
Mathematical Programs with Complementarity Constraints in the

Context of Inverse Optimal Control for Locomotion

Sebastian Albrechta and Michael Ulbricha∗

a Chair of Mathematical Optimization, Department of Mathematics, Technische Universität

München, Boltzmannstr. 3, 85748 Garching, Germany

In this paper an inverse optimal control problem in the form of a mathematical program with
complementarity constraints (MPCC) is considered and numerical experiences are discussed.
The inverse optimal control problem arises in the context of human navigation where the
body is modeled as a dynamical system and it is assumed that the motions are optimally
controlled with respect to an unknown cost function. The goal of the inversion is now to find
a cost function within a given parametrized family of candidate cost functions such that the
corresponding optimal motion minimizes the deviation from given data. MPCCs are known
to be a challenging class of optimization problems typically violating all standard constraint
qualifications. We show that under certain assumptions the resulting MPCC fulfills constraint
qualifications for MPCCs being the basis for theory on MPCC optimality conditions and
consequently for numerical solution techniques. Finally, numerical results are presented for the
discretized inverse optimal control problem of locomotion using different solution techniques
based on relaxation and lifting.

Keywords: inverse optimal control, mathematical program with complementarity
constraints (MPCC), constraint qualification (CQ), constant positive-linear dependence
(CPLD), locomotion

AMS Subject Classification: 49K15, 49M05, 90C33, 90C46

1. Introduction

Properties of human motions are analyzed in various disciplines ranging from biology to
computer sciences. Naturally, the perspectives on this motions differs considerably; where
one field might be interested in properties that can be obtained by analyzing recorded
data, e.g., [22, 43], another might focus on postulating behavioral laws and comparing
the output of the constructed system with the data, e.g., [5, 23, 34, 37]. In this paper we
consider an inverse optimal control problem arising in the context of human locomotion,
consequently, the goal is rather to find a suitable model than determine a biologically or
psychologically plausible principle [20].

The locomotion problem is to move from a given start to a given end position without
considering individual steps as a human would do them. This macroscopic perspective
considers a plant with continuous dynamics that can be described by ordinary differential
equations. If combined with a suitable cost function one obtains a standard optimal
control problem discussed in detail in literature, e.g., [13, 44, 54, 57]. The direct approach
to optimal control is chosen here and thus a combination of a discretization technique
and a nonlinear optimization method is used. Two main approaches for discretizing the
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optimal control problem are multiple shooting, e.g., [7, 14, 48], and collocation, e.g., [7,
61]. Because the resulting problem is a standard nonlinear optimization problem a large
number of optimization methods is available including sequential quadratic programming
(SQP) methods, e.g., [28, 31, 49], and interior point methods (IPM), e.g., [30, 49, 58, 63].

The goal of the considered inverse optimal control task is to determine a cost func-
tion within a given parametrized family of cost functions such that the corresponding
optimal control result has minimal distance to given data. In consequence, this problem
is a special bilevel optimal control problem where the lower level is the optimal control
problem and the upper level is the inversion problem. Some problems considered in game
theory, e.g., [9, 16], are closely related to bilevel optimal control problems and the deriva-
tion of necessary optimality conditions, e.g., [65, 66], follows the line of standard bilevel
problems. Bilevel optimal control problems where the lower level is the optimal control
problem of a plane or a traveling-crane in a high-rack are considered in [21, 42]. The
problem formulation of inverse optimal control for human arm motions is stated in [12].
In [47] a numerical method combining individual solvers for the two levels is presented
for the locomotion problem. This approach is also used for the inversion of human arm
motions in [10]. The approach of [1, 2, 35] is to use the first-order optimality condi-
tions (KKT conditions) of the optimal control problem to transform the inverse optimal
control problem into a standard nonlinear optimization problem. The inversion results
of human data presented therein showed that this is a viable approach to tackle this
challenging problem class. If the KKT conditions are used for the reformulation of the
problem, the inequality constraints of the optimal control problem result in complemen-
tarity constraints. The implications following from these complementarity constraints on
the numerical solution of the reformulated problem is the central aspect of this paper.

Mathematical programs with complementarity constraints (MPCCs) are a challeng-
ing problem class from both the theoretical and the numerical perspective because the
complementarity constraints typically result in the violation of all standard constraint
qualifications (CQs), e.g., [26, 50, 52], and consequently, the standard KKT theory can-
not be applied to obtain optimality conditions. Therefore, the special MPCC structure
has been used in a large number of publications to formulate MPCC-CQs, i.e., constraint
qualifications that allow to derive suitable optimality conditions for MPCCs, e.g., [24–
26, 50, 52, 67]. Naturally, these theoretical works are closely linked to the development
of numerical methods for solving MPCCs, e.g., [6, 17, 27, 53].

