Mathematical Programming

Theory and Algorithms

M. MINOUX

Professor, Ecole Nationale Superieure de Techniques Avancées and Université Paris IX-Dauphine France

Translated by

STEVEN VAJDA

University of Sussex, Falmer, Brighton, Sussex, UK

A Wiley-Interscience Publication

JOHN WILEY AND SONS

Chichester · New York · Brisbane · Toronto · Singapore

Contents

Fore	word		. xv
Prefe	асе		. xvii
Ackn	owledgen	nents and Remerciements	. xxv
Note	ation		xxv
	² undamen	ital Concepts	
1.1		matical Programming. Definitions	1
1.2		its of Topology	3
	1.2.1	Convergence of sequences in \mathbb{R}^n or in \mathbb{R}	4
	1.2.2	Open sets. Closed sets	4
	1.2.3	Compact sets. Theorem of Weierstrass	6
	1.2.4	Remark concerning the notation Min and Max	8
1.3	Elemen	ts of Convex Analysis	8
	1.3.1	Convex sets	8
	1.3.2	Convex functions	10
	1.3.3	Convex programmes	11
	1.3.4	Extended convex functions	12
	1.3.5	Subgradient. Subdifferential	14
	1.3.6	Subgradients and directional derivatives	15
1.4	Study o	of Convergence. Global and Asymptotic Convergence	17
	1.4.1	The concept of an algorithm in mathematical	
		programming	17
	1.4.2	A general model of algorithms: point-to-set maps	17
	1.4.3	The concept of global convergence	18
	1.4.4	Closed point-to-set maps	18
	1.4.5	The global convergence theorem	20
	1.4.6	Asymptotic convergence. Rate of convergence	22
	Referen	ices	25
	! P		27
2 I 2.1		ogramming	27
2.1		ions and Fundamental Results	
	2.1.1	Standard form of a linear programme	27
	2.1.2	Solutions of a linear programme and convex polyhedra	28

	2.1.3	Bases, feasible bases, basic solutions	2
	2.1.4	Algebraic characterization of vertices.	3
	2.1.5	Theorem 2.2 (Optimality at a vertex)	3.
	2.1.6	Characterization of optimal bases and basic solutions.	34
2.2	Solutio	on of Linear Programmes	36
	2.2.1	The primal 'Simplex' method (revised form)	3
	2.2.2	Theorem 2.4 (finite convergence)	3
	2.2.3	Problems arising from degeneracy	3
	2.2.4	Algorithmic complexity and practical efficiency of the	, ,
		Simplex method	3
	2.2.5	Elementary matrices and the product form of the inverse	3
	2.2.6	The initial basis	39
	2.2.7	Canonical form and the Simplex tableau	40
	2.2.8	An example	4
2.3	The Co	oncept of Duality	4
-	2.3.1	The dual of a linear programme in standard form	4
	2.3.2	Definition of the dual in the general case	4
	2.3.3	The duality theorem	4
	2.3.4	Dual variables and marginal costs	50
2.4		nd Primal-dual Algorithms	50
	2.4.1	The dual method	50
	2.4.2	The primal-dual algorithm	5
		nces	5.
		nsional Optimization	
3.1		ds Using Derivatives	5
	3.1.1	The Newton-Raphson method	5
	3.1.2	The secant method	5
	3.1.3	The dichotomy method with derivatives	60
3.2		ds Without Derivatives	6
	3.2.1	Quadratic Interpolation	6
	3.2.2	Unimodal functions	6.
	3.2.3	The dichotomy method without derivatives	6:
	3.2.4	The Fibonacci search method	6
	3.2.5	The golden section search method	6
	3.2.6	'Economical' one-dimensional search	6
3.3		mensional Optimization Algorithms and Closed Point-to-	
	set Ma		7.
	3.3.1	Exact one-dimensional optimization	7.
	3.3.2	Approximate one-dimensional optimization	7:
	3.3.3	One-dimensional constrained optimization	70
	Referen	1ces	7
		T 10 d d	
		, Unconstrained Optimization	
4.1	introd	uction. Optimality Conditions	80

