in initial concentrations). 
Since neurites arise from the soma at different times, we 
initiate the simulation with different initial lengths �i(0) . For 
large values of the feedback parameter � (here � = 100 ) and 
neglecting growth-independent transport ( � = 0 ), a winner-
takes-all instability is observed, where one neurite comes to 
outgrow the others by monopolizing tubulin resources. An 
example of such phenomenon is shown in Fig. 3b where we 
have simulated N = 4 neurites with initial lengths �0 = 1 , 
0.99, 0.98 and 0.97. This mechanism provides insight into 
the mechanism by which a neurite differentiates into an axon 
during early neuronal development. Note, however, that as 
soon as 𝜖 > 0 , the shortest neurites, whose growth is initially 
inhibited by the dominant neurite, catch up at later times as 
concentrations become homogeneous across the N tips, as 
shown in Fig. 3c with � = 0.1.

The prediction that the initially longest neurite almost 
systematically becomes the axon is probably inaccurate in 
reality, as exemplified by situations where an initially shorter 
neurite outgrows longer ones (see, for instance, Fig. 6 in 
Fanti et al. 2008). In fact, the initial length of neurites is one 
among many other endogenous and exogenous factors that 
may participate in breaking the symmetry. Nevertheless, this 

(13)Ji = �
ci − c0

�i

+ �c0 + �
d�i

dt
c0,

simple model, based on the classic concept of patterning 
by autocatalysis and lateral inhibition (Turing 1952; Gierer 
and Meinhardt 1972; Meinhardt and Gierer 2000), shows 
how a simple competition mechanism can trigger symmetry 
breaking and prevent the formation of multiple axons (an 
idea further supported by later investigations, e.g., Fivaz 
et al. 2008; Toriyama et al. 2010; Takano et al. 2015, 2017; 
Inagaki et al. 2011).

3.1.2  One‑dimensional models

The main postulate of compartmental approaches is that the 
concentration profile along a neurite is linear and defined by 
only two quantities ci and c0 at both ends of the neurite. For a 
long neurite such as an axon, diffusion and transport are not 
instantaneous, and proteins may degrade significantly before 
reaching the tip. Hence, delay and spatial heterogeneity in 
cellular material concentrations will appear along the neu-
rite. Thus, the coarse two-compartment approximation (3) 
needs to be refined by considering the value of the concen-
tration at every point along the neurite. A possible generali-
zation of the compartmental approach consists in consider-
ing neurites made up of many concatenated compartments 
representing short contiguous portions of the neurite shaft, 
where each segment exchanges solutes with its adjacent 
neighbors (Hely et al. 2001; Kiddie et al. 2005; Graham and 
Van Ooyen 2001, 2004; Hjorth et al. 2014). Bulk growth can 
be simulated by growing and subdividing each compartment. 
Alternatively, new compartments may be added at the tip, 
to simulate tip growth. Mathematically, it is interesting to 
consider the continuum limit of these approaches through 
a proper partial differential equations formulation of the 
fundamental convection–diffusion problem, and then to use 
numerical discretization methods when needed (Smith and 
Simmons 2001; McLean et al. 2004; McLean and Graham 
2004, 2006; Graham et al. 2006; Diehl et al. 2014, 2016; 
Zadeh and Shah 2010). Figure 4, reproduced from McLean 
et al. (2004), gives the geometry of the problem and the 
principal mechanisms involved. The continuity equations 
express conservation of each substance considered (e.g., 
proteins, vesicles, mitochondria). Here, we consider one dif-
fusing substance (e.g., tubulin) with concentration c obeying

In this expression J is the anterograde flux of material (from 
the soma and oriented toward increasing x), and S represents 
any source or sink. The flux J = Jd + Ja includes the regular 
diffusion Jd = D�c∕�x with D the molecular diffusivity, and 
a kinesin-mediated flow Ja = ac with a an effective active 
transport velocity.

Typically, transported proteins may also decay with rate 
constant � , which is included into a sink term S = −�c . In 

(14)
�c

�t
+

�J

�x
= S(x, t).
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the absence of diffusion ( D = 0 ), (14) supports a steady 
state solution c = c0 exp(−�x∕a) , where c0 is the concen-
tration of tubulin in the soma. This solution identifies a 
characteristic length of a∕� that may be interpreted as a 
maximal length for the neurite (Miller and Samuels 1997).

Several boundary constraints have been used. For the 
proximal boundary conditions, we can specify at the soma, 
either the concentration c|0,t = c̃0(t) (McLean and Graham 
2004; Diehl et al. 2014, 2016) or the flux �c∕�x|0,t = �0c(0, t) 
(McLean et al. 2004; McLean and Graham 2006; Graham 

(a) (b)

(c)

Fig. 3  Multiple neurites. a Compartmental model of a neuron com-
posed of one soma (white) and N = 4 neurites with tip concentrations 
ci (blue). b–c Example simulations, based on Samuels et  al. (1996), 
with � = 0 b and � = 0.1 c. Log–log plots show neurite lengths ver-

sus time (left) and concentrations versus time (right). Parameter val-
ues for both simulations: � = 10 , � = 0 , � = 1 , � = 100 ; initial con-
centrations: ci(0) = 1 for all i = 0, 1, 2, 3, 4 ; initial lengths: �1 = 1 , 
�2 = 0.99 , �3 = 0.98 and �4 = 0.97

Fig. 4  Schematic showing the 
geometry of the partial differ-
ential equation problem and the 
principal mechanisms involved. 
Image reproduced from McLean 
et al. (2004) (with permission 
from The Royal Society)
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et al. 2006). The distal boundary condition is given by a flux 
that models the absorption of tubulin by the growth process. 
McLean et al. (2004) use, for instance, a flux boundary con-
straint of the form

where �
�
 and �

�
 are constants related to assembly and disas-

sembly of tubulin, respectively. Growth is then modeled by 
adapting (2) in terms of the Stefan condition,

which expresses the displacement of the distal boundary 
of the domain, depending on the availability of tubulin 
at the neurite tip. Moving-boundary problems are notori-
ously difficult to solve. However, in one dimension, the 
domain size can be fixed through the change of variable 
y(x, t) = x∕�(t) ∈ [0, 1] . Equation (14) is then recast as

with c̃(y, t)∶=c(�y, t) for all y ∈ [0, 1] , and where �(t) is gov-
erned by (16).

The full time-dependent problem is analytically intracta-
ble in general, and numerical approaches are necessary (see, 
for instance, the simulation by Diehl et al. 2016, shown in 
Fig. 5). However, focusing on the steady regime, McLean 
et al. (2004); McLean and Graham (2004); Graham et al. 
(2006) show that the neurite reaches a uniquely defined 
final length when tubulin degradation is considered (see 

(15)�c∕�x|x=�(t),t = −�
�
c(�(t), t) + �

�
,

(16)
1

e

d�

dt
= k+c(�(t), t) − k−,

(17)
𝜕c̃

𝜕t
+

1

�

(
a − y

d�

dt

)
𝜕c̃

𝜕y
−

D

�2

𝜕2c̃

𝜕y2
= S(y�, t),

also Miller and Samuels 1997) and grows without bound 
otherwise (as in Van Veen and Van Pelt 1994).

Overall, these 0D and 1D models generally predict a 
decrease in tubulin concentration toward the tip, as in the 
0D Van Veen–Van Pelt model or the 1D McLean–Graham 
approach. It can be noticed, however, that the boundary 
condition (15) used by McLean and Graham (2004) actu-
ally neglects the moving boundary and is not consistent 
with the expression of the flux. To resolve this issue, Diehl 
et al. (2014) represent the growth cone as a finite volume 
with tubulin concentration cgc , where tubulin polymeriza-
tion is modeled separately through an ordinary differential 
equation. Therefore, the distal boundary constraint con-
sists in enforcing the continuity of c at the interface, i.e., 
c(�(t), t) = cgc (rather than a flux). This modification of the 
original model results in very different, non-monotonic, 
concentration profiles that show an accumulation of tubulin 
near the tip when transport is faster than elongation (Fig. 5). 
Experimentally, this is reminiscent of the distal accumula-
tion of MAPs reported by Black et al. (1994), but is, how-
ever, inconsistent with the nearly uniform concentration 
of mitochondria observed by O’Toole et al. (2008b) (see 
Sect. 3.3) that may be explained by a slowdown of transport 
toward the tip (as also suggested by Hoffman et al. 1985; 
Watson et al. 1989).

The general approach presented here is based on the 
idea that elongation is governed by microtubule assembly 
at the tip, and that high tubulin concentration causes faster 
growth (16). This assumption has not been directly demon-
strated experimentally and is partly challenged by recent 
observations, such as those made by Ren and Suter (2016) 
in pausing Aplysia neurites (see also the comment by Miller 
and Suter 2018). When the growth cone pauses, it rapidly 
increases in cell content due to transport, which correlates 
with a rapid increase in growth cone size. Yet, the growth 
cone neck does not advance, indicating that neurite growth 
is limited by growth cone advancement, rather than transport 
and microtubule assembly. In addition, this view neglects 
other rate-limiting constituents such as MAPs, neurofila-
ments, mitochondria or membrane lipids, as well as mechan-
ical forces. Several models have addressed the modulation 
of tubulin assembly by forces, such as Buxbaum and Heide-
mann (1988, 1992), or, more recently, Purohit (2015), who 
modified the Van Veen–Van Pelt model to include mechani-
cal regulation of tip growth. In the next section, the focus is 
on the mechanical models of neurite growth.

3.2  Mechanically mediated growth

An important aspect of neuronal development involves 
regulation through physical forces (Mutalik and Ghose 
2020; Franze 2020; Suter and Miller 2011; Franze et al. 
2013; Miller and Suter 2018). In particular, the initiation 

Fig. 5  Axon growth and collapse as a result of a piecewise constant 
soma concentration. The tubulin concentration c(x, t) in the axon 
is plotted over time and space. Image reproduced from Diehl et  al. 
(2016) (with permission from Springer)
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and growth of neurites may be induced directly by forces 
applied on the neurite (Heidemann and Buxbaum 1990; Bray 
1984; Zheng et al. 1991; Dennerll et al. 1989). For example, 
Zheng et al. (1991) showed that the initiation of axons of 
chick sensory neurons can be triggered experimentally by 
the application of tension on the surface of the cell body. 
Then, further elongation can be induced by towing the neu-
ron with a glass needle. The deflection of the needle tip can 
be used as a control to apply constant force. Strikingly, these 
experiments demonstrate that growth rates increase with 
applied forces. While it remains unclear whether neurites 
undergo tip growth, an alternative paradigm has emerged 
more recently, where forces drive the fluid-like expansion of 
the neurite shaft, while transport provides the material nec-
essary to support elongation through mass addition (Miller 
and Suter 2018; Suter and Miller 2011).

To model the role of forces acting on the neuron and its 
internal components, we start with a system composed of 
a single isolated unit (zero-dimensional models) subject to 
forces, before considering more complex models with mul-
tiple components and with spatial variations in one dimen-
sion. In contrast to Sect. 3.1, the problem of material supply 
will be considered here as non-limiting.

3.2.1  Zero‑dimensional models

It is well appreciated that isolated neurites respond elastically 
under rapid plucking (Heidemann et al. 1997), and creep irre-
versibly without thinning when subject to prolonged over-
stretch (Dennerll et al. 1989; Bray 1984; Heidemann et al. 
1997; Pfister et al. 2004). Typical experimental studies of 
mechanically mediated neurite growth consider isolated neu-
rites subject to imposed displacement or force. To model the 
mechanical response of neurites in such condition, spring-and-
dashpot-type models have been used (Dennerll et al. 1989; 
Bernal et al. 2007; Li and Qin 1996; O’Toole et al. 2015; Lin 
et al. 2020) where the entire neurite is represented as a sin-
gle unit with no spatial variation. A more detailed approach 
emphasized here consists in viewing the neurite as a morphoe-
lastic tubular compartment (Anthonisen and Grütter 2019; 
Goriely et al. 2015a; Goriely 2017; Wang and Kuhl 2019; 
Holland et al. 2015). Morphoelasticity (Goriely 2017) is an 
extension of nonlinear elasticity which provides a general 
mechanical description of growth based on a multiplicative 
decomposition of the deformation gradient (Rodriguez et al. 
1994). It is a natural framework to represent nonlinear defor-
mations along the neurite, as well as more complex multidi-
mensional processes such as axon beading (Riccobelli 2021) 
or turning (García-Grajales et al. 2017). In particular, mor-
phoelasticity naturally takes into account changes in cross-
sectional area, which has been used experimentally as an indi-
cator of growth (O’Toole et al. 2008a; Lamoureux et al. 2010), 
as well as arbitrary nonlinear elastic response functions. The 

application of morphoelasticity to axon growth, elasticity and 
damage is extensively discussed in Goriely et al. (2015a). In 
particular, one core idea of morphoelastic modeling that dif-
fers in spirit with modeling through spring and dashpots is the 
particular focus on biological mechanisms. The extra variables 
introduced in the theory represent effects such as remodeling 
and addition of mass. The overall behavior of such systems 
under loads, namely its rheology, is then an emergent property 
rather than a choice of constitutive law based on experimental 
observations.

A neurite is represented initially by a homogene-
ous stress-free cylinder �0 of cross-sectional area A0 and 
length L0 (Fig. 6a). We assume that the neurite is fixed at 
one end (defined as the soma). At a later time t, the current 
(observed) configuration of the neurite is another cylin-
der � with cross section a(t) and length �(t) . We denote by 
�0 =

(
X0, Y0, Z0

)
∈ �0 and � = (x, y, z) ∈ � the positional 

vectors in the initial and current configuration, respectively. 
Since we do not allow spatial variations, the deformation gra-
dient �∶=��∕��0 is uniform across the whole domain and is 
given by the tensor � = diag

(
�, �⟂, �⟂

)
 , with � and �⟂ the 

longitudinal and transverse stretches.
The main postulate of morphoelasticity consists in express-

ing the deformation gradient in terms of two tensors: a growth 
tensors � due to the change of volume or internal reconfigura-
tion, which is stress-free, and an elastic tensor � , that charac-
terizes the elastic response, and generates stress (Rodriguez 
et al. 1994). Constitutively, these two tensors are multiplica-
tively coupled via

where � = diag
(
�, �⟂, �⟂

)
 and � = diag

(
� , �⟂, �⟂

)
 . The 

growth deformation transforms the initial cylinder �0 into 
a new intermediate cylinder �g(t) of length L(t) = �(t)L0 
and cross-sectional area A(t) = �⟂(t)A0 , whereas the elas-
tic part of the deformation transforms the grown cylinder 
�g(t) into the observed cylinder �(t) with � = �⟂(t)L(t) and 
a(t) = �⟂(t)A(t) (Fig. 6a).

A possible kinetic law that captures the stretch-induced 
growth of the neurite is the Bingham-type relation

where k is a kinetic constant, and �c ≥ 1 is a critical stretch 
above which growth may occur, as enforced by the ramp 
function (⋅)+ = max (0, ⋅) (Anthonisen and Grütter 2019; 
Goriely 2017). Below this threshold, deformation is purely 
elastic. For simplicity, we further assume that the neurite 
maintains a homeostatic cross-sectional area A = A0 in the 
grown configuration, which implies �⟂ = 1 . Kinematically, 
�̇�∕𝛾 is a natural definition for the rate of growth, related 
to the spatial velocity gradient of continuum kinematics 

(18)� = � ⋅�,

(19)
1

�

d�

dt
= k

(
� − �c

)
+
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(Holzapfel 2000), and is the natural choice for growth pro-
cesses that occur uniformly in a region. For growth pro-
cesses that are restricted to a physical region the choice of �̇� 
rather than �̇�∕𝛾 in (19) would be a better modeling choice. 
Physically, (19) captures the stretch-and-intercalation pro-
cess that has been proposed as a possible mechanism for 
bulk growth (Suter and Miller 2011; Holland et al. 2015), 
where the product k

(
� − �c

)
+
 phenomenologically encom-

passes thermodynamical processes and cellular regulation 
pathways involved in intercalation which we ignore here. We 
note that similar laws have been used to describe the strain-
induced growth of plant cell walls (Lockhart 1965; Boudon 
et al. 2015; Goriely et al. 2008; Ambrosi et al. 2019; Ali 
et al. 2014; Bozorg et al. 2016; Zhao et al. 2020).

Next, we need to specify the geometric constraint or load 
applied to the system. This choice is motivated by the experi-
mental setting or biological scenario considered. Experimen-
tally, various methods have been used to control either the 
length of the neurite (Bray 1984; Purohit and Smith 2016) or 
the applied tension (Dennerll et al. 1989; Heidemann et al. 

1997). In vivo, we may assume that integrated neurites bound 
to the body are subject to an imposed displacement, insofar as 
their internal tension remains small and does not itself affect 
the growth of the embedding medium. In this case, �(t) is a 
prescribed function, and we may solve (19) using the identity 
� = �∕�:

where �∶=1∕k�c defines a timescale for growth, and where 
we have taken �(0) = 1 and 𝛼 > 𝛼c.

For a ramped traction of the form �(t) = �0 + t∕�� , with �0 
a constant and �′ a characteristic time of traction, (20) can be 
integrated to obtain

(20)�(t) = e−t∕� + k ∫
t

0

�(�)e−(t−�)∕� d�,

(21)

�(t) =
t

�c�
�
+

(
�0
�c

−
�

�c�
�

)
+

(
1 −

�0
�c

+
�

�c�
�

)
e−t∕� .

(a) (b)

(c) (d) (e)

Fig. 6  Zero-dimensional morphoelastic model of neurite growth a 
Multiplicative decomposition of the stretch � from initial (stress-
free) configuration (with length L0 ), to intermediate, stress-free 
configuration (with length L), to current configuration (with length 
� ). The multiplier � accounts for the anelastic deformation of the 
neurite, while � quantifies the elastic stretch that results in mechani-
cal stress. b Cartoon illustrating the localized growth model where 
growth takes place only in the axon hillock. The basal zone (red) is 
the only part that grows. Growth is frozen when the considered mate-

rial point exists the hillock. c Stretch-and-hold experiment �(t) = �0 . 
Plot of �(t) , �(t) and �(t) versus normalized time k�ct . All stretches 
are normalized as x → (x − 1)∕

(
�0 − 1

)
 . d, e Speed-controlled trac-

tion experiment �(t) = 1 + t∕�� simulated with both d the exponen-
tial growth model (19) and e the linear growth model (30). Log–log 
plot of �(t) − 1 , �(t) − 1 and �(t) − 1 vs. normalized time k�ct . Dashed 
lines show the asymptotic approximations. Parameters: �c = 1.1 , 
�0 = 1.5 , k = 1 , �� = 5�
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In a stretch-and-hold experiment with �0 ≥ �c and �� → ∞ , 
the axon is instantly stretched from its stress-free configura-
tion L0 to a fixed length �0L0 . In this case, the neurite relaxes 
exponentially (Dennerll et al. 1989), see Fig. 6c, and reaches 
a homeostatic stretch given by the critical yield stretch �c.

Alternatively, in a speed-controlled experiment, �0 = 1 
with �′ finite, the axon is pulled with speed L0∕�� , as simu-
lated in Fig. 6d. In this case, growth is asymptotically linear 
�(t) ∼ t∕�c�

� , and as before, the excess stretch (� − �c) van-
ishes as t → ∞ . Note, however, that for 𝛼c > 1 , the onset of 
growth is not at t = 0 but is delayed to t =

(
�c − 1

)
��.