The focus of this paper is on solving the MPCC resulting from inverse optimal control
problems by applying different relaxation and lifting approaches. A relaxation scheme
generates a sequence of problems where the complementarity condition is replaced by
an approximation and the goal is that in the limit the solutions of the relaxed prob-
lems converge to a solution of the original MPCC. Two such relaxation approaches are
considered here: the global relaxation approach of Scholtes [53] and the local relaxation
approach of Steffensen and Ulbrich [55]. Instead of relaxing the kink of the complemen-
tarity condition lifting approaches introduce further variables, i.e., lifting the problem
to higher dimensions. We will have a closer look on the lifting of Stein [56], where the
kink is a projection of a smooth curve, and the lifting of Hatz et al. [35, 36], where a
positivity condition on a complementarity pair is relaxed by an additional variable that
is then penalized in the cost function.

The organization of the paper is as follows: First, the general structure of the dis-
cretized inverse optimal control problem in MPCC-form is introduced in section 2. This
is followed by section 3 on the human locomotion problem: The dynamics are introduced,
possible cost functions are discussed and distance measures are addressed. The next sec-
tion 4 states some concepts of MPCC-CQs, which are the prerequisites of the numerical
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optimization methods for MPCCs discussed in section 5, and shows that under certain
assumptions such MPCC-CQs hold true for the considered discretized inverse optimal
control problems. Numerical results of these methods in the context of inverse optimal
control of locomotion are presented in the final section 6.

Most of the notation used in this paper is standard. By default a vector v is a column
vector, i.e., v ∈ IRn×1, with elements vi, i = 1, . . . , n. The Euclidean norm of the vector
is denoted by ||v||2 and an inequality relating a vector to a scalar has to be understood
elementwise, e.g., v > 0⇔ vi > 0 ∀i = 1, . . . , n. The notation (v(k)) is used for a sequence
of vectors v(k), k ∈ IN. The gradient of a function f : IRn → IR is denoted by ∇f(x) ∈ IRn

for x ∈ IRn×1; for the Jacobian of a vector-valued function g : IRn → IRm the symbol
Dg(x) ∈ IRn×m with x ∈ IRn is used and the notation ∇g(x) := Dg(x)T is in accordance
with the definition of the gradient above if m = 1. For the Hessian of f the symbol
∇2f(x) is used and in case of a function f̃ : IRn × IRm → IR the notation ∇xxf̃(x, y)

stands for the Hessian of f̃ with respect to the x-variable only. Let I ⊆ {1, . . . , n} ⊂ IN
be an index set with cardinality |I| = k (the complement is Ic := {1, . . . , n} \ I with
|Ic| = n − k), then the subvector corresponding to I of a vector v ∈ IRn is denoted
by vI ∈ IRk. Given a matrix M ∈ IRn×m and a second index set J ⊆ {1, . . . ,m}, the
submatrix corresponding to row indices in I and column indices in J is stated in the form
MI,J , e.g., DgI,J(x) denotes such a submatrix of the Jacobian, and if all column indices
are considered, i.e., J = {1, . . . ,m}, the shortened notation MI is used. However, for
more complicated index sets we use the notation M [I, J ] or M [I] instead. The symbol I
is used for the squared identity matrix.

2. Inverse Optimal Control Problem Formulation

An optimal control problem describes the task of finding an optimal control u and a
corresponding state x which minimize a given cost function φ subject to boundary con-
ditions b and the dynamics of the system ϕ. If the cost function is not assumed to be fixed
but dependent on a parameter y, the corresponding (local) solutions x∗ and u∗ depend on
this parameter, too. For the formulation of the problem suitable function spaces X and
U have to be chosen for x and u, respectively. For example, consider X = AC([0, 1], IRn),
the set of absolutely continuous functions, and for U the set of measurable functions
u : [0, 1]→ IRm (cf. [15]).

Assuming that both x and u are functions of the independent time variable t ∈ [0, 1],
the corresponding optimal control problem with parameter reads:

min φ(x, u | y)

subject to x′(t) = ϕ(x(t), u(t)), t ∈ [0, 1] a.e., (1)

g(x(t), u(t)) ≤ 0, t ∈ [0, 1] a.e.,

b(x(0), x(1)) = 0,

where the parameter y ∈ IRm is given. Note that in this formulation the parameter
y enters only the cost function, but generalizations to parameters in the constraints
introduce no significant changes in the problem structure. If the cost function φ has an
integral cost term, one additionally has to demand that a feasible x and u guarantee the
integrability of the integral cost term.