			vii
	4.1.1	Necessary conditions for local optimality	81
	4.1.2	Sufficient conditions for local optimality	82
	4.1.3	The case of convex functions: necessary and sufficient	0 2
		condition for global optimality	83
	4.1.4	Case of arbitrary functions. Difficulty of the general	05
		problem	83
4.2	Numeri	cal Methods for the Optimization of Differentiable	03
		ns	84
	4.2.1	Gradient methods. Gradient with predetermined steps	84
	4.2.2	Steepest descent method	85
	4.2.3	'Accelerated' steepest descent methods	87
	4.2.4	'Second order' methods	89
	4.2.5	Conjugate direction methods: the general principle	89
	4.2.6	The conjugate gradient method for quadratic functions	91
	4.2.7	The case of arbitrary functions	93
	4.2.8	Newton's method	94
	4.2.9	Quasi-Newton methods. The general principle	96
	4.2.10	Algorithm of Davidon-Fletcher-Powell (DFP)	99
	4.2.11	The algorithm of Broyden, Fletcher, Goldfarb, Shanno	
		(BFGS)	102
	4.2.12	Comparison of the various methods. Results concerning	
		the rate of convergence	104
4.3	Optimiz	zation of not Everywhere Differentiable (Non-smooth)	
	Convex	Functions	107
	4.3.1	Example: duality in discrete programming	107
	4.3.2	Finding a subgradient. Example	108
	4.3.3	Use of generalized linear programming	109
	4.3.4	A class of subgradient algorithms	109
	4.3.5	Convergence of method 1 (method with fixed step sizes)	113
	4.3.6	Convergence of method 2 (convergent series method)	117
	4.3.7	Convergence of method 3 (relaxation method)	120
	4.3.8	The space dilatation methods of Shor	123
	4.3.9	Projection onto the subspace generated by the success-	
		ively encountered gradients	126
	4.3.10	Space dilatation in the direction of the difference of two	
		successive subgradients	127
	4.3.11	Space dilatation in the direction of a subgradient at the	
		current point	128
	4.3.12	Cut-off method with space dilatation	129
	4.3.13	Recent developments in optimization of not everywhere	
		differentiable functions	133
4.4	•	zation Methods Without Derivatives	134
	4.4.1	Methods of cyclic relaxation	134
	4.4.2	The algorithm of Powell (1964)	135
	Referen	ces	138

5		Optimization With Constraints. I Direct (or Primal)	142
5.1		ry Optimality Conditions	142
J.1	5.1.1	Admissible directions and constraint qualification	142
	5.1.2	The necessary conditions of Kuhn and Tucker	146
	5.1.3	Geometric interpretation of the Kuhn and Tucker	140
	3.1.5	conditions	148
	5.1.4	Extension to problems with equality as well as inequality	140
	3.1.4	constraints. Conditions of Lagrange	148
5.2	Sufficier	at Optimality Conditions: 'Saddle-points' and Lagrange	140
J. <u>L</u>		ns	150
	5.2.1	Theorem 5.2 (Characteristic property of saddle-points)	151
	5.2.2	Theorem 5.3 (Sufficiency of the saddle-point condition)	151
	5.2.3	Example (a non-convex optimization problem)	152
	5.2.4	A necessary and sufficient condition for the existence of a	132
	3.2.4	saddle-point: perturbation functions	152
	5.2.5	Existence of a saddle-point in the convex case—	132
	3.2.3	Lagrange multipliers as subgradients of the perturbation	
		function	158
	5.2.6	Connection with the Kuhn and Tucker conditions in the	156
	3.2.0	convex differentiable case	159
	5.2.7	Sufficient conditions for local optimality in the non-	139
	3.2.1	convex case	160
	5.2.8	Lagrange multipliers and post-optimal analysis	160
5.3		ined Optimization: Primal Methods	161
3.3	5.3.1	Method of changing the variables	161
	5.3.2	Methods of feasible directions	162
	5.3.2		167
		The gradient projection method	
	5.3.4 5.3.5	The reduced gradient method	172
	5.3.5 5.3.6	The generalized reduced gradient method (GRG)	174
	5.3.0	Linearization methods	177
		5.3.6.1 The method of Frank and Wolfe (1956)	179
		5.3.6.2 The cutting plane method of Kelley (1960)	180
		5.3.6.3 The column generation method of Dantzig	100
		(1959)	182
	5.3.7	Analysis of the convergence. Evaluation of the algorithms	184
5.4		ined Optimization by Solving the Kuhn and Tucker	100
	-	ns	186
	5.4.1	Newton's method.	186
	5.4.2	Extension of Newton's method: method of Wilson. The	
		case of inequality constraints	188
	5.4.3	Connection with the feasible directions methods	189
	5.4.4	Connection with the dual methods	190
	Reference	ces	191

