
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 3, September 2015, pp 276–293.
Published online in International Academic Press (www.IAPress.org)

Mathematical Programming Based on Sufficient Optimality Conditions and
Higher Order Exponential Type Generalized Invexities

Ram U. Verma ∗

Department of Mathematics, Texas State University, USA

Received: 27 March 2015; Accepted: 18 August 2015
Editor: Yiju Wang

Abstract First, a class of comprehensive higher order exponential type generalized B-(b, ρ, η, ω, θ, p̃, r̃, s̃)-invexities is
introduced, which encompasses most of the existing generalized invexity concepts in the literature, including the Antczak
type first order B-(b, η, p̃, r̃)-invexities as well as the Zalmai type (α, β, γ, η, ρ, θ)-invexities, and then a wide range
of parametrically sufficient optimality conditions leading to the solvability for discrete minimax fractional programming
problems are established with some other related results. To the best of our knowledge, the obtained results are new and
general in nature relating the investigations on generalized higher order exponential type invexities.
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1. Introduction

Recently, Zalmai [41], in a series of publications based on the work of Antczak [1, 2, 3], generalized the exponential
type of invexities and applied to a class of global parametric sufficient optimality criteria using various assumptions
for semiinfinite discrete minimax fractional programming problems. Furthermore, Zalmai [41], applying certain
suitable partitioning schemes investigated various sets of generalized parametric sufficient optimality results each
of which is in fact a family of such results whose members can easily be identified by appropriate choices
of certain sets and functions. Antczak [1, 2, 3] introduced and studied first order exponential type B-(p, r)-
invexities and applied investigating nonlinear mathematical programming problems, especially in [2] Antczak
proved some optimality conditions for a class of generalized fractional programming problems involving B-(p, r)-
invex functions. This work was followed by developing various duality models relating to fractional programming
problems in the literature. Verma [30] introduced the second order (Φ, Ψ, ρ, η, θ)-invexities to the context of
parametric sufficient optimality conditions in semiinfinite discrete minimax fractional programming, while Zalmai
and Zhang [42] have established a set of necessary efficiency conditions and a fairly large number of global
nonparametric sufficient efficiency results under various frameworks for generalized (η, ρ)-invexity for semi-
infinite discrete minimax fractional programming problems. There exists an enormous literature on generalized
first order as well as second order invexities with applications. Verma [25] also developed a general framework for
a class of (ρ, η, θ)-invex functions to examine some parametric sufficient efficiency conditions for multiobjective
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fractional programming problems for weakly ϵ−efficient solutions. Motivated by the recent advances on B-(p,
r)-invexities and other generalizations to the context of multiobjective fractional programming problems, we
first introduce the higher order exponential type B-(b, ρ, η, ω, θ, p̃, r̃, s̃)-invexities - a major generalization
to Antczak type B-(p̃, r̃)-invexities - well-explored and well-cited in the literature, second we establish some
parametric sufficient efficiency conditions for multiobjective fractional programming to achieve optimal solutions
to multiobjective fractional programming problems, and then we establish some generalized sufficiency results.
The results established in this communication, not only generalize the results on Antczak type, Zalmai, and Zalmai
and Zhang type first order invexities but also generalize the second order invexity results in general settings.

We consider under the general framework of the second order B-(b, ρ, η, ω, θ, p̃, r̃, s̃)-invexities of functions,
the following minimax fractional programming problem:

(P)

min
x∈Q

max
1≤i≤p

fi(x)

gi(x)

subject to x ∈ Q = {x ∈ X : Hj(x) ≤ 0, j ∈ {1, 2, · · ·,m}},
where X is a nonempty open convex subset of Rn (n-dimensional Euclidean space), fi and gi for i ∈ {1, · · ·, p}
and Hj for j ∈ {1, · · ·,m} are real-valued functions defined on X such that fi(x) ≥ 0, gi(x) > 0 for i ∈ {1, · · ·, p}
and for all x ∈ Q. Here Q denotes the feasible set of (P).

The general theory for semiinfinite programming problems offers a wide range of significant applications
to several fields of research, including game theory, industrial engineering, mechanical engineering, statistical
analysis, engineering design (including design of control systems, design of earthquakes-resistant structures,
digital filters, and electronic circuits), random graphs, boundary value problems, wavelet analysis, environmental
protection planning, decision and management sciences, optimal control problems, continuum mechanics, robotics,
and data envelopment analysis. For more details, we refer the reader [1 - 44].

2. Generalized second order invexities

The general invexity theory has been investigated in several directions. We generalize the notion of the first order
Antczak type B-(p̃, r̃)-invexiies to the case of the second order B-(b, ρ, η, ω, θ, p̃, r̃, s̃)-invexities. These notions
of the second order invexity encompass most of the existing notions in the literature. Let f be a twice continuously
differentiable real-valued function defined on X .

Definition 2.1
The function f is said to be second order B − (b, ρ, η, ω, θ, p̃, r̃, s̃)-invex at x∗ ∈ X if there exist functions
η, ω, θ : X ×X → Rn and b : X ×X → [0,∞), and real numbers r̃, p̃ and s̃ such that for all x ∈ X and z ∈ Rn,

b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+
1

s̃

(1
2
⟨∇2f(x∗)z, es̃ω(x,x∗) − 1⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 for p̃ ̸= 0, r̃ ̸= 0 and s̃ ̸= 0,

b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥

⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨ω(x, x∗),∇2f(x∗)z⟩

+ ρ(x, x∗)∥θ(x, x∗)∥2 for p̃ = 0, s̃ = 0 and r̃ ̸= 0,
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b(x, x∗)
(
[f(x)− f(x∗)]

)
≥ 1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+
1

s̃

(1
2
⟨es̃ω(x,x∗) − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 for p̃ ̸= 0, s̃ ̸= 0 and r̃ = 0,

b(x, x∗)
(
[f(x)− f(x∗)]

)
≥

⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨ω(x, x∗),∇2f(x∗)z⟩

+ ρ(x, x∗)∥θ(x, x∗)∥2 for p̃ = 0, r̃ = 0 and s̃ = 0,

where 1 = (1, 1, · · · , 1) ∈ Rn.