The existence of a solution for this type of optimal control problem can be proven by
using the existence theorem of Filippov (cf. Theorem 9.3.i in [15]) if certain assumptions
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on the problem describing functions and related sets hold including, e.g., continuity of ϕ
and closedness of B :=

{
(x1, x2) ∈ IRn×n ∣∣ b(x1, x2) = 0

}
.

The direct approach of optimal control is used for the optimal control problems in
this paper, i.e., the continuous optimal control problem is first discretized and then op-
timized. The two main discretization approaches are multiple shooting and collocation.
In the first case, a coarse partition ∆ := {ti | i = 1, . . . , ν} of the total time interval
[0, 1] is considered with 0 = t1 < t2 < . . . < tν = 1 and the goal is to match the end
state of one interval with the start state of the next where each end state is obtained by
using a numerical integrator for the given ODE and start value of the interval. In the
second case a slightly finer partition of [0, 1] is used and the state is approximated on
each interval by polynomials whose time derivatives equals ϕ for finitely many, specified
collocation points and fulfill continuity conditions at the interval boundaries. Following
the line of [61] suitable collocation strategies are, for example, obtained if a piecewise
linear state approximation is combined with a piecewise constant control approximation
or if a piecewise cubic state approximation is teamed with a piecewise linear control ap-
proximation. Convergence results of the optimality conditions for the discretized optimal
control problem towards the optimality conditions for the continuous optimal control
problem are discussed in [32, 33, 45, 61]. Assuming smooth state and control functions
and control constraints only, pointwise convergence is proven for the above mentioned
collocation strategies in [61].

Setting n := (n + m)(ν − 1), the state and control variables at the boundaries of the
intervals are stored in the combined vector x ∈ IRn. Consequently, if φ is a suitable
approximation of φ and if h combines the equality constraints resulting from the dis-
cretization of the ODE with the boundary conditions b, the discretized optimal control
problem with parameter reads:

min φ(x | y)

subject to h(x) = 0, g(x) ≤ 0, (2)

with the given parameter y ∈ IRm.
Let x∗ be a local solution of the discretized optimal control problem for a given parame-

ter y where a constraint qualification (CQ) is fulfilled (cf. Chapter 12 of [49]), then there
exist Lagrange multipliers λ∗ ∈ IRν and µ∗ ∈ IRω such that the Karush-Kuhn-Tucker
(KKT) conditions hold:

∇φ(x∗ | y) +∇g(x∗)λ∗ +∇h(x∗)µ∗ = 0,

h(x∗) = 0,

0 ≤ −g(x∗) ⊥ λ∗ ≥ 0.

The symbol ⊥ is used to denote the orthogonality condition which here can, e.g., also
be written as g(x∗)Tλ∗ = 0.

If one is now interested in finding a suitable parameter y ∈ IRm such that a vector
x ∈ IRn fulfilling the corresponding KKT conditions minimizes a distance measure Φ us-
ing given data Λ, the following problem of discretized inverse optimal control is obtained:
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min Φ(x, y | Λ)

subject to ∇xφ(x, y) +∇g(x)λ+∇h(x)µ = 0, (3)

h(x) = 0, H(y) = 0, G(y) ≤ 0,

0 ≤ −g(x) ⊥ λ ≥ 0,

where the functions H and G define the constraints on y. Note that the Lagrange mul-
tipliers λ and µ are optimization variables in addition to x and y.

If x is not assumed to be only a KKT point but a solution of the discretized optimal
control problem (2), a bilevel optimization problem is obtained. Note that the above
discretized inverse optimal control problem is not equivalent to such a bilevel optimiza-
tion problem, because the optimal control problem is not convex and consequently, the
KKT conditions are only necessary given a CQ but not sufficient. Bilevel problem are
discussed in literature [4, 8, 18, 46] and under certain assumptions the existence of a
global optimistic solution can be proven for the given setting [1, 2, 18].

The rest of this paper addresses the numerical solution of problem ((3)) and thus we
introduce the defining function for our application example, e.g., the ODE ϕ and the
cost function φ, in the following sections and then discuss solution techniques.