6 6.1		Constrained Optimization. II Dual Methods tion: Penalty Function Methods	. 194 194
0.1	6.1.1	General principle of penalty function methods	194
	6.1.2	Method of exterior penalities	195
	6.1.3	Interior penalty methods	198
	6.1.4	Approximation to the Kuhn and Tucker multipliers at	190
	0.1.4	the optimum	200
	6.1.5	Combination of the penalty methods with other methods	201
6.2		Lagrangean Duality	201
0.2	6.2.1	Property 6.1 (Weak duality theorem)	202
	6.2.2	Property 6.2 (Concavity of the dual function)	203
	6.2.3		203
	6.2.4	Property 6.3 (Duality theorem)	204
	6.2.5	Example 1	206
	6.2.6	Example 2 (Duality in linear programming)	
	6.2.7	Example 3	207
		Property 6.4 (Subgradient)	209
	6.2.8	Differentiability of the dual function	211
	6.2.9	Property 6.5	212
	6.2.10	Duality gaps and non-differentiability of the dual	
		function at the optimum	213
	6.2.11	Obtaining approximate primal solutions by solving the	
	G1 : 1	dual problem	213
6.3		Lagrangean Methods	214
	6.3.1	Methods of Uzawa (1958) and of Arrow-Hurwicz (1958)	214
	6.3.2	The method of Dantzig (1959)	215
	6.3.3	Use of Lagrangean methods in the non-convex case	217
6.4		zed Lagrangeans and Saddle-points in Non-convex	
		ming	218
	6.4.1	Augmented Lagrangeans: introduction	218
	6.4.2	Lagrangean representations of a constrained optimiz-	
		ation problem	220
	6.4.3	Perturbational representations of a problem	222
	6.4.4	Example 1: The 'ordinary' Lagrangean	227
	6.4.5	Example 2: The 'augmented Lagrangean' of Rockafellar	227
	6.4.6	Example 3: Multiplier methods	228
	6.4.7	Saddle-points in non-convex programming	229
6.5		ative study of algorithms. Convergence	231
	6.5.1	Geometrical interpretation and comparison of the	
		various methods	231
	6.5.2	Convergence analysis	237
		6.5.2.1 Penalty methods	237
		6.5.2.2 Methods using the 'ordinary' Lagrangean	238
		6.5.2.3 Methods using an augmented Lagrangean	240
	Reference	es	241