Next, we consider a force-controlled experiment where 
the neurite is pulled with a given longitudinal external force 
F. In that case, we need to relate the stresses to the strains. 
To do so, we assume that, instantaneously, the material is 
hyperelastic and incompressible. It is then described via a 
Gibbs free energy density � (�) (in unit energy per interme-
diate volume). Incompressibility implies �⟂ = 1∕

√
� , from 

which we introduce  the auxiliary energy function 
�̂ (�)∶=�

�
�, 1∕

√
�, 1∕

√
�
�
 . In normal growth conditions, 

the timescale of elastic relaxation ( ∼minute) is much shorter 
than that of irreversible expansion, which depends on rela-
tively slow biophysical processes ( ∼hour). Therefore, the 
system can be considered at quasi-static equilibrium at all 
times. The equilibrium condition follows from the principle 
of virtual work

where �Wext = F�� = FL�� is the virtual work due to the 
traction force F > 0 , and �Wint = −�(LA�̂ ) is the virtual 
work due to the reaction force. Thus, the equilibrium con-
figuration corresponds to a root of

A variant of the stretch-and-hold experiment consists in pull-
ing the neurite tip with a micro needle perpendicular to the 
neurite and whose base is fixed at a position x = Ln ≥ L0 . 
Modeling the needle as a cantilever beam with length D and 
flexural rigidity B, we obtain the condition

Taking B → ∞ gives the stretch-and-hold scenario seen 
before. However, the small deflection of the needle 
here provides a measure of the neurite tension, given by 
3B∕D3

(
Ln − �

)
 (Zheng et al. 1991). Another popular experi-

ment consists in pulling the neurite laterally (Bernal et al. 
2007; Rajagopalan 2010; Dennerll et al. 1989). For the sake 
of brevity, we ignore this last case (see Goriely et al. 2015a, 
for details).

(22)�W = �Wext + �Wint = 0,

(23)F − A0�̂
�(�) = 0.

(24)� =
Ln

L

[
1 −

(
A0D

3

3BLn

)
�̂ �(�)

]
.

Lastly, we can also include the active properties of the 
neurite due to the actomyosin sheath that generates contrac-
tile forces. Several methods allow to model active effects 
in elasticity (Goriely 2018). For our problem, a possible 
approach consists in augmenting the balance equation (23) 
with an active stress Ta < 0 so that

Thus, upon removal of the load, i.e., when F = 0 , the neurite 
is at equilibrium in a contracted configuration 𝛼 < 1.

Several forms of the strain–energy function �̂  have been 
discussed in Goriely et al. (2015a). For example, we consider 
a neo-Hookean material with shear modulus � . The energy 
function is �̂ (�) = �∕2

(
�2 + 2∕� − 3

)
, and (23) reduces to 

the cubic �3 −
(
F∕A0�

)
�2 − 1 = 0 which supports only one 

real solution for the stretch � entering (19). For a constant F, 
� is constant and growth is exponential.

In reality, towed neurites grow at a nearly constant speed 
depending on the applied force (Bray 1984), but this remains 
to be assessed on longer time scales. To explain this pos-
sible discrepancy, we stress that, in postulating (19), we 
assumed that growth takes place at all points of the shaft. 
The precise location of growth in stretched axons has not 
been fully elucidated (Futerman and Banker 1996; Smith 
2009). For instance, in the compartmental model developed 
by Purohit and Smith (2016) (discussed more in details in 
Sect. 3.3), growth of stretched axons is assumed to take place 
via polymerization reactions localized in the axon hillock, 
i.e., the proximal segment of the neurite close to its junction 
with the soma. To describe this mechanism, we assume that 
growth happens only in a physical zone of constant length 
Lh in the intermediate configuration, located near the proxi-
mal boundary, as shown in Fig. 6b. In this formulation, the 
hillock is not a Lagrangian material volume in the sense that 
its length changes with respect to the reference configuration 
�0 . We modify (19) to account for this new assumption, and 
we posit a localized exponential growth law:

where X depicts the axial coordinate in the intermediate 
configuration, and H is the Heaviside step function enforc-
ing that growth only occurs for X ≤ Lh . Note that, in con-
trast to � , � is still uniform along the whole shaft provided a 
uniformly-defined strain energy function. Thus, the resting 
length of the neurite L(t) obeys

(25)F − A0�̂
�(�) + A0Ta = 0.

(26)
1

�
(
X0, t

)
��

�t

(
X0, t

)
= k

(
�(t)−�c

)
+
H
[
Lh − X

(
X0, t

)]
,
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which is independent of L(t) . For a speed-controlled experi-
ment, with pulling velocity d�∕dt = L0∕�

� , the elastic stretch 
tends to a small residual value of order

for t ≫ 𝜏′ ≫ 𝜏 , i.e., when pulling is slow; and becomes 
large,

when t ≫ 𝜏 ≫ 𝜏′ , i.e., when pulling is fast, which may lead 
to disconnection. This is consistent with Purohit and Smith 
(2016) (see Sect. 3.3) in which axon tension plateaus at a 
finite value that depends on the pulling speed.

In a force-controlled experiment with tension F, the sys-
tem develops a constant stretch � (23), and its size increases 
with constant speed �̇ = Lhk𝛼

(
𝛼 − 𝛼c

)
 . Although, locally, 

the growth mechanism itself is the same, this regime is very 
different from the exponential growth predicted by the previ-
ous growth model described by (19). This is due to the fact 
that the expanding zone Lh remains constant (see Goriely 
2017, pp. 69–70).

Interestingly, a popular growth law (Wang and Kuhl 
2019; Holland et al. 2015; Goriely et al. 2015a) to describe 
stretched axons is

An example simulation for a speed-controlled experiment is 
shown in Fig. 6e. Since � is here uniform, the resting length 
increases as

which is equivalent to (27) up to a rescaling. Thus, (30) 
rheologically captures the mechanical response of a neurite 
undergoing accretive or localized growth. Note, however, 
that, to our knowledge, there is no clear proof of the exist-
ence of such growth regime. In fact, every segment of the 
axon has the potential to undergo growth (Lamoureux et al. 
2010). The hillock growth model proposed by Purohit and 

(27)

dL

dt
= ∫

L0

0

��

�t

(
X0, t

)
dX0

= ∫
L0

0

k
(
�(t) − �c

)
H
[
Lh−X

(
X0, t

)]
�
(
X0, t

)
dX0

= ∫
L(t)

0

k
(
�(t) − �c

)
H
(
Lh − X

)
dX

= Lhk
(
�(t) − �c

)
,

(28)� ∼ �c +
L0�

Lh�
�
,

(29)� ∼

√

�c
L0�

Lh�
�
,

(30)
d�

dt
= k

(
� − �c

)
+
.

(31)dL

dt
= L0

d�

dt
= L0k

(
� − �c

)
+
,

Smith (2016) is based on the observation that axons elongate 
mostly near the cell body, when the latter is towed, while 
the growth cone is held fixed with respect to the substrate 
(reverse towing experiment detailed in Lamoureux et al. 
2010). However, this argument is not fully satisfactory, as 
Lamoureux et al. (2010) considered neurites embedded on a 
substrate, therefore not mechanically isolated. As shown in 
the next section, this second scenario is different, and, in this 
case, mechanics demands that the axon grows faster near the 
soma even when the whole shaft is assumed to expand. In 
conclusion, the exact location of growth in stretched axons 
and a correct morphoelastic representation for it remain an 
open problem.

3.2.2  One‑dimensional models

The 0D models are suitable for neurites grown in controlled 
experimental conditions where longitudinal tension is homo-
geneous. However, in elongation mediated by the growth cone, 
this assumption will not hold due to the presence of dissipative 
forces such as cell-substrate adhesion, and one needs to con-
sider variations of both stress and velocity along the neurite. 
In fact, it has been clearly shown that migrating presynaptic 
neurite stretch non-uniformly while elongating (Miller and 
Suter 2018; Athamneh et al. 2017; Lamoureux et al. 2010; 
O’Toole et al. 2008a).

A simple and conceptually interesting model has been first 
introduced by O’Toole et al. (2008a) (and adapted to mor-
phoelasticity by Goriely 2017, see pp. 80–85). In this model, 
the growing axon is seen as a simple fluid structure in contact 
with a substrate. Here, we focus on the permanent self-similar 
regime, for which the stress and velocity profile are constant 
in time in the vicinity of the neurite tip (Oliveri et al. 2021). 
Therefore, it is convenient to work in the advected frame 
attached to the tip, and to parameterize the neurite by the coor-
dinate x oriented toward the soma and originated at the neurite 
tip (Fig. 7, inset).

At any position x, we may virtually cut the neurite to define 
n(x, t) the force applied by the cross section x+ to the cross 
section x− . The classic procedure to derive the local balance 
equation based on the balance of linear momentum (Goriely 
2017) provides an equation for n:

where f depicts the lineal density of tangential body force 
applied along the shaft. In order to model the interaction 
between the shaft and the substrate, we assume a body force 
due to damping of the form

(32)
dn

dx
+ f (x) = 0,

(33)f (x) = �v(x),
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with v the anterograde velocity in the laboratory frame, and 
� a friction coefficient. In addition, we postulate the consti-
tutive relation

expressing the stress-induced growth of the shaft, with � a 
bulk growth parameter analogous to a viscosity. This consti-
tutive law is akin to the exponential growth law seen previ-
ously (Sect. 3.2.1) where � plays a role similar to �∕k . Note 
that the minus sign results from the choice of orientation for 
the x-axis, opposite to the anterograde motion.

On differentiating (32) and plugging (33, 34), we obtain:

where h =
√
A�∕�  defines a characteristic length for the 

problem. The distal end ( x = 0 ) of the neurite is subject 
to a tensile load F, while tension vanishes for x ≫ h , as 
energy dissipates through friction. This dictates the bound-
ary conditions

(34)
dv

dx
= −

n

A�
,

(35)d2n

dx2
−

n(x)

h2
= 0,

(36)n|
�(t),t = F, n|∞,t = 0,

and the solution for the tension and the velocity profiles

shown in Fig. 7, which illustrates the effects of both param-
eters � and � . We have in particular the two limits

that, respectively, correspond to a stalling regime, when neu-
rite viscosity is high, and a rupture regime, when viscosity 
is low, with a strain at the tip dv∕dx → ∞ . The adhesion � 
both reduces the velocity of the neurite and the propaga-
tion of forces along the shaft. We stress that the tip speed 
v(�(t), t) = F∕

√
A��  is constant in time since growth 

happens in an effectively finite zone a, as discussed in 
Sect. 3.2.1, which for a small, results effectively in a tip 
growth regime. Experimentally, the tension profile can be 
measured from the spatial variation of the cross-sectional 
area. Indeed, assuming an incompressible neurite, we 
compute

An extension of this model was developed by Recho et al. 
(2016) using a similar formalism. In this extended model, 
the neurite is composed of three compartments, shown in 
Fig. 8a. The microtubule core is represented by an elastic 
solid undergoing mass depletion and mass addition that aim 
to maintain a density at chemical equilibrium. Namely, a 
compressed core will have an excess density, compensated 
by a mass removal. Conversely, mass addition allows to 
compensate for the decrease in density due to an excessive 
traction. This mechanism is coupled with an elastic consti-
tutive behavior that provides the pressure of the core. The 
core is itself embedded inside a viscocontractile actomyosin 
cortex. The two compartments are mechanically coupled via 
frictional interactions. A no-flux boundary condition at the 
junction between the microtubule core and the growth cone 
implies the absence of tip growth. The structure formed by 
these two compartments is pulled at its distal end by a third 
compartment that represents the advancing growth cone 
made up of actomyosin and pulling on the substrate. Finally, 
the dynamics of the structure is obtained from first physical 
principles, namely the balance of mass and the balance of 
momentum.

The resulting model supports three states, shown in 
Fig. 8b. A retraction regime occurs when microtubule pres-
sure and growth cone traction are insufficient to overcome 
the actomyosin contractile forces. Conversely, relatively 

(37)n(x) = Fe−x∕h, v(x) =
Fe−x∕h
√
A��

,

(38)lim
𝜂→∞

v(x) = 0, lim
𝜂→0

v(x) =

{
0 if x > 0

∞ if x = 0

(39)a(x) = A
(
1 +

F

EA
e−x∕h

)−1

.

(a)

(b)

Fig. 7  One-dimensional model of neurite growth. Effect of growth 
( � ) and adhesion ( � ) on a the tension profile n(x) versus x the distance 
from the growth cone and b the velocity profile v(x), obtained from 
(37). Inset shows the orientation of the x-axis w.r.t. the neurite
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weak contractility reduces the compression along the micro-
tubules and facilitates elongation. Due to the combination of 
several threshold effects, the model also predicts the possi-
bility of stalling, i.e., a situation where the structure is static. 
In this state, the structure neither grows nor retracts unless 
the parameters promoting either regimes exceed a threshold 
value. This scenario is reminiscent of the seminal “rubber 
band gun” model proposed by Buxbaum and Heidemann 
(1988), who considered microtubules subject to longitudinal 
compression due to the front membrane of the neurite. Trac-
tion forces produced by the growth cone reduce compres-
sion, decreasing the free energy required for microtubule 
assembly and growth.

The power of Recho et al.’s model is that it addresses 
each structural compartment of the neurite separately and 
relates their interactions to parameters that can be modi-
fied experimentally. Indeed, it is able to reproduce in details 
the observed qualitative effects induced by drugs, such as 
blebbistatin, that reduces myosin II motor contractility; 
cytochalasin, that inhibits actin polymerization; trypsin, that 
reduces substrate adhesion; nocodazole, that destabilizes 

microtubules; or taxol, that stabilizes microtubules. These 
drugs affect distinct and well-identified target parameters of 
the models, and their respective effects can be simulated spe-
cifically. This also explains coupled effects that can appear 
as paradoxical when looked at in isolation.

The models presented so far are based upon continuum 
formulations, which allows us to make use of well-known 
mathematical techniques in order to derive analytical pre-
dictions, and extend these predictions numerically. Note 
that the neurite cytoplasm is in reality composed of several 
polymers that interact and contribute to global mechanical, 
geometrical and dynamical properties in a non-trivial way. 
Thus, continuum models are an approximation that must 
be used with proper caution, and that may be unsuited to 
representing subtle small-scale properties and processes. 
To capture molecular details and their emergent properties, 
many authors have recently examined neurites at a discrete 
level, for instance, by representing microtubules as discrete 
structures connected via cross-linking proteins (Montanino 
and Kleiven 2018; Ahmadzadeh et al. 2012, 2015; Peter and 
Mofrad 2012; Jakobs et al. 2015, 2020; De Rooij et al. 2017; 
De Rooij and Kuhl 2018a; De Rooij et al. 2018; De Rooij 
and Kuhl 2018b). This sophisticated and realistic type of 
approach comes naturally with increased model complexity 
and computational difficulty, but allows for addressing finer 
questions on the effects of particular proteins or specific 
mechanisms.

3.3  Coupling mechanics and transport

Mechanics and transport are two coupled facets of neurite 
growth. The classic theory of transport-mediated growth 
assumes that neurite elongation is controlled by the concen-
tration of material, supplied through a production rate that 
is generally taken to be constant. Clearly, this view cannot 
capture scenarios where axon length is controlled externally 
and not by tubulin concentration, like in stretch growth. In 
contrast, mechanical models describe the expansion rate as 
a rheological process akin to plasticity and involve the inter-
nal tension of the neurite as the main growth determinant. 
However, as a neurite elongates and thickens, it naturally 
increases its demand in material (O’Toole et al. 2008b). In 
particular, to sustain rapid elongation and adapt to changes 
in stretch rates, the cell body potentially actively modulates 
the production and transport of material to support growth 
and avoid disconnection or injury (Suter and Miller 2011; 
Athamneh and Suter 2015); however, little is known on this 
mechanism. For instance, Ahmed and Saif (2014) showed 
that increased tension correlates with faster vesicle trans-
port, whereas Loverde et al. (2011) reported reduced fast 
axonal transport due to strain. Mechanisms underlying a 
stretch-mediated regulation of transport remain elusive and 
might involve mechanosensitive ion channels (Franze 2020); 

Fig. 8  Multicompartmental mechanical modeling of neurite growth, 
adapted from Recho et al. 2016 with permission from the American 
Physical Society. a The neurite is represented as three connected 
compartments: the growing microtubule core, a contractile actomyo-
sin sheath and the growth cone. b Parameter space � versus Q̂ , where 
� measures the ratio between the actomyosin viscosity and the effec-
tive microtubule core viscosity, and Q̂ measures the excess of growth 
cone traction with respect to actomyosin contraction. We clearly 
see that growth is possible only if traction is sufficiently larger than 
contraction. Dashed line is an analytical estimate of the boundary 
between the collapse and motile states, obtained from a simplification 
of the model
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however, this has not been demonstrated systematically. 
Generally speaking, the rheology of neurites is a complex 
and dynamically regulated process that is not completely 
captured by passive mechanical models with constant kinetic 
properties. For example, it is plausible that parameters such 
as k in (19), or � in (34) will depend on material availability, 
especially in long and fast-stretching neurites.

In contrast to the models detailed in Section 3.1.2 that 
focus on tip growth, O’Toole and Miller (2011); O’Toole 
et al. (2008b) investigate the contribution of stretching in 
axonal transport of mitochondria. Here, we consider an iso-
lated axon fixed at its base and stretched with speed v, with 
length �(t) = �0 + vt . It can be experimentally observed 
that mitochondrial density is more or less uniform along the 
axon and increases with rate � as time progresses. Thus, we 
assume a lineal density of the form c(x, t) = c0 + �t . From 
the balance of mass, we obtain the flux along the axon:

where ln (2) × � defines the half-life of a mitochondrion, and 
J0 is the flux entering the axon at x = 0 . A no-flux boundary 
condition J(�(t), t) = vc(�(t), t) at the tip provides

that grows quadratically in time. Along the axon, stretch 
results in a purely advective flux, which under uniform 
deformation is given by Jstretch(x, t) = xvc(t)∕�(t) . Thus, the 
rest of the flux Jother(x, t) = J(x, t) − Jstretch(x, t) , due to cel-
lular transport, decreases linearly along the axon as

Figure 9 shows the spatial temporal evolution of both Jstretch 
and Jother . Note that the authors also address the case where 
the axon is attached to its substrate via adhesion (O’Toole 
et al. 2008a), in which case Jother becomes the dominating 
contribution to the flux (since advection is localized at the 
tip, see Sect. 3.2.2).

By contrast to classic 1D models of transport (Sect. 3.1.2), 
the cellular contribution to the flux here decreases along 
the axon and depends on v and � in a non-trivial way. This 
strongly suggests the existence of a mechanism allowing the 
axon to sense its own length and elongation rate, in order 
to achieve uniform mitochondrial density during stretch 
growth. However, this approach, which consists in weigh-
ing the various contributions to the flux using balance argu-
ments, does not allow us to precisely infer the mechanisms 
involved.

(40)J(x, t) = −x

(
c0 + �t

�
+ �

)
+ J0(t),

(41)
J0(t) =

(
c0 + �t

)(
�0 + vt

)

�
+ v

(
c0 + �t

)
+ �

(
�0 + vt

)
,

(42)Jother(x, t) =

(
1 −

x

�0 + vt

)
J0(t).

To model mechanotransduction and growth in axons, 
Purohit and Smith (2016) reexamined Samuels et al.’s model 
to address the case of integrated axons subject to exter-
nally applied stretch, coupling mechanics to transport via a 
hypothesized stretch-activated ion entry (Fig. 10a). Here, the 
pulling speed is imposed, and therefore, transport processes 
mostly contribute to changing the internal state of the neu-
rite, i.e., its cross-sectional area and tension. As in Samuels 
et al. (1996) and (13), the transport rate is assumed to be 
proportional to growth speed. To predict disconnection, an 
increase in tubulin production at the soma as a response to 
ion entry is hypothesized. The latter is promoted by axon 
tension, which decreases the free energy required for open-
ing mechanosensitive ion channels along the shaft. The entry 
of ions in turn triggers an increase in cellular material pro-
duction rate (S with our notation) which models the response 
of the axon to fast stretching. Finally, the resulting tension 
is compared with a critical disconnection tension, as shown 
in Fig. 10b, c, which allows to quantitatively evaluate the 
risk of nerve rupture, which is of interest, for instance, in 
the design of regeneration procedures.

