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Abstract. In this work we try to explain various mathematical models describing the
dynamical behaviour of suspension bridges such as the Tacoma Narrows bridge. Our at-
tention is concentrated on the derivation of these models, an interpretation of particular
parameters and on a discussion of their advantages and disadvantages. Our work should
be a starting point for a qualitative study of dynamical structures of this type and that is
why we have a closer look at the models, which have not been studied in literature yet. We
are also trying to find particular conditions for unique solutions of some models.
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1. Introduction

One of the most problematic and not fully explained areas of mathematical mod-
elling involves nonlinear dynamical systems, especially systems with the so called

jumping nonlinearity. It can be seen that its presence brings unexpected difficulties
into the whole problem and very often it is a cause of nonuniqueness of solutions.

A suspension bridge is an example of such a dynamical system. The nonlinear

aspect is caused by the presence of supporting cable stays, which restrain the move-
ment of the center span of the bridge in a downward direction, but have no influence

on its behaviour in the opposite direction.

The fact that we deal with a serious and topical problem is demonstrated for
example by the collapse of the Tacoma Narrows suspension bridge (1940), which

came unexpectedly into large-scale oscillations, followed by the destruction of the
whole structure. So it would be very contributive to determine under what condi-

tions a similar situation cannot occur, and find out safe parameters of the bridge
construction.
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In the second chapter, we show various possibilities how to model the behaviour of

suspension bridges and give a survey of known facts. Then—in the third chapter—
we introduce our own results concerning existence and uniqueness of time-periodic
solutions of two chosen models—a single beam and a beam coupled with a vibrating

string by nonlinear cables.

2. Survey of mathematical models and known results

2.1. One-dimensional model of a suspension bridge
One of the easiest ways how to model the behaviour of a suspension bridge is to

describe it as a vibrating one-dimensional beam with simply supported ends. In the
first step, we do not have to take into account the other two dimensions because
proportions of the bridge in these dimensions are very small in comparison with its

length and so can be omitted (see Figure 1). If we neglect also the influence of
the towers and side parts, we can use the mentioned model of a simply supported

one-dimesional beam.
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Figure 1. The main ingredients in a model of a one-dimensional suspension bridge.

Our problem will be divided into two basic cases—with and without a damping

term.

2.1.1. Damped model—the first idealization
Let us consider a vibrating beam with simply supported ends. It is subjected to

the gravitation force, to the external periodic force (e.g. due to the wind) and in the
opposite direction to the restoring force of the cable stays. The construction holding

these stays is taken as a solid and immovable object.

Our system is illustrated in Figure 2.
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An immovable object

A bending beam with supported ends
��� ��

Nonlinear springs under tension
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Figure 2. The simplest model of a suspension bridge—the bending beam with
simply supported ends, held by nonlinear cables, which are fixed on an immovable

construction.

The displacement u(x, t) of this beam is described by a nonlinear partial differential
equation

(1) m
∂2u(x, t)

∂t2
+ EI

∂4u(x, t)
∂x4

+ b
∂u(x, t)

∂t
= −κu+(x, t) +W (x) + εf(x, t),

with the boundary conditions

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0,(2)

u(x, t+ 2�) = u(x, t), −∞ < t < ∞, x ∈ (0, L).

The meaning of the particular parameters used in the equation is the following:

m mass per unit length of the bridge
E Young’s modulus

I moment of inertia of the cross section
b damping coefficient

κ stiffness of the cables (spring constant)
W weight per unit length of the bridge

εf external time-periodic forcing term (due to the wind)
L length of the center-span of the bridge

As we can see from the equation (1) and the boundary conditions (2), we are de-
scribing vibrations of a beam of length L, with simply supported ends. Its deflection

u(x, t) at the point x and at time t is measured in the downward direction. The first
term in the equation represents an inertial force, the second term is an elastic force

and the last term on the left hand side describes a viscous damping. On the right
hand side, we have the influence of the cable stays, the gravitation force and the
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external force due to the wind (we assume it to be time-periodic). The cable stays

can be taken as one-sided springs obeying Hooke’s law, with a restoring force propor-
tional to the displacement if they are stretched, and with no restoring force if they
are compressed. This fact is described by the expression κu+, where u+ = max{0, u}
and κ is a coefficient which characterizes the stiffness of the cable stays.

We have not considered the inertial effects of the rotation motion (in the plane
xu) in the equation since they are usually omitted.

This model was introduced in a paper [6] by A. C. Lazer and P. J. McKenna and
has been used as the starting point for study of suspension bridges in all cited works

by the other authors. It does not describe exactly the behaviour of a suspension
bridge but on the other hand it is reasonably simple and applicable.

For further considerations, it would be useful to transform the equation (by making

a change of the scale of the variable x and dividing by the mass m) to the form

utt + α2uxxxx + βut + ku+ =W (x) + εf(x, t),(3)

u(0, t) = u(�, t) = uxx(0, t) = uxx(�, t) = 0,

u(x, t+ 2�) = u(x, t), −∞ < t < ∞, x ∈ (0, �),

where α2 = EI
m

(
�

L

)4 �= 0 and β = b
m > 0. (We use the same symbols for rescaled

W , ε and f .)

Besides the mentioned paper by A. C. Lazer and P. J. McKenna, who described

this model in detail but did not deal with it in this form, we can find contributive
results e.g. in a work [2] by P. Drábek. He proved the existence of at least one

generalized solution of the equation (3) for an arbitrary right hand side. In case
there is no external force (it means no wind), the bridge achieves a unique position

(called the equilibrium) determined only by its weight W (x). Under some special
assumptions onW (x), the paper [2] shows that in case of small external disturbances,

there is always a solution “near” to the equilibrium. If we assume that W (x) =
W0 sinx and the periodic function f(x, t) is of a special form then there is another

solution which is in a certain sense “far” from this position.

However, there are still many open questions left.