3. Human Locomotion

Human locomotion considers motions of the human body with the objective of changing
the position in a terrestrial environment. We consider here the macroscopic problem of
moving from a start to a goal position without paying attention to the complex dynamical
problem of taking individual steps. Consequently, a simple model of the locomotion
dynamics is discussed for a planar environment: the unicycle model, where the person is
abstracted to a mass point with an orientation.

The idea of determining the optimal cost function used in human locomotion via inverse
optimal control is introduced in [47]. There, obstacle-free paths are considered and the
family of cost functions is given as linear combinations of five basic cost functions. The
bilevel problem is solved by nesting the individual solvers for the data fitting problem
and the optimal control problem. It is reported that the characteristics of the human
motion data are met and the results are used to control a humanoid robot.

The inverse optimal control problem developed in the following differs, for example,
in the choice of cost functions Φ and φ; especially, in [47] the parameter y appear only
linearly in cost function φ, whereas here elements of y enter φ nonlinearly. However, the
main difference is the inclusion of inequality constraints in the formulation of the optimal
control problem (1) which results in the complementarity conditions of problem (3).

3.1 Locomotion Dynamics

Simplifying the human navigation problem to a two-dimensional problem, the con-
figuration of the human can be described by his/her Cartesian coordinates PP (t) =
(PPx(t),PPy(t)) ∈ IR2 and its orientation βP (t) ∈ [0, 2π] at a time instance t; in the
following, the direction given by the angle βP (t) is referred to as the forward direction.

The considered model assumes that the rigid body can only be (linearly) accelerated
in the forward direction and consequently, the following ordinary differential equations
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Figure 1. Schematic illustration of the unicycle model.

state the dynamics related to a translation of the rigid body:

d

dt
PP (t) = (vP (t) cos(βP (t)), vP (t) sin(βP (t)))T and

d2

dt2
vP (t) = uv(t),

in forward direction. The rotational dynamics are modeled by the simple differential

equation d3

dt3
βP (t) = uβ(t),

where uβ being the jerk of the orientation angle βP is the second control variable.
Note that these simple integrator chains can be extended to a model using the mass and
the inertia of the moving person. In a similar manner motions in sidewards direction
can be included in this model. However, the focus on more general properties of human
locomotion and therefore more complex models are set aside.

In consequence, the following system of first-order ordinary differential equations de-

scribes the model dynamics: d
dt
x(t) = A(βP (t))x(t)+Bu(t), where the matrices are given

by

A(βP (t)) :=



0 0 0 cos(βP (t)) 0 0 0
0 0 0 sin(βP (t)) 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, B :=



0 0
0 0
0 0
0 0
0 0
1 0
0 1


,

and the state x(t) and the control u(t) are defined by

x(t) := (PPx(t),PPy(t), βP (t), vP (t), βP
′(t), vP

′(t), βP
′′(t))T

and u(t) := (uv(t), uβ(t))T , accordingly.

3.2 Locomotion Cost Functions

The general idea of the inverse optimal control problems considered here is to find a cost
function φ such that a corresponding KKT point minimizes the distance measure Φ.
For the mathematical formulation of this problem a vector y is introduced that enters
the cost function φ of the optimal control problem and certain constraints G(y) ≤ 0
and H(y) = 0 have to be specified to guarantee a well-posed problem. Some candidates
φi for cost functions describing human behavior can be found in the literature, e.g.,
[23, 59], others can easily be formulated that address certain aspects of locomotion
[3, 47]. However, since no single cost function is known to reproduce human locomotion
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behavior, a combination of such basic cost functions φi is considered here. One possibility
is to use convex combinations:

φ(x, y) =

k∑
i=1

wiφi(x, πi), H(y) = 1−
k∑
i=1

wi, G(y) =

 −w
π − πu
πl − π

 ,

where y = (wT , πT )T with the weights wT := (w1, . . . , wk) ∈ IRk and the parameters
πT := (π1, . . . , πk) that enter the cost functions nonlinearly. Note that the vectors πu
and πl specify upper and lower bounds for each parameter πi. However, for the later
analysis the formulation relative to a given cost function φ0 (i.e., for the function φ0 no
weight w0 is introduced) is preferred with πT := (π0, π1, . . . , πk), cf. [47]:

φ(x, y) = φ0(x, π0) +

k∑
i=1

wiφi(x, πi), G(y) =

 −w
π − πu
πl − π

 . (4)

The starting point for defining a suitable set of basic cost functions φi is the minimiza-
tion of the time integral of selected state or control variables.

fx,j(x) :=

∫ tf

t0

xj(t)
2 dt and fu,j(u) :=

∫ tf

t0

uj(t)
2 dt.