Definition 2.2
The function f is said to be second order strictly B − (b, ρ, η, ω, θ, p̃, r̃, s̃)-invex at x∗ ∈ X if there exist functions
η, ω, θ : X ×X → Rn and b : X ×X → [0,∞), and real numbers r̃, s̃ and p̃ such that for all x ∈ X and z ∈ Rn,

b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
>

1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+
1

s̃

(1
2
⟨es̃ω(x,x∗) − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 for p̃ ̸= 0, s̃ ̸= 0 and r̃ ̸= 0,

b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
>

⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨ω(x, x∗),∇2f(x∗)z⟩

+ ρ(x, x∗)∥θ(x, x∗)∥2 for p̃ = 0, s̃ = 0 and r̃ ̸= 0,

b(x, x∗)
(
[f(x)− f(x∗)]

)
>

1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+
(1
2
⟨ω(x, x∗),∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 for p̃ ̸= 0, s̃ = 0 and r̃ = 0,

b(x, x∗)
(
[f(x)− f(x∗)]

)
>

⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨ω(x, x∗),∇2f(x∗)z⟩

+ ρ(x, x∗)∥θ(x, x∗)∥2 for p̃ = 0, r̃ = 0 and s̃ = 0.

Definition 2.3
The function f is said to be second order B − (b, ρ, η, ω, θ, p̃, r̃, s̃)-pseudoinvex at x∗ ∈ X if there exist functions
η, ω, θ : X ×X → Rn, and b : X ×X → [0,∞), and real numbers r̃, s̃ and p̃ such that for all x ∈ X and z ∈ Rn,

1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+
1

s̃

(1
2
⟨es̃ω(x,x∗) − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 ≥ 0

⇒ b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 0 for p̃ ̸= 0, r̃ ̸= 0 and s̃ ̸= 0,

⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨ω(x, x∗),∇2f(x∗)z⟩+ ρ(x, x∗)∥θ(x, x∗)∥2 ≥ 0

⇒ b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 0 for p̃ = 0, s̃ = 0 and r̃ ̸= 0,
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1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+
1

s̃

(1
2
⟨es̃ω(x,x∗) − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 ≥ 0

⇒ b(x, x∗)
(
[f(x)− f(x∗)]

)
≥ 0 for p̃ ̸= 0, s̃ ̸= 0 and r̃ = 0,

⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨ω(x, x∗),∇2f(x∗)z⟩

+ ρ(x, x∗)∥θ(x, x∗)∥2 ≥ 0

⇒ b(x, x∗)
(
[f(x)− f(x∗)]

)
≥ 0 for p̃ = 0, r̃ = 0, s̃ = 0.

Definition 2.4
The function f is said to be second order strictly B − (b, ρ, η, ω, θ, p̃, r̃, s̃)-pseudoinvex at x∗ ∈ X if there exist
functions η, ω, θ : X ×X → Rn and b : X ×X → [0,∞), and real numbers r̃ and p̃ such that for all x ∈ X and
z ∈ Rn,

1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+
1

s̃

(1
2
⟨ep̃ω(x,x∗) − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 ≥ 0

⇒ b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
> 0 for p̃ ̸= 0, r̃ ̸= 0 and s̃ ̸= 0,

⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨ω(x, x∗),∇2f(x∗)z⟩+ ρ(x, x∗)∥θ(x, x∗)∥2 ≥ 0

⇒ b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
> 0 for p̃ = 0, s̃ = 0 and r̃ ̸= 0,

1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+
1

s̃

(1
2
⟨es̃ω(x,x∗) − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 ≥ 0

⇒ b(x, x∗)
(
[f(x)− f(x∗)]

)
> 0 for p̃ ̸= 0, s̃ ̸= 0 and r̃ = 0,

⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨ω(x, x∗),∇2f(x∗)z⟩+ ρ(x, x∗)∥θ(x, x∗)∥2 ≥ 0

⇒ b(x, x∗)
(
[f(x)− f(x∗)]

)
> 0 for p̃ = 0, s̃ = 0 and r̃ = 0,

equivalently,

b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≤ 0

⇒ 1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+
1

s̃

(1
2
⟨ep̃ω(x,x∗) − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 < 0 for p̃ ̸= 0, r̃ ̸= 0 and s̃ ̸= 0.
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Definition 2.5
The function f is said to be second order prestrictly B − (b, ρ, η, ω, θ, p̃, r̃, s̃)-pseudoinvex at x∗ ∈ X if there exist
functions η, ω, θ : X ×X → Rn and b : X ×X → [0,∞), and real numbers r̃ and p̃ such that for all x ∈ X and
z ∈ Rn,

1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩

+
1

s̃

(1
2
⟨es̃ω(x,x∗) − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 > 0

⇒ b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 0 for p̃ ̸= 0, s̃ ̸= 0 and r̃ ̸= 0,

⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨z,∇2f(x∗)z⟩+ ρ(x, x∗)∥θ(x, x∗)∥2 > 0

⇒ b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 0 for p̃ = 0, s̃ = 0 and r̃ ̸= 0,

1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩

+
1

2s̃
⟨es̃ω(x,x∗) − 1,∇2f(x∗)z⟩+ ρ(x, x∗)∥θ(x, x∗)∥2 > 0

⇒ b(x, x∗)
(
[f(x)− f(x∗)]

)
≥ 0 for p̃ ̸= 0, s̃ ̸= 0 and r̃ = 0,

⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨z,∇2f(x∗)z⟩+ ρ(x, x∗)∥θ(x, x∗)∥2 > 0

⇒ b(x, x∗)
(
[f(x)− f(x∗)]

)
≥ 0 for p̃ = 0 and r̃ = 0.

