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Abstract

In this paper, a new graph-based ordering of color vec-
tors is presented for mathematical morphology purposes.
An attractive propoerty of the proposed ordering is its color
space independence. A complete graph is defined over a
filter window and its structure is analyzed to construct an
ordering of color vectors by finding a Hamiltonian path in
a two-step algorithm.

1. Introduction

A multivariate image can be represented by the mapping
Z

l → R
p wherel is the image dimension andp the number

of channels. LetW = {xk ∈ Z
l; k = 1, 2, . . . , N} de-

sign a filter window of finite lengthN wherex1 determines
the position of the filter window. FromW , one therefore
gets a set{x1, x2, · · · , xN} of N p-dimensional vectors:
xi = {x1

i , x2
i , · · · , xp

i }, xi ∈ R
p. A classical way to define

an ordering relation between vectors is to use a transform
[6] h from R

p into R
q followed by the natural ordering on

each dimension ofRq. With h : R
p → R

q, andx → h(x)
then∀(xi, xj) ∈ R

p × R
p, xi ≤ xj ⇔ h(xi) ≤ h(xj).

Whenh is bijective, this corresponds to define a space fill-
ing curve that goes through each point of theR

p space just
once and thus induces a total ordering. Therefore, there is
an equivalence: (total ordering onRp)⇔(bijective applica-
tion h : R

p → R)⇔(space filling curve inRp) [14, 4].
When the space is represented by a connected graph, we
point out (in the next section) another equivalence: (space
filling curve inR

p)⇔(Hamiltonian path onRp).
Mathematical morphology is a nonlinear approach to im-
age processing which relies on a fundamental structure, the
complete latticeL [12]. An ordering relation≤ is defined
overL and for every finite subsetK of L, there exists a
supremum∨K and an infimum∧K. Therefore, Mathemat-
ical morphology needs total orderings [15]. The classical
way to perform morphological operations is then to use a
conditional ordering where the vectors are ordered accord-
ing to a hierarchical order of the components [2]. This or-

dering is a total ordering of vectors but it introduces a strong
dissymmetry between the components. The choice of the
priority component being difficult [2], this can be allevi-
ated by considering perceptual color spaces based on Lu-
minance/Hue/Saturation [2, 9] where the ordering is more
natural from a human perception point of view. However,
this does not enable to directly perform morphological op-
erations in any color space even if if conditional ordering
can be combined with a reduced ordering [10] based on dis-
tances [3]. In this paper, we propose a graph-based ordering
of color vectors which does not make any assumption on the
color space under consideration [8].

2. Graph-Based ordering of color vectors

2.1. Preliminaries on graphs

We provide some basic definitions on graph theory [5].
A graphG is a coupleG = (V, E) whereV is a finite set
of vertices andE is a set of edges included in a subset of
V × V . Two verticesu andv in a graph are adjacent if the
edge(u, v) exists inE. The degreeδ(v) of a vertexv is
the number of edges incident to the vertex.δ : V → N is
defined asδ(v) = |u ∼ v| where| · | denotes the cardinal
of a set.u ∼ v denotes the set of verticesu connected to
the vertexv via the edges(u, v) ∈ E. A path p is a set
of verticesp = (v1, v2, · · · , vk) such as there is an edge
for each two successive vertices of the path:∀i ∈ [1, k[,
the edge(vi, vi+1) ∈ E. The length of a path corresponds
to its number of edges. A path is Hamiltonian if it uses
all the vertices exactly once (this problem is NP-complete).
A complete graph is a graph where an edge connects every
pair of vertices. A complete graph withn vertices hasn(n−
1)/2 edges and the degree of each vertex is(n − 1). A
graph is connected when for every pair of verticesu and
v there is a path in whichv1 = u and vk = v. In the
rest of this paper, we consider only simple graphs for which
maximum one edge can link two vertices. These simple
graphs are always assumed to be connected and undirected
[5]. A graph, as defined above, is said to be weighted if it is
associated with a weight functionw : E → R

+ satisfying



w(u, v) > 0 if (u, v) ∈ E, w(u, v) = 0 if (u, v) /∈ E.
We can now define the space of functions on graphs. Let
H(V ) denote the Hilbert space of real-valued functions on
vertices, in which eachf : V → R