2.1.2. Damped model—the second idealization
Another possible but a little more complicated process is not to consider the

construction holding the cable stays as an immovable object, but to treat it as

a vibrating string, coupled with the beam of the roadbed by nonlinear cable stays
(see Figure 3).
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Figure 3. A more complicated model of a one-dimensional suspension bridge—the

coupling of the main cable (a vibrating string) and the roadbed (a vibrating beam)
by the stays treated as nonlinear springs.

Instead of one equation, we have now a system of two connected equations in the
form

m1vtt − Tvxx + b1vt − κ(u− v)+ =W1 + εf1(x, t),(4)

m2utt + EIuxxxx + b2ut + κ(u− v)+ =W2 + εf2(x, t),

with boundary conditions

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = v(0, t) = v(L, t) = 0,

where v(x, t) measures the displacement of the vibrating string representing the main

cable and u(x, t) means—as in the previous section—the displacement of the bending
beam standing for the roadbed of the bridge. Both functions are considered to be

periodic in the time variable. The nonlinear stays connecting the beam and the
string pull the cable down, hence we have the minus sign at k(u − v)+ in the first

equation, and hold the roadbed up, therefore we consider the plus sign at the same
term in the second equation.

We can find a description of this model again in A. C. Lazer and P. J. McKenna [6],

but these authors consider the right hand sides in a rather purer form. In the first
equation, they neglect the weight of the string W1, and on the other hand, in the

second equation, they ignore the external force εf2(x, t). However, nobody (as far
as we know) has treated this model in detail yet.

2.1.3. Non-damped model—the first idealization
This section is quite analogous to the previous ones, we only omit the damping

terms in all equations. This is rather unrealistic, but the equations will be much
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simpler and we will be able to deal with them more easily. Another advantage of

this approach is the fact that the model in this case has a variational structure and
enables us to use not only topological methods, but also variational principles for its
investigation.

Let us consider the partial differential equation describing the motion of a non-
damped beam with simply supported ends

(5) mutt + EIuxxxx + κu+ =W (x) + εf(x, t),

with the boundary conditions

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0,(6)

u(x, t+ 2�) = u(x, t), −∞ < t < ∞, x ∈ (0, L).

We use the same symbols as in the previous parts, and after the same transformation
as in Section 2.1.1 we get

utt + α2uxxxx + ku+ =W (x) + εf(x, t),(7)

u(0, t) = u(�, t) = uxx(0, t) = uxx(�, t) = 0,

u(x, t+ 2�) = u(x, t), −∞ < t < ∞, x ∈ (0, �).

This case was studied by W. Walter and P. J. McKenna in the paper [7]. Under
an additional assumption α = 1, they proved the following theorem:

Theorem 2.1. Let W (x) ≡ W0 (positive constant) and let f(x, t) be a function
even and �-periodic in the time variable t and symmetric in the space variable x about
�

2 . Then, if 0 < k < 3, the equation (7) has a unique periodic solution of the period
�, which corresponds to small oscillations about the equilibrium. If 3 < k < 15, the

equation has in addition another periodic solution with a large amplitude.

In other words, this theorem says that strengthening the stays, which means in-

creasing the coefficient k, can paradoxly lead to the destruction of the bridge.

Unfortunately, we do not know whether the corresponding result holds as well for
a model where damping is present, or whether the restriction k < 15 can be removed.

2.1.4. Non-damped model—the second idealization
We can again omit the damping term in the system of partial differential equa-

tions describing the behaviour of a suspension bridge with a movable main cable
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holding the nonlinear cable stays. The corresponding equations can be written in

the following way:

m1vtt − Tvxx − κ(u− v)+ =W1 + εf1(x, t),(8)

m2utt + EIuxxxx + κ(u− v)+ =W2 + εf2(x, t),

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = v(0, t) = v(L, t) = 0,

where u(x, t) and v(x, t) are again periodic in time.

However, also in this case, there are no works known which would treat the sys-
tem (8) and its solutions.

2.2. Reduction to the system of ODEs by discretization in the space
variable
The complexity of the models described in the previous chapters led naturally

to an effort to simplify the equations even more. One of the possible attitudes
is to transform the partial differential equation into a simpler system of ordinary

differential equations by using discretization in the space variable. We can again
consider two cases—with and without the damping term.

2.2.1. Damped model
We replace the function u(x, t), which represents the displacement of the bridge,

by a vector

�u(t) = [u1(t), u2(t), . . . , uN(t)]
T.

If we use the spatial discretization by finite differences of the equation (1) with

the boundary conditions (2) (the model of a suspension bridge described by Lazer
and McKenna), we obtain a system of ordinary differential equations

(9) �u′′ + β�u′ +A�u+ k�u+ = �p(t).

A is a symmetric matrix of order N

(10) A =
EI

m
δ−4




5 −4 1

−4 6 −4 1
1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1
1 −4 6 −4

1 −4 5
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with the constant δ = L
N+1 , N is the number of division points, �p(t) stands for the

discretized vector of external forces W (x) + εf(x, t) and the symbol �u+ represents
the vector

[u+1 , u+2 , . . . , u+N ]
T.

This simplified model of a suspension bridge can be found e.g. in the paper [1]

by J. M. Alonso and R. Ortega. The most interesting conclusion they came to is
a theorem, which says the following.

Theorem 2.2. If the condition

(11) k < β2 + 2αβ,

where α =
√

EI
m

(
�

L

)2
, holds then there exists N0 ∈ � such that if N � N0 then

the discretization of a suspension bridge equation (9) has a unique bounded solution

that is exponentially asymptotically stable in the large.

This result has a similar sense as the theorem stated in Section 2.1.3—the more

flexible the cable stays are, the better the situation is and the oscillations of the
bridge cannot be too high.

Unfortunately, we do not have any idea whether the condition (11) is not too re-
strictive and whether this conclusion holds for the original, non-discretized equation.

2.2.2. Non-damped model

This case is again a direct analogue of the previous one. We only consider the
damping coefficient β equal to zero.

But it is easy to see that we cannot use the results stated above (we would get
k < 0, which contradicts the fact that the coefficient k must be positive).