Definition 2.6
The function f is said to be second order B − (b, ρ, η, ω, θ, p̃, r̃, s̃)-quasiinvex at x∗ ∈ X if there exist functions
η, ω, θ : X ×X → Rn and b : X ×X → [0,∞), and real numbers r̃, s̃ and p̃ such that for all x ∈ X and z ∈ Rn,

b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≤ 0

⇒ 1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩

+
1

2s̃
⟨es̃ω(x,x∗) − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 ≤ 0 for p̃ ̸= 0, s̃ ̸= 0 and r̃ ̸= 0,

b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≤ 0

⇒
⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨ω(x, x∗),∇2f(x∗)z⟩

+ ρ(x, x∗)∥θ(x, x∗)∥2 ≤ 0; for p̃ = 0, s̃ = 0 and r̃ ̸= 0,
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b(x, x∗)
(
[f(x)− f(x∗)]

)
≤ 0

⇒ 1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩

+
1

2s̃
⟨es̃ω(x,x∗) − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 ≤ 0

for p̃ ̸= 0, s̃ ̸= 0 and r̃ = 0,

b(x, x∗)
(
[f(x)− f(x∗)]

)
≤ 0

⇒
⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨ω(x, x∗),∇2f(x∗)z⟩

+ ρ(x, x∗)∥θ(x, x∗)∥2 ≤ 0 for p̃ = 0 and r̃ = 0.

Definition 2.7
The function f is said to be second order strictly B − (b, ρ, η, ω, θ, p̃, r̃, s̃)-quasiinvex at x∗ ∈ X if there exist
functions η, ω, θ : X ×X → Rn and b : X ×X → [0,∞), and real numbers r̃, s̃ and p̃ such that for all x ∈ X and
z ∈ Rn,

b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≤ 0

⇒ 1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩

+
1

s̃

(1
2
⟨es̃ω(x,x∗) − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 < 0 for p̃ ̸= 0, s̃ ̸= 0 and r̃ ̸= 0,

b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≤ 0

⇒
⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨ω(x, x∗),∇2f(x∗)z⟩

+ ρ(x, x∗)∥θ(x, x∗)∥2 < 0; for p̃ = 0, s̃ = 0 and r̃ ̸= 0,

b(x, x∗)
(
[f(x)− f(x∗)]

)
≤ 0

⇒ 1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+
1

s̃

(1
2
⟨es̃ω(x,x∗) − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 < 0 for p̃ ̸= 0, s̃ ̸= 0 and r̃ = 0,

b(x, x∗)
(
[f(x)− f(x∗)]

)
≤ 0

⇒
⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨ω(x, x∗),∇2f(x∗)z⟩

+ ρ(x, x∗)∥θ(x, x∗)∥2 < 0 for p̃ = 0, s̃ = 0 and r̃ = 0.
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Definition 2.8
The function f is said to be second order prestrictly B − (b, ρ, η, ω, θ, p̃, r̃, s̃)-quasiinvex at x∗ ∈ X if there exist
functions η, ω, θ : X ×X → Rn and b : X ×X → [0,∞), and real numbers r̃ and p̃ such that for all x ∈ X and
z ∈ Rn,

b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
< 0

⇒ 1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+
1

2s̃

(
⟨es̃ω(x,x∗) − 1,∇2f(x∗)z⟩

+ρ(x, x∗)∥θ(x, x∗)∥2 ≤ 0 for p̃ ̸= 0, s̃ ̸= 0 and r̃ ̸= 0,

b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
< 0

⇒
⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨ω(x, x∗),∇2f(x∗)z⟩

+ ρ(x, x∗)∥θ(x, x∗)∥2 ≤ 0; for p̃ = 0, s̃ = 0 and r̃ ̸= 0,

b(x, x∗)
(
[f(x)− f(x∗)]

)
< 0

⇒ 1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+
1

s̃

(1
2
⟨es̃ω(x,x∗) − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 ≤ 0 for p̃ ̸= 0, s̃ ̸= 0 and r̃ = 0,

b(x, x∗)
(
[f(x)− f(x∗)]

)
< 0

⇒
⟨
∇f(x∗), η(x, x∗)

⟩
+

1

2
⟨ω(x, x∗),∇2f(x∗)z⟩+ ρ(x, x∗)∥θ(x, x∗)∥2 ≤ 0 for p̃ = 0, s̃ = 0 and r̃ = 0,

equivalently,

1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+
1

2s̃

(
⟨es̃ω(x,x∗) − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 > 0

⇒ b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 0 for p̃ ̸= 0, s̃ ̸= 0 and r̃ ̸= 0.

Next, we present some examples which shall reflect the interrelationship among the basic definitions introduced
(and applied) in this paper.

Example 2.1
The function f is said to be second order B − (b, ρ, η, θ, p̃, r̃, s̃)-pseudoinvex with respect to η and b at x∗ ∈ X if
there exist functions η, θ : X ×X → Rn and b : X ×X → [0,∞), and real numbers r̃, s̃ and p̃ such that for all
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x ∈ X and z ∈ Rn,

1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+
1

s̃

(1
2
⟨es̃z − 1,∇2f(x∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 ≥ 0

⇒ b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 0 for p̃ ̸= 0, r̃ ̸= 0 and s̃ ̸= 0.

Example 2.2
The function f is said to be second order B − (b, ρ, η, θ, p̃, r̃)-pseudoinvex with respect to η and b at x∗ ∈ X if there
exist functions η, θ : X ×X → Rn and b : X ×X → [0,∞), and real numbers r̃ and p̃ such that for all x ∈ X and
z ∈ Rn,

1

p̃

(⟨
∇f(x∗) +

1

2
∇2f(x∗)z, ep̃η(x,x

∗) − 1
⟩)

+ ρ(x, x∗)∥θ(x, x∗)∥2 ≥ 0

⇒ b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 0 for p̃ ̸= 0 and r̃ ̸= 0.

Example 2.3
(Zalmai [41]) The function f is said to be first order B − (b, ρ, η, θ, p̃, r̃)-pseudoinvex with respect to η and b at
x∗ ∈ X if there exist functions η, θ : X ×X → Rn and b : X ×X → [0,∞), and real numbers r̃ and p̃ such that
for all x ∈ X and z ∈ Rn,

1

p̃

(⟨
∇f(x∗), ep̃η(x,x

∗) − 1
⟩)

+ ρ(x, x∗)∥θ(x, x∗)∥2 ≥ 0

⇒ b(x, x∗)
(1
r̃

(
er̃[f(x)−f(x∗)] − 1

))
≥ 0 for p̃ ̸= 0 and r̃ ̸= 0.