In the last few decades, the active regulation of growth 
and cellular processes by mechanical forces has become a 
landmark of developmental biology (Hamant 2017). From 
a modeling point of view, the nonlinear coupling between 
forces and geometry can shed light on rich and non-intuitive 
behaviors. In neurons, this type of regulation remains poorly 

Fig. 9  Flux due to stretch Jstretch and to other contributions Jother 
(mainly transport) versus time t and normalized abscissa x∕�(t) 
obtained from (40–42) (O’Toole et  al. 2008b; O’Toole and Miller 
2011)
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understood. Arguably, the development of mathematical 
models integrating active properties such as mechanosensing 
will be instrumental to building a unified theory of neurite 
growth.

4  Modeling the neurites in their 
environment

We have discussed models of neurites growing along a line 
with a focus on the fundamental mechanisms of elongation. 
However, the path and pattern formation of dendrites and 
axons growing in 2D or 3D is also of fundamental impor-
tance to understand the development of the brain architec-
ture. Thus, we next describe the morphogenesis of neurons 
embedded in the multidimensional space and in relationship 
with their physical environment.

4.1  Guidance

During guidance, the axon tip perceives and transduces 
information from its local environment to find its path. 
Historically, our understanding of this process was chiefly 
predicated upon chemical signaling, in particular chemotaxis 
(Mortimer et al. 2008), which is the ubiquitous and predomi-
nant modality of growth cone pathfinding. For chemotactic 
information to be exploitable by a cell, a number of physical 
constraints must be simultaneously satisfied (see the classic 
article by Berg and Purcell (1977)). In a sequel of papers, 
Goodhill and coworkers developed seminal ideas to address 
the constraints of growth cone chemotaxis, using arguments 
from diffusion theory (Goodhill 1997; Goodhill and Urbach 

2003; Goodhill 1998; Goodhill and Baier 1998; Goodhill 
and Urbach 1999). A core idea is that for a difference �C 
in chemical concentration C to be detectable by a growth 
cone across its length scale �r , several conditions must be 
simultaneously satisfied. First, the overall concentration 
must not be too high (saturated receptors) or too low (insuf-
ficient binding) (Goodhill 1998). Second, the gradient itself, 
e.g., the fractional difference p = �C∕C ≈ (�r∕C) �C∕�r , 
must be sufficiently large to overcome noise and provide 
an informative signal. The concentration C is obtained by 
solving the diffusion profile associated with a point source 
of ligand. It is well known that there is no physical (positive) 
solution to the diffusion equation in one or two dimensions, 
which can be alleviated by taking into account the natural 
extinction of the ligand (Krottje and Van Ooyen 2007). How-
ever, in three dimensions, a ligand diffusing from a steady 
point source has a concentration C given by

with r the distance from the source; erfc the complementary 
error function; D the diffusion coefficient; and q the rate of 
ligand production at the source. Therefore, combining (43) 
with the constraints on detection provides the range of radii 
r ∈

[
rmin(t), rmax(t)

]
 within which detection is possible at a 

given time t, as shown in Fig. 11.
While chemotaxis is the most studied and main modal-

ity of guidance, other less conspicuous guidance mecha-
nisms also are at play. For example, there is now consider-
able evidence that the mechanical stiffness of the tissues 
is used as a regulatory cue during the formation of the 

(43)C(r, t) =
q

4�Dr
erfc

r
√
4Dt

,

Fig. 10  a Two populations of neurons are plated on two adjacent sub-
strates (swine dorsal root ganglia neurons). Over a few days, axons 
sprout and connect the two neuron populations. A microstepper motor 
system then pulls the towing membrane away from the adjacent 
substrate at accelerating rates. One population shown on the towing 
platform (right) and growing axons (left). b–c Purohit and Smith’s 
model of growth and disconnection of stretched axons. b The green 

line shows the limiting �(t) curve above which the axon disconnects. 
Dashed lines show different stretching trajectories with piecewise 
constant growth rate. c Corresponding tension � normalized by fail-
ure tension �L . The black and blue curves illustrate two different dis-
connection scenarios associated with different traction parameters. 
Images reproduced from Purohit and Smith (2016) with permission 
from Elsevier
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nervous system (Abuwarda and Pathak 2020; Koch et al. 
2012; Chan and Odde 2008; Koser et al. 2016; Franze 
2020). Chan and Odde (2008) proposed a stochastic model 
of growth cone locomotion, modeling the actin motor-
clutch system at the edge of the growth cone, based on 
attachment and breakage of focal adhesion bonds depend-
ing on substrate stiffness (see also the mean-field treat-
ment by Bangasser and Odde 2013). The authors predicted 
that the growth cone traction, which depends on its ability 
to pull its substrate, depends on medium compliance in 
a nonlinear fashion. On soft substrates, the growth cone 
develops traction by a so-called load-and-fail dynamics 
where the adhesion is maintained for a sufficient amount of 
time. However, on excessively stiff media the same mecha-
nism results in a catastrophic loss of adhesion leading to 
a frictional slippage regime, in which the growth cone 
cannot progress efficiently.

While these works discuss mechanisms and constraints 
at play in chemotaxis or mechanical guidance, they do not 
seek to describe the path of the growth cone as a response to 
these stimuli. To that end, trajectories of growth cones seen 
as a random motion on a 2D substrate have been studied by 

multiple authors (Katz et al. 1984; Mortimer et al. 2010; 
Maskery et al. 2004; Hentschel and Van Ooyen 1999, 2000; 
Krottje and Van Ooyen 2007; Borisyuk et al. 2008; Buettner 
et al. 1994; Wang et al. 2003; Pearson et al. 2011; Segev 
and Ben-Jacob 2000, 2001; Basso et al. 2019; Yurchenko 
et al. 2019, 2021; Davis et al. 2017; Roberts et al. 2014); see 
also the review by Maskery and Shinbrot (2005). The main 
focus in these works is not the mechanism of elongation, as 
treated before, but rather the shape and statistical properties 
of growth cone trajectories, as a function of external cues.

A simple model for the motion of a growth cone �(t) 
consists in considering the competition between stochastic, 
random walk events, and deterministic events based on guid-
ance cues. Within this framework, a general probabilistic 
process describing growth cone motion is

where � is a deterministic drift that depends on sensory 
cues; � is the Wiener stochastic process; and D is a diffu-
sion constant (Maskery and Shinbrot 2005). For example, 
the case where � is constant (e.g., when the growth cone 
perceives a constant chemical cue) can be decomposed as (i) 
a translation �t combined with (ii) a diffusion with typical 
travel length 

√
Dt . Note that (44) is not specific to growth 

cones and in particular does not capture the directional per-
sistence of growing neurites (Katz 1985). An alternative 
to (44) is the Langevin equation for Brownian motion that 
includes inertial forces which can mimic this effect. Cur-
vature effects can also be included by assuming that guid-
ance cues affect the direction of the tip, rather than its posi-
tion, which allows to dampen abrupt turns (Krottje and Van 
Ooyen 2007; Borisyuk et al. 2008; Pearson et al. 2011).

To model chemotaxis, Hentschel and Van Ooyen (1999), 
for instance, considered a version of (44) including multiple 
chemical agents � , and assuming that growth cones follow 
the gradient of each concentration field c� as

where the coefficients �� quantify the strength of the 
response elicited by each agent � , which can be either repul-
sive, 𝜆𝜇 < 0 , or attractive with 𝜆𝜇 > 0 . Mathematically, the 
chemotactic force � assumes a conservative structure where 
the terms 

(
−��c�

)
 relate to chemotactic potentials.

These previous approaches are simple and relatively easy 
to compare with experiments. However, they are rudimen-
tary from the point of view of cellular mechanisms. Sev-
eral authors have represented the cellular effects involved in 
growth cone motion by using more detailed representations 
of the growth cone sensory and locomotory apparatus. For 
instance, Aletti et al. (2008); Goodhill et al. (2004); Xu et al. 
(2005) represent the growth cone as a semicircle covered 

(44)d� = �(t) dt +
√
D d�,

(45)�(t) =
∑

�

��∇c�[�(t), t],

Fig. 11  Chemotactic detection zone based on Goodhill (1998). 
Parameter values are carefully discussed in the original article. For a 
given distance from the source, we compute the time interval during 
which detection is possible, represented by the green domain. The red 
domain represents the times when chemotaxis is not possible yet due 
to insufficient ligand concentration (minimum concentration C) or no 
longer possible due to a shallow gradient (constraint on p). For the 
parameter values used by the authors, the upper constraint on the con-
centration (saturated receptors) concerns points that are very close to 
the origin and is therefore ignored here. We see that for r ≲ 1500 μm , 
detection is always possible after a given time. Image adapted from 
Goodhill (1998) (with permission from Elsevier)



105Mathematical models of neuronal growth  

1 3

with binding sites. These sites are engaged with a probability 
that depends on the local value of ligand concentration that 
may vary across the growth cone diameter. The new orien-
tation of the growth cone is then modified according to the 
direction of maximum binding. An extended model account-
ing for locomotion was used by Betz et al. (2009) who also 
represented the random fluctuations of the growth cone edge 
governed by a Langevin-like dynamics controlled by ligand 
binding, from which they deduce growth cone trajectory.

Haptotactic guidance has been addressed as well, for 
instance, by Van Veen and Van Pelt (1992), who modeled 
the contacts between the growth cone and discrete adhesive 
loci. When one adhesion site is detected within the growth 
cone, a force is generated and redirects the growth cone 
toward it. A similar approach was also employed by Li et al. 
(1995).

Aeschlimann and Tettoni made a step toward an inte-
grated mechanistic approach of chemotaxis and proposed 
a feedback mechanism where a chemical gradient is first 
detected by the growth cone filopodia, which in turn triggers 
the entry of calcium ions at their base (Aeschlimann 2000; 
Aeschlimann and Tettoni 2001). The influx and diffusion 
of calcium along the growth cone periphery stimulate fur-
ther protrusion of filopodia. (More complex computational 
models for calcium signaling have also been investigated, 
see Roccasalvo et al. 2015; Forbes et al. 2012; Sutherland 
et al. 2014; Hely et al. 1998.) The feedback loop proposed 
by Aeschlimann and Tettoni is combined with a mechanical 
model for filopodium retraction. This retraction produces 
a resultant that pulls the growth cone toward the stimulus. 
However, to actually operate a turn, the growth cone must 
bend the microtubule bundle (Franze 2020). To model this 
effect, the authors represent the trailing shaft as a chain of 
viscoelastic springs connected by angular springs. (This 
approach may be seen as the discretization of a morphoe-
lastic rod, see Moulton et al. 2013.) In line with Aeschli-
mann and Tettoni’s model of the morphoviscoelastic prop-
erties of the shaft, Zubler and Douglas (2009) proposed a 
detailed computational models of neurite migration in 3D, 
which includes steric hindrance due to other cells. Recently, 
García-Grajales et al. (2017) also proposed a cell-level mor-
phoelastic approach by extending Recho et al. (2016) to a 
computational framework. In this approach, the authors use 
a multidimensional model of the shaft, including differen-
tial growth, contraction, bending, torsion or shear, and an 
advanced finite-element method is proposed for simulations 
over long distances, as shown in Fig. 12.

Overall, these models for axon growth and guidance 
describe, with various level of details, the behavior of a sin-
gle axon in response to a stimulus field. They can be linked 
to studies of the growth cone to understand how a signal 
is sampled and integrated. Independently of these micro-
scopic mechanisms, the overall macroscopic behavior of 

single axons is very much as expected. However, in many 
settings axons tend to interact and bundle together. Hence 
modeling these interactions is key to understand the forma-
tion of neuronal networks.

4.2  Collective migration and fasciculation

It is observed that axons often migrate and bundle together 
in a process called fasciculation which is believed to 
improve the accuracy of axonal projections toward their 
target (Van Vactor 1998). An initial fasciculation is often 
terminated by defasciculation to innervate the target zone 
and establish precise connections. Theoretically, this process 
of fasciculation and defasciculation is an example of collec-
tive behavior where different biological units come together 
and interact, creating in the process emergent structures and 
non-intuitive dynamics (Vicsek and Zafeiris 2012).

The Hentschel–Van Ooyen model given by equations 
(44–45) can be extended to include collective effects by 
considering growth-cone-secreted ligands, namely, chemical 
fields ci generated by multiple moving growth cones �i(t) . 
Unsurprisingly, the net effect is the formation of densely 
packed bundles. Those can separate in response to a new 
regulatory cue secreted by the targets, and instructing defas-
ciculation. Note that the authors ignored the transient effects 
due to diffusion of ligands from a moving source and focused 
on quasi-steady regimes. (Non-steady solutions were studied 
numerically by Krottje and Van Ooyen (2007).) In another 
version of the model, the authors introduce fasciculation due 
to short-range contacts combined with noise in the growth 
cone trajectories. Interestingly, this accounts for the emer-
gence of so-called pioneer axons (Fig. 13), namely axons 
that grow first toward a target region, and that have been 
proposed to lead the way for the rest of the bundle. This 
behavior can be explained by the fact that, in the model, 
unbundled axons show more random motions and there-
fore explore more of their surroundings. Therefore, those 
axons are more likely to reach areas of the domain where 

Fig. 12  A simulation of axon growth and chemotactic guidance (the 
red fields denotes repellent and the green one the attractant). The 
color within the axon shaft gives the �xx component of the stress 
within the structure, the x-axis being along the horizontal (based on 
the method given in García-Grajales et al. 2017)
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the chemoattractant gradient is steeper and chemoattraction 
is stronger, which leads them to further venture ahead of the 
group and migrate on their own. The track formed by pio-
neer growth cones is then followed by the rest of the bundle.

Analytical predictions are difficult to derive from these 
off-lattice multiagent models. By simplifying the geometry 
of the problem using a discrete random walk approach, 
Chaudhuri et al. (2011) examined the statistical properties 
of fasciculation. In their model, individual growth cones 
progress along the edges of a rhombic grid. At each discrete 
step of the automaton, each growth cone makes one step on 
the lattice and steers right or left according to a probability 
that depends on the presence of neighboring axons govern-
ing random fasciculation and defasciculation events. This 
model does not include chemotactic signals and focuses on 
axon–axon interactions. However, it includes other interest-
ing processes such as the removal of existing axons with a 
given typical lifetime, or the difference in bundling affini-
ties between two types of axon with different chemical 
signatures, resulting in sorting dynamics. This approach 

allows for the use of mean-field arguments, combined with 
relatively straightforward numerical simulations, to build 
insight into the non-equilibrium statistical mechanics aspects 
of fasciculation.

Another classic approach to collective cell migration and 
chemotaxis consists in assuming that a population of cells 
can be modeled as a continuous entity, which naturally lends 
itself to a continuum treatment in terms of partial differen-
tial equations (Murray 1993; Painter 2019). This approach 
has been employed to study the formation of neural crest 
(Giniūnaité et al. 2020), angiogenesis (Pillay et al. 2017) 
and epidermal wound healing (Sherratt and Murray 1990), 
for instance. Surprisingly, it has not been applied systemati-
cally to nerve cells, arguably due to their large and peculiar 
morphological structure that differs from most other cells. 
In a relatively unnoticed paper, the late Nobel Prize laure-
ate P.-G. de Gennes proposed a simple mean-field model 
for collective axon migration (essentially in 1D), where a 
continuous population of growth cones is described by a 
density � (De Gennes 2007). The flux J encompasses the 
isotropic random motion of growth cones, which is analo-
gous to diffusion (with constant D0 ), and a chemotactic flux 
Jchemo (Murray 1993). In particular, the author postulates that 
a chemorepellent c is itself secreted by the growth cones. 
Upon fast ligand diffusion and decay, he assumes that c = C� 
with C a constant. Thus, assuming that growth cones are 
repelled with velocity v = −�c�c∕�x as in (45), with 𝜆c > 0 , 
one derives the advective flux Jchemo = −C�c���∕�x . The 
standard continuity equation

then contains a diffusion parameter D = C�c� + D0 that 
depends on � . In contrast to regular diffusion, that would 
disperse the axons and preclude cohesive migration, this 
nonlinear equation supports solutions with a relatively 
sharp front (as illustrated in Fig. 14), suggesting a mecha-
nism helping leading growth cones travel together. From a 
biological standpoint, the main assumptions of the model 
have not been directly justified and are greatly idealized. 
However, this general mathematical approach provides an 
interesting foundation for a mean-field treatment of axon 
migration.

Rather than focusing on the detailed physical interactions 
between individual axons, it is of interest to study the motion 
of an entire bundle of axons viewed as a single structure. For 
example, a bundle was recently modeled as a tip-growing 
morphoelastic filament in Oliveri et al. (2021). In particular, 
this model focuses on durotaxis (though it is also applicable 
to haptotaxis) and assumes that each individual axon has a 
migration speed that depends on local substrate stiffness, fol-
lowing Chan and Odde (2008); Koch et al. (2012). Based on 
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Fig. 13  Initial axon development in the presence of contact attrac-
tion, simulated by Hentschel and Van Ooyen (1999). The axons are 
originated in the bottom boundary of the domain, and then, they 
migrate to the targets distributed along the top boundary. The axons 
are responding to the chemoattractant gradient setup by the layer of 
target cells and are subject to random movements. (Lighter regions 
show higher concentration.) The bundled axons (in black) move in 
a less random manner and grow slower than the unbundled ones (in 
white). Note the development of unbundled pioneer axons. Image 
reproduced from Hentschel and Van Ooyen (1999) with  permission 
from the Royal Society 
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this idea, Koser et al postulated that gradients in tissue stiff-
ness observed in vivo could induce a differential in velocity 
that would result in a deflection of axon tracts. In Oliveri 
et al. (2021), this effect is modeled by assuming that each 
growth cone composing the bundle’s front produces a differ-
ent force depending on local substrate stiffness, which varies 
across the bundle’s finite width. Collectively, these forces 
create a torque that deflects the bundle. Surprisingly, this 
hypothesis leads to a behavior analogous to optic rays. For 
instance, at a sharp stiffness interface, a bundle is deflected 
according to a Snell-type law n1 sin �1 = n2 sin �2 linking the 
incident angles �1 and �2 via refractive indices ni that relate 
to medium compliance, as shown in Fig. 15a. Figure 15b 
also shows a simulation of the growing xenopus tadpole 
optic tract based on experimental brain stiffness data from 
Thompson et al. (2019). This simulation is in qualitative 
agreement with the observed trajectory, but does not include 
important factors such as chemorepulsion (Campbell et al. 
2001; Piper et al. 2006; Atkinson-Leadbeater et al. 2010) or 
steric hindrance with other cell bodies (Koser et al. 2016). 
Quantitative experimental validation remains necessary to 
estimate the relative importance of durotaxis, among the 
many other cues experienced by axon tracts in vivo.

Note that this model represents bundles of axons grow-
ing cohesively, as seen, for example, in the xenopus optic 
tract (Fig. 15), but not systematically in other types of 
nerve. Moreover, the emergence of the exact Snell law in the 
model is predicated upon simple assumptions on the bun-
dle’s mechanics (unshearable rod). In general, the bending 
properties of axons—a fortiori bundles of axons—remain 
poorly characterized. Nevertheless, although the model can-
not capture guidance in fine details, its generality and sim-
plicity might reveal essential properties of axon migration. 
In addition, the general result is potentially extendable to 
single axons that might follow similar optic-like behaviors 
at stiffness or adhesion interfaces.