Unfortunately, we do not know any papers which treat this problem. However, if
we considered a system with a sufficiently small damping term, this model would be

applicable and we could interpret any contingent results in a reasonable way.

2.3. Reduction to the ODE on the basis of a special form of the right
hand side

Another possible way how to simplify the complicated model described by the
partial differential equation is to consider the right hand side of a special form

(12) W0 sinx+ εf(t) sinx
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and eliminate thus the space variable from the whole equation. If we assume that

the expected solution can be written in an analogous form

(13) u(x, t) = y(t) sinx,

(which expresses a natural assumption that the response of the bridge has the same

form as the external force), we get—after substituting into the original equation—an
ordinary equation.

The assumption that the weight of the bridge has a special form W0 sinx is not
very realistic but it simplifies the whole problem in a pleasant way. On the other

hand, there is no reason why not to consider the bridge to be excited by a force
which is expressed as a function f(t) sinx.

Our problem can be again divided into two cases—with and without the damping
term.

2.3.1. Damped model—the first idealization

We will use the Lazer and McKenna model described by the equation (3). After
substituting the right hand side (12) and the supposed form of the solution (13) into

the equation (3), we get a reduced model

(14) y′′ + βy′ + α2y + ky+ =W0 + εf(t).

We use again the same symbols and so the constant α means the expression√
EI
m

(
�

L

)2
. The function y(t) is supposed to be periodic in time.

This equation was studied especially by J. Glover, A. C. Lazer and P. J. McKenna
(see [5]). We will briefly recall their results.

First of all, the authors rewrote the equation using simple transformations into
the equivalent form

(15) y′′ + εcy′ + by+ − ay− = 1 + εg(t),

where b = α2 + k, a = α2 and the symbol y− means max{0,−y}. Then they proved
that with a mild nondegeneracy condition on the function g(t) and with ε and c

sufficiently small, there exist large amplitude solutions of the equation (15), which

are asymptotically stable and close to a translated solution u0 of the equation

u′′ + bu+ − au− = 1.
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2.3.2. Damped model—the second idealization

The same reduction can be done also for the more complicated model of a suspen-
sion bridge described by the system of two equations (4) with the right hand sides

of Lazer and McKenna. After a simple transformation, we get

z′′ + β1z
′ + α21z − k1(y − z)+ = εg(t),(16)

y′′ + β2y
′ + α22y + k2(y − z)+ =W0,

where y a z are periodic functions in t.

However, the system stays very complicated even after this simplification. This

follows e.g. from the fact that we have not found any published results in this area
yet.

2.3.3. Non-damped model—the first idealization

If we consider a zero damping term in the reduced models stated above, the situ-
ation changes considerably.

If we omit the damping term in the equation (14), we get

(17) y′′ + α2y + ky+ =W0 + εf(t),

which can be transformed into

(18) y′′ + by+ − ay− = 1 + εg(t).

This problem is mentioned again in the paper [6] by A. C. Lazer and P. J. Mc-

Kenna, where we can find the following results:

If b �= n2 (for n a positive integer), we can explicitly write down a 2�-periodic
solution of the equation (18):

y =
1
b
+ εy1(t).

Here y1 represents the 2�-periodic solution of the equation y′′+ by = g(t). This is an

obvious and expected solution: the external force 1+εg(t) produces a displacement 1b
and a small oscillation about this new equilibrium of order of magnitude ε. Moreover,

if n2 < a, b < (n+ 1)2, then this is a unique solution of period 2�.

However, if the difference between a and b is large, then additional oscillatory

solutions exist, and their order of magnitude is that of the exciting constant, which

is in our case equal to 1.
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2.3.4. Non-damped model—the second idealization
The last reduced model we consider here is a model described by the system of

equations (16) (again with the simplified right hand sides of Lazer and McKenna),

but this time without the damping term:

z′′ + α21z − k1(y − z)+ = εg(t),(19)

y′′ + α22y + k2(y − z)+ =W0.

This is the only studied case in which the displacement of the main cable holding

the cable stays was considered. We can find it again in the paper [6] by A. C. Lazer
and P. J. McKenna. They proved under an additional assumption that k2 and ε

are sufficiently small that the equations (19) have periodic solutions with large and
small amplitudes. The large amplitude solutions were of the following form: y (the

displacement of the roadbed) close to the equilibrium, and z (the motion of the cable)
large. This is the phenomenon called “galloping cables”.

2.4. Two-dimensional model of a suspension bridge
So far we have considered only one-dimensional models of a suspension bridge. But

we can choose a more general approach. Namely, not to restrict the problem to the
simplified model, but include also another dimension and the torsional oscillations in

its direction, which are certainly not quite negligible. (They are said to be one of the
direct causes of the destruction of the above mentioned Tacoma Narrows bridge.)

$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$
�

�

��
The vertical deflection

of the center
of gravity y(t)

The deflection from horizontal θ(t)

Nonlinear cable-like springs

An immovable object

%%%%%%%%&

''''''''(



�

Figure 4. Cross section of the two-dimensional model of a suspension bridge.

The two-dimensional suspension bridge can be modelled (in the simplest way)
as a long narrow vibrating plate, coupled at its side with the main cables by the
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nonlinear cable stays. The unknown functions are the displacement y(x, t) measured

at the centre of gravity, and θ(x, t), which measures the angle of the bar from the
horizontal—see Figure 4.
The solution which has a large y component and a small θ component would be

primarily a vertical motion, whereas the solution with a small y component and
a large θ component would be primarily a torsional motion.

This model is mentioned in the paper [6] by A. C. Lazer and P. J. McKenna, but

the authors themselves admit that it is a very complicated model and no particular
results are known even under the simplifying assumption that the unknown functions

do not depend on the space variable x.