We shall use the following auxiliary results which are crucial to the overall development of the main results on
hand.

Lemma 2.1
For each x ∈ X ,

φ(x) ≡ max
1≤i≤p

fi(x)

gi(x)
= max

u∈U

∑p
i=1 uifi(x)∑p
i=1 uigi(x)

.

Theorem 2.1
[28] Let x∗ ∈ F and λ∗ = max1≤i≤p fi(x

∗)/gi(x
∗), for each i ∈ p, let fi and gi be twice continuously differentiable

at x∗, for each j ∈ q, let the function z → Gj(z, t) be twice continuously differentiable at x∗ for all t ∈ Tj , and
for each k ∈ r, let the function z → Hk(z, s) be twice continuously differentiable at x∗ for all s ∈ Sk. If x∗ is an
optimal solution of (P), if the second order generalized Abadie constraint qualification holds at x∗, and if for any
critical direction y, the set cone

{
(
∇Gj(x

∗, t), ⟨y,∇2Gj(x
∗, t)y⟩

)
: t ∈ T̂j(x

∗), j ∈ q}

+ span{
(
∇Hk(x

∗, s), ⟨y,∇2Hk(x
∗, s)y⟩

)
: s ∈ Sk, k ∈ r},

where T̂j(x
∗) ≡ {t ∈ Tj : Gj(x

∗, t) = 0},

is closed, then there exist u∗ ∈ U ≡ {u ∈ Rp : u ≥ 0,
∑p

i=1 ui = 1} and integers ν∗0 and ν∗, with 0 ≤ ν∗0 ≤
ν∗ ≤ n+ 1, such that there exist ν∗0 indices jm, with 1 ≤ jm ≤ q, together with ν∗0 points tm ∈ T̂jm(x∗), m ∈
ν∗0 , ν

∗ − ν∗0 indices km, with 1 ≤ km ≤ r, together with ν∗ − ν∗0 points sm ∈ Skm for m ∈ ν∗\ν∗0 , and ν∗ real
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numbers v∗m, with v∗m > 0 for m ∈ ν∗0 , with the property that

p∑
i=1

u∗
i [∇fi(x

∗)− λ∗(∇gi(x
∗)] +

ν∗
0∑

m=1

v∗m[∇Gjm(x∗, tm)

+

ν∗∑
m=ν∗

0+1

v∗m∇Hk(x
∗, sm) = 0, (2.1)

⟨y,
[ p∑

i=1

u∗
i [∇2fi(x

∗)− λ∗∇2gi(x
∗)] +

ν∗
0∑

m=1

v∗m∇2Gjm(x∗, tm)

+

ν∗∑
m=ν∗

0+1

v∗m∇2Hk(x
∗, sm)

]
y⟩ ≥ 0, (2.2)

where T̂jm(x∗) = {t ∈ Tjm : Gjm(x∗, t) = 0}, U = {u ∈ Rp : u ≥ 0,
∑p

i=1 ui = 1}, and ν∗\ν∗0 is the complement
of the set ν∗0 relative to the set ν∗.

3. Second Order sufficient optimality conditions

This section deals with some parametric sufficient efficiency conditions for problem (P) under the generalized
frameworks of second order B − (b, ρ, η, ω, θ, p̃, r̃, s̃)−invexities for generalized invex functions. We start with
real-valued functions Ei(., x

∗, u∗) and Bj(., v) defined by

Ei(x, x
∗, u∗) = ui[fi(x)−

(fi(x∗)

gi(x∗)

)
gi(x)], i ∈ {1, · · ·, p}

and

Bj(., v) = vjHj(x), j = 1, · · ·,m.

Theorem 3.1
Let x∗ ∈ Q, functions fi, gi for i ∈ {1, · · ·, p} with φ(x∗) = fi(x

∗)
gi(x∗) ≥ 0, gi(x∗) > 0 and Hj for j ∈ {1, · · ·,m}

be twice continuously differentiable at x∗ ∈ Q, and let there exist u∗ ∈ U = {u ∈ Rp : u > 0,Σp
i=1ui = 1} and

v∗ ∈ Rm
+ such that

Σp
i=1u

∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)] + Σm
j=1v

∗
j ▽Hj(x

∗) = 0, (3.1)

⟨
z,
[ p∑

i=1

u∗
i [∇2fi(x

∗)− (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)] +

m∑
j=1

v∗j∇2Hj(x
∗)
]
z
⟩
≥ 0, (3.2)

where z ∈ Rn, and

v∗jHj(x
∗) = 0, j ∈ {1, · · ·,m}. (3.3)

Suppose, in addition, that any one of the following assumptions holds:
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(i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are second order B − (b, ρ, η, ω, θ, p̃, r̃, s̃)-pseudoinvex with respect to η, ω

and b at x∗ ∈ X if there exist functions η, ω, θ : X ×X → Rn and b : X ×X → R+ = [0,∞), and real
numbers r̃, s̃ and p̃ for all x ∈ X and z ∈ Rn with b(x, x∗) > 0; and Bj(. , v

∗) ∀ j ∈ {1, · · ·,m} are second
order B − (b̄, ρ, η, ω, θ, p̃, r̃, s̃)-quasiinvex with respect to η, ω and b̄ at x∗ ∈ X if there exist functions
η, ω, θ : X ×X → Rn and b̄ : X ×X → R+ = [0,∞), and real numbers r̃, s̃ and p̃ for all x ∈ X , z ∈ Rn,
and ρ(x, x∗) ≥ 0.