Fig. 14  Diffusion of a population of growth cones obtained from 
(46) (De Gennes 2007). We show two types of exact similarity solu-
tion, respectively, associated with the linear regime (red) where reg-
ular diffusion ( D0 ) dominates, and in the idealized strong nonlinear 
regime (blue) where diffusion is small compared to growth-cone self-
repulsion ( C�c� ). In the second scenario, a sharp linear front of slope 
∼ t−2∕3 advances slowly like ∼ t1∕3 , whereas in the regular diffusion, 
the front flattens like ∼ exp

�
−x2∕4t

�
∕
√
t with a typical band width 

of order ∼ t1∕2

θ2

θ1

(a) (b)
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Fig. 15  Optic-like reflection refraction of an axon bundle due to duro-
taxis as modeled in Oliveri et al. (2021). a Simulated trajectories of 
two bundles crossing a straight interface between a soft zone and a 
stiff zone. The curved portion of the trajectory represents the phase 
where the bundle’s cross section (not represented) has only partially 
crossed the interface and is therefore subject to a torque. Outside 
of this zone of influence, the motion is rectilinear and the incident 
angles �1 and �2 are related via a Snell-type law, which accounts for 
both a reflection and a refraction regime that depend on the arrival 
angle. b Deflection of the xenopus tadpole optic tract in the mid-
diencephalon where we can observe a stereotypical caudal turn of the 
tract toward the tectum. The tract originates in the right retina and 
then crosses the midline in the optic chiasm, to follow the contralat-
eral brain surface toward the left optic tectum. Inset shows the tra-
jectory of the axon bundle (blue) and the measured stiffness of the 
brain surface (heat map) obtained by atomic force microscopy (AFM) 
on the tadpole’s brain surface (adapted from Thompson et  al. 2019, 
under the terms of the CC BY 4.0 license). Note the contrast in stiff-
ness between the front and rear parts of the brain surface, poten-
tially responsible for the axon deflection (Koser et  al. 2016). R.h.s. 
panel shows five representative simulated trajectories, with addition 
of noise and using a stiffness map obtained from AFM to define the 
stiffness field. The model, that includes only durotaxis as a guidance 
cue, reproduces qualitatively the trajectory of the actual optic tract, in 
particular the caudal turn toward the tectum that is represented by a 
quadrant in the top right corner
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4.3  Branching and morphogenesis

As they develop, neuronal structures, axons and den-
drites, may branch and turn into more or less complex 
tree-like structures. Different geometries and topologies 
of the neuritic trees are associated with different neuron 
types that have been linked with different neuronal activi-
ties (Masland 2004). A striking example is provided by 
cerebellar Purkinje cells, shown in Fig. 16a, that exhibit 
remarkably large and convoluted dendritic tree structures 
(Kapfhammer 2004). Understanding the processes that 
govern neurite branching and tree formation is important 
to build a picture of how the neuronal circuits and nerv-
ous functions are established. In particular, the failure of 
these processes has been associated with developmental 
abnormalities and cognitive impairment as observed, for 
example, in Down syndrome (Haydar and Reeves 2012; 
Mrak and Griffin 2004).

Many generative models have been proposed to character-
ize and mimic the morphological diversity of neuritic trees 
(Ascoli 2002), using formalism such as Lindenmeyer gram-
mars (Hamilton 1993; Ascoli 2002; Donohue et al. 2002) 
and other stochastic branching systems (Torben-Nielsen and 

De Schutter 2014; Carriquiry et al. 1991; Nowakowski et al. 
1992; Uemura et al. 1995; Dityatev et al. 1995; Van Pelt 
et al. 1997; Van Pelt and Uylings 2005; Villacorta et al. 
2007; Fujishima et al. 2012); or cellular automata (Luczak 
2006; Albinet and Pelce 1996). A parsimonious example 
is the BESTL model which describes branching probabil-
ity as a function of node depth (its centrifugal order) and 
the current number of terminal nodes in the tree (Van Pelt 
and Uylings 2005; Van Ooyen 2003). These approaches can 
reproduce observed neurons with remarkable fidelity and 
can be useful in applications such as classification. However, 
for most of them, the connection to intracellular physical 
mechanisms is not clearly made.

Mechanistically, neurite bifurcation occurs when the 
growth cone cytoskeleton splits to form two daughter 
branches. This event depends on several exogenous and 
endogenous factors (Bilimoria and Bonni 2013; Gibson 
and Ma 2011; Kalil et al. 2000; Kalil and Dent 2014) that 
have been modeled generally independently.

Several authors modeled branching as a process regu-
lated intracellularly, and independently of the neurite’s 
actual spatial embedding. Graham and Van Ooyen (2004) 
modeled the spatially dependent concentration of tubulin 

Fig. 16  a Camera lucida drawing of a Purkinje cell in the cat’s cer-
ebellar cortex by Santiago Ramón y Cajal (public domain). b Sug-
imura et  al.’s activator–inhibitor model for space-filling dendrites. 
Intracellular activator promotes growth of dendrite and accelerates 
secretion of the suppressor (1). Conversely, the suppressor is secreted 
from the cell and diffuses in extracellular compartments. Binding of 
its receptor on the plasma membrane triggers signaling to inhibit syn-
thesis of the activator (2). c–d Two simulations obtained for different 

values of the activator–inhibitor model, showing qualitatively differ-
ent outcomes: straight branches c and wavy, highly branched tree d. 
For each simulation: the l.h.s. panel shows the intracellular domain in 
white; the r.h.s. panels show the concentration of the activator (top) 
and inhibitor (bottom) over time. We see that the underlying chemical 
patterns are very different. Images b–d adapted from Sugimura et al. 
(2007) under the terms of the CC BY 4.0 license
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subject to diffusion and active transport, where tubulin is 
assumed to modulate the branching probability at each 
time step. Mathematically, their model corresponds to an 
extension of the Van Veen–Van Pelt model introduced in 
Sect. 3.1.1, adapted to tree structure. Graham and Van 
Ooyen, however, impose a constant growth rate for all seg-
ments of the tree and include variations in cross-sectional 
sections at forking points, described by a scaling law 
ae
p
= ae

c1
+ ae

c2
 with e a real exponent (Hillman 1979; Rall 

1959), relating the area of the parent branch ( ap ) to those 
of its two children ( ac1 and ac2 ). Other authors have mod-
eled the role of the MAPs (Kiddie et al. 2005; Hely et al. 
2001; Graham and Van Ooyen 2004; Van Pelt et al. 2003) 
that are associated with increased neurite branching 
(Audesirk et al. 1997). Phosphorylated MAPs bind micro-
tubules more loosely, allowing them to split. Kiddie et al. 
(2005); Hely et al. (2001) modeled MAP phosphorylation 
processes controlled by calcium in growing trees, using 
discrete multicompartmental approaches. For instance, 
Kiddie et al represented both MAP-dependent branching 
and tubulin assembly within the same framework.

Conversely, other authors have explored exogenous cues 
as the main mechanism for growth cone splitting. In this 
approach, it is assumed that branching results from con-
flicting forces applied to the growth cone (Van Veen and 
Van Pelt 1992; Li et al. 1995; Li and Qin 1996). Assuming 
that forces are applied at discrete points on the periphery of 
the growth cone parameterized by an angle, they define an 
angular distribution whose variance can be computed. In 
particular, a large variance signifies conflicting forces, e.g., 
a bimodal distribution. Branching occurs whenever this vari-
ance exceeds a given threshold, generally independently of 
past branching events, branch length, or current tree shape. 
These approaches are simple but remain phenomenological 
in the sense that the actual mechanical effects underlying 
branching are not explicitly represented and therefore are 
not connected to actual physical parameters such as the stiff-
ness and viscosity of the growth cone, the adhesion with the 
substrate or the density of the cytoskeleton. Thus, there is an 
opportunity for a more detailed approach including a discus-
sion of the actual mechanics at play in growth cone splitting.

Another remarkable phenomenon found in the morphol-
ogy of neurons is the space-filling behavior of some cells, 
for instance, Purkinje cells (Fig. 16a). In these neurons, den-
drites originating in the same cell body innervate the plane 
without self-overlapping (Fiala et al. 2008). This property 
probably facilitates efficient coverage of the space and pre-
vents distinct branches to respond to the same input signal. 
Mathematically, this may be viewed as a problem of pattern-
ing with mutual avoidance, suggesting an approach based 
on reaction–diffusion equations. Similar to Hentschel and 
Fine (1996) who modeled dendritic growth by morphogen 

diffusion within the cytoplasm, Sugimura et al. (2007) pro-
posed a compartmental activator–inhibitor model for den-
dritic self-avoidance, in which a hypothetical activator (u) is 
secreted and diffuses within the cell intracellular space. This 
activator then activates the production of an inhibitor (v), 
which conversely, suppresses the activator. The cell com-
partment is modeled by means of a density c(x, y, t) obeying 
the local growth law

with a(u) < 1 , a decreasing function of u. A phase portrait 
analysis shows that growth occurs only when a(u) becomes 
negative, i.e., when the activator u becomes sufficiently con-
centrated; otherwise c = 0 is stable. We see that, in general, 
the only possible stable points are c = 0 and c = 1 , which 
allows us to outline the intracellular compartment �c.

Contrary to classic reaction-diffusion, the activator dif-
fuses and reacts only within �c . By contrast, the inhibitor 
diffuses in the plane � allowing for extracellular interaction 
between distinct branches. The general mechanism is illus-
trated in Fig. 16b. The two quantities u and v are coupled via 
Turing-like equations

where f and g are polynomial reaction functions that satisfy 
basic conditions for the existence of patterns. Two simula-
tions are shown in Fig. 16c, d. We see that the inhibitor 
produced by a branch diffuses in the medium and blocks the 
growth of neighboring branches by inhibiting the activator, 
thus precluding dendrite overlapping. Various parameters of 
the model account for qualitatively different types of den-
dritic trees, where the branching behavior (straight or wavy) 
relates to the different types of possible Turing patterns (dots 
or stripes). Despite its theoretical interest, this approach is 
relatively phenomenological and does not capture finer prop-
erties of the dendrites, such as variations in cross-sectional 
areas at branching loci (Hillman 1979; Tamori 1993; Rall 
1959), growth inhibition between distant branches (as seen 
in Sect. 3.1.1), or other non-local and memory effects, such 
as the dependency of growth dynamics on the current topol-
ogy and geometry of the tree. Furthermore, such activa-
tor–inhibitor pair, which provides a parsimonious and gen-
eral mechanism for dendritic tiling, has not been identified 
yet in vivo, to our knowledge, and could likely emerge from 
a combination of multiple factors. Finally, contact-mediated 
rather than diffusion-mediated inhibition appears to be a 
dominant mechanism at play in space filling (Grueber and 

(47)
�c

�t
= c(c − 1)

[
a(u(x, y, t)) − c

]
,

(48)
�u

�t
= Du∇

2u + f (u, v) in �c,

(49)
�v

�t
= Dv∇

2v + g(u, v) in �,
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Sagasti 2010; Matthews et al. 2007; Lefebvre et al. 2012; 
Soba et al. 2007).

5  Perspectives, challenges 
and opportunities

5.1  Modeling the neurites in their environment

Our understanding of axonal growth and guidance is mostly 
based on controlled in vitro experiments where axons and 
dendrites evolve on a two-dimensional substrate. However, 
there is mounting evidence that the growth cone is a com-
plex dynamic structure that can rapidly adapt its behavior 
depending on the chemical or mechanical properties of 
its environment. In particular, the extracellular matrix is 
a rich viscoelastic, three-dimensional environment that is 
very different from the typical substrates used in in vitro 
experiments, and where axon locomotion might be modi-
fied, as proposed by Santos et al. (2020). To understand how 
neurons develop, we must obtain a better picture of how 
neurites maneuver in complex environment, and how they 
interact with other cells during their development. Moreo-
ver, neurites receive multiple cues for guidance that are ulti-
mately translated into mechanical forces for motion similar, 
in essence, to the problem of plant tropism (Moulton et al. 
2020). Forces are probably key in orchestrating all these 
tropic responses. Indeed, there is mounting evidence that 
mechanics does not simply regulates the rate of neuronal 
growth, but also finely controls the nature and intensity of 
the response to chemical signals, suggesting that forces, 
mechanosensing and chemical processes are inextricably 
linked (see Franze 2020, and references therein).

Challenge: Develop multiscale and multiphysics mathe-
matical models to understand the relationship between signal 
transduction, cue integration, force generation and mechani-
cal environment in a complex three-dimensional milieu.

5.2  Neuronal axon regeneration

Axonal injuries often result in loss of function due to the 
disconnection of neurons. Whereas in peripheral nerves, 
injury may be followed by regeneration and recovery of 
functions, in the central nervous system of mammals, rup-
ture often leads to permanent disabilities as these neurons 
fail to regenerate and reconnect to their original target in 
order to rebuild a proper neuronal network (Mahar and Cav-
alli 2018). Strangely, the situation is quite different in fish 
and salamanders that have the capacity for long-distance 
axon regeneration and functional recovery after spinal cord 
injury. For instance, in the zebrafish, a spinal cord injury is 
followed by an immediate loss of function at the injury site, 

but in the long run, recovery is observed, associated with a 
complex response involving multiple cellular pathways and 
morphological changes (Tsata and Wehner 2021). Clearly, 
this is an extremely complex process, and there is an increas-
ing understanding that mechanics has a role to play in it. 
Moreover, aside from the obvious fact that forces need to 
be generated for motion, elongation and reconnection, the 
mechanical environment is also affected as the surround-
ing tissue has been shown to stiffen during repair (Fig. 17), 
as evidenced by Möllmert et al. (2020). Hence, the authors 
argue that mechanosensing may be important in the regen-
eration process and it opens the tantalizing possibility that 
it can be manipulated to assist spinal cord repair.

Lastly, the extraordinarily high rate at which a single cell 
like a neuron extend during development remains a fascinat-
ing and open problem (Smith 2009). Understanding how an 
axon can sustain such extreme elongation without breaking 
and, conversely identifying the physical processes that limit 
stretch induced axon elongation will be crucial in the future 
of regeneration therapies.

Challenge: Develop mathematical models that include 
both biochemical and mechanical responses during axonal 
injury and neuronal regeneration to uncover the physical 
mechanisms contributing to successful spinal cord repair 
and nerve regeneration in general.

Fig. 17  Atomic force microscopy-based indentation measurements 
on acute zebrafish spinal cord sections showing the spatial distribu-
tion of apparent Young’s moduli of an entire spinal cord cross section 
obtained from the level of the 12th vertebra. Image reproduced from 
Möllmert et al. (2020) with permission from the Biophysical Society 
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5.3  Growth of axons and tissues

In the brain, the white matter (inner layer of the cortex) is 
mostly made up of myelinated axon tracts that connect dif-
ferent areas of the outer cortex, rich in neuronal bodies and 
part of the gray matter (Goriely et al. 2015a). Therefore, 
the human brain embeds an intricate and highly aniso-
tropic arrangement of fibers, illustrated in Fig. 18. A dis-
tinct morphological trait of large mammals is a folded—or 
gyrified—brain surface. Cortical folding—gyrification—is 
a crucial and widely studied aspect of brain morphogen-
esis. In particular, it has received a marked interest from the 
biomechanics and mathematics communities (Goriely et al. 
2015a, b; Garcia et al. 2018; Greiner et al. 2021; Budday 
et al. 2014b).

Current experimental and theoretical evidence sup-
port the hypothesis that gyrification is primarily due to a 
mechanical instability. The latter is triggered by the relative 
difference between tangential growth rates in the gray and 
white matter, where the fast-growing cortex comes to buckle 
and fold to accommodate the slow-growing subjacent tis-
sue (Ronan and Fletcher 2015; Goriely et al. 2015b). The 
potential contribution of axons in controlling this instability 
is possible but has remained elusive despite the popularity 
of the idea in neurosciences (Xu et al. 2010; Bayly et al. 
2014). Most mechanical models (Ben Amar and Bordner 
2017; Toro and Burnod 2005; Budday et al. 2014a, 2015; 
Tallinen et al. 2016; Holland et al. 2015; Bayly et al. 2013; 
Wang et al. 2021; Budday et al. 2014b; Holland et al. 2018) 
are based on some version of morphoelasticity, which aims 
at representing the residual stresses caused by differen-
tial growth and therefore provides a natural paradigm for 

gyrogenesis. However, morphoelasticity is predicated upon a 
continuum formulation and therefore does not naturally take 
into account the microstructure such as axon tracts in any 
detail. The role of axons in gyrification has been addressed 
by Holland et al. (2015) who represented the preexistent pat-
tern of nerve fibers as a field of directors defined at all points 
of the white matter. Based on the fact that axons grow under 
stretch and that they make up most of the white matter, the 
3D growth tensor � is assumed to be anisotropically biased 
to occur only along the fibers, all orthogonal stretches being 
purely elastic. The authors propose that axon tension, albeit 
not being the primary cause of folding, pilots the symmetry 
breaking and resulting folding pattern. However, in reality, 
the causal link is not clear as axon paths could be partially 
determined by the folding pattern itself. Modern imaging 
techniques and detailed connectome data (Fig. 18), in tan-
dem with modeling, might prove valuable in studying the 
precise timing of these correlated events.

Challenge: Develop mathematical methods to explore the 
trajectories of migrating axons in the entire brain cortex, and 
the possible links between gyrification and fiber network 
geometry.

6  Conclusion

We have reviewed key mathematical models aimed at 
answering questions regarding neurite growth, pathfinding 
and patterning. Many of the fundamental mechanisms under-
lying these processes are only partially understood or remain 
elusive, and this is where mathematical modeling can play a 
key role. It allows for systematic testing of hypotheses and, 
with the emergence of quantitative biophysical models, can 
be used to identify fundamental mechanisms. In this regard, 
we want to emphasize the importance of mechanics in this 
process. Growth, morphogenesis, guidance all rely on the 
generation and sensing of forces that need to be appropri-
ately taken into account. While simple zero-dimensional 
models are suitable to build intuition, we now understand 
that, from a mechanical point of view, these structures are 
not rigid but active morphoelastic materials that combine 
properties of fluids and solids together with active force gen-
eration, internal remodeling, and growth, requiring advanced 
mathematical models.

Many other models focus on transport processes or bio-
chemical patterning. These different approaches offer snap-
shots of properties that must be combined in order to obtain 
a global picture. Indeed neurites are complex, dynamic and 
pluriform structures. Thus, future models must integrate 
the many rules that govern neurite protrusion, extension, 
sensing, collapse, stalling, steering, exploration, branching, 
fasciculation and defasciculation. The standard experimental 

Fig. 18  Diffusion spectrum imaging detects the movement of water 
molecules that flow along nerve fibers in the brain. The result is a 
map of the brain’s neuronal network
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approach is to isolate different effects to understand a par-
ticular mechanism. By contrast, mathematical modeling, 
combined with numerical simulations and systematic vali-
dation, has the potential to integrate these effects in order 
to understand the emergence of complex morphologies and 
behaviors.

“Upstairs, my little noseminers! Go! Flee before me! 
Onward and upward! Go pump some neurons. Expand your 
craniums.” Robin Williams, Mrs. Doubtfire, 1993.