3. Main results—existence and uniqueness
of the solution

As we can see from the previous survey of known results, the main problem is to

prove the existence of the solutions of particular models and find out the conditions
under which the solution is unique and stable. Practically it means that we are

looking for conditions which guarantee that the bridge cannot exhibit large-scale
oscillations and cannot be destructed by any wind of an arbitrary power. We have

tried to summarize and clear up these problems for two one-dimensional models—the
first considering the bridge as a single beam supported by nonlinear springs, and the

second describing the bridge as a beam coupled with a string by nonlinear cables.

3.1. The first case—a single beam
As we have stated above, we model the suspension bridge as a one-dimensional

beam with simply supported ends, which is held by nonlinear springs hanging on an

immovable construction. This situation is described by the boundary value problem

mutt + EIuxxxx + but + κu+ = h(x, t),(20)

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0,

u(x, t+ 2�) = u(x, t), −∞ < t < ∞, x ∈ (0, L),

which can be transformed (as in Section 2.1.1) into a new form

utt + α2uxxxx + βut + ku+ = h(x, t),(21)

u(0, t) = u(�, t) = uxx(0, t) = uxx(�, t) = 0,

u(x, t+ 2�) = u(x, t), −∞ < t < ∞, x ∈ (0, �)

(see A. C. Lazer, P. J. McKenna [6]).
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3.1.1. Preliminaries
Let us denote by Ω = (0, �) × (0, 2�) the domain considered, by H = L2(Ω) the

usual Hilbert space with the corresponding L2-norm

‖u(x, t)‖ =
[∫

Ω
|u(x, t)|2 dxdt

] 1
2

and by D the set of all smooth functions satisfying the boundary conditions from

equation (21). Now we can generalize the notion of a classical solution by which we
mean a continuous function with continuous derivatives up to the fourth order with

respect to x and up to the second order with respect to t in the set [0, �] × [0, 2�],
satisfying the boundary value problem (21), and define the so called generalized

solution of (21).

Definition 3.1. A function u(x, t) ∈ H is called a generalized solution of the

boundary value problem (21) if and only if the integral identity

∫

Ω
u(vtt + α2vxxxx − βvt) dxdt =

∫

Ω
(h− ku+)v dxdt

holds for all v ∈ D .

������ 3.1. It is obvious that if the problem (21) has a classical solution,
than it is also the generalized solution. But the properties required of a classical

solution are too strong and the integral identity stated above can be satisfied by a
more general function.

Let us consider a Sobolev space H̃ = H + iH . As the set

{eint sinmx ; n ∈ �, m∈ �}

forms a complete orthogonal system in this space, each function u(x, t) can be rep-

resented by the Fourier series

(22) u(x, t) =
∞∑

n=−∞

∞∑

m=1

unme
int sinmx.

Moreover, we have
∑

n

∑
m |unm|2 < ∞, and u−nm = unm (see P. Drábek [2]).

3.1.2. The linear beam equation
First of all, we will treat the solvability of the equation

(23) utt + α2uxxxx + βut − λu = h.
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If we define a generalized solution of this equation in an analogous way as in Defini-

tion 3.1, then the following lemma is an easy consequence of the expansion (22).

Lemma 3.1. If unm and hnm are the corresponding Fourier coefficients of the

functions u and h, then the equation (23) has a generalized solution if and only if

(24) (−n2 + α2m4 + iβn− λ)unm = hnm

holds for all n ∈ �, m ∈ �.

If we denote

L(u) = utt + α2uxxxx + βut

the linear operator, and put

Nλ = {(m, n) ∈ � ×� ; α2m4 − n2 − λ = 0},

S = {λ ∈ � ; Nλ �= ∅},
σ = {λ ∈ � ; λ = α2q4, q ∈ �},

then σ is the set of eigenvalues of the operator L, and σ ⊂ S holds. Further, we can

rewrite the equation (23) into a new form

L(u)− λu = h

and formulate the following theorem (see P. Drábek [2]).

Theorem 3.2. Let λ ∈ �. Then for an arbitrary h ∈ H the equation (23) has
a unique generalized solution u ∈ H if and only if

λ �∈ σ.

If λ �∈ σ, then there exists a mapping

Tλ : H → H, Tλ : h → u

with the following properties:

(i) Tλ is linear and R(Tλ) ⊂ C(Ω);
(ii) Tλ is compact from H into C(Ω) (and thus from H into H) and for its norm

we have

‖Tλ‖ � 1
max{dist(λ, S),min{β, dist(λ, σ)}}

=
1

min{dist(λ, σ),max{β, dist(λ, S)}} .
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�����. I. (⇒) Let h ∈ H be arbitrary and let there exist a generalized solution

u ∈ H of the equation (23). Then according to Lemma 3.1, the equation

(−n2 + α2m4 + iβn− λ)unm = hnm

must have a solution for all m ∈ �, n ∈ �. Hence it follows that

λ �= α2m4,

which means

λ �∈ σ.

II. (⇐) Let λ �∈ σ and h ∈ H. Let us define an auxiliary function kλ by the

expression

kλ : (x, t)→
∑

m,n

(−n2 + α2m4 + iβn− λ)−1eint cosmx.

It is clear that thanks to the assumption λ �∈ σ and λ ∈ � this function is well
defined. If we make an odd extension of the function h (or u) in the space variable

x to the interval 〈−�, �〉, we can put

u(x, t) =
1
2�2
(kλ ∗ h),

where

kλ ∗ h : (x, t)→
∫ 2�

0

∫
�

−�
kλ(x− ξ, t− τ)h(ξ, τ) dξ dτ.

If we use this expression, we obtain

u(x, t) =
1
2�2

∫ 2�

0

∫
�

−�

[∑

m,n

(−n2 + α2m4 + iβn− λ)−1ein(t−τ) cosm(x− ξ)

]

×
[∑

r,s

hrseirτ sin sξ

]
dξ dτ

=
1
2�2

∑

m,n

∑

r,s

(−n2 + α2m4 + iβn− λ)−1hrs

×
[
eint

∫ 2�

0
ei(r−n)τ dτ

∫
�

−�
cosm(x− ξ) sin sξ dξ

]
.