(ii) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are second order B − (b, ρ1, η, ω, θ, p̃, r̃, s̃)-pseudoinvex with respect to η,

ω and b at x∗ ∈ X if there exist functions η, ω, θ : X ×X → Rn and b : X ×X → R+ = [0,∞), and real
numbers r̃, s̃ and p̃ for all x ∈ X and z ∈ Rn with b(x, x∗) > 0; and Bj(. , v

∗) ∀ j ∈ {1, · · ·,m} are second
order B − (b̄, ρ2, η, ω, θ, p̃, r̃, s̃)-quasiinvex with respect to η, ω and b̄ at x∗ ∈ X if there exist functions
η, ω, θ : X ×X → Rn and b̄ : X ×X → R+ = [0,∞), and real numbers r̃, s̃ and p̃ for all x ∈ X , z ∈ Rn,
and ρ1(x, x

∗), ρ2(x, x
∗) ≥ 0 with ρ2(x, x

∗) ≥ ρ1(x, x
∗).

(iii) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are second order prestrictly B − (b, ρ1, η, ω, θ, p̃, r̃, s̃)-pseudoinvex with

respect to η, ω and b at x∗ ∈ X if there exist functions η, ω, θ : X ×X → Rn and b : X ×X → R+ = [0,∞),
and real numbers r̃, s̃ and p̃ for all x ∈ X and z ∈ Rn with b(x, x∗) > 0; and Bj(. , v

∗) ∀ j ∈ {1, · · ·,m} are
second order strictly B − (b̄, ρ2, η, ω, θ, p̃, r̃, s̃)-quasiinvex with respect to η, ω and b at x∗ ∈ X if there exist
functions η, ω, θ : X ×X → Rn and b̄ : X ×X → R+ = [0,∞), and real numbers r̃, s̃ and p̃ for all x ∈ X ,
z ∈ Rn, and ρ1(x, x

∗), ρ2(x, x
∗) ≥ 0 with ρ2(x, x

∗) ≥ ρ1(x, x
∗).

(iv) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are second order prestrictly B − (b, ρ1, η, ω, θ, p̃, r̃, s̃)-quasiinvex with respect

to η, ω and b at x∗ ∈ X if there exist functions η, ω, θ : X ×X → Rn and b : X ×X → R+ = [0,∞), and
real numbers r̃, s̃ and p̃ for all x ∈ X and z ∈ Rn with b(x, x∗) > 0; and Bj(. , v

∗) ∀ j ∈ {1, · · ·,m} are
second order strictly B − (b̄, ρ2, η, ω, θ, p̃, r̃, s̃)-pseudoinvex with respect to η and b̄ at x∗ ∈ X if there exist
functions η, ω, θ : X ×X → Rn and b̄ : X ×X → R+ = [0,∞), and real numbers r̃, s̃ and p̃ for all x ∈ X ,
z ∈ Rn, and ρ1(x, x

∗), ρ2(x, x
∗) ≥ 0 with ρ2(x, x

∗) ≥ ρ1(x, x
∗).

(v) For each i ∈ {1, · · ·, p}, fi is second order B − (b, ρ1, η, ω, θ, p̃, r̃, s̃)−invex and −gi is second
order B − (b, ρ2, η, ω, θ, p̃, r̃, s̃)−invex at x∗ with b(x, x∗) > 0. Hj(. , v

∗) ∀ j ∈ {1, · · ·,m} is B −
(b̄, ρ3, η, ω, θ, p̃, r̃, s̃)−quasi-invex at x∗, and Σm

j=1v
∗
j ρ3 + ρ∗ ≥ 0 for ρ∗ = Σp

i=1u
∗
i (ρ1 + ϕ(x∗)ρ2) and for

ϕ(x∗) = fi(x
∗)

gi(x∗) .

Then x∗ is an optimal solution to (P).

Proof
If (i) holds, and if x ∈ Q, then it follows from (3.1) and (3.2) that

1

p̃
⟨Σp

i=1u
∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)], ep̃η(x,x
∗) − 1⟩

+
1

p̃
⟨Σm

j=1v
∗
j ▽Hj(x

∗), ep̃η(x,x
∗) − 1⟩ = 0∀x ∈ Q, (3.4)

1

2s̃

⟨
es̃ω(x,x∗) − 1,

[ p∑
i=1

u∗
i [∇2fi(x

∗)− (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)] +

m∑
j=1

v∗j∇2Hj(x
∗)
]
z
⟩
≥ 0. (3.5)

Since v∗ ≥ 0, x ∈ Q and (3.3) holds, we have

Σm
j=1v

∗
jHj(x) ≤ 0 = Σm

j=1v
∗
jHj(x

∗),
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and so

b̄(x, x∗)
(1
r̃

(
er̃[Hj(x)−Hj(x

∗)] − 1
))

≤ 0

since r̃ ̸= 0 and b̄(x, x∗) ≥ 0 for all x ∈ Q. In light of the B − (b̄, ρ, η, ω, θ, p̃, r̃, s̃)-quasiinvexity of Bj(., v
∗) at x∗,

it follows that

1

p̃

(⟨
∇Hj(x

∗), ep̃η(x,x
∗) − 1

⟩)
+

1

s̃

(1
2
⟨es̃ω(x,x∗) − 1,∇2Hj(x

∗)z⟩
)
+ ρ(x, x∗)∥θ(x, x∗)∥2 ≤ 0,

and hence,

1

p̃

(
Σm

j=1

⟨
∇Hj(x

∗), ep̃η(x,x
∗) − 1

⟩)
+

1

s̃

(1
2
⟨es̃ω(x,x∗) − 1,Σm

j=1∇2Hj(x
∗)z⟩

)
+ ρ(x, x∗)∥θ(x, x∗)∥2 ≤ 0. (3.6)

It follows from (3.4), (3.5) and (3.6) that

1

p̃

(
⟨Σp

i=1u
∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)], ep̃η(x,x
∗) − 1⟩

)
+

1

s̃

(1
2

⟨
es̃ω(x,x∗) − 1,

p∑
i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z]
⟩)

≥ ρ(x, x∗)∥θ(x, x∗)∥2. (3.7)

Since ρ(x, x∗) ≥ 0, applying B − (b, ρ, η, ω, θ, p̃, r̃, s̃)−pseudo-invexity at x∗ to (3.7), we have

1

r̃
b(x, x∗)

(
er̃[Ei(x,x

∗,u∗)−Ei(x
∗,x∗,u∗)] − 1

)
≥ 0. (3.8)

Since b(x, x∗) > 0, (3.8) implies

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)]

≥ Σp
i=1u

∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
)gi(x

∗)])

= 0.