These integral cost functions correspond to the continuous formulation of problem
(1) and lead to candidates for φ; thus a discretization technique is needed to obtain
the relevant cost functions φi. Two standard approaches are the transformation into a
Meyer problem by introducing an additional ODE corresponding to the integrand or
the application of an individual numerical quadrature method. Note that these general
cost functions are denoted, e.g., by fu,j and later in the numerics section the specific
choices for the φi are given, for example, φ1 then corresponds to the sum of both fu,j(u).
Considering not the value of a state variable itself, but the deviation from a reference
value rj ∈ IR leads to the definition of further cost functions. A realization of such a cost
function could be motivated by the tendency to walk at a comfortable walking speed:

fref,j(x, rj) :=

∫ tf

t0

(xj(t)− rj)2 dt.

Note that the reference value rj corresponds to a parameter πi being optimized. Another
considered cost function is the deviation from a straight line connecting start and goal
positions.

fline(x) :=

∫ tf

t0

||PP (t)− Pline(PP (t))||2 dt,

where Pline is the projection on the straight line connecting the start and goal position.
Furthermore, the cost function fgoal introduced by [47] integrates the squared difference
between the current orientation βP (t) and the direction towards the goal position PG =
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(PGx,PGy) ∈ IR2:

fgoal(x) :=

∫ tf

t0

(
βP (t)− arctan

(
PGy − PPy(t)
PGx − PPx(t)

))2

dt.

A cost function popular for describing human arm motions is minimizing the jerk of the
hand position [23]; if adapted to the locomotion problem the following cost function is
obtained:

fjerk(x) :=

∫ tf

t0

(
d3PP (t)

dt3

)2

dt.

Since the navigation tasks are considered to have a free final time tf , the minimization
of this final time gives rise to another cost function: ftime(x) := tf .

Note that the definition of problem (1) assumed a fixed time interval [0, 1], therefore
the problem is transformed by introducing the variable tf as an additional state variable
with a trivial ODE and scaling of the time derivatives.

A selection of the introduced cost function is used in the numerics section to define
the basic cost functions leading via convex combinations to the parametrized family of
considered cost functions in the inverse optimal control setup.

3.3 Boundary Conditions and Inequality Constraints

Two elements, the boundary conditions and possible inequality constraints, have still to
be discussed for the complete statement of the optimal control problem. We consider
here given index sets Is and Ie and specified vectors xs and xe containing the state
information for both start and end configuration to define the boundary conditions:

b(x(0), x(1)) :=
(

(xIs(0)− xs)T , (xIe(1)− xe)T
)T

.

Finally, inequality constraints are on a state variable, the forward velocity, are added:
0.2 ≤ vP (t) ≤ 0.55 [m/s].

These constraints result via the KKT conditions in the MPCC structure being the focus
of this paper. Note that in the discretized optimal control problem (3) these inequalities
have to be fulfilled only a the time instances ti.

3.4 Distance Measure

For the specification of the discretized inverse optimal control problem (3) a suitable
distance measure Φ has to be chosen, i.e., it has to be determined how two locomotion
paths are compared in the data matching problem. Ideally one would like to match both
the Cartesian path and the velocity profile, thus the choice for our numerical examples
is to compare the positions of the computation PP (ti) with the position PD(ti) of the
given data. The time instances ti, i = 1, . . . , ν, have to be specified in the interval [t0, tf ],
however the motion time tf is not fixed, but an optimization variable, too. In consequence,
an interpolation approach is needed if not both values PP (ti) and PD(ti) are given at ti:
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Φ(x, y | Λ) :=

ν∑
i=1

(PP (ti)− PD(ti))
2.

Note that an adaption of the distance measure might be needed if locomotion data of
real experiments is given for the problem (3), because the velocity profiles recorded in
the experiments exhibit considerable oscillations corresponding to the individual steps of
the participants. Since individual steps are not modeled in the dynamics, a combination
of two distance measures decoupling positional and temporal information might be more
appropriate (cf. [1, 3] for more information).

4. Mathematical Program with Complementarity Constraints

The discretized inverse optimal control problem (3) has to be handled with care due to
its complementarity constraint

0 ≤ −g(x) ⊥ λ ≥ 0,

i.e., problem (3) is a mathematical program with complementarity constraints (MPCC).
MPCCs are a challenging problem class because typically all standard constraint qualifi-
cations (CQs) are violated and therefore, optimality conditions cannot be obtained from
the standard KKT theory, cf., e.g., [26, 50, 52]. In consequence, several works on special
CQs using the MPCC problem structure explicitly have been published and suitable
numerical optimization techniques have been proposed, e.g., [24–26, 50, 52, 67] (see also
section 1).