Moreover, thanks to the orthogonality of the basis functions on the domain 〈−�, �〉×
〈0, 2�〉, the following relations are satisfied:

∫ 2�

0
ei(r−n)τ dτ =

{
2� forr = n,

0 forr �= n,
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as well as ∫
�

−�
cosm(x− ξ) sin sξ dξ =

{
� sinmx form = s,

0 form �= s.

This means that

u(x, t) =
∑

m,n

(−n2 + α2m4 + iβn− λ)−1hnmeint sinmx

and unm = (−n2 + α2m4 + iβn − λ)−1hnm = (kλ)nmhnm for m ∈ �, n ∈ �. So
according to Lemma 3.1, u is a unique generalized solution of the equation (23).

An operator Tλ will be defined in the following way:

(25) Tλ(h) =
1
2�2
(kλ ∗ h) .

Obviously, this operator is linear, and if we define u equal to zero outside the set

〈−�, �〉 × 〈0, 2�〉, we have the following estimate for δ1, δ2 ∈ �:

|u(x+ δ1, t+ δ2)− u(x, t)|

=
1
2�2

∣∣∣∣
∫ 2�

0

∫
�

−�
[kλ(x+ δ1 − ξ, t+ δ2 − τ)− kλ(x− ξ, t− τ)] h(ξ, τ) dξ dτ

∣∣∣∣

� 1√
2�2

‖h‖
(∫ 2�

0

∫
�

−�
|kλ(x + δ1 − ξ, t+ δ2 − τ) − kλ(x − ξ, t− τ)|2 dξ dτ

) 1
2

.

As kλ ∈ L2(Ω), the function u is continuous and thus R(Tλ) ⊂ C(Ω). Moreover,

Tλ maps any bounded subset of the space H onto a bounded subset of uniformly
continuous functions in the space C(Ω). The Arzelà-Ascoli theorem implies that the

mapping Tλ : H → C(Ω) is compact. As C(Ω) ⊂ H , the operator Tλ : H → H is
compact as well.

The estimate of the norm ‖Tλ‖ can be obtained by an easy calculation:

‖Tλ(h)‖ = ‖u‖

=

[∫

Ω

∣∣∣∣
∑

m,n

(iβn+ α2m4 − n2 − λ)−1hnmeint sinmx

∣∣∣∣
2

dxdt

] 1
2

� max
m,n

1
|iβn+ α2m4 − n2 − λ|

[∫

Ω

∣∣∣∣
∑

m,n

hnmeint sinmx

∣∣∣∣
2

dxdt

] 1
2

︸ ︷︷ ︸
‖h‖
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and thus

‖Tλ‖ � max
m,n

1√
β2n2 + (α2m4 − n2 − λ)2

� 1
max{dist(λ, S),min{β, dist(λ, σ)}}

=
1

min{dist(λ, σ),max{β, dist(λ, S)}} .

�

3.1.3. Banach contraction theorem

Now we turn our attention to the equation (21) and deal with its solvability.

As zero is not an eigenvalue of the operator L, we can rewrite this equation—in

accordance with the previous paragraph—into an equivalent form

(26) u = T0(−ku+ +W + εf).

If we assume (with respect to the real values of the parametres) that α2 � 1, we
have the following estimate for the norm of the operator T0:

‖T0‖ � max
m∈�,n∈�

1√
β2n2 + (α2m4 − n2)2

� 1

min{α2,
√

β2 + (α2m40 − 1)2}
= K0,

where m0 solves the problem

min
m∈�

|α2m4 − 1|.

If we want to find out conditions for the existence of a unique solution, it is suitable

to use the Banach contraction theorem, which reads as follows:

Theorem 3.3. Let the operator G : H → H be a contraction, i.e. there exists

c ∈ (0, 1) such that

‖G(u)−G(v)‖ � c‖u− v‖ ∀u, v ∈ H.

Then there exists a unique u0 such that

G(u0) = u0.
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In our case G(u) = T0(−ku+ +W + εf) and

‖G(u)−G(v)‖ = ‖T0(W + εf − ku+)− T0(W + εf − kv+)‖
= ‖T0(kv+ − ku+)‖
� k‖T0‖‖v+ − u+‖
� kK0‖v − u‖.

If we require the operator G to be a contraction, the condition

0 < kK0 < 1

must be satisfied, and thus

0 <
k

min{α2,
√

β2 + (α2m40 − 1)2}
< 1.

Hence, if we put again k = κ
m , a sufficient condition for the existence of a unique

solution of our boundary value problem has the final form

(27) κ < mmin

{
α2,

√
β2 + (α2m40 − 1)2

}
.

3.1.4. A comparison with a discrete model
In the case of a discrete model (9), the uniqueness condition had the form

k < β2 + 2βα

(see R. M. Alonso, R. Ortega [1]). If instead of (27) we consider the roughest estimate

which is

(28) k < min{α2, β},

we can make the following discussion.

(i) If the condition

α ∈
(
0;β +

√
2β
〉
∪
〈
1− β

2
;∞

)

is satisfied, which means (in an equivalent formulation)

β ∈
〈√
2α− α;∞

)
∪ 〈1− 2α;∞) ,
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then the implication

k < min{α2, β} =⇒ k < β2 + 2αβ

holds and the result of Alonso and Ortega is stronger than (28).

(ii) On the other hand, if the condition

α ∈
〈

β +
√
2β;
1− β

2

〉

is satisfied, which again means

β ∈
(
0;
√
2α− α

〉
∩ (0; 1− 2α〉 ,

then the implication

k < β2 + 2αβ =⇒ k < min{α2, β}

holds and our result (28) is stronger than that of Alonso and Ortega.

������ 3.2.

1. For physical reasons we take into account only positive values of the parameters

α and β.
2. In particular, the previous discussion means that for sufficiently small α and β

in a certain relation, our result is stronger than the result published in Alonso,
Ortega [1].