Thus, we have

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)] ≥ 0. (3.9)

Since u∗
i > 0 for each i ∈ {1, · · ·, p}, we conclude using Lemma 2.1 that

φ(x) = max
1≤i≤p

fi(x)

gi(x)
= max

u∈U

∑p
i=1 u

∗
i fi(x)∑p

i=1 ui∗gi(x)
≥ max

u∈U

∑p
i=1 u

∗
i fi(x

∗)∑p
i=1 ui∗gi(x∗)

= φ(x∗).

Since x ∈ Q is arbitrary, x∗ is an optimal solution to (P).
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The proof for (ii) is similar to that of (i), but we include for the sake of the completeness. If (ii) holds, and if
x ∈ Q, then it follows from (3.1) and (3.2) that

1

p̃
⟨Σp

i=1u
∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)], ep̃η(x,x
∗) − 1⟩

+
1

p̃
⟨Σm

j=1v
∗
j ▽Hj(x

∗), ep̃η(x,x
∗) − 1⟩ = 0∀x ∈ Q, (3.10)

1

s̃

⟨
es̃ω(x,x∗) − 1,

[ p∑
i=1

u∗
i [∇2fi(x

∗)− (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)] +

m∑
j=1

v∗j∇2Hj(x
∗)
]
z
⟩
≥ 0. (3.11)

Since v∗ ≥ 0, x ∈ Q and (3.3) holds, we have

Σm
j=1v

∗
jHj(x) ≤ 0 = Σm

j=1v
∗
jHj(x

∗),

and so
b(x, x∗)

(1
r̃

(
er̃[Hj(x)−Hj(x

∗)] − 1
))

≤ 0

since r̃ ̸= 0 and b̄(x, x∗) ≥ 0 for all x ∈ Q. In light of the B − (b, ρ2, η, ω, θ, p̃, r̃)-quasiinvexity of Bj(., v
∗) at x∗,

it follows that

1

p̃

(⟨
∇Hj(x

∗), ep̃η(x,x
∗) − 1

⟩)
+

1

s̃

(1
2
⟨es̃ω(x,x∗) − 1,∇2Hj(x

∗)z⟩
)
+ ρ2(x, x

∗)∥θ(x, x∗)∥2 ≤ 0,

and hence,

1

p̃

(
Σm

j=1

⟨
∇Hj(x

∗), ep̃η(x,x
∗) − 1

⟩)
+

1

s̃

(1
2
⟨es̃ω(x,x∗) − 1,ΣM

j=1∇2Hj(x
∗)z⟩

)
+ ρ2(x, x

∗)∥θ(x, x∗)∥2 ≤ 0.

(3.12)
It follows from (3.10), (3.11) and (3.12) that

1

p̃

(
⟨Σp

i=1u
∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)], ep̃η(x,x
∗) − 1⟩

)
+

1

s̃

(1
2

⟨
es̃ω(x,x∗) − 1,

p∑
i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z]
⟩)

≥ ρ2(x, x
∗)∥θ(x, x∗)∥2. (3.13)

Since ρ1(x, x∗), ρ2(x, x
∗) ≥ 0 with ρ2(x, x

∗) ≥ ρ1(x, x
∗), applying B − (b, ρ1, η, ω, θ, p̃, r̃)−pseudo-invexity at x∗

to (3.13), we have
1

r̃
b(x, x∗)

(
er̃[Ei(x,x

∗,u∗)−Ei(x
∗,x∗,u∗)] − 1

)
≥ 0. (3.14)

Since b(x, x∗) > 0, (3.14) implies

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)]

≥ Σp
i=1u

∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
)gi(x

∗)])

= 0.
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Thus, we have

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)] ≥ 0. (3.15)

Since u∗
i > 0 for each i ∈ {1, · · ·, p}, we conclude using Lemma 2.1 that

φ(x) = max
1≤i≤p

fi(x)

gi(x)
= max

u∈U

∑p
i=1 u

∗
i fi(x)∑p

i=1 ui∗gi(x)
≥ max

u∈U

∑p
i=1 u

∗
i fi(x

∗)∑p
i=1 ui∗gi(x∗)

= φ(x∗).

Since x ∈ Q is arbitrary, x∗ is an optimal solution to (P).

Next, we start off the proof for (iii) as follows: if (iii) holds, and if x ∈ Q, then it follows from (3.1) and (3.2)
that

1

p̃
⟨Σp

i=1u
∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)], ep̃η(x,x
∗) − 1⟩

+
1

p̃
⟨Σm

j=1v
∗
j ▽Hj(x

∗), ep̃η(x,x
∗) − 1⟩ = 0∀x ∈ Q, (3.16)

and

1

s̃

(⟨
es̃ω(x,x∗) − 1,

[ p∑
i=1

u∗
i [∇2fi(x

∗)− (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)] +

m∑
j=1

v∗j∇2Hj(x
∗)
]
z
⟩)

≥ 0. (3.17)

Since v∗ ≥ 0, x ∈ Q and (3.3) holds, we have

Σm
j=1v

∗
jHj(x) ≤ 0 = Σm

j=1v
∗
jHj(x

∗),

which implies

b(x, x∗)
(1
r̃

(
er̃[Hj(x)−Hj(x

∗)] − 1
))

≤ 0.

Then, in light of the strict B − (b, ρ, η, θ, p̃, r̃, s̃)−quasi-invexity of Bj(., v
∗) at x∗, we have

1

p̃

(⟨
∇Hj(x

∗), ep̃η(x,x
∗) − 1

⟩)
+

1

s̃

(1
2
⟨es̃ω(x,x∗) − 1,∇2Hj(x

∗)z⟩
)
+ ρ(x, x∗)∥θ(x, x∗)∥2 < 0. (3.18)

It follows from (3.3), (3.16), (3.17) and (3.18) that

1

p̃

(
⟨Σp

i=1u
∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)], ep̃η(x,x
∗) − 1⟩

)
+

1

s̃

(1
2

⟨
es̃ω(x,x∗) − 1,

p∑
i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z]
⟩)

> ρ(x, x∗)∥θ(x, x∗)∥2. (3.19)

As a result, since ρ(x, x∗) ≥ 0, applying the prestrict (b, ρ, η, θ, p̃, r̃, s̃)−pseudo-invexity at x∗ to (3.19), we have(
Σp

i=1u
∗
i [fi(x)− (

fi(x
∗)

gi(g∗)
)gi(x)]− Σp

i=1u
∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
)gi(x

∗)]
)
≥ 0,

which implies
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Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)]

≥ Σp
i=1u

∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
)gi(x

∗)])

= 0.