Acknowledgements A.G. gratefully acknowledges funding from the 
Engineering and Physical Sciences Research Council (Grant Ref. EP/
R020205/1). The authors are thankful to Kristian Franze for insightful 
discussion, to Pavanjit Chaggar, Travis Thompson and Saad Jbabdi 
for generating Fig. 18, and to the two anonymous reviewers for their 
constructive comments.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abuwarda H, Pathak MM (2020) Mechanobiology of neural develop-
ment. Curr Opin Cell Biol 66:104–111. https:// doi. org/ 10. 1016/j. 
ceb. 2020. 05. 012

Aeschlimann M (2000) Biophysical models of axonal pathfinding. PhD 
thesis, University of Lausanne

Aeschlimann M, Tettoni L (2001) Biophysical model of axonal path-
finding. Neurocomputing 38–40:87–92. https:// doi. org/ 10. 1016/ 
S0925- 2312(01) 00539-2

Ahmadzadeh H, Smith DH, Shenoy VB (2015) Mechanical effects of 
dynamic binding between Tau proteins on microtubules during 
axonal injury. Biophys J 109(11):2328–2337. https:// doi. org/ 10. 
1016/j. bpj. 2015. 09. 010

Ahmed WW, Saif TA (2014) Active transport of vesicles in neurons is 
modulated by mechanical tension. Sci Rep 4(1):1–7. https:// doi. 
org/ 10. 1038/ srep0 4481

Albinet G, Pelce P (1996) Computer simulation of neurite outgrowth. 
Europhys Lett 33(7):569–574. https:// doi. org/ 10. 1209/ epl/ 
i1996- 00380-5

Aletti G, Causin P, Naldi G (2008) A model for axon guidance: sens-
ing, transduction and movement. AIP Conf Proc 1028:129–146. 
https:// doi. org/ 10. 1063/1. 29650 82

Ali O, Mirabet V, Godin C, Traas J (2014) Physical models of plant 
development. Annu Rev Cell Dev Biol 30(1):59–78. https:// doi. 
org/ 10. 1146/ annur ev- cellb io- 101512- 122410

Ambrosi D, Ben Amar M, Cyron CJ, De Simone A, Goriely A, Hum-
phrey JD, Kuhl E (2019) Growth and remodelling of living tis-
sues: perspectives, challenges and opportunities. J R Soc Inter-
face 16(157):20190233. https:// doi. org/ 10. 1098/ rsif. 2019. 0233

Anthonisen M, Grütter P (2019) Growth and elasticity of mechanically-
created neurites. arXiv preprint arXiv: 1912. 05735

Ascoli GA (2002) Neuroanatomical algorithms for dendritic model-
ling. Netw Comput Neural Syst 13(3):247–260. https:// doi. org/ 
10. 1088/ 0954- 898X_ 13_3_ 301

Athamneh AI, Suter DM (2015) Quantifying mechanical force in 
axonal growth and guidance. Front Cell Neurosci 9:359. https:// 
doi. org/ 10. 3389/ fncel. 2015. 00359

Athamneh AI, He Y, Lamoureux P, Fix L, Suter DM, Miller KE (2017) 
Neurite elongation is highly correlated with bulk forward trans-
location of microtubules. Sci Rep 7(1):1–13. https:// doi. org/ 10. 
1038/ s41598- 017- 07402-6

Atkinson-Leadbeater K, Bertolesi GE, Hehr CL, Webber CA, Cech-
manek PB, McFarlane S (2010) Dynamic expression of axon 
guidance cues required for optic tract development is controlled 
by fibroblast growth factor signaling. J Neurosci 30(2):685–693. 
https:// doi. org/ 10. 1523/ JNEUR OSCI. 4165- 09. 2010

Audesirk G, Cabell L, Kern M (1997) Modulation of neurite branching 
by protein phosphorylation in cultured rat hippocampal neurons. 
Dev Brain Res 102(2):247–260. https:// doi. org/ 10. 1016/ S0165- 
3806(97) 00100-4

Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, 
Leite RE, Filho WJ, Lent R, Herculano-Houzel S (2009) Equal 
numbers of neuronal and nonneuronal cells make the human 
brain an isometrically scaled-up primate brain. J Comp Neurol 
513(5):532–541. https:// doi. org/ 10. 1002/ cne. 21974

Bamburg J, Bray D, Chapman K (1986) Assembly of microtubules at 
the tip of growing axons. Nature 321(6072):788–790

Bangasser BL, Odde DJ (2013) Master equation-based analysis of 
a motor-clutch model for cell traction force. Cell Mol Bioeng 
6(4):449–459. https:// doi. org/ 10. 1007/ s12195- 013- 0296-5

Basso JMV, Yurchenko I, Wiens MR, Staii C (2019) Neuron dynamics 
on directional surfaces. Soft Matter 15(48):9931–9941. https:// 
doi. org/ 10. 1039/ C9SM0 1769K

Bayly PV, Okamoto RJ, Xu G, Shi Y, Taber LA (2013) A cortical 
folding model incorporating stress-dependent growth explains 
gyral wavelengths and stress patterns in the developing brain. 
Phys Biol 10(1):016005. https:// doi. org/ 10. 1088/ 1478- 3975/ 
10/1/ 016005

Bayly PV, Taber LA, Kroenke CD (2014) Mechanical forces in cerebral 
cortical folding: a review of measurements and models. J Mech 
Behav Biomed Mater 29:568–581. https:// doi. org/ 10. 1016/j. 
jmbbm. 2013. 02. 018

Ben Amar M, Bordner A (2017) Mimicking cortex convolutions 
through the wrinkling of growing soft bilayers. J Elast 129(1–
2):213–238. https:// doi. org/ 10. 1007/ s10659- 017- 9622-9

Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 
20(2):193–219. https:// doi. org/ 10. 1016/ S0006- 3495(77) 85544-6

Bernal R, Pullarkat PA, Melo F (2007) Mechanical properties of axons. 
Phys Rev E 99(1):018301. https:// doi. org/ 10. 1103/ PhysR evLett. 
99. 018301

Betz T, Koch D, Lim D, Käs JA (2009) Stochastic actin polymerization 
and steady retrograde flow determine growth cone advancement. 
Biophys J 96(12):5130–5138. https:// doi. org/ 10. 1016/j. bpj. 2009. 
03. 045

Bilimoria PM, Bonni A (2013) Molecular control of axon branching. 
Neuroscientist 19(1):16–24. https:// doi. org/ 10. 1177/ 10738 58411 
426201

Black MM, Slaughter T, Fischer I (1994) Microtubule-associated pro-
tein 1b (map1b) is concentrated in the distal region of growing 
axons. J Neurosci 14(2):857–870

Borisyuk R, Cooke T, Roberts A (2008) Stochasticity and functionality 
of neural systems: mathematical modelling of axon growth in the 
spinal cord of tadpole. Biosystems 93(1–2):101–114. https:// doi. 
org/ 10. 1016/j. biosy stems. 2008. 03. 012

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ceb.2020.05.012
https://doi.org/10.1016/j.ceb.2020.05.012
https://doi.org/10.1016/S0925-2312(01)00539-2
https://doi.org/10.1016/S0925-2312(01)00539-2
https://doi.org/10.1016/j.bpj.2015.09.010
https://doi.org/10.1016/j.bpj.2015.09.010
https://doi.org/10.1038/srep04481
https://doi.org/10.1038/srep04481
https://doi.org/10.1209/epl/i1996-00380-5
https://doi.org/10.1209/epl/i1996-00380-5
https://doi.org/10.1063/1.2965082
https://doi.org/10.1146/annurev-cellbio-101512-122410
https://doi.org/10.1146/annurev-cellbio-101512-122410
https://doi.org/10.1098/rsif.2019.0233
http://arxiv.org/abs/1912.05735
https://doi.org/10.1088/0954-898X_13_3_301
https://doi.org/10.1088/0954-898X_13_3_301
https://doi.org/10.3389/fncel.2015.00359
https://doi.org/10.3389/fncel.2015.00359
https://doi.org/10.1038/s41598-017-07402-6
https://doi.org/10.1038/s41598-017-07402-6
https://doi.org/10.1523/JNEUROSCI.4165-09.2010
https://doi.org/10.1016/S0165-3806(97)00100-4
https://doi.org/10.1016/S0165-3806(97)00100-4
https://doi.org/10.1002/cne.21974
https://doi.org/10.1007/s12195-013-0296-5
https://doi.org/10.1039/C9SM01769K
https://doi.org/10.1039/C9SM01769K
https://doi.org/10.1088/1478-3975/10/1/016005
https://doi.org/10.1088/1478-3975/10/1/016005
https://doi.org/10.1016/j.jmbbm.2013.02.018
https://doi.org/10.1016/j.jmbbm.2013.02.018
https://doi.org/10.1007/s10659-017-9622-9
https://doi.org/10.1016/S0006-3495(77)85544-6
https://doi.org/10.1103/PhysRevLett.99.018301
https://doi.org/10.1103/PhysRevLett.99.018301
https://doi.org/10.1016/j.bpj.2009.03.045
https://doi.org/10.1016/j.bpj.2009.03.045
https://doi.org/10.1177/1073858411426201
https://doi.org/10.1177/1073858411426201
https://doi.org/10.1016/j.biosystems.2008.03.012
https://doi.org/10.1016/j.biosystems.2008.03.012


113Mathematical models of neuronal growth  

1 3

Boudon F, Chopard J, Ali O, Gilles B, Hamant O, Boudaoud A, Traas J, 
Godin C (2015) A computational framework for 3D mechanical 
modeling of plant morphogenesis with cellular resolution. PLoS 
Comput Biol. https:// doi. org/ 10. 1371/ journ al. pcbi. 10039 50

Bozorg B, Krupinski P, Jönsson H (2016) A continuous growth model 
for plant tissue. Phys Biol 13(6):65002. https:// doi. org/ 10. 1088/ 
1478- 3975/ 13/6/ 065002

Bray D (1984) Axonal growth in response to experimentally applied 
mechanical tension. Dev Biol 102(2):379–389. https:// doi. org/ 
10. 1016/ 0012- 1606(84) 90202-1

Bressloff PC, Newby JM (2013) Stochastic models of intracellular 
transport. Rev Mod Phys 85(1):135–196. https:// doi. org/ 10. 1103/ 
RevMo dPhys. 85. 135

Budday S, Raybaud C, Kuhl E (2014) A mechanical model predicts 
morphological abnormalities in the developing human brain. Sci 
Rep 4(1):1–7. https:// doi. org/ 10. 1038/ srep0 5644

Budday S, Steinmann P, Kuhl E (2014) The role of mechanics during 
brain development. J Mech Phys Solids 72:75–92. https:// doi. org/ 
10. 1016/j. jmps. 2014. 07. 010

Budday S, Steinmann P, Goriely A, Kuhl E (2015) Size and curvature 
regulate pattern selection in the mammalian brain. Extreme Mech 
Lett 4:193–198. https:// doi. org/ 10. 1016/j. eml. 2015. 07. 004

Buettner HM, Pittman RN, Ivins JK (1994) A model of neurite exten-
sion across regions of nonpermissive substrate: simulations based 
on experimental measurement of growth cone motility and filo-
podial dynamics. Dev Biol 163(2):407–422. https:// doi. org/ 10. 
1006/ dbio. 1994. 1158

Buxbaum R, Heidemann S (1988) A thermodynamic model for force 
integration and microtubule assembly during axonal elongation. 
J Theor Biol 134(3):379–390. https:// doi. org/ 10. 1016/ S0022- 
5193(88) 80068-7

Buxbaum RE, Heidemann SR (1992) An absolute rate theory model 
for tension control of axonal elongation. J Theor Biol. https:// doi. 
org/ 10. 1016/ S0022- 5193(05) 80626-5

Campbell DS, Regan AG, Lopez JS, Tannahill D, Harris WA, Holt 
CE (2001) Semaphorin 3a elicits stage-dependent collapse, turn-
ing, and branching in xenopus retinal growth cones. J Neurosci 
21(21):8538–8547. https:// doi. org/ 10. 1523/ JNEUR OSCI. 21- 21- 
08538. 2001

Carriquiry AL, Ireland WP, Kliemann W, Uemura E (1991) Statis-
tical evaluation of dendritic growth models. Bull Math Biol 
53(4):579–589. https:// doi. org/ 10. 1007/ BF024 58630

Caviston JP, Holzbaur EL (2006) Microtubule motors at the intersec-
tion of trafficking and transport. Trends Cell Biol 16(10):530–
537. https:// doi. org/ 10. 1016/j. tcb. 2006. 08. 002

Chan CE, Odde DJ (2008) Traction dynamics of filopodia on compli-
ant substrates. Science 322(5908):1687–1691. https:// doi. org/ 10. 
1126/ scien ce. 11635 95

Chaudhuri D, Borowski P, Zapotocky M (2011) Model of fascicu-
lation and sorting in mixed populations of axons. Phys Rev E 
84(2):021908. https:// doi. org/ 10. 1103/ PhysR evE. 84. 021908

Chilton JK (2006) Molecular mechanisms of axon guidance. Dev Biol 
292(1):13–24. https:// doi. org/ 10. 1016/j. ydbio. 2005. 12. 048

Coles CH, Bradke F (2015) Coordinating neuronal actin-microtubule 
dynamics. Curr Biol 25(15):R677–R691. https:// doi. org/ 10. 
1016/j. cub. 2015. 06. 020

Davis O, Merrison-Hort R, Soffe SR, Borisyuk R (2017) Studying the 
role of axon fasciculation during development in a computational 
model of the Xenopus tadpole spinal cord. Sci Rep 7(1):1–16. 
https:// doi. org/ 10. 1038/ s41598- 017- 13804-3

De Gennes PG (2007) Collective neuronal growth and self organization 
of axons. Proc Natl Acad Sci 104(12):4904–4906. https:// doi. org/ 
10. 1073/ pnas. 06098 71104

De Rooij R, Kuhl E (2018) Microtubule polymerization and cross-
link dynamics explain axonal stiffness and damage. Biophys J 
114(1):201–212. https:// doi. org/ 10. 1016/j. bpj. 2017. 11. 010

De Rooij R, Kuhl E (2018) Physical biology of axonal damage. Front 
Cell Neurosci 12:144. https:// doi. org/ 10. 3389/ fncel. 2018. 00144

De Rooij R, Miller KE, Kuhl E (2017) Modeling molecular mecha-
nisms in the axon. Comput Mech 59(3):523–537. https:// doi. org/ 
10. 1007/ s00466- 016- 1359-y

De Rooij R, Kuhl E, Miller KE (2018) Modeling the axon as an active 
partner with the growth cone in axonal elongation. Biophys J 
115(9):1783–1795. https:// doi. org/ 10. 1016/j. bpj. 2018. 08. 047

Dennerll TJ, Lamoureux P, Buxbaum RE, Heidemann SR (1989) The 
cytomechanics of axonal elongation and retraction. J Cell Biol 
109 (6 I):3073–3083. https:// doi. org/ 10. 1083/ jcb. 109.6. 3073

Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in 
growth cone motility and axon guidance. Neuron 40(2):209–227. 
https:// doi. org/ 10. 1016/ S0896- 6273(03) 00633-0

Dickson BJ (2002) Molecular mechanisms of axon guidance. Science 
298(5600):1959–1964. https:// doi. org/ 10. 1126/ scien ce. 10721 65

Diehl S, Henningsson E, Heyden A, Perna S (2014) A one-dimensional 
moving-boundary model for tubulin-driven axonal growth. J 
Theor Biol 358:194–207. https:// doi. org/ 10. 1016/j. jtbi. 2014. 06. 
019

Diehl S, Henningsson E, Heyden A (2016) Efficient simulations of 
tubulin-driven axonal growth. J Comput Neurosci 41(1):45–63. 
https:// doi. org/ 10. 1007/ s10827- 016- 0604-x

Dityatev AE, Chmykhova NM, Studer L, Karamian OA, Kozh-
anov VM, Clamann HP (1995) Comparison of the topology 
and growth rules of motoneuronal dendrites. J Comp Neurol 
363(3):505–516. https:// doi. org/ 10. 1002/ cne. 90363 0312

Donohue DE, Scorcioni R, Ascoli GA (2002) Generation and descrip-
tion of neuronal morphology using L-Neuron. Computational 
neuroanatomy. Springer, Heidelberg, pp 49–69

Espina JA, Marchant CL, Barriga EH (2021) Durotaxis: the mechani-
cal control of directed cell migration. FEBS J. https:// doi. org/ 
10. 1111/ febs. 15862

Fanti Z, De-Miguel FF, Martinez-Perez ME (2008) A method for 
semiautomatic tracing and morphological measuring of neurite 
outgrowth from dic sequences. In: 2008 30th annual international 
conference of the IEEE engineering in medicine and biology 
society, pp 1196–1199. https:// doi. org/ 10. 1109/ IEMBS. 2008. 
46493 77

Fiala JC, Spacek J, Harris KM (2008) Dendrite structure. In: Stuart 
G, Spruston N, Häusser M (eds) Dendrites, 2nd edn, Oxford 
University Press, chap 1, pp 1–41. https:// doi. org/ 10. 1093/ acprof: 
oso/ 97801 98566 564. 003. 0001

Fivaz M, Bandara S, Inoue T, Meyer T (2008) Robust neuronal symme-
try breaking by Ras-triggered local positive feedback. Curr Biol 
18(1):44–50. https:// doi. org/ 10. 1016/j. cub. 2007. 11. 051

Forbes EM, Thompson AW, Yuan J, Goodhill GJ (2012) Calcium and 
cAMP levels interact to determine attraction versus repulsion in 
axon guidance. Neuron 74(3):490–503. https:// doi. org/ 10. 1016/j. 
neuron. 2012. 02. 035

Franze K (2020) Integrating chemistry and mechanics: the forces driv-
ing axon growth. Annu Rev Cell Dev Biol. https:// doi. org/ 10. 
1146/ annur ev- cellb io- 100818- 125157

Franze K, Guck J (2010) The biophysics of neuronal growth. Rep on 
Prog Phys. https:// doi. org/ 10. 1088/ 0034- 4885/ 73/9/ 094601

Franze K, Gerdelmann J, Weick M, Betz T, Pawlizak S, Lakadamyali 
M, Bayer J, Rillich K, Gögler M, Lu YB et al (2009) Neurite 
branch retraction is caused by a threshold-dependent mechanical 
impact. Biophys J 97(7):1883–1890. https:// doi. org/ 10. 1016/j. 
bpj. 2009. 07. 033

Franze K, Reichenbach A, Käs J (2009) Biomechanics of the CNS. In: 
Kamkim A, Kiseleva I (eds) Mechanosensitivity of the nervous 

https://doi.org/10.1371/journal.pcbi.1003950
https://doi.org/10.1088/1478-3975/13/6/065002
https://doi.org/10.1088/1478-3975/13/6/065002
https://doi.org/10.1016/0012-1606(84)90202-1
https://doi.org/10.1016/0012-1606(84)90202-1
https://doi.org/10.1103/RevModPhys.85.135
https://doi.org/10.1103/RevModPhys.85.135
https://doi.org/10.1038/srep05644
https://doi.org/10.1016/j.jmps.2014.07.010
https://doi.org/10.1016/j.jmps.2014.07.010
https://doi.org/10.1016/j.eml.2015.07.004
https://doi.org/10.1006/dbio.1994.1158
https://doi.org/10.1006/dbio.1994.1158
https://doi.org/10.1016/S0022-5193(88)80068-7
https://doi.org/10.1016/S0022-5193(88)80068-7
https://doi.org/10.1016/S0022-5193(05)80626-5
https://doi.org/10.1016/S0022-5193(05)80626-5
https://doi.org/10.1523/JNEUROSCI.21-21-08538.2001
https://doi.org/10.1523/JNEUROSCI.21-21-08538.2001
https://doi.org/10.1007/BF02458630
https://doi.org/10.1016/j.tcb.2006.08.002
https://doi.org/10.1126/science.1163595
https://doi.org/10.1126/science.1163595
https://doi.org/10.1103/PhysRevE.84.021908
https://doi.org/10.1016/j.ydbio.2005.12.048
https://doi.org/10.1016/j.cub.2015.06.020
https://doi.org/10.1016/j.cub.2015.06.020
https://doi.org/10.1038/s41598-017-13804-3
https://doi.org/10.1073/pnas.0609871104
https://doi.org/10.1073/pnas.0609871104
https://doi.org/10.1016/j.bpj.2017.11.010
https://doi.org/10.3389/fncel.2018.00144
https://doi.org/10.1007/s00466-016-1359-y
https://doi.org/10.1007/s00466-016-1359-y
https://doi.org/10.1016/j.bpj.2018.08.047
https://doi.org/10.1083/jcb.109.6.3073
https://doi.org/10.1016/S0896-6273(03)00633-0
https://doi.org/10.1126/science.1072165
https://doi.org/10.1016/j.jtbi.2014.06.019
https://doi.org/10.1016/j.jtbi.2014.06.019
https://doi.org/10.1007/s10827-016-0604-x
https://doi.org/10.1002/cne.903630312
https://doi.org/10.1111/febs.15862
https://doi.org/10.1111/febs.15862
https://doi.org/10.1109/IEMBS.2008.4649377
https://doi.org/10.1109/IEMBS.2008.4649377
https://doi.org/10.1093/acprof:oso/9780198566564.003.0001
https://doi.org/10.1093/acprof:oso/9780198566564.003.0001
https://doi.org/10.1016/j.cub.2007.11.051
https://doi.org/10.1016/j.neuron.2012.02.035
https://doi.org/10.1016/j.neuron.2012.02.035
https://doi.org/10.1146/annurev-cellbio-100818-125157
https://doi.org/10.1146/annurev-cellbio-100818-125157
https://doi.org/10.1088/0034-4885/73/9/094601
https://doi.org/10.1016/j.bpj.2009.07.033
https://doi.org/10.1016/j.bpj.2009.07.033