3.2. The second case—the coupling of a beam and a string
In this part we complete the previous model by a movable main cable, which

holds the nonlinear cable stays and is represented by a vibrating string. Our model

is described by a coupled system of partial differential equations (see A. C. Lazer,
P. J. McKenna [6])

m1vtt − Tvxx + b1vt − κ(u− v)+ = h1(x, t),(29)

m2utt + EIuxxxx + b2ut + κ(u− v)+ = h2(x, t),

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = v(0, t) = v(L, t) = 0,

−∞ < t < ∞, x ∈ (0, L),
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where v(x, t) means the displacement of the vibrating string and u(x, t) represents

the deflection of the beam. Both functions are considered to be periodic in time.

We can transform both equations into a simpler form in the same way as in

Section 2.1.1. It means that we divide by the mass m1, and m2 respectively, and
change the scale of the space variable x. Then we obtain

vtt − α21vxx + β1vt − k1(u− v)+ = h1(x, t),(30)

utt + α22uxxxx + β2ut + k2(u − v)+ = h2(x, t),

u(0, t) = u(�, t) = uxx(0, t) = uxx(�, t) = v(0, t) = v(�, t) = 0,

−∞ < t < ∞, x ∈ (0, �),

where α21 =
T

m1

(
�

L

)2
, α22 =

EI
m2

(
�

L

)4
, k1 = κ

m1
, k2 = κ

m2
, β1 = b1

m1
a β2 = b2

m2
. We use

the same symbols as in the previous equation for the other transformed parameters.

3.2.1. Preliminaries
If we introduce a new vector function

(31) w =
[

v

u

]
,

we can rewrite the system (30) into the matrix form

[
10
01

]

︸ ︷︷ ︸
I

wtt +

[
00
0α22

]

︸ ︷︷ ︸
A2

wxxxx +

[−α210
00

]

︸ ︷︷ ︸
A1

wxx(32)

+

[
β10

0β2

]

︸ ︷︷ ︸
B

wt + F(w) =
[

h1

h2

]

︸ ︷︷ ︸
h

and thus

(33) wtt +A2wxxxx +A1wxx +Bwt + F(w) = h,

where F(w) is a nonlinear vector function

F(w) =
[−k1(u− v)+

k2(u− v)+

]
.

Moreover, we require the unknown function w(x, t) to be time-periodic and to satisfy
the boundary conditions prescribed for a vibrating string in its first component, and
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the boundary conditions prescribed for a supported beam in its second component

(see (30)).

If we again denote our domain by Ω = (0, �)× (0, 2�) , we have

w ∈ H = H ×H = L2(Ω)× L2(Ω).

The corresponding norm can be introduced e.g. in this way:

‖w‖ =
2∑

i=1

‖wi‖L2 =

[∫

Ω
v2 dx

] 1
2

+

[∫

Ω
u2 dx

] 1
2

.

We can again define the notion of a generalized solution.

Definition 3.2. A vector function w = [v, u]T ∈ H is called a generalized
solution of the boundary value problem (30) with the right hand side h(x, t) =
[h1, h2]T if and only if the integral identities

∫

Ω
v(ṽtt − α21ṽxx − β1ṽt) dxdt =

∫

Ω
[h1 + k1(u− v)+]ṽ dxdt,

∫

Ω
u(ũtt + α22ũxxxx − β2ũt) dxdt =

∫

Ω
[h2 − k2(u− v)+]ũdxdt

hold for all w̃ = [ṽ, ũ]T ∈ D , where D is the set of all smooth vector functions

satisfying the prescribed boundary conditions.

As the system

{eint sinmx ; n ∈ �, m∈ �}

forms a complete orthogonal system in the subspace H̃ = H + iH , we can write

w =
[

v

u

]
=

[∑∞
n=−∞

∑∞
m=1 vnmeint sinmx∑∞

n=−∞
∑∞

m=1 unmeint sinmx

]
.(34)

3.2.2. The operator formulation
Let us denote

L(w) = wtt +A2wxxxx +A1wxx +Bwt.

Then L is a linear operator and the equation (33) can be written in the form

(35) L(w) = −F(w) + h.
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First of all, we should determine the real eigenvalues of the operator L. This
problem means to find all λ ∈ � for which the equation

L(w) = λw

has a nontrivial solution. If we use the description of w by the Fourier series (34),
we obtain an equivalent expression

(−n2 + α21m
2 + iβ1n− λ)vnm = 0,(36)

(−n2 + α22m
4 + iβ2n− λ)unm = 0,

where n ∈ � a m ∈ �. Since the parameter λ is real, the only possible n for which

the system (36) has a nontrivial solution is

n = 0.

If we express the previous system in the matrix form, we get

[
α21m

2 − λ 0
0 α22m

4 − λ

] [
vm0

um0

]
=

[
0
0

]
,

and the corresponding characteristic equation is

(α21m
2 − λ)(α22m

4 − λ) = 0.

Then we obtain the eigenvalues and the corresponding eigenvectors:

λ1 = α21m
2 . . .w1 =

[
vm0 sinmx

0

]

λ2 = α22m
4 . . .w2 =

[
0

um0 sinmx

]
∀m ∈ �.

The set of all real eigenvalues of the operator L will be denoted by

σ = {λ ∈ � ; λ = α21m
2 ∨ λ = α22m

4, ∀m ∈ �}.

3.2.3. The linear “string-beam” model
As a starting point, we will consider the solvability of the linear equation

(37) L(w) − λw = h,
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which can be written in an equivalent form

vtt − α21vxx + β1vt − λv = h1,(38)

utt + α22uxxxx + β2ut − λu = h2.

The following theorem can be proved for this system.

Theorem 3.4. Let λ ∈ �. Then for an arbitrary h ∈ H the equation (37) has
a unique solution w ∈ H if and only if

λ �∈ σ.