Thus, we have

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)] ≥ 0. (3.20)

Since u∗
i > 0 for each i ∈ {1, · · ·, p}, we conclude using Lemma 2.1 that

φ(x) = max
1≤i≤p

fi(x)

gi(x)
= max

u∈U

∑p
i=1 u

∗
i fi(x)∑p

i=1 ui∗gi(x)
≥ max

u∈U

∑p
i=1 u

∗
i fi(x

∗)∑p
i=1 ui∗gi(x∗)

= φ(x∗).

Since x ∈ Q is arbitrary, x∗ is an optimal solution to (P).

The proof applying (iv) is similar to that of (iii), but still we include it as follows: if x ∈ Q, then it follows from
(3.1) and (3.2) that

1

p̃
⟨Σp

i=1u
∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)], ep̃η(x,x
∗) − 1⟩

+
1

p̃
⟨Σm

j=1v
∗
j ▽Hj(x

∗), ep̃η(x,x
∗) − 1⟩ = 0∀x ∈ Q, (3.21)

and

1

s̃

(⟨
es̃ω(x,x∗) − 1,

[ p∑
i=1

u∗
i [∇2fi(x

∗)− (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)] +

m∑
j=1

v∗j∇2Hj(x
∗)
]
z
⟩)

≥ 0. (3.22)

Since v∗ ≥ 0, x ∈ Q and (3.3) holds, we have

Σm
j=1v

∗
jHj(x) ≤ 0 = Σm

j=1v
∗
jHj(x

∗),

which implies

b̄(x, x∗)
(1
r̃

(
er̃[Hj(x)−Hj(x

∗)] − 1
))

≤ 0.

Then, in light of the equivalent form for the strict B − (b̄, ρ, η, ω, θ, p̃, r̃, s̃)−pseudo-invexity of Bj(., v
∗) at x∗, we

have

1

p̃

(⟨
∇Hj(x

∗), ep̃η(x,x
∗) − 1

⟩)
+

1

2s̃

(
⟨es̃ω(x,x∗) − 1,∇2Hj(x

∗)z⟩
)
+ ρ(x, x∗)∥θ(x, x∗)∥2 < 0.

It follows from (3.3), (3.21) and (3.22) that

1

p̃

(
⟨Σp

i=1u
∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)], ep̃η(x,x
∗) − 1⟩

)
+

1

s̃

(1
2

⟨
es̃ω(x,x∗) − 1,

p∑
i=1

u∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z]
⟩)

> ρ(x, x∗)∥θ(x, x∗)∥2. (3.23)
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As a result, since ρ(x, x∗) ≥ 0, applying the the equivalent form for the prestrict B − (b, ρ, η, ω, θ, p̃, r̃, s̃)−quasi-
invexity of Ei(.;x

∗, u∗) at x∗ to (3.23), we have

b(x, x∗)
(
Σp

i=1u
∗
i [fi(x)− (

fi(x
∗)

gi(g∗)
)gi(x)]− Σp

i=1u
∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
)gi(x

∗)]
)
≥ 0,

which (since b(x, x∗) > 0) implies that

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)]

≥ Σp
i=1u

∗
i [fi(x

∗)− (
fi(x

∗)

gi(x∗)
)gi(x

∗)])

= 0.

Thus, we have

Σp
i=1u

∗
i [fi(x)− (

fi(x
∗)

gi(x∗)
)gi(x)] ≥ 0. (3.24)

Since u∗
i > 0 for each i ∈ {1, · · ·, p}, we conclude using Lemma 2.1 that

φ(x) = max
1≤i≤p

fi(x)

gi(x)
= max

u∈U

∑p
i=1 u

∗
i fi(x)∑p

i=1 ui∗gi(x)
≥ max

u∈U

∑p
i=1 u

∗
i fi(x

∗)∑p
i=1 ui∗gi(x∗)

= φ(x∗).

Since x ∈ Q is arbitrary, x∗ is an optimal solution to (P).

Finally, we prove (v) as follows: since x ∈ Q, it follows that
Hj(x) ≤ Hj(x

∗), which implies
(
Hj(x)−Hj(x

∗)
)
≤ 0.

Then applying the B − (b̄, ρ3, η, ω, θ, p̃, r̃, s̃)−quasi-invexity of Hj at x∗ and v∗ ∈ Rm
+ , we have

1

p̃

(
⟨Σm

j=1v
∗
j ▽Hj(x

∗), ep̃η(x,x
∗) − 1⟩

)
+
1

s̃

(1
2

⟨
es̃ω(x,x∗) − 1,Σm

j=1v
∗
j∇2Hj(x

∗)z
⟩)

≤ −Σm
j=1v

∗
j ρ3∥θ(x, x∗)∥2.