114 H. Oliveri, A. Goriely 

1 3

system mechanosensitivity in cells and tissues. Springer, Hei-
delberg, pp 173–213

Franze K, Janmey PA, Guck J (2013) Mechanics in neuronal develop-
ment and repair. Annu Rev Biomed Eng 15(1):227–251. https:// 
doi. org/ 10. 1146/ annur ev- bioeng- 071811- 150045

Fujishima K, Horie R, Mochizuki A, Kengaku M (2012) Principles 
of branch dynamics governing shape characteristics of cerebel-
lar purkinje cell dendrites. Development 139(18):3442–3455. 
https:// doi. org/ 10. 1242/ dev. 081315

Futerman AH, Banker GA (1996) The economics of neurite out-
growth–the addition of new membrane to growing axons. Trends 
Neurosci 19(4):144–149. https:// doi. org/ 10. 1016/ s0166- 2236(96) 
80025-7

Garcia K, Kroenke C, Bayly P (2018) Mechanics of cortical folding: 
stress, growth and stability. Philoso Trans R Soc B: Biol Sci 
373(1759):20170321. https:// doi. org/ 10. 1098/ rstb. 2017. 0321

García-Grajales JA, Peña JM, McHugh S, Jérusalem A (2012) A model 
of the spatially dependent mechanical properties of the axon dur-
ing its growth. CMES - Comput Model Eng Sci 87(5):411–432. 
https:// doi. org/ 10. 3970/ cmes. 2012. 087. 411

García-Grajales JA, Jérusalem A, Goriely A (2017) Continuum 
mechanical modeling of axonal growth. Comput Methods Appl 
Mech Eng 314:147–163. https:// doi. org/ 10. 1016/j. cma. 2016. 07. 
032

Gay DA, Sisodia SS, Cleveland DW (1989) Autoregulatory control 
of β-tubulin mRNA stability is linked to translation elongation. 
Proc Natl Acad Sci USA 86(15):5763–5767. https:// doi. org/ 10. 
1073/ pnas. 86. 15. 5763

Gibson DA, Ma L (2011) Developmental regulation of axon branching 
in the vertebrate nervous system. Development 138(2):183–195. 
https:// doi. org/ 10. 1242/ dev. 046441

Gierer A, Meinhardt H (1972) A theory of biological pattern forma-
tion. Kybernetik 39:30–39. https:// doi. org/ 10. 1007/ BF002 89234

Giniūnaité R, Baker RE, Kulesa PM, Maini PK (2020) Model-
ling collective cell migration: neural crest as a model para-
digm. J Math Biol 80(1):481–504. https:// doi. org/ 10. 1007/ 
s00285- 019- 01436-2

Gokoffski KK, Jia X, Shvarts D, Xia G, Zhao M (2019) Physiologic 
electrical fields direct retinal ganglion cell axon growth in vitro. 
Invest Ophthalmol Vis Sci 60(10):3659–3668. https:// doi. org/ 
10. 1167/ iovs. 18- 25118

Goldberg DJ, Burmeister DW (1986) Stages in axon formation: 
observations of growth of Aplysia axons in culture using video-
enhanced contrast-differential interference contrast microscopy. 
J Cell Biol 103(5):1921–1931. https:// doi. org/ 10. 1083/ jcb. 103.5. 
1921

Goodhill GJ (1997) Diffusion in axon guidance. Eur J Neurosci 
9(7):1414–1421. https:// doi. org/ 10. 1111/j. 1460- 9568. 1997. 
tb014 96.x

Goodhill GJ (1998) Mathematical guidance for axons. Trends Neurosci 
21(6):226–231. https:// doi. org/ 10. 1016/ S0166- 2236(97) 01203-4

Goodhill GJ (2018) Theoretical models of neural development. iSci-
ence 8:183–199. https:// doi. org/ 10. 1016/j. isci. 2018. 09. 017

Goodhill GJ, Baier H (1998) Axon guidance: stretching gradients to 
the limit. Neural Comput 10(3):521–527. https:// doi. org/ 10. 1162/ 
08997 66983 00017 638

Goodhill GJ, Urbach JS (1999) Theoretical analysis of gradient detec-
tion by growth cones. J Neurobiol 41(2):230–241

Goodhill GJ, Urbach JS (2003) Axon guidance and gradient detection 
by growth cones. In: Modeling Neural (ed) Van Ooyen A. The 
MIT Press, Development, Cambridge, pp 95–109

Goodhill GJ, Gu M, Urbach JS (2004) Predicting axonal response to 
molecular gradients with a computational model of filopodial 
dynamics. Neural Comput 16(11):2221–2243. https:// doi. org/ 10. 
1162/ 08997 66041 941934

Goriely A (2017) The mathematics and mechanics of biological 
growth, Interdisciplinary applied mathematics, vol 45, 1st edn. 
Springer-Verlag, New York

Goriely A (2018) Five ways to model active processes in elastic solids: 
active forces, active stresses, active strains, active fibers, and 
active metrics. Mech Res Commun 93:75–79. https:// doi. org/ 10. 
1016/j. mechr escom. 2017. 09. 003

Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic 
growth models. In: Mondaini RP, Pardalos PM (eds) Mathe-
matical modelling of biosystems, applied optimization, vol 102. 
Springer, Berlin Heidelberg, pp 1–44

Goriely A, Budday S, Kuhl E (2015) Neuromechanics: from neurons 
to brain. Advances in applied mechanics, vol 48. Academic Press 
Inc., Cambridge, pp 79–139

Goriely A, Geers MG, Holzapfel GA, Jayamohan J, Jérusalem A, 
Sivaloganathan S, Squier W, Van Dommelen JA, Waters S, Kuhl 
E (2015) Mechanics of the brain: perspectives, challenges, and 
opportunities. Biomech Model Mechanobiol 14(5):931–965. 
https:// doi. org/ 10. 1007/ s10237- 015- 0662-4

Graham BP, Van Ooyen A (2001) Compartmental models of growing 
neurites. Neurocomputing 38–40:31–36. https:// doi. org/ 10. 1016/ 
S0925- 2312(01) 00463-5

Graham BP, Van Ooyen A (2004) Transport limited effects in a model 
of dendritic branching. J Theor Biol 230:421–432. https:// doi. 
org/ 10. 1016/j. jtbi. 2004. 06. 007

Graham BP, Van Ooyen A (2006) Mathematical modelling and numeri-
cal simulation of the morphological development of neurons. 
BMC Neurosci. https:// doi. org/ 10. 1186/ 1471- 2202-7- S1- S9

Graham BP, Lauchlan K, Mclean DR (2006) Dynamics of outgrowth 
in a continuum model of neurite elongation. J Comput Neurosci 
20(1):43–60. https:// doi. org/ 10. 1007/ s10827- 006- 5330-3

Greiner A, Kaessmair S, Budday S (2021) Physical aspects of cortical 
folding. Soft Matter 17(5):1210–1222. https:// doi. org/ 10. 1039/ 
D0SM0 2209H

Grueber WB, Sagasti A (2010) Self-avoidance and tiling: mechanisms 
of dendrite and axon spacing. Cold Spring Harb Perspect Biol 
2(9):a001750. https:// doi. org/ 10. 1101/ cshpe rspect. a0017 50

Hamant O (2017) Mechano-devo. Mech Dev 145:2–9. https:// doi. org/ 
10. 1016/j. mod. 2017. 02. 004

Hamid S, Hayek R (2008) Role of electrical stimulation for reha-
bilitation and regeneration after spinal cord injury: an over-
view. Eur Spine J 17(9):1256–1269. https:// doi. org/ 10. 1007/ 
s00586- 008- 0729-3

Hamilton P (1993) A language to describe the growth of neurites. Biol 
Cybern 68(6):559–565. https:// doi. org/ 10. 1007/ BF002 00816

Haydar TF, Reeves RH (2012) Trisomy 21 and early brain develop-
ment. Trends Neurosci 35(2):81–91. https:// doi. org/ 10. 1016/j. 
tins. 2011. 11. 001

Heidemann SR, Buxbaum RE (1990) Tension as a regulator and 
integrator of axonal growth. Cell Motil Cytoskelet 17(1):6–10. 
https:// doi. org/ 10. 1002/ cm. 97017 0103

Heidemann SR, Lamoureux P, Buxbaum RE (1990) Growth 
cone behavior and production of traction force. J Cell Biol 
111(5):1949–1957

Heidemann SR, Lamoureux P, Buxbaum RE (1997) Cytomechanics 
of axonal development. Cell Biochem Biophys 27(3):135–155. 
https:// doi. org/ 10. 1007/ BF027 38107

Hely TA, Van Ooyen A, Willshaw DJ (1998) A simulation of growth 
cone filopodia dynamics based on turing morphogenesis patterns. 
In: Holcombe M, Paton R (eds) Information processing in cells 
and tissues. Springer, Heidelberg, pp 69–73

Hely TA, Graham B, Van Ooyen A (2001) A computational model of 
dendrite elongation and branching based on MAP2 phosphoryla-
tion. J Theor Biol 210(3):375–384. https:// doi. org/ 10. 1006/ jtbi. 
2001. 2314

https://doi.org/10.1146/annurev-bioeng-071811-150045
https://doi.org/10.1146/annurev-bioeng-071811-150045
https://doi.org/10.1242/dev.081315
https://doi.org/10.1016/s0166-2236(96)80025-7
https://doi.org/10.1016/s0166-2236(96)80025-7
https://doi.org/10.1098/rstb.2017.0321
https://doi.org/10.3970/cmes.2012.087.411
https://doi.org/10.1016/j.cma.2016.07.032
https://doi.org/10.1016/j.cma.2016.07.032
https://doi.org/10.1073/pnas.86.15.5763
https://doi.org/10.1073/pnas.86.15.5763
https://doi.org/10.1242/dev.046441
https://doi.org/10.1007/BF00289234
https://doi.org/10.1007/s00285-019-01436-2
https://doi.org/10.1007/s00285-019-01436-2
https://doi.org/10.1167/iovs.18-25118
https://doi.org/10.1167/iovs.18-25118
https://doi.org/10.1083/jcb.103.5.1921
https://doi.org/10.1083/jcb.103.5.1921
https://doi.org/10.1111/j.1460-9568.1997.tb01496.x
https://doi.org/10.1111/j.1460-9568.1997.tb01496.x
https://doi.org/10.1016/S0166-2236(97)01203-4
https://doi.org/10.1016/j.isci.2018.09.017
https://doi.org/10.1162/089976698300017638
https://doi.org/10.1162/089976698300017638
https://doi.org/10.1162/0899766041941934
https://doi.org/10.1162/0899766041941934
https://doi.org/10.1016/j.mechrescom.2017.09.003
https://doi.org/10.1016/j.mechrescom.2017.09.003
https://doi.org/10.1007/s10237-015-0662-4
https://doi.org/10.1016/S0925-2312(01)00463-5
https://doi.org/10.1016/S0925-2312(01)00463-5
https://doi.org/10.1016/j.jtbi.2004.06.007
https://doi.org/10.1016/j.jtbi.2004.06.007
https://doi.org/10.1186/1471-2202-7-S1-S9
https://doi.org/10.1007/s10827-006-5330-3
https://doi.org/10.1039/D0SM02209H
https://doi.org/10.1039/D0SM02209H
https://doi.org/10.1101/cshperspect.a001750
https://doi.org/10.1016/j.mod.2017.02.004
https://doi.org/10.1016/j.mod.2017.02.004
https://doi.org/10.1007/s00586-008-0729-3
https://doi.org/10.1007/s00586-008-0729-3
https://doi.org/10.1007/BF00200816
https://doi.org/10.1016/j.tins.2011.11.001
https://doi.org/10.1016/j.tins.2011.11.001
https://doi.org/10.1002/cm.970170103
https://doi.org/10.1007/BF02738107
https://doi.org/10.1006/jtbi.2001.2314
https://doi.org/10.1006/jtbi.2001.2314


115Mathematical models of neuronal growth  

1 3

Hentschel HGE, Fine A (1996) Diffusion-regulated control of cellular 
dendritic morphogenesis. Proc R Soc B Biol Sci 263(1366):1–8. 
https:// doi. org/ 10. 1098/ rspb. 1996. 0001

Hentschel HGE, Van Ooyen A (1999) Models of axon guidance 
and bundling during development. Proc R Soc B Biol Sci 
266(1434):2231–2238. https:// doi. org/ 10. 1098/ rspb. 1999. 0913

Hentschel HGE, Van Ooyen A (2000) Dynamic mechanisms for bun-
dling and guidance during neural network formation. Phys A 
288(1–4):369–379. https:// doi. org/ 10. 1016/ S0378- 4371(00) 
00434-9

Hillman D (1979) Neuronal shape parameters and substructures as a 
basis of neuronal form. In: Schmitt FO, Worden FG (eds) The 
neurosciences, fourth study program. MIT Press, Cambridge, 
MA, pp 477–498

Hjorth JJ, Van Pelt J, Mansvelder HD, Van Ooyen A (2014) Competi-
tive dynamics during resource-driven neurite outgrowth. PLoS 
One 9(2):86741. https:// doi. org/ 10. 1371/ journ al. pone. 00867 41

Hoffman PN, Griffin JW, Gold BG, Price DL (1985) Slowing of neu-
rofilament transport and the radial growth of developing nerve 
fibers. J Neurosci 5(11):2920–2929. https:// doi. org/ 10. 1523/ jneur 
osci. 05- 11- 02920. 1985

Holland M, Budday S, Goriely A, Kuhl E (2018) Symmetry breaking 
in wrinkling patterns: gyri are universally thicker than sulci. Phys 
Rev Lett 121(22):228002. https:// doi. org/ 10. 1103/ PhysR evLett. 
121. 228002

Holland MA, Miller KE, Kuhl E (2015) Emerging brain morpholo-
gies from axonal elongation. Ann Biomed Eng 43(7):1640–1653. 
https:// doi. org/ 10. 1007/ s10439- 015- 1312-9

Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach 
for engineering science. Wiley, Hoboken

Inagaki N, Toriyama M, Sakumura Y (2011) Systems biology of sym-
metry breaking during neuronal polarity formation. Dev Neuro-
biol 71(6):584–593. https:// doi. org/ 10. 1002/ dneu. 20837

Jakobs M, Franze K, Zemel A (2015) Force generation by molecular-
motor-powered microtubule bundles; implications for neuronal 
polarization and growth. Front Cell Neurosci 9:441. https:// doi. 
org/ 10. 3389/ fncel. 2015. 00441

Jakobs MA, Franze K, Zemel A (2020) Mechanical regulation of neu-
rite polarization and growth: a computational study. Biophys J 
118(8):1914–1920. https:// doi. org/ 10. 1016/j. bpj. 2020. 02. 031

Janulevicius A, van Pelt J, van Ooyen A (2006) Compartment vol-
ume influences microtubule dynamic instability: a model study. 
Biophys J 90(3):788–798. https:// doi. org/ 10. 1529/ bioph ysj. 105. 
059410

Jülicher F, Kruse K, Prost J, Joanny JF (2007) Active behavior of the 
cytoskeleton. Phys Rep 449(1–3):3–28. https:// doi. org/ 10. 1016/j. 
physr ep. 2007. 02. 018

Kalil K, Dent EW (2014) Branch management: mechanisms of axon 
branching in the developing vertebrate CNS. Nat Rev Neurosci 
15(1):7–18. https:// doi. org/ 10. 1038/ nrn36 50

Kalil K, Szebenyi G, Dent EW (2000) Common mechanisms under-
lying growth cone guidance and axon branching. J Neurobiol 
44(2):145–158

Kapfhammer JP (2004) Cellular and molecular control of dendritic 
growth and development of cerebellar Purkinje cells. Prog Histo-
chem Cytochem 39(3):131–182. https:// doi. org/ 10. 1016/j. proghi. 
2004. 07. 002

Katz MJ (1985) How straight do axons grow? J Neurosci 5(3):589–595. 
https:// doi. org/ 10. 1523/ jneur osci. 05- 03- 00589. 1985

Katz MJ, George EB, Gilbert LJ (1984) Axonal elongation as a sto-
chastic walk. Cell Motil 4(5):351–370. https:// doi. org/ 10. 1002/ 
cm. 97004 0505

Kevenaar JT, Hoogenraad CC (2015) The axonal cytoskeleton: from 
organization to function. Front Mol Neurosci 8:44. https:// doi. 
org/ 10. 3389/ fnmol. 044

Kiddie G, McLean D, Van Ooyen A, Graham B (2005) Biologically 
plausible models of neurite outgrowth. Development, dynamics 
and pathiology of neuronal networks: from molecules to func-
tional circuits, progress in brain research. Elsevier, Amesterdam, 
pp 67–80

Kiryushko D, Berezin V, Bock E (2004) Regulators of neurite out-
growth: role of cell adhesion molecules. Ann N Y Acad Sci 
1014(1):140–154. https:// doi. org/ 10. 1196/ annals. 1294. 015

Koch D, Rosoff WJ, Jiang J, Geller HM, Urbach JS (2012) Strength 
in the periphery: growth cone biomechanics and substrate rigid-
ity response in peripheral and central nervous system neurons. 
Biophys J 102(3):452–460. https:// doi. org/ 10. 1016/j. bpj. 2011. 
12. 025

Koser DE, Thompson AJ, Foster SK, Dwivedy A, Pillai EK, Sheridan 
GK, Svoboda H, Viana M, da Fontoura Costa L, Guck J, Holt 
CE, Franze K (2016) Mechanosensing is critical for axon growth 
in the developing brain. Nat Neurosci 19(12):1592. https:// doi. 
org/ 10. 1038/ nn. 4394

Krottje JK, Van Ooyen A (2007) A mathematical framework for mod-
eling axon guidance. Bull Math Biol 69(1):3–31. https:// doi. org/ 
10. 1007/ s11538- 006- 9142-4

Lamoureux P, Buxbaum RE, Heidemann SR (1989) Direct evidence 
that growth cones pull. Nature 340(6229):159–162. https:// doi. 
org/ 10. 1038/ 34015 9a0

Lamoureux P, Heidemann SR, Martzke NR, Miller KE (2010) Growth 
and elongation within and along the axon. Dev Neurobiol 
70(3):135–149. https:// doi. org/ 10. 1002/ dneu. 20764

Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR (2012) 
Protocadherins mediate dendritic self-avoidance in the mamma-
lian nervous system. Nature 488(7412):517–521. https:// doi. org/ 
10. 1038/ natur e11305

Li GH, Qin CD (1996) A model for neurite growth and neuronal mor-
phogenesis. Math Biosci 132(1):97–110. https:// doi. org/ 10. 1016/ 
0025- 5564(95) 00052-6

Li GH, Qin CD, Wang ZS (1992) Neurite branching pattern formation: 
modeling and computer simulation. J Theor Biol 157(4):463–
486. https:// doi. org/ 10. 1016/ S0022- 5193(05) 80664-2

Li GH, Wang LW et al (1995) Computer model of growth cone behav-
ior and neuronal morphogenesis. J Theor Biol 174(4):381–389. 
https:// doi. org/ 10. 1006/ jtbi. 1995. 0106