If λ �∈ σ then there exists a mapping

Tλ : H→ H, Tλ : h→ w

with the following properties:

(i) Tλ is linear and ImTλ ⊂ C(Ω)× C(Ω);

(ii) Tλ is compact from H into C(Ω)×C(Ω) (and thus from H into H), and for its
norm we have an estimate

‖Tλ‖ � max
{
max
m,n

1
|Aλ

nm|
; max

m,n

1
|Bλ

nm|

}
,

where
Aλ

nm = − n2 + α21m
2 + iβ1n− λ,

Bλ
nm = − n2 + α22m

4 + iβ2n− λ.

�����. I. (⇒) Let there exist a generalized solution w of the equation (37) for
an arbitrary right hand side h ∈ H. Then the system

(−n2 + α21m
2 + iβ1n− λ)vnm = (h1)nm,

(−n2 + α22m
4 + iβ2n− λ)unm = (h2)nm

must be solvable for all m ∈ �, n ∈ �. Hence it follows that

λ �= α21m
2 ∧ λ �= α22m

4,

which means

λ �∈ σ.
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II. (⇐) Let λ �∈ σ and h ∈ H. Let us define auxiliary functions kλ1, kλ2 by the

expressions

kλ1 : (x, t)→
∑

m,n

(−n2 + α21m
2 + iβ1n− λ)−1eint cosmx,

kλ2 : (x, t)→
∑

m,n

(−n2 + α22m
4 + iβ2n− λ)−1eint cosmx.

If we make an odd extension of the functions h1, h2 (or v, u) in the space variable x

to the interval 〈−�, �〉, we can put

v(x, t) =
1
2�2
(kλ1 ∗ h1),

u(x, t) =
1
2�2
(kλ2 ∗ h2).

Thanks to the orthogonality of the basis functions on 〈−�, �〉 × 〈0, 2�〉, we have

v(x, t) =
∑

m,n

(−n2 + α21m
2 + iβ1n− λ)−1(h1)nmeint sinmx,

u(x, t) =
∑

m,n

(−n2 + α22m
4 + iβ2n− λ)−1(h2)nmeint sinmx,

and vnm = (kλ1)nm(h1)nm, unm = (kλ2)nm(h2)nm for m ∈ �, n ∈ �. Thus w =
[v, u]T is a unique solution of the system (38) and so a unique solution of the operator
equation (37).

An operator Tλ will be defined in the following way:

(39) Tλ(h) =
1
2�2

[
kλ1 ∗ h1

kλ2 ∗ h2

]
.

It is clear that this operator is linear, and if we again define both functions u,
v equal to zero outside the set 〈−�, �〉 × 〈0, 2�〉, we have the following estimate
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for δ1, δ2 ∈ �:

‖w(x+ δ1, t+ δ2)−w(x, t)‖ = ‖Tλ(h(x+ δ1, t+ δ2))−Tλ(h(x, t))‖

=
1
2�2

‖(kλ1 ∗ h1)(x+ δ1, t+ δ2)− (kλ1 ∗ h1)(x, t)‖

+
1
2�2

‖(kλ2 ∗ h2)(x + δ1, t+ δ2)− (kλ2 ∗ h2)(x, t)‖

=
1
2�2

∥∥∥∥
∫ 2�

0

∫
�

−�
[kλ1(x+ δ1 − ξ, t+ δ2 − τ) − kλ1(x− ξ, t− τ)] h1(ξ, τ) dξ dτ

∥∥∥∥

+
1
2�2

∥∥∥∥
∫ 2�

0

∫
�

−�
[kλ2(x+ δ1 − ξ, t+ δ2 − τ)− kλ2(x− ξ, t− τ)] h2(ξ, τ) dξ dτ

∥∥∥∥

� 1√
2�2

‖h1‖

×
∥∥∥∥
∫ 2�

0

∫
�

−�
|kλ1(x + δ1 − ξ, t+ δ2 − τ) − kλ1(x− ξ, t− τ)|2 dξ dτ dxdt

∥∥∥∥
1
2

+
1√
2�2

‖h2‖

×
∥∥∥∥
∫ 2�

0

∫

−�
� |kλ2(x+ δ1 − ξ, t+ δ2 − τ)− kλ2(x− ξ, t− τ)|2 dξ dτ dxdt

∥∥∥∥
1
2

.

As kλ1, kλ2 ∈ L2(Ω), the function v, u are continuous and thus R(Tλ) ⊂ C(Ω) ×
C(Ω). Moreover, Tλ maps any bounded subset of the space H onto a bounded
subset of uniformly continuous functions in the space C(Ω) × C(Ω). The Arzelà-

Ascoli theorem implies that the mapping Tλ : H → C(Ω) × C(Ω) is compact. As
C(Ω) ⊂ H , the operator Tλ : H→ H is compact as well.
If we denote

Aλ
nm = − n2 + α21m

2 + iβ1n− λ,

Bλ
nm = − n2 + α22m

4 + iβ2n− λ,

we obtain by an easy calculation estimate of the norm of the operator Tλ:

‖Tλ(h)‖ = ‖w‖ = ‖v‖+ ‖u‖

=

[∫

Ω

∣∣∣∣
∑

m,n

(Aλ
nm)

−1(h1)nmeint sinmx

∣∣∣∣
2

dxdt

] 1
2

+

[∫

Ω

∣∣∣∣
∑

m,n

(Bλ
nm)

−1(h2)nmeint sinmx

∣∣∣∣
2

dxdt

] 1
2
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� max
m,n

1
|Aλ

nm|

[∫

Ω

∣∣∣∣
∑

m,n

(h1)nmeint sinmx

∣∣∣∣
2

dxdt

] 1
2

︸ ︷︷ ︸
‖h1‖

+max
m,n

1
|Bλ

nm|

[∫

Ω

∣∣∣∣
∑

m,n

(h2)nmeint sinmx

∣∣∣∣
2

dxdt

] 1
2

︸ ︷︷ ︸
‖h2‖

� max
{
max
m,n

1
|Aλ

nm|
; max

m,n

1
|Bλ

nm|

}
‖h‖

and hence

‖Tλ‖ � max
{
max
m,n

1
|Aλ

nm|
; max

m,n

1
|Bλ

nm|

}
.