+ assigns a real value
f(v) to each vertexv. A functionf inH(V ) can be thought
as a column vector inR|V |. Similarly, one can defineH(E)
the space of real-valued functions on edges, in which each
oneg : E → R

+ assigns a real value to each edgee.
A tree is a connected acyclic simple graph. A spanning tree
of a connected, undirected graphG is a tree composed of
all the vertices and some of the edges ofG. A minimum
spanning tree (MST) is then a spanning tree with weight
less than the weight of every other spanning tree. Therefore,
a minimum spanning treeT (G) of a graphG is a weighted
connected graphT (G) = (V ′, E′) where the sum of the
weights

∑

(u,v)∈E′

w(u, v) is minimum. For a graphG of n

vertices, its MSTT (G) has exactly(n− 1) edges.

2.2. Graph-based ordering: bounds extraction

In this paper, we take a Hamiltonian path point of view
of the ordering of vectors. However, we propose to dynam-
ically construct such a Hamiltonian path on a filter win-
dow W rather on the complete spaceR

p. To a given fil-
ter windowW , we can associate a complete graphG0 the
vertices of which correspond to the vectors ofW . This cor-
responds to a functionf ∈ H(V ), f : V → W which
associates a color vectorx ∈ W to each vertex. Simi-
larly, we can associate a weight to each edge of the graph,
w ∈ H(E), w : E → R

+. Classically, we consider
w(u, v) = ‖f(u)− f(v)‖2. Since it is difficult to find an
optimal Hamiltonian path onG0 among all the(|W | − 1)!
different possibilities, we propose to approximate this path.
Instead of trying to directly define the Hamiltonian path, we
begin by extracting its bounds (∧ and∨). Let T0 = T (G0)
denote the MST ofG0. An MST being a generalization to
higher dimensions of a one-dimension sorted list, we can
use its structure to find candidate bounds of the Hamilto-
nian path. A vertexv of a Hamiltonian path is one of its
bounds iffδ(v) = 1: it is a leaf. We use this principle to
extract them [7]. LetN0 = {u|δ(u) = 1, u ∈ T0} denote
the leaves ofT0. The vertices inN0 are the only candidates
for bounds of the Hamiltonian path. Since most of the time
|N0| > 2, N0 has to be reduced to only two elements. To
that aim, we iterate the same process on the complete graph
constructed over the vertices ofN0 until |Ni| = 2 with i the
iteration number. To sum it up, to extract the bounds of a
Hamiltonian path, the principle is as following:
i← 0 ; Gi: the complete graph over filter windowW
Repeat
Ti = T (Gi) ; Ni = {u|δ(u) = 1, u ∈ Ti}
Gi+1: the complete graph over overNi ; i← i + 1
Until |Ni−1| = 2

Ti = Gi,Ni = {u ∈ Ti}
At the end of the process,Ni = {u, v} contains two ver-
tices considered as bounds of the Hamiltonian path. How-
ever, one still has to define which one of these two ver-
tices is the∨ (respectively the∧). The ∧ is identified
as the closest vertice to a reference colorxref [13] which
is usually black:∨ = arg max

v∈Ni

‖f(v), xref‖2 and∧ =

arg min
v∈Ni

‖f(v), xref‖2. One then can prove that the com-

plexity of this step isO(N3logN). Figure 1 presents the

(a) G0 (b) T0 (c) G1 (d) T1

Figure 1. The graphs Gi and Ti in the different
steps of the algorithm for Hamiltonian path
bounds extraction. For each Ti, the vertices
degrees are superimposed. G2 and T2 are not
shown here.

different steps of the algorithm. The complete graphG0 is
constructed over the filter windowW (Figure 1(a)) and its
MST T0 is computed (Figure 1(b)). A new complete graph
G1 (Figure 1(c)) is constructed over the leaves ofT0 and
its MSTT1 is computed (Figure 1(d)). Finally, A complete
graphG2 of two vertices is obtained. Withxref as black, the
∨ is the top left pixel ofW and∧ the bottom middle one.