7 I	nteger Pr	ogramming	. 245
7.1		action	245
7.2		earch Methods (Branch and Bound)	248
	7.2.1	Reduction to a problem in binary (0-1) variables	249
	7.2.2	Enumeration?	250
	7.2.3	Definition of the tree: the concept of branching	250
	7.2.4	Bounding	252
	7.2.5	Practical implementation	252
	7.2.6	Example	254
	7.2.7	The Tradeoff between cost and quality of the evalua-	258
7.3	Lower	Bounds and Approximate Solutions by Lagrangean Relax-	
		nd Solution of a Dual Problem	258
	7.3.1	The traveling salesman problem. The directed and non-	
		directed cases	259
	7.3.2	Location problems. Clustering problems	264
	7.3.3	The Steiner Tree problem	269
	7.3.4	Set packing and set partitioning problems	272
	7.3.5	Shortest path problems with additional constraint(s) and	
		related combinatorial problems	275
	7.3.6	The general problem of the intersection of two families of combinatorial objects and its solution by Lagrangean	
		relaxation	280
	7.3.7	The generalized assignment problem	283
	7.3.8	Other examples of application of Lagrangean relaxation	
	7.0.0	in combinatorial optimization	285
7.4	Cutting	Plane Methods	285
	7.4.1	Principle of cutting plane methods	285
	7.4.2	The Gomory cuts	287
	7.4.3	The dual algorithm of Gomory. Principles and variations	289
	7.4.4	The method of decreasing congruences	291
	7.4.5	Example	293
	7.4.6	Recent developments in the theory of cutting planes	296
7.5		Programmes and Shortest Paths. Representation by Finite	
	Groups		
	7.5.1	Equivalence with a shortest path problem	306
	7.5.2	Homomorphic images of a problem	308
	7.5.3	An equivalent formulation of the relaxed problem $P(G)$	311
	7.5.4	An important special case: the Gomory group	312
	7.5.5	Equivalent images of the same problem	314
	7.5.6	Lagrangean relaxation and definition of a dual problem	317
	7.5.7	Algorithm 1. Solution of the asymptotic problem	318
	7.5.8	Algorithm 2 (Bell, 1977)	319
	7.5.9	Algorithm 3 (Bell, 1976)	320
	7.5.10	Algorithm 4 (Bell and Shapiro, 1977)	321
	7.5.10	Algorithm 4 (Den and Shapiro, 19//1 · · · · · · · · · · · · · · · · · ·	34

References

323

8		of Large-scale Programming Problems. Generalized ogramming and Decomposition Techniques	330
8.1		dized Linear Programming (Column Generation)	330
0.1	8.1.1	Statement of the problem	330
	8.1.2	Example 1 (Dantzig-Wolfe decomposition)	331
	8.1.3	Example 2 (minimum cost flows in a graph)	332
	8.1.4	Solution by generalized linear programming: a column	332
	0.1.4	generation method	333
	8.1.5	Implementation and storage space	334
	8.1.6	Application to the optimization of convex or concave	554
	0.1.0	functions by the cutting plane method	335
	8.1.7	Other applications of generalized linear programming.	337
8.2		gean Relaxation and Price-decomposition	338
0.2	8.2.1	Comments on the structure of large linear programmes	338
	8.2.2	Statement of the problem	339
	8.2.3	Lagrangean relaxation of coupling constraints. Com-	337
	0.2.5	putation of the dual function by decomposition	340
	8.2.4	Solution of the dual problem by a subgradient algorithm	342
	8.2.5	Formulation of the dual problem as a linear programme	342
	8.2.6	The Dantzig-Wolfe decomposition method (1961)	344
	8.2.7	Economic interpretation	346
8.3		position by Right-hand side Allocation (Decomposition by	340
6.5		ces)	346
	8.3.1	Principle of the method	346
	8.3.2	An equivalent formulation of the problem	347
	8.3.3	Finding a subgradient of the master objective function	349
	8.3.4	Solution of the master programme	349
	8.3.5	Extension of the method	350
8.4		position by Partitioning of the Variables (Benders')	351
0.4	8.4.1	Statement of the problem	351
	8.4.2	Use of the necessary and sufficient conditions of Farkas	331
	0.4.2	and Minkowski	352
	8.4.3	Equivalence to a large linear programme in variables y	353
	8.4.4	Solution by generalized linear programming: Benders'	333
	0.4.4		355
	8.4.5	method	357
	8.4.6	Convergence	331
	8.4.0	Connection with the Dantzig-Wolfe decomposition method	358
	0.47		
0 5	8.4.7	Other applications of the Benders method	358
8.5		eles of the Application of Decomposition Methods: Large	240
		Network Optimization Problems	360
	8.5.1	Feasibility problems for multi-commodity flows	360
	8.5.2	Problems of feasible multi-commodity flows at mini-	266
	0.53	mum cost	366
	8.5.3	Optimal synthesis of networks with non-simultaneous	200
		multi-commodity flow requirements	368