Lim SS, Edson KJ, Letourneau PC, Borisy GG (1990) A test of 
microtubule translocation during neurite elongation. J Cell Biol 
111(1):123–130

Lin J, Li X, Yin J, Qian J (2020) Effect of cyclic stretch on neuron reor-
ientation and axon outgrowth. Front Bioeng Biotechnol 8:1429. 
https:// doi. org/ 10. 3389/ fbioe. 2020. 597867

Lockhart JA (1965) An analysis of irreversible plant cell elongation. J 
Theor Biol 8(2):264–275. https:// doi. org/ 10. 1016/ 0022- 5193(65) 
90077-9

Loverde JR, Ozoka VC, Aquino R, Lin L, Pfister BJ (2011) Live imag-
ing of axon stretch growth in embryonic and adult neurons. J 
Neurotrauma 28(11):2389–2403. https:// doi. org/ 10. 1089/ neu. 
2010. 1598

Luczak A (2006) Spatial embedding of neuronal trees modeled by dif-
fusive growth. J Neurosci Methods 157(1):132–141. https:// doi. 
org/ 10. 1016/j. jneum eth. 2006. 03. 024

Maccioni RB, Cambiazo V (1995) Role of microtubule-associated 
proteins in the control of microtubule assembly. Physiol Rev 
75(4):835–864. https:// doi. org/ 10. 1152/ physr ev. 1995. 75.4. 835

Mahar M, Cavalli V (2018) Intrinsic mechanisms of neuronal axon 
regeneration. Nat Rev Neurosci 19(6):323–337. https:// doi. org/ 
10. 1038/ s41583- 018- 0001-8

Maskery S, Shinbrot T (2005) Deterministic and stochastic elements 
of axonal guidance. Annu Rev Biomed Eng 7:187–221. https:// 
doi. org/ 10. 1146/ annur ev. bioeng. 7. 060804. 100446

https://doi.org/10.1098/rspb.1996.0001
https://doi.org/10.1098/rspb.1999.0913
https://doi.org/10.1016/S0378-4371(00)00434-9
https://doi.org/10.1016/S0378-4371(00)00434-9
https://doi.org/10.1371/journal.pone.0086741
https://doi.org/10.1523/jneurosci.05-11-02920.1985
https://doi.org/10.1523/jneurosci.05-11-02920.1985
https://doi.org/10.1103/PhysRevLett.121.228002
https://doi.org/10.1103/PhysRevLett.121.228002
https://doi.org/10.1007/s10439-015-1312-9
https://doi.org/10.1002/dneu.20837
https://doi.org/10.3389/fncel.2015.00441
https://doi.org/10.3389/fncel.2015.00441
https://doi.org/10.1016/j.bpj.2020.02.031
https://doi.org/10.1529/biophysj.105.059410
https://doi.org/10.1529/biophysj.105.059410
https://doi.org/10.1016/j.physrep.2007.02.018
https://doi.org/10.1016/j.physrep.2007.02.018
https://doi.org/10.1038/nrn3650
https://doi.org/10.1016/j.proghi.2004.07.002
https://doi.org/10.1016/j.proghi.2004.07.002
https://doi.org/10.1523/jneurosci.05-03-00589.1985
https://doi.org/10.1002/cm.970040505
https://doi.org/10.1002/cm.970040505
https://doi.org/10.3389/fnmol.044
https://doi.org/10.3389/fnmol.044
https://doi.org/10.1196/annals.1294.015
https://doi.org/10.1016/j.bpj.2011.12.025
https://doi.org/10.1016/j.bpj.2011.12.025
https://doi.org/10.1038/nn.4394
https://doi.org/10.1038/nn.4394
https://doi.org/10.1007/s11538-006-9142-4
https://doi.org/10.1007/s11538-006-9142-4
https://doi.org/10.1038/340159a0
https://doi.org/10.1038/340159a0
https://doi.org/10.1002/dneu.20764
https://doi.org/10.1038/nature11305
https://doi.org/10.1038/nature11305
https://doi.org/10.1016/0025-5564(95)00052-6
https://doi.org/10.1016/0025-5564(95)00052-6
https://doi.org/10.1016/S0022-5193(05)80664-2
https://doi.org/10.1006/jtbi.1995.0106
https://doi.org/10.3389/fbioe.2020.597867
https://doi.org/10.1016/0022-5193(65)90077-9
https://doi.org/10.1016/0022-5193(65)90077-9
https://doi.org/10.1089/neu.2010.1598
https://doi.org/10.1089/neu.2010.1598
https://doi.org/10.1016/j.jneumeth.2006.03.024
https://doi.org/10.1016/j.jneumeth.2006.03.024
https://doi.org/10.1152/physrev.1995.75.4.835
https://doi.org/10.1038/s41583-018-0001-8
https://doi.org/10.1038/s41583-018-0001-8
https://doi.org/10.1146/annurev.bioeng.7.060804.100446
https://doi.org/10.1146/annurev.bioeng.7.060804.100446


116 H. Oliveri, A. Goriely 

1 3

Maskery SM, Buettner HM, Shinbrot T (2004) Growth cone pathfind-
ing: a competition between deterministic and stochastic events. 
BMC Neurosci 5(1):22. https:// doi. org/ 10. 1186/ 1471- 2202-5- 22

Masland RH (2004) Neuronal cell types. Curr Biol 14(13):R497–R500. 
https:// doi. org/ 10. 1016/j. cub. 2004. 06. 035

Matthews BJ, Kim ME, Flanagan JJ, Hattori D, Clemens JC, Zipursky 
SL, Grueber WB (2007) Dendrite self-avoidance is controlled 
by Dscam. Cell 129(3):593–604. https:// doi. org/ 10. 1016/j. cell. 
2007. 04. 013

McCormick LE, Gupton SL (2020) Mechanistic advances in axon path-
finding. Curr Opin Cell Biol 63:11–19. https:// doi. org/ 10. 1016/j. 
ceb. 2019. 12. 003

McLean DR, Graham BP (2004) Mathematical formulation and analy-
sis of a continuum model for tubulin-driven neurite elongation. 
Proc R Soc A Math Phys Eng Sci 460(2048):2437–2456. https:// 
doi. org/ 10. 1098/ rspa. 2004. 1288

McLean DR, Graham BP (2006) Stability in a mathematical model of 
neurite elongation. Math Med Biol J IMA 23(2):101–117. https:// 
doi. org/ 10. 1093/ imammb/ dql010

McLean DR, Van Ooyen A, Graham BP (2004) Continuum model for 
tubulin-driven neurite elongation. Neurocomputing 58–60:511–
516. https:// doi. org/ 10. 1016/j. neucom. 2004. 01. 088

Meinhardt H, Gierer A (2000) Pattern formation by local self-activation 
and lateral inhibition. BioEssays 22(8):753–760

Miller KE, Heidemann SR (2008) What is slow axonal transport? Exp 
Cell Res 314(10):1981–1990. https:// doi. org/ 10. 1016/j. yexcr. 
2008. 03. 004

Miller KE, Joshi HC (1996) Tubulin transport in neurons. J Cell Biol 
133(6):1355–1366. https:// doi. org/ 10. 1083/ jcb. 133.6. 1355

Miller KE, Samuels DC (1997) The axon as a metabolic compart-
ment: protein degradation, transport, and maximum length of 
an axon. J Theor Biol 186(3):373–379. https:// doi. org/ 10. 1006/ 
jtbi. 1996. 0355

Miller KE, Sheetz MP (2006) Direct evidence for coherent low velocity 
axonal transport of mitochondria. J Cell Biol 173(3):373–381. 
https:// doi. org/ 10. 1083/ jcb. 20051 0097

Miller KE, Suter DM (2018) An integrated cytoskeletal model of 
neurite outgrowth. Front Cell Neurosci. https:// doi. org/ 10. 
3389/ fncel. 2018. 00447

Möllmert S, Kharlamova MA, Hoche T, Taubenberger AV, Abuhat-
tum S, Kuscha V, Kurth T, Brand M, Guck J (2020) Zebrafish 
spinal cord repair is accompanied by transient tissue stiffen-
ing. Biophys J 118(2):448–463. https:// doi. org/ 10. 1016/j. bpj. 
2019. 10. 044

Montanino A, Kleiven S (2018) Utilizing a structural mechanics 
approach to assess the primary effects of injury loads onto the 
axon and its components. Front Neurol. https:// doi. org/ 10. 3389/ 
fneur. 2018. 00643

Mortimer D, Fothergill T, Pujic Z, Richards LJ, Goodhill GJ (2008) 
Growth cone chemotaxis. Trends Neurosci 31(2):90–98. https:// 
doi. org/ 10. 1016/j. tins. 2007. 11. 008

Mortimer D, Pujic Z, Vaughan T, Thompson AW, Feldner J, Vetter I, 
Goodhill GJ (2010) Axon guidance by growth-rate modulation. 
Proc Natl Acad Sci 107(11):5202–5207. https:// doi. org/ 10. 1073/ 
pnas. 09092 54107

Moulton DE, Lessinnes T, Goriely A (2013) Morphoelastic rods. Part I: 
a single growing elastic rod. J Mech Phys Solids 61(2):398–427. 
https:// doi. org/ 10. 1016/j. jmps. 2012. 09. 017

Moulton DE, Oliveri H, Goriely A (2020) Multiscale integration of 
environmental stimuli in plant tropism produces complex behav-
iors. Proc Natl Acad Sci 117(51):32226–32237. https:// doi. org/ 
10. 1073/ PNAS. 20160 25117

Mrak RE, Griffin WST (2004) Trisomy 21 and the brain. J Neuro-
pathol Exp Neurol 63(7):679–685. https:// doi. org/ 10. 1093/ jnen/ 
63.7. 679

Murray JD (1993) Mathematical Biology, 2nd edn. Springer-Verlag, 
Berlin

Mutalik SP, Ghose A (2020) Axonal cytomechanics in neuronal 
development. J Biosci 45(1):1–17. https:// doi. org/ 10. 1007/ 
s12038- 020- 00029-2

Nowakowski RS, Hayes NL, Egger MD (1992) Competitive interac-
tions during dendritic growth: a simple stochastic growth algo-
rithm. Brain Res 576(1):152–156. https:// doi. org/ 10. 1016/ 0006- 
8993(92) 90622-g

O’Donnell M, Chance RK, Bashaw GJ (2009) Axon growth and guid-
ance: receptor regulation and signal transduction. Annu Rev 
Neurosci 32(1):383–412. https:// doi. org/ 10. 1146/ annur ev. neuro. 
051508. 135614

Okabe S, Hirokawa N (1990) Turnover of fluorescently labelled tubulin 
and actin in the axon. Nature 343(6257):479–482. https:// doi. org/ 
10. 1038/ 34347 9a0

Oliveri H, Franze K, Goriely A (2021) Theory for durotactic axon 
guidance. Phys Rev Lett 126(11):118101. https:// doi. org/ 10. 
1103/ PhysR evLett. 126. 118101

O’Toole M, Miller KE (2011) The role of stretching in slow axonal 
transport. Biophys J 100(2):351–360. https:// doi. org/ 10. 1016/j. 
bpj. 2010. 12. 3695

O’Toole M, Lamoureux P, Miller KE (2008) A physical model of 
axonal elongation: force, viscosity, and adhesions govern the 
mode of outgrowth. Biophys J 94(7):2610–2620. https:// doi. org/ 
10. 1529/ bioph ysj. 107. 117424

O’Toole M, Latham R, Baqri RM, Miller KE (2008) Modeling mito-
chondrial dynamics during in vivo axonal elongation. J Theor 
Biol 255(4):369–377. https:// doi. org/ 10. 1016/j. jtbi. 2008. 09. 009

O’Toole M, Lamoureux P, Miller KE (2015) Measurement of subcel-
lular force generation in neurons. Biophys J 108(5):1027–1037. 
https:// doi. org/ 10. 1016/j. bpj. 2015. 01. 021

Painter KJ (2019) Mathematical models for chemotaxis and their appli-
cations in self-organisation phenomena. J Theor Biol 481:162–
182. https:// doi. org/ 10. 1016/j. jtbi. 2018. 06. 019

Pearson YE, Castronovo E, Lindsley TA, Drew DA (2011) Math-
ematical modeling of axonal formation part I: geometry. 
Bull Math Biol 73(12):2837–2864. https:// doi. org/ 10. 1007/ 
s11538- 011- 9648-2

Peter SJ, Mofrad MR (2012) Computational modeling of axonal micro-
tubule bundles under tension. Biophys J 102(4):749–757. https:// 
doi. org/ 10. 1016/J. BPJ. 2011. 11. 4024

Pfister BJ, Iwata A, Meaney DF, Smith DH (2004) Extreme stretch 
growth of integrated axons. J Neurosci 24(36):7978–7983. 
https:// doi. org/ 10. 1523/ JNEUR OSCI. 1974- 04. 2004

Pillay S, Byrne HM, Maini PK (2017) Modeling angiogenesis: a 
discrete to continuum description. Phys Rev E 95(1):12410. 
https:// doi. org/ 10. 1103/ PhysR evE. 95. 012410

Piper M, Anderson R, Dwivedy A, Weinl C, van Horck F, Leung 
KM, Cogill E, Holt C (2006) Signaling mechanisms underlying 
slit2-induced collapse of xenopus retinal growth cones. Neuron 
49(2):215–228. https:// doi. org/ 10. 1016/j. neuron. 2005. 12. 008

Plachez C, Richards LJ (2005) Mechanisms of axon guidance in the 
developing nervous system. Curr Top Dev Biol 69:267–346. 
https:// doi. org/ 10. 1016/ S0070- 2153(05) 69010-2

Purohit PK (2015) Tension dependent growth and retraction of neu-
rites. Proced IUTAM 12:185–192. https:// doi. org/ 10. 1016/j. 
piutam. 2014. 12. 020

Purohit PK, Smith DH (2016) A model for stretch growth of neurons. 
J Biomech 49(16):3934–3942. https:// doi. org/ 10. 1016/j. jbiom 
ech. 2016. 11. 045

Rajagopalan J, Tofangchi A, Saif MTA (2010) Drosophila neurons 
actively regulate axonal tension in vivo. Biophys J 99(10):3208–
3215. https:// doi. org/ 10. 1016/j. bpj. 2010. 09. 029

https://doi.org/10.1186/1471-2202-5-22
https://doi.org/10.1016/j.cub.2004.06.035
https://doi.org/10.1016/j.cell.2007.04.013
https://doi.org/10.1016/j.cell.2007.04.013
https://doi.org/10.1016/j.ceb.2019.12.003
https://doi.org/10.1016/j.ceb.2019.12.003
https://doi.org/10.1098/rspa.2004.1288
https://doi.org/10.1098/rspa.2004.1288
https://doi.org/10.1093/imammb/dql010
https://doi.org/10.1093/imammb/dql010
https://doi.org/10.1016/j.neucom.2004.01.088
https://doi.org/10.1016/j.yexcr.2008.03.004
https://doi.org/10.1016/j.yexcr.2008.03.004
https://doi.org/10.1083/jcb.133.6.1355
https://doi.org/10.1006/jtbi.1996.0355
https://doi.org/10.1006/jtbi.1996.0355
https://doi.org/10.1083/jcb.200510097
https://doi.org/10.3389/fncel.2018.00447
https://doi.org/10.3389/fncel.2018.00447
https://doi.org/10.1016/j.bpj.2019.10.044
https://doi.org/10.1016/j.bpj.2019.10.044
https://doi.org/10.3389/fneur.2018.00643
https://doi.org/10.3389/fneur.2018.00643
https://doi.org/10.1016/j.tins.2007.11.008
https://doi.org/10.1016/j.tins.2007.11.008
https://doi.org/10.1073/pnas.0909254107
https://doi.org/10.1073/pnas.0909254107
https://doi.org/10.1016/j.jmps.2012.09.017
https://doi.org/10.1073/PNAS.2016025117
https://doi.org/10.1073/PNAS.2016025117
https://doi.org/10.1093/jnen/63.7.679
https://doi.org/10.1093/jnen/63.7.679
https://doi.org/10.1007/s12038-020-00029-2
https://doi.org/10.1007/s12038-020-00029-2
https://doi.org/10.1016/0006-8993(92)90622-g
https://doi.org/10.1016/0006-8993(92)90622-g
https://doi.org/10.1146/annurev.neuro.051508.135614
https://doi.org/10.1146/annurev.neuro.051508.135614
https://doi.org/10.1038/343479a0
https://doi.org/10.1038/343479a0
https://doi.org/10.1103/PhysRevLett.126.118101
https://doi.org/10.1103/PhysRevLett.126.118101
https://doi.org/10.1016/j.bpj.2010.12.3695
https://doi.org/10.1016/j.bpj.2010.12.3695
https://doi.org/10.1529/biophysj.107.117424
https://doi.org/10.1529/biophysj.107.117424
https://doi.org/10.1016/j.jtbi.2008.09.009
https://doi.org/10.1016/j.bpj.2015.01.021
https://doi.org/10.1016/j.jtbi.2018.06.019
https://doi.org/10.1007/s11538-011-9648-2
https://doi.org/10.1007/s11538-011-9648-2
https://doi.org/10.1016/J.BPJ.2011.11.4024
https://doi.org/10.1016/J.BPJ.2011.11.4024
https://doi.org/10.1523/JNEUROSCI.1974-04.2004
https://doi.org/10.1103/PhysRevE.95.012410
https://doi.org/10.1016/j.neuron.2005.12.008
https://doi.org/10.1016/S0070-2153(05)69010-2
https://doi.org/10.1016/j.piutam.2014.12.020
https://doi.org/10.1016/j.piutam.2014.12.020
https://doi.org/10.1016/j.jbiomech.2016.11.045
https://doi.org/10.1016/j.jbiomech.2016.11.045
https://doi.org/10.1016/j.bpj.2010.09.029


117Mathematical models of neuronal growth  

1 3

Rakic P (1972) Mode of cell migration to the superficial layers of 
fetal monkey neocortex. J Comp Neurol 145(1):61–83. https:// 
doi. org/ 10. 1002/ cne. 90145 0105

Rall W (1959) Branching dendritic trees and motoneuron membrane 
resistivity. Exp Neurol 1(5):491–527. https:// doi. org/ 10. 1016/ 
0014- 4886(59) 90046-9

Recho P, Jérusalem A, Goriely A (2016) Growth, collapse, and stall-
ing in a mechanical model for neurite motility. Phys Rev E. 
https:// doi. org/ 10. 1103/ PhysR evE. 93. 032410

Ren Y, Suter DM (2016) Increase in growth cone size correlates 
with decrease in neurite growth rate. Neural Plast 2016:20–22. 
https:// doi. org/ 10. 1155/ 2016/ 34979 01

Riccobelli D (2021) Active elasticity drives the formation of periodic 
beading in damaged axons. Phys Rev E 104(024):417. https:// 
doi. org/ 10. 1103/ PhysR evE. 104. 024417

Roberts A, Conte D, Hull M, Merrison-Hort R, al Azad AK, Buhl E, 
Borisyuk R, Soffe SR (2014) Can simple rules control devel-
opment of a pioneer vertebrate neuronal network generating 
behavior? J Neurosci 34(2):608–621. https:// doi. org/ 10. 1523/ 
JNEUR OSCI. 3248- 13. 2014

Roccasalvo IM, Micera S, Sergi PN (2015) A hybrid computational 
model to predict chemotactic guidance of growth cones. Sci 
Rep 5(1):1–17. https:// doi. org/ 10. 1038/ srep1 1340

Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent 
finite growth in soft elastic tissues. J Biomech 27(4):455–467. 
https:// doi. org/ 10. 1016/ 0021- 9290(94) 90021-3

Ronan L, Fletcher PC (2015) From genes to folds: a review of corti-
cal gyrification theory. Brain Struct Funct 220(5):2475–2483. 
https:// doi. org/ 10. 1007/ s00429- 014- 0961-z