In order to discuss the numerical optimization approaches used to solve the MPCC (3)
and to reduce notational complexity, we state a general formulation of a mathematical
program with complementarity constraints (MPCC):

min
z
φ̃(z)

subject to h̃(z) = 0, (5)

g̃(z) ≤ 0,

0 ≤ G̃(p) ⊥ H̃(q) ≥ 0,

All functions are assumed to be at least once continuously differentiable and the opti-
mization variable z ∈ IRñ is the concatenation of a vector γ ∈ IRñ−2s̃ and the vectors
p, q ∈ IRs̃ relevant for the complementarity conditions.

Let z∗ be a feasible point for MPCC (5), then the following index sets are used to
specify the different types of active inequality constraints (the notation follows [38]):
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Ig̃(z
∗) := {i ∈ {1, . . . , m̃} | g̃i(z∗) = 0},

I
h̃
(z∗) := {1, . . . , r̃},

I00(z∗) := {i ∈ {1, . . . , s̃} | G̃i(p) = 0, H̃i(q) = 0},
I+0(z∗) := {i ∈ {1, . . . , s̃} | G̃i(p) > 0, H̃i(q) = 0},
I0+(z∗) := {i ∈ {1, . . . , s̃} | G̃i(p) = 0, H̃i(q) > 0},
IG̃(z∗) := I00(z∗) ∪ I0+(z∗),

IH̃(z∗) := I00(z∗) ∪ I+0(z∗).

Without loss of generality we assume here that the index sets I0+, I00 and I+0 have the
following property:

i0+ < i00 < i+0 ∀i0+ ∈ I0+(z∗), i00 ∈ I00(z∗), i+0 ∈ I+0(z∗).

Three well-known stationarity concepts for MPCCs are weak stationarity, C-
stationarity and M-stationarity: Let z∗ be feasible for the MPCC (5), then z∗ is

• weakly stationary if Lagrange-multipliers µ ∈ IRr̃, λ ∈ IRm̃, ψG̃, ψH̃ ∈ IRs̃ exist such
that

∇φ̃(z∗) +∇g̃(z∗)λ+∇h̃(z∗)µ−∇G̃(p)ψG̃ −∇H̃(q)ψH̃ = 0,

λ ≥ 0,

λT g̃(z∗) = 0,

ψG̃,i = 0, i ∈ I0+(z∗),

ψH̃,i = 0, i ∈ I+0(z∗).

• C-stationary if it is weakly stationary and if the products ψG̃,iψH̃,i ≥ 0 for all indices
i ∈ I00.

• M-stationary if it is weakly stationary and if either the product ψG̃,iψH̃,i = 0 or both

ψG̃,i > 0 and ψH̃,i > 0 for all indices i ∈ I00.

Analogue to the case of standard nonlinear problems, MPCC-CQs are needed to guaran-
tee that a local minimizer z∗ of the MPCC (5) is weakly, C- or M-stationary. Several CQs
known from a standard nonlinear optimization setup have been transferred to MPCCs by
considering the following tightened nonlinear program (TNLP(z∗)). Given z∗ is feasible
for the MPCC (5), the TNLP(z∗) is obtained by transforming the inequalties correspond-
ing to the index sets of active inequalities in z∗ into equality constraints:

min
z
φ̃(z)

subject to h̃(z) = 0, (6)

g̃(z) ≤ 0,

G̃i(p) ≥ 0, H̃i(q) = 0, ∀i ∈ I+0(z∗),

G̃i(p) = 0, H̃i(q) ≥ 0, ∀i ∈ I0+(z∗),

G̃i(p) = 0, H̃i(q) = 0, ∀i ∈ I00(z∗).
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This TNLP(z∗) can now be used to transfer several well-known CQs for standard non-
linear optimization problems, e.g., LICQ, MFCQ and CRCQ, to the MPCC setting: The
corresponding MPCC-CQ is fulfilled in a feasible point z∗ of the MPCC if the respective
CQ is fulfilled for the tightened problem TNLP(z∗). Since the MPCC-CPLD is not that
common, but will be used later on, the definition of positive-linear dependence (cf. Def-
inition 2.1 in [51]) and the respective MPCC-CQ are stated explicitly (cf. Definition 3.2
in [38]).