�

3.2.4. Banach contraction theorem

Now we turn our attention to the original equation L(w) = −F(w) + h and its
solvability.

As zero is not an eigenvalue of the operator L, we can—in accordance with the
previous paragraph—define the operator T0 and estimate its norm as follows:

‖T0‖ � max
{
max
m,n

1
|A0nm|

; max
m,n

1
|B0nm|

}
.

Further,

max
m,n

1
|A0nm|

= max
m,n

1
| − n2 + α21m

2 + iβ1n|
= max

m,n

1√
β21n

2 + (α21m2 − n2)2

� 1

min{α21,
√

β21 + (α
2
1m
2
01 − 1)2}

,

max
m,n

1
|B0nm|

= max
m,n

1
| − n2 + α22m

4 + iβ2n|
= max

m,n

1√
β22n

2 + (α22m4 − n2)2

� 1

min{α22,
√

β22 + (α
2
2m
4
02 − 1)2}

,

where m01, m02 solve the problems

min
m∈�

|α21m2 − 1|, min
m∈�

|α22m4 − 1|, respectively.
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Hence we finally obtain

(40)

‖T0‖ � max
{

1

min{α21,
√

β21 + (α
2
1m
2
01 − 1)2}

;
1

min{α22,
√

β22 + (α
2
2m
4
02 − 1)2}

}

=
1

min
{

α21, α
2
2,
√

β21 + (α
2
1m
2
01 − 1)2,

√
β22 + (α

2
2m
4
02 − 1)2

} = K0.

If we use this operator T0, we can rewrite our equation (35) to the equivalent form

(41) w = T0(h− F(w)).

Since we want to prove its unique solvability, it is again suitable to apply the Banach

contraction theorem.
In our case G(w) = T0(h − F(w)). We have to verify whether this operator is

a contraction:

‖G(w1)−G(w2)‖ = ‖T0(h− F(w1))−T0(h− F(w2))‖
= ‖T0‖‖F(w2)− F(w1)‖
� ‖T0‖(k1 + k2)‖(u2 − v2)+ − (u1 − v1)+‖
� ‖T0‖(k1 + k2)‖(u2 − v2)− (u1 − v1)‖
= ‖T0‖(k1 + k2)‖(u2 − u1)− (v2 − v1)‖
� ‖T0‖(k1 + k2) [‖u2 − u1‖+ |v2 − v1‖]
� (k1 + k2)K0‖w2 −w1‖.

Hence it follows that the operator G is a contraction if the condition

0 < (k1 + k2)K0 < 1

holds. Equivalently,

k1 + k2 < min

{
α21, α

2
2,
√

β21 + (α
2
1m
2
01 − 1)2,

√
β22 + (α

2
2m
4
02 − 1)2

}
.

As we have k1 = κ
m1
, k2 = κ

m2
, we obtain a condition of existence of a unique

solution of the operator equation (35) in the form

(42) κ <
m1m2

m1 +m2
min

{
α21, α

2
2,
√

β21 + (α
2
1m
2
01 − 1)2,

√
β22 + (α

2
2m
4
02 − 1)2

}
,
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or (if we use the roughest estimate)

(43) κ <
m1m2

m1 +m2
min

{
α21, α

2
2, β1, β2

}
.

4. Discussion

The question left is whether the condition (42) is stronger or weaker than the

condition
κ = m2k < m2min{α22,

√
β22 + (α

2
2m
4
02 − 1)2},

obtained in the same way for the bridge modelled only as a supported beam (i.e. by

a scalar equation)—see (27).
We can expect that the mass of the main cable will be considerably less than the

mass of the beam, and thus m1m2
m1+m2

� m1. The damping coefficients β1 a β2 can be
considered almost the same.

The relation between α21 and α22 is still an open problem.
As for the real parameters of particular suspension bridges, we have found in the

preprint [3] by A. Fonda, Z. Schneider and F. Zanolin the following values.

Tacoma Golden Gate Bronx-Whitestone

m 8.5× 103 kgm−1 3.1× 104 kgm−1 1.6× 104 kgm−1
I 0.2m4 5.3m4 0.4m4

L 855m 1280m 700m

However, we still have not found anything concerning the real values of the stiffness

of the cable stays k, of the inner tension T and the mass m1 of the main cable.

5. Conclusion

All models described in Chapter 2 are very simplified (some of them more, some
of them less) and do not correspond to the real behaviour of a suspension bridge

exactly; but the more complicated and realistic the model is, the worse we can deal
with it. On the other hand, if even the simplest models exhibit some anomalies

(e.g. nonunique solutions, large-scale oscillations), it is reasonable to assume that
the more accurate and complicated model will do so.

All cited authors came to following conclusions:
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The jumping nonlinearity in the suspension bridge models causes that under some

values of the particular parameters there exist not only the expected low-amplitude
oscillations about the equilibrium, but also other solutions, which correspond to large
scale oscillations and probably lead to the collapse of the bridge. This phenomenon

occurs paradoxically in the case when the cable stays are sufficiently stiff (and the
nonlinearity is more considerable).

A. C. Lazer and P. J. McKenna suggest in their paper [6] to solve this problem by

a “linearization of the bridge”, which means to equip the bridge construction with
cables above and below the roadbed, thus eliminating the asymmetry.

All cited authors supported their theoretical statements by numerical results,
which exactly correspond to the established fact, and moreover, to the conclusions

made after the observation of the real behaviour of suspension bridges.

We have tried to deal with the models that have not been studied in detail yet,
and to bring some new pieces of knowledge into this field.

By using the Banach contraction theorem, we have found a sufficient condition
under which the existence of a unique solution of a beam equation, as well as of the

“beam-string” system, is guaranteed.

Unfortunately, we are afraid that the conditions obtained are too restrictive and
are not satisfied by the real values of the bridge parametres.

However, we hope that our results are contributive, and in future we would like
to study these problems in more detail and to include other, so far not considered

elements.
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