Roy S (2014) Seeing the unseen: the hidden world of slow axonal 
transport. Neuroscientist 20(1):71–81. https:// doi. org/ 10. 1177/ 
10738 58413 498306

Roy S (2020) Finding order in slow axonal transport. Curr Opin Neu-
robiol 63:87–94. https:// doi. org/ 10. 1016/j. conb. 2020. 03. 015

Sabry J, O’Connor TP, Kirschner MW (1995) Axonal transport of 
tubulin in tit pioneer neurons in situ. Neuron 14(6):1247–1256. 
https:// doi. org/ 10. 1016/ 0896- 6273(95) 90271-6

Samuels DC, Hentschel H, Fine A (1996) The origin of neuronal 
polarization: a model of axon formation. Philos Trans R Soc 
Lond B Biol Sci 351(1344):1147–1156. https:// doi. org/ 10. 
1098/ rstb. 1996. 0099

Santos TE, Schaffran B, Broguière N, Meyn L, Zenobi-Wong M, 
Bradke F (2020) Axon growth of CNS neurons in three dimen-
sions is amoeboid and independent of adhesions. Cell Rep 
32(3):107907. https:// doi. org/ 10. 1016/j. celrep. 2020. 107907

Segev R, Ben-Jacob E (2000) Generic modeling of chemotactic based 
self-wiring of neural networks. Neural Netw 13(2):185–199. 
https:// doi. org/ 10. 1016/ S0893- 6080(99) 00084-2

Segev R, Ben-Jacob E (2001) Chemical waves and internal energy 
during cooperative self-wiring of neural nets. Neurocomputing 
38–40:875–879. https:// doi. org/ 10. 1016/ S0925- 2312(01) 00369-1

Seo J, Youn W, Choi JY, Cho H, Choi H, Lanara C, Stratakis E, Choi IS 
(2020) Neuro-taxis: neuronal movement in gradients of chemical 
and physical environments. Dev Neurobiol 80(9–10):361–377. 
https:// doi. org/ 10. 1002/ dneu. 22749

Shapiro S, Borgens R, Pascuzzi R, Roos K, Groff M, Purvines S, Rodg-
ers RB, Hagy S, Nelson P (2005) Oscillating field stimulation for 
complete spinal cord injury in humans: a phase 1 trial. J Neuro-
surg Spine 2(1):3–10. https:// doi. org/ 10. 3171/ spi. 2005.2. 1. 0003

Sherratt JA, Murray JD (1990) Models of epidermal wound healing. 
Proc R Soc Lond B 241(1300):29–36. https:// doi. org/ 10. 1098/ 
rspb. 1990. 0061

Siechen S, Yang S, Chiba A, Saif T (2009) Mechanical tension con-
tributes to clustering of neurotransmitter vesicles at presynaptic 
terminals. Proc Natl Acad Sci 106(31):12611–12616. https:// doi. 
org/ 10. 1073/ pnas. 09018 67106

Simpson HD, Mortimer D, Goodhill GJ (2009) Theoretical mod-
els of neural circuit development. Development of neural 
circuitry,current topics in developmental biology. Academic 
Press, Cambridge, pp 1–51

Smeal RM, Rabbitt R, Biran R, Tresco PA (2005) Substrate curvature 
influences the direction of nerve outgrowth. Ann Biomed Eng 
33(3):376–382. https:// doi. org/ 10. 1007/ s10439- 005- 1740-z

Smith DA, Simmons RM (2001) Models of motor-assisted transport of 
intracellular particles. Biophys J 80(1):45–68. https:// doi. org/ 10. 
1016/ S0006- 3495(01) 75994-2

Smith DH (2009) Stretch growth of integrated axon tracts: extremes 
and exploitations. Prog Neurobiol 89(3):231–239. https:// doi. org/ 
10. 1016/j. pneur obio. 2009. 07. 006

Soba P, Zhu S, Emoto K, Younger S, Yang SJ, Yu HH, Lee T, Jan LY, 
Jan YN (2007) Drosophila sensory neurons require Dscam for 
dendritic self-avoidance and proper dendritic field organization. 
Neuron 54(3):403–416. https:// doi. org/ 10. 1016/j. neuron. 2007. 
03. 029

Striedter GF (2016) Neurobiology: a functional approach. Oxford Uni-
versity Press, Oxford

Sugimura K, Shimono K, Uemura T, Mochizuki A (2007) Self-organ-
izing mechanism for development of space-filling neuronal den-
drites. PLoS Comput Biol 3(11):2143–2154. https:// doi. org/ 10. 
1371/ journ al. pcbi. 00302 12

Sundararaghavan HG, Masand SN, Shreiber DI (2011) Microfluidic 
generation of haptotactic gradients through 3D collagen gels for 
enhanced neurite growth. J Neurotrauma 28(11):2377–2387. 
https:// doi. org/ 10. 1089/ neu. 2010. 1606

Suter DM, Miller KE (2011) The emerging role of forces in axonal 
elongation. Prog Neurobiol 94(2):91–101. https:// doi. org/ 10. 
1016/j. pneur obio. 2011. 04. 002

Sutherland DJ, Pujic Z, Goodhill GJ (2014) Calcium signaling in axon 
guidance. Trends Neurosci 37(8):424–432. https:// doi. org/ 10. 
1016/j. tins. 2014. 05. 008

Takano T, Xu C, Funahashi Y, Namba T, Kaibuchi K (2015) Neuronal 
polarization. Development 142(12):2088–2093. https:// doi. org/ 
10. 1242/ dev. 114454

Takano T, Wu M, Nakamuta S, Naoki H, Ishizawa N, Namba T, Wata-
nabe T, Xu C, Hamaguchi T, Yura Y, Amano M, Hahn KM, 
Kaibuchi K (2017) Discovery of long-range inhibitory signaling 
to ensure single axon formation. Nat Commun 8(1):1–17. https:// 
doi. org/ 10. 1038/ s41467- 017- 00044-2

Takeda S, Funakoshi T, Hirokawa N (1995) Tubulin dynamics in neu-
ronal axons of living zebrafish embryos. Neuron 14(6):1257–
1264. https:// doi. org/ 10. 1016/ 0896- 6273(95) 90272-4

Tallinen T, Chung JY, Rousseau F, Girard N, Lefèvre J, Mahadevan 
L (2016) On the growth and form of cortical convolutions. 
Nat Phys 12(6):588–593. https:// doi. org/ 10. 1038/ nphys 3632

Tamori Y (1993) Theory of dendritic morphology. Phys Rev E 
48(4):3124–3129. https:// doi. org/ 10. 1103/ PhysR evE. 48. 3124

Thompson AJ, Pillai EK, Dimov IB, Foster SK, Holt CE, Franze 
K (2019) Rapid changes in tissue mechanics regulate cell 
behaviour in the developing embryonic brain. eLife 8:e39356. 
https:// doi. org/ 10. 7554/ eLife. 39356

Thompson DM, Buettner HM (2006) Neurite outgrowth is directed 
by schwann cell alignment in the absence of other guidance 
cues. Ann Biomed Eng 34(1):161. https:// doi. org/ 10. 1007/ 
s10439- 005- 9013-4

Torben-Nielsen B, De Schutter E (2014) Context-aware modeling 
of neuronal morphologies. Front Neuroanat. https:// doi. org/ 
10. 3389/ fnana. 2014. 00092

Toriyama M, Sakumura Y, Shimada T, Ishii S, Inagaki N (2010) 
A diffusion-based neurite length-sensing mechanism involved 
in neuronal symmetry breaking. Mol Syst Biol 6(394):1–16. 
https:// doi. org/ 10. 1038/ msb. 2010. 51

https://doi.org/10.1002/cne.901450105
https://doi.org/10.1002/cne.901450105
https://doi.org/10.1016/0014-4886(59)90046-9
https://doi.org/10.1016/0014-4886(59)90046-9
https://doi.org/10.1103/PhysRevE.93.032410
https://doi.org/10.1155/2016/3497901
https://doi.org/10.1103/PhysRevE.104.024417
https://doi.org/10.1103/PhysRevE.104.024417
https://doi.org/10.1523/JNEUROSCI.3248-13.2014
https://doi.org/10.1523/JNEUROSCI.3248-13.2014
https://doi.org/10.1038/srep11340
https://doi.org/10.1016/0021-9290(94)90021-3
https://doi.org/10.1007/s00429-014-0961-z
https://doi.org/10.1177/1073858413498306
https://doi.org/10.1177/1073858413498306
https://doi.org/10.1016/j.conb.2020.03.015
https://doi.org/10.1016/0896-6273(95)90271-6
https://doi.org/10.1098/rstb.1996.0099
https://doi.org/10.1098/rstb.1996.0099
https://doi.org/10.1016/j.celrep.2020.107907
https://doi.org/10.1016/S0893-6080(99)00084-2
https://doi.org/10.1016/S0925-2312(01)00369-1
https://doi.org/10.1002/dneu.22749
https://doi.org/10.3171/spi.2005.2.1.0003
https://doi.org/10.1098/rspb.1990.0061
https://doi.org/10.1098/rspb.1990.0061
https://doi.org/10.1073/pnas.0901867106
https://doi.org/10.1073/pnas.0901867106
https://doi.org/10.1007/s10439-005-1740-z
https://doi.org/10.1016/S0006-3495(01)75994-2
https://doi.org/10.1016/S0006-3495(01)75994-2
https://doi.org/10.1016/j.pneurobio.2009.07.006
https://doi.org/10.1016/j.pneurobio.2009.07.006
https://doi.org/10.1016/j.neuron.2007.03.029
https://doi.org/10.1016/j.neuron.2007.03.029
https://doi.org/10.1371/journal.pcbi.0030212
https://doi.org/10.1371/journal.pcbi.0030212
https://doi.org/10.1089/neu.2010.1606
https://doi.org/10.1016/j.pneurobio.2011.04.002
https://doi.org/10.1016/j.pneurobio.2011.04.002
https://doi.org/10.1016/j.tins.2014.05.008
https://doi.org/10.1016/j.tins.2014.05.008
https://doi.org/10.1242/dev.114454
https://doi.org/10.1242/dev.114454
https://doi.org/10.1038/s41467-017-00044-2
https://doi.org/10.1038/s41467-017-00044-2
https://doi.org/10.1016/0896-6273(95)90272-4
https://doi.org/10.1038/nphys3632
https://doi.org/10.1103/PhysRevE.48.3124
https://doi.org/10.7554/eLife.39356
https://doi.org/10.1007/s10439-005-9013-4
https://doi.org/10.1007/s10439-005-9013-4
https://doi.org/10.3389/fnana.2014.00092
https://doi.org/10.3389/fnana.2014.00092
https://doi.org/10.1038/msb.2010.51


118 H. Oliveri, A. Goriely 

1 3

Toro R, Burnod Y (2005) A morphogenetic model for the devel-
opment of cortical convolutions. Cereb Cortex 15(12):1900–
1913. https:// doi. org/ 10. 1093/ cercor/ bhi068

Tsata V, Wehner D (2021) Know how to regrow–axon regeneration 
in the zebrafish spinal cord. Cells 10(6):1404. https:// doi. org/ 
10. 3390/ cells 10061 404

Turing AM (1952) The chemical basis of morphogenesis. Philos 
Trans R Soc (part B) 52(641):37–72

Uemura E, Carriquiry A, Kliemann W, Goodwin J (1995) Math-
ematical modeling of dendritic growth in vitro. Brain Res 
671(2):187–194. https:// doi. org/ 10. 1016/ 0006- 8993(94) 
01310-E

Van Ooyen A (2003) Modeling neural development. The MIT Press, 
Cambridge

Van Ooyen A (2011) Using theoretical models to analyse neural devel-
opment. Nat Rev Neurosci 12(6):311–326. https:// doi. org/ 10. 
1038/ nrn30 31

Van Ooyen A, Graham B, Ramakers GJ (2001) Competition for tubulin 
between growing neurites during development. Neurocomputing 
38–40:73–78. https:// doi. org/ 10. 1016/ S0925- 2312(01) 00487-8

Van Pelt J, Uylings HB (2005) Natural variability in the geometry 
of dendritic branching patterns. Modeling in the neurosciences. 
CRC Press, Boca Raton, pp 107–134

Van Pelt J, Dityatev AE, Uylings HB (1997) Natural variability in 
the number of dendritic segments: model-based inferences 
about branching during neurite outgrowth. J Comp Neurol 
387(3):325–340

Van Pelt J, Graham BP, Uylings HB (2003) Formation of dendritic 
branching patterns. In: Van Ooyen A (ed) Modeling neural devel-
opment. The MIT Press, Cambridge, pp 75–94

Van Vactor D (1998) Adhesion and signaling in axonal fasciculation. 
Curr Opin Neurobiol 8(1):80–86. https:// doi. org/ 10. 1016/ s0959- 
4388(98) 80011-1

Van Veen M, Van Pelt J (1992) A model for outgrowth of branch-
ing neurites. J Theor Biol 159(1):1–23. https:// doi. org/ 10. 1016/ 
S0022- 5193(05) 80764-7

Van Veen M, Van Pelt J (1994) Neuritic growth rate described by 
modeling microtubule dynamics. Bull Math Biol 56(2):249–273. 
https:// doi. org/ 10. 1016/ s0092- 8240(05) 80258-7

Vicsek T, Zafeiris A (2012) Collective motion. Phys Rep 517(3–4):71–
140. https:// doi. org/ 10. 1016/j. physr ep. 2012. 03. 004

Villacorta JA, Castro J, Negredo P, Avendaño C (2007) Mathemati-
cal foundations of the dendritic growth models. J Math Biol 
55(5):817–859. https:// doi. org/ 10. 1007/ s00285- 007- 0113-7

Wang FS, Liu CW, Diefenbach TJ, Jay DG (2003) Modeling the 
role of myosin 1c in neuronal growth cone turning. Biophys 
J 85(5):3319–3328. https:// doi. org/ 10. 1016/ S0006- 3495(03) 
74751-1

Wang LM, Kuhl E (2019) Viscoelasticity of the axon limits stretch-
mediated growth. Comput Mech 65:587–595. https:// doi. org/ 10. 
1007/ s00466- 019- 01784-2

Wang S, Demirci N, Holland MA (2021) Numerical investigation of 
biomechanically coupled growth in cortical folding. Biomech 
Model Mechanobiol 20(2):555–567. https:// doi. org/ 10. 1007/ 
s10237- 020- 01400-w

Watson DF, Hoffman PN, Fittro KP, Griffin JW (1989) Neurofilament 
and tubulin transport slows along the course of mature motor 
axons. Brain Res 477(1–2):225–232. https:// doi. org/ 10. 1016/ 
0006- 8993(89) 91410-8

Xu J, Rosoff WJ, Urbach JS, Goodhill GJ (2005) Adaptation is not 
required to explain the long-term response of axons to molecular 
gradients. Development 132(20):4545–4552. https:// doi. org/ 10. 
1242/ dev. 02029

Xu G, Knutsen AK, Dikranian K, Kroenke CD, Bayly PV, Taber LA 
(2010) Axons pull on the brain, but tension does not drive corti-
cal folding. J Biomech Eng 132(7):071013. https:// doi. org/ 10. 
1115/1. 40016 83

Yao L, Li Y (2016) The role of direct current electric field-guided 
stem cell migration in neural regeneration. Stem Cell Rev Rep 
12(3):365–375. https:// doi. org/ 10. 1007/ s12015- 016- 9654-8

Yurchenko I, Vensi Basso JM, Syrotenko VS, Staii C (2019) Anoma-
lous diffusion for neuronal growth on surfaces with controlled 
geometries. PLoS One 14(5):e0216181. https:// doi. org/ 10. 1371/ 
journ al. pone. 02161 81

Yurchenko I, Farwell M, Brady DD, Staii C (2021) Neuronal growth 
and formation of neuron networks on directional surfaces. Bio-
mimetics. https:// doi. org/ 10. 3390/ biomi metic s6020 041

Zadeh KS, Shah SB (2010) Mathematical modeling and parameter esti-
mation of axonal cargo transport. J Comput Neurosci 28(3):495–
507. https:// doi. org/ 10. 1007/ s10827- 010- 0232-9

Zhao F, Du F, Oliveri H, Zhou L, Ali O, Chen W, Feng S, Wang Q, Lü 
S, Long M, Schneider R, Sampathkumar A, Godin C, Traas J, 
Jiao Y (2020) Microtubule-mediated wall anisotropy contributes 
to leaf blade flattening. Curr Biol 30(20):3972–3985.https:// doi. 
org/ 10. 1016/j. cub. 2020. 07. 076

Zheng J, Lamoureux P, Santiago V, Dennerll T, Buxbaum RE, Hei-
demann SR (1991) Tensile regulation of axonal elongation and 
initiation. J Neurosci 11(4):1117–1125. https:// doi. org/ 10. 1523/ 
JNEUR OSCI. 11- 04- 01117. 1991

Zubler F, Douglas R (2009) A framework for modeling the growth and 
development of neurons and networks. Front Comput Neurosci 
3:25. https:// doi. org/ 10. 3389/ neuro. 10. 025. 2009

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/cercor/bhi068
https://doi.org/10.3390/cells10061404
https://doi.org/10.3390/cells10061404
https://doi.org/10.1016/0006-8993(94)01310-E
https://doi.org/10.1016/0006-8993(94)01310-E
https://doi.org/10.1038/nrn3031
https://doi.org/10.1038/nrn3031
https://doi.org/10.1016/S0925-2312(01)00487-8
https://doi.org/10.1016/s0959-4388(98)80011-1
https://doi.org/10.1016/s0959-4388(98)80011-1
https://doi.org/10.1016/S0022-5193(05)80764-7
https://doi.org/10.1016/S0022-5193(05)80764-7
https://doi.org/10.1016/s0092-8240(05)80258-7
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1007/s00285-007-0113-7
https://doi.org/10.1016/S0006-3495(03)74751-1
https://doi.org/10.1016/S0006-3495(03)74751-1
https://doi.org/10.1007/s00466-019-01784-2
https://doi.org/10.1007/s00466-019-01784-2
https://doi.org/10.1007/s10237-020-01400-w
https://doi.org/10.1007/s10237-020-01400-w
https://doi.org/10.1016/0006-8993(89)91410-8
https://doi.org/10.1016/0006-8993(89)91410-8
https://doi.org/10.1242/dev.02029
https://doi.org/10.1242/dev.02029
https://doi.org/10.1115/1.4001683
https://doi.org/10.1115/1.4001683
https://doi.org/10.1007/s12015-016-9654-8
https://doi.org/10.1371/journal.pone.0216181
https://doi.org/10.1371/journal.pone.0216181
https://doi.org/10.3390/biomimetics6020041
https://doi.org/10.1007/s10827-010-0232-9
https://doi.org/10.1016/j.cub.2020.07.076
https://doi.org/10.1016/j.cub.2020.07.076
https://doi.org/10.1523/JNEUROSCI.11-04-01117.1991
https://doi.org/10.1523/JNEUROSCI.11-04-01117.1991
https://doi.org/10.3389/neuro.10.025.2009

	Mathematical models of neuronal growth
	Abstract
	1 Introduction
	2 Biological background
	3 Modeling neuritic growth
	3.1 Transport-limited growth
	3.1.1 Zero-dimensional models
	3.1.2 One-dimensional models

	3.2 Mechanically mediated growth
	3.2.1 Zero-dimensional models
	3.2.2 One-dimensional models

	3.3 Coupling mechanics and transport

	4 Modeling the neurites in their environment
	4.1 Guidance
	4.2 Collective migration and fasciculation
	4.3 Branching and morphogenesis

	5 Perspectives, challenges and opportunities
	5.1 Modeling the neurites in their environment
	5.2 Neuronal axon regeneration
	5.3 Growth of axons and tissues

	6 Conclusion
	Acknowledgements 
	References