Definition 4.1 (Positive-Linearly Dependent)
Let two index sets Iα and Iβ be given. Two sets of vectors Sα = {vi}i∈Iα ⊂ IRn and
Sβ = {wi}i∈Iβ ⊂ IRn are positive-linearly dependent if scalars {αi}i∈Iα and {βi}i∈Iβ exist
with αi ≥ 0 for all i ∈ Iα, not all of them being zero, such that∑

i∈Iα

αivi +
∑
i∈Iβ

βiwi = 0.

Otherwise, the sets are positive-linearly independent.

Note that only the αi are restricted to nonnegative scalars, not the βi. For further
usage we restate the definition of positive-linearly dependence for rows of two matrices
Mα ∈ IRnα×n and Mβ ∈ IRnβ×n: Let Iα ⊆ {1, . . . , nα} and Iβ ⊆ {1, . . . , nβ} be two sets
of row indices of the corresponding matrices. The two matrices Mα and Mβ are positive-
linearly dependent with respect to Iα and Iβ if vectors α ∈ IRnα and β ∈ IRnβ fulfilling
||αIα ||2 + ||βIβ ||2 6= 0, α ≥ 0, exist such that

αTIα Mα[Iα] + βTIβ Mβ[Iβ] = 0.

The constant positive-linear dependence (CPLD) condition is originally defined for gen-
eral nonlinear optimization problems (cf. Definition 2.6 in [51]), thus the structure of
problem (2) is considered here:

A feasible point x∗ is said to satisfy the CPLD if for all index sets Iα ⊆ A(x∗) :=
{i | gi(x∗) = 0} ⊆ {1, . . . , ν} and Iβ ⊆ {1, . . . , ω} such that Mα = Dg(x∗) and Mβ =
Dh(x∗) are positive-linearly dependent with respect to Iα and Iβ, there is a neighborhood
N(x∗) of x∗ such that for any x ∈ N(x∗) the rows of the matrix(

DgIα(x)
DhIβ(x)

)
are linearly dependent. If this definition is applied to TNLP(z∗), the following definition
of MPCC-CPLD is obtained (cf. Definition 2.3 in [38]):

Definition 4.2 (MPCC-CPLD)
Let z∗ be feasible for the MPCC (5) and define

Mα(z) := Dg̃(z) and Mβ(z) :=

 Dh̃(z)

DG̃(z)

DH̃(z)

 .
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Additionally, define the index set

IT (z∗) = I
h̃
(z∗) ∪ {i+ r̃ | i ∈ IG̃(z∗)} ∪ {i+ r̃ + s̃ | i ∈ IH̃(z∗)}

corresponding to the equality constraints of TNLP(z∗) (6). The condition of constant
positive-linear dependence for MPCCs (MPCC-CPLD) is fulfilled if for any subsets Iα ⊆
Ig̃(z

∗) and Iβ ⊆ IT (z∗) such that the matrices Mα(z∗) and Mβ(z∗) are positive-linearly
dependent with respect to Iα and Iβ, there exists a neighborhood N(z∗) of z∗ such that
the rows of the matrix (

Mα[Iα](z)
Mβ[Iβ](z)

)
are linearly dependent for all z ∈ N(z∗).

The condition MPCC-CPLD is an MPCC-CQ for M-stationarity because MPCC-
CPLD implies MPCC-ACQ (cf. Lemma 3.3 in [38] and Corollary 3.4 in [24]) and the
MPCC-ACQ is a sufficient condition for M-stationarity of local optima according to
Theorem 3.9 in [25].

Lemma 4.3 Every local minimizer z∗ of the MPCC (5) satisfying MPCC-CPLD is
M-stationary.

In order to use standard numerical optimization methods to obtain a solution of an
MPCC, one can either solve a sequence of relaxed problems, see sections 5.2 and 5.1, or
transform the problem by lifting approaches, cf., sections 5.4 and 5.3. Certain emphasis
lies here on the local relaxation approach of Steffensen and Ulbrich [60] being locally
convergent to C-stationary points given the MPCC-CPLD condition (cf. Theorem 3.4 in
[38]).

4.1 Locomotion MPCC Structure

The next goal is to show that under certain conditions on the discretized optimal control
problem and on the inversion problem the locomotion problem (cf. section 3) fulfills the
MPCC-CPLD condition and in some cases even the MPCC-LICQ.

The needed assumptions include a second order condition for the discretized optimal
control problem (2).