	Referen	nces	372
	•	Programming	
9.1		uction and Examples	375
	9.1.1	An example: solution of a 'knapsack' problem by	
		dynamic programming	376
	9.1.2	To find an optimal solution x^*	377
	9.1.3	Analysis of the complexity and of the limitations of	
		dynamic programming	378
	9.1.4	Dynamic programming and shortest (longest) path pro-	
		blems in graphs	380
9.2		neoretical Foundations of Dynamic Programming	381
	9.2.1	The optimality theorem. Unconstrained case	381
	9.2.2	Extension of the optimality theorem to the constrained	
		case	383
	9.2.3	The concept of state in dynamic programming	383
	9.2.4	The functional equation of dynamic programming	386
	9.2.5	The principle of optimality	388
	9.2.6	Examples of decomposable functions	390
	9.2.7	Dynamic programming with a finite number of states	
		and the search for a shortest (or longest) path in a graph	391
	9.2.8	Second dynamic programming algorithm. 'Forward'	
		procedure	392
9.3		ques for Reducing Computations in Dynamic Programming	393
	9.3.1	The method of Lagrange multipliers	393
	9.3.2	Combination of dynamic programming with Branch and	
		Bound methods	395
	9.3.3	Admissible search method. Algorithm A*	399
	9.3.4	State space relaxation methods	401
9.4		les of Dynamic Programming Applications	403
	9.4.1	Optimization of dynamic systems	403
	9.4.2	Shortest path in a graph	405
	9.4.3	Problem of minimum length Hamiltonian circuits	406
	9.4.4	Problems of matching, of partitioning, and of covering a	405
	0.45	hypergraph of intervals	407
	9.4.5	Dynamic programming and stochastic systems: an	
		application to the filtering problem for Markov	440
	D . C	processes	410
	Referen	ices	413
		ation in Infinite Dimension and Applications	
10.1		action and Examples	416
	10.1.1	Example 1: Calculus of variations	416
	10.1.2	Example 2: Optimal control of systems governed by	
		differential equations	418

			X111
	10.1.3	Systems governed by elliptic partial differential equations	421
10.2	Banach	n Spaces and Hilbert Spaces	424
	10.2.1	Normed vector spaces	425
	10.2.2	Banach spaces	425
	10.2.3	Dual of a normed vector space	427
	10.2.4	The bidual. Reflexive Banach spaces	428
	10.2.5	Weak convergence	429
	10.2.6	Theorem of weak compactness for reflexive Banach	
		spaces	431
	10.2.7	Scalar product. Hilbert spaces	431
10.3		ization of Functionals. Existence of a Minimum. Necessary	
		ality Conditions	434
	10.3.1	Existence of a solution. Theorem of Weierstrass	434
	10.3.2	Semi-continuity and extension of the Weierstrass	425
	1022	theorem	435
	10.3.3	Derivation in the sense of Gateaux. Gradient of a	427
	1001	functional	437
	10.3.4	Convex G-differentiable functionals. Convex coercive	420
	1025	functionals	439
	10.3.5	Necessary optimality conditions	442
	10.3.6	Application to the calculus of variations. Equation of	443
	10.3.7	Euler-Lagrange	443
	10.5.7	the minimum	446
	10.3.8	Application to the projection onto a closed convex set in	110
	10.5.0	a Hilbert space	449
10.4	Ontimi	ization Methods in Infinite Dimension	450
1077	10.4.1	Unconstrained optimization: steepest descent method.	450
	10.4.2	Application of steepest descent methods to the solution of	
	1012	optimal control problems	454
	10.4.3	Constrained optimization: fixed step gradient with	
	10.1.5	projection	454
	10.4.4	Constrained optimization: penalty methods	456
	10.4.5	Constrained optimization: duality methods	457
	10.4.6	Approximation of problems in infinite dimension by	107
	10.1.0	problems in finite dimension. Method of Galerkin	459
	Referen	nces	463
Appe	ndix 1	Separation of Convex Sets. Theorem of Farkas and	4.5
	1	Minkowski. Theorem of Gordan	465
Appe	ndix 2	Existence of Saddle-points in Convex Mathematical	4.00
		Programming.	469
Appe	ndix 3	Solution of Integer Linear Systems	471
Indox			192