2.3. Graph-based ordering: Ordering construction

Once the two bounds of the Hamiltonian path have been
determined, the complete Hamiltonian path can be con-
structed. On the filter windowW under consideration, a
Hamiltonian pathp = (v1, v2, · · · , vk) has a length of|W |
and its bounds arev1 = ∧ and vk = ∨. The construc-
tion of the Hamiltonian path we propose is based on the
nearest neighbor principle on the initial complete graphG0.
To determine the nearest neighboru of a vertexv, we con-
sider the weight of the edgew(u, v) but also the saliency
of the neighboru in the graph. The saliency of a vertex
quantifies its global importance in the set of MST which
where generated during the inf and sup extraction. It is

defined as follows:∆(v) =
imax
∑

i=0

(i + 1) · δ(Ti, v) where

δ(Ti, v) = δ(v), v ∈ Ti wherei corresponds to an itera-
tion number in the Hamiltonian path bounds extraction and
imax to the total number of iterations. The boundsv1 and
vN have the highest saliences. Otherwise, the saliency of



a vertex is all the more important when it survives in the
successiveTi. For instance, the saliency of the top left
pixel vj of the filter window in Figure 1(a) is∆(vj) =
1·δ(T0, vj)+2·δ(T1, vj)+3·δ(T2, vj) = 1·1+2·1+3·1 = 6.
The construction of the Hamiltonian path isO(N2) and can
then be summarized as follows:















v1 = ∧ andvN = ∨
vj+1 = arg min

u∼vj

u/∈{v1,··· ,vj}

(wuvj
∆(u))

Figure 2. Left: graph G0 with vertices
saliences ∆(v) superimposed. Right: con-
structed Hamiltonian path.

Figure 2 illustrates the construction of the ordering of
vectors ofW as a Hamiltonian path: on the complete graph
G0 (Figure 2(a), with vertices saliences superimposed), one
obtains the path depicted by figure 2(b).

3 Results and discussion

In this section, we illustrate the behavior of the proposed
graph-based ordering of color vectors for different mathe-
matical morphology operations. First, erosionε and dilata-
tion δ are considered. These operation retain the infimum
(resp. the sup.) of a color set as the output of the filtering.
Figure 3 shows the result of an erosion on an image in dif-
ferent color spaces amongRGB, IHSL [2], L∗a∗b∗ and
CIECAM02 [11]. When needed, the illuminant is consid-
ered asD65. On can see that the results visually look quite
similar whatever the color space except forCIECAM02.
For all color spaces, the reference color was considered
as black and this has an influence on the result, another
reference color might be more suitable forCIECAM02.
It is worth noting that the dimension of a color vector in
CIECAM02 color space is six (p = 6) and it will be very
difficult to find a proper ordering of the color components
for the conditional ordering. In constrast, our graph-based
ordering of color vectors can process any color image rep-
resentation even with high-dimensional vectors as long as a
distance measure can be associated to these vectors. We do
not consider the properties of the used color spaces and con-
sider color vectors as real-valued vectors. With an ordering

of color vectors, we can perform other morphological op-
erations. An usual operator is the morphological gradient
∇(f) = δ(f) − ε(f). Figure 4 presents the obtained mor-
phological gradients in different color spaces for a natural
image. The obtained gradients are of course different, but
the interest in our graph-based ordering lies in the fact that
its computation remains the same whatever the color space.
To further illustrate this, Figure 4(f) presents the resultof a
morphological color contrast mapping [1] onCIECAM02
color vectors. With a computation of the morphological gra-
dient which is color space independent, one can then apply
the waterfall algorithm in different color spaces. Figure 5
presents the4th partition level of the nonparametric hierar-
chy built by the waterfall algorithm. Saliency maps which
give the highest level of appearance of a boundary are also
provided. Of course, results differ in the considered color
spaces. However, with our graph-based ordering, the order-
ing has not to be adapted to the color space under study. To
our knowledge, this is the first time, that mathematical mor-
phology operations are performed in color spaces of high-
dimensions such asCIECAM02. Moreover, our graph
ordering scheme can be directly applied to the processing
of multi-spectral images. However, our graph-based order-
ing computational complexity isO(N3logN) which this is
higher than the conditional ordering and our approach is not
suited for large filter windows.
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