Since u∗ ≥ 0 and fi(x
∗)

gi(x∗) ≥ 0, it follows from B − (b, ρ3, η, ω, θ, p̃, r̃, s̃)−invexity assumptions that
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b(x, x∗)
1

r̃

(
e
r̃Σp

i=1u
∗
i

(
[fi(x)−(

fi(x
∗)

gi(x
∗)

)gi(x)]−[fi(x
∗)−(

fi(x
∗)

gi(x
∗)

)gi(x
∗)]
)
− 1

)
= b(x, x∗)

1

r̃

(
e
r̃Σp

i=1u
∗
i {[fi(x)−fi(x

∗)]−(
fi(x

∗)

gi(x
∗)

)[gi(x)−gi(x
∗)]} − 1

)
≥ 1

p̃

(
Σp

i=1u
∗
i {⟨▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗), ep̃η(x,x
∗) − 1⟩}

)
+

1

2s̃

(
⟨es̃ω(x,x∗) − 1,Σp

i=1u
∗
i [∇2fi(x

∗)z − (
fi(x

∗)

gi(x∗)
)∇2gi(x

∗)z⟩]
)

+ Σp
i=1u

∗
i [ρ1 + ϕ(x∗)ρ2]∥θ(x, x∗)∥2

≥ −
[1
p̃
⟨Σm

j=1v
∗
j ▽Hj(x

∗), ep̃η(x,x
∗) − 1⟩+ 1

2s̃

⟨
es̃ω(x,x∗) − 1,Σm

j=1v
∗
j∇2Hj(x

∗)z
⟩]

+ Σp
i=1u

∗
i [ρ1 + ϕ(x∗)ρ2]∥θ(x, x∗)∥2

≥ (Σm
j=1v

∗
j ρ3 +Σp

i=1u
∗
i [ρ1 + ϕ(x∗)ρ2])∥θ(x, x∗)∥2

= (Σm
j=1v

∗
j ρ3 + ρ∗)∥θ(x, x∗)∥2 ≥ 0,

where ϕ(x∗) = fi(x
∗)

gi(x∗) and ρ∗ = Σp
i=1u

∗
i (ρ1 + ϕ(x∗)ρ2).

We Remark that when functions fi, gi and Hj have first-order derivatives, the established results seem to
be specialized to B − (p, r)−invexities frameworks introduced by Antczak [1, 2, 3] and later generalized and
investigated by Zalmai [41], Zalmai and Zhang [42] and others.

Theorem 3.2
( [41], Theorem 3.2) Let x∗ ∈ Q. Let fi, gi for i ∈ {1, · · ·, p} with ϕ(x∗) = fi(x

∗)
gi(x∗) ≥ 0, gi(x∗) > 0 and Hj for

j ∈ {1, · · ·,m} be differentiable at x∗ ∈ Q, and let there exist u∗ ∈ U = {u ∈ Rp : u > 0,Σp
i=1ui = 1} and

v∗ ∈ Rm
+ such that

Σp
i=1u

∗
i [▽fi(x

∗)− (
fi(x

∗)

gi(x∗)
)▽ gi(x

∗)] + Σm
j=1v

∗
j ▽Hj(x

∗) = 0 (3.25)

and

v∗jHj(x
∗) = 0, j ∈ {1, · · ·,m}. (3.26)

Suppose, in addition, that any one of the following assumptions holds:

(i) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} areB − (b, ρ, η, θ, p̃, r̃)-pseudoinvex with respect to η and b at x∗ ∈ X if there

exist a function η : X ×X → Rn, a function b : X ×X → [0,∞), and real numbers r̃ and p̃ such that for all
x ∈ X and z ∈ Rn with b(x, x∗) > 0, and Bj(. , v

∗) ∀ j ∈ {1, · · ·,m} are B − (b, ρ, η, θ, p̃, r̃)-quasiinvex
with respect to η and b at x∗ ∈ X if there exist a function η : X ×X → Rn, a function b : X ×X → [0,∞),
and real numbers r̃ and p̃ such that for all x ∈ X , z ∈ Rn, and ρ(x, x∗) ≥ 0.
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(ii) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} areB − (b, η, ρ1, θ, p̃, r̃)-pseudoinvex with respect to η and b at x∗ ∈ X if

there exist a function η : X ×X → Rn, a function b : X ×X → [0,∞), and real numbers r̃ and p̃ such that
for all x ∈ X and z ∈ Rn, and Bj(. , v

∗) ∀ j ∈ {1, · · ·,m} are B − (b, ρ2, η, θ, p̃, r̃)-quasiinvex with respect
to η, and b and at x∗ ∈ X if there exist a function η : X ×X → Rn, a function b : X ×X → (0,∞), and real
numbers r̃ and p̃ such that for all x ∈ X , z ∈ Rn, and ρ1(x, x

∗), ρ2(x, x
∗) ≥ 0 with ρ2(x, x

∗) ≥ ρ1(x, x
∗).

(iii) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are prestrictly B − (b, ρ, η, θ, p̃, r̃)−pseudo-invex at x∗, and Bj(. , v

∗)
∀ j ∈ {1, · · ·,m} are strictly B − (b, ρ, η, θ, p̃, r̃)−quasi-invex at x∗.

(iv) Ei(. ;x
∗, u∗) ∀ i ∈ {1, · · ·, p} are strictly B − (b, ρ, η, θ, p̃, r̃)−pseudo-invex at x∗, and Bj(. , v

∗) ∀ j ∈
{1, · · ·,m} are strictly B − (b, ρ, η, θ, p̃, r̃)−quasi-invex at x∗ with ρ(x, x∗) ≥ 0.

(v) For each i ∈ {1, · · ·, p}, fi is B − (b, ρ1, η, θ, p̃, r̃)−invex and −gi is B − (b, ρ2, η, θ)−invex at x∗. Hj(. , v
∗)

∀ j ∈ {1, · · ·,m} isB − (ρ3, η)−quasi-invex at x∗, and Σm
j=1v

∗
j ρ3 + ρ∗ ≥ 0 for ρ∗ = Σp

i=1u
∗
i (ρ1 + ϕ(x∗)ρ2)

and for ϕ(x∗) = fi(x
∗)

gi(x∗) .

Then x∗ is an efficient solution to (P).

4. Concluding Remarks

We observe that the obtained results in this communication can be applied to multiobjective fractional subset
programming problems with generalized invex functions, for instance, based on the work of Mishra et al. [16] and
Verma [29] to the case of the ϵ− efficiency and weak ϵ−efficiency conditions to minimax fractional programming
problems involving n-set functions. Furthermore, the generalized invexity frameworks developed to this context
can also be applied to duality models for a class of multiobjective control problems as well as to a new class of
multitime multiobjective variational problems of minimizing a vector of functionals of curvilinear integral type
models.
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