It has to be assumed that all functions describing the nonlinear optimization problem
are twice continuously differentiable. For the formulation of these assumptions we state
the following cones of relevant directions

T+(g, h, x, λ) :=
{
d ∈ IRñ | ∇gi(x)Td = 0, if i ∈ A(x) and λi > 0,

∇gi(x)Td ≤ 0, if i ∈ A(x) and λi = 0,

∇h(x)Td = 0 } ,

T(g, h, x, λ) :=
{
d ∈ IRñ | ∇gi(x)Td = 0, if i ∈ A(x) and λi > 0,

∇h(x)Td = 0 } .

Denoting the Lagrangian of problem (2) by L(x, λ∗, µ∗), the following second-order
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condition is considered (cf., e.g., Section 2 in [40]): The second-order sufficient conditions
(SOSC) hold at the point (x∗, λ∗, µ∗) if the following condition is fulfilled:

dT∇xxL (x∗, λ∗, µ∗) d > 0 ∀d ∈ T+(g, h, x∗, λ∗)\ {0} .

We recall that the SOSC and the KKT conditions together imply that x∗ is a strict local
minimum. If instead of T+(g, h, x∗, λ∗) the cone T(g, h, x, λ) is considered, the following
stronger second-order sufficient condition (SSOSC) is obtained:

dT∇xxL (x∗, λ∗, µ∗) d > 0 ∀d ∈ T(g, h, x∗, λ∗)\ {0} .

The next step is to show MPCC-CPLD for the discretized inverse optimal control
problem (3). We will use that the constraints of the inversion problem G and H fulfill
LICQ by construction and that the following lemma holds for problem (2), cf., e.g.,
Proposition 4 in [40]:

Lemma 4.4 Let x∗ be a local minimum of the discretized optimal control problem (2)
for the given parameters y fulfilling LICQ and SSOSC with the corresponding Lagrange
multipliers λ∗ and µ∗. Using the abbreviations zT := (xT , µT , λT , yT ) and accordingly z∗,
the following symmetric matrix is introduced:

M(z | I) :=


∇xxL(z) ∇h(x) ∇gI0+(z∗)(x) ∇gI(x)
Dh(x) 0 0 0

DgI0+(z∗)(x) 0 0 0
DgI(x) 0 0 0

 (7)

with I ⊆ I00(z∗). Then the matrix M(z∗ | I) has full rank for all I ⊆ I00(z∗).

In the definition of M(z | I) the index sets of Dg (and ∇g) do not depend on z but
are fixed to the index set related to z∗, which gives rise to the following corollary:

Corollary 4.5 Let the problem-describing functions be twice continuously differen-
tiable and let the prerequisites of Lemma 4.4 be fulfilled, then there exists a neighborhood
N(z∗) of z∗ such that M(z | I) has full rank for all z ∈ N(z∗).

If one is interested in the rank of a submatrix of M(z∗ | I), the following corollary is
useful:

Corollary 4.6 For each index set I the rows of M I(z
∗ | I) are linearly independent

and there exists an index set J such that M I,J(z∗ | I) is quadratic and has full rank.

For the proofs of the following theorems we state two lemmas from linear algebra
regarding linear (in)dependence:

Lemma 4.7 Let a matrix M ∈ IRn×m be given and two index sets I ⊂ {1, . . . , n} =: Î
and J ⊂ {1, . . . ,m}. Additionally, assume that the submatrix MIc,J = 0 and that the
rows of the submatrix MIc,Jc are linearly independent. Then the following holds:

(a) The rows of the matrix M are linearly independent if the rows of the submatrix MI,J

are linearly independent.
(b) The rows of the matrix M are linearly dependent if the following properties hold true:

(i) the rows of the submatrix MI,J are linearly dependent,
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(ii) the rank of the matrix MIc,Jc is equal to the column rank of MÎ,Jc.

With these lemmas the following theorem holds true for the case of strict complemen-
tarity. The prerequisite that the constraints H and G fulfill the LICQ at y is fulfilled if
the problem structure (4) is given:

Theorem 4.8
Let x∗ be a local minimum of the discretized optimal control problem (2) for the given
parameters y∗ fulfilling LICQ and SOSC with the corresponding Lagrange multipliers µ∗

and λ∗ and let strict complementarity hold. If the constraints H and G assure the LICQ
at y∗, then MPCC-LICQ is satisfied for the discretized inverse optimal control problem
(3).

Proof:
The tightened nonlinear program (6) corresponding to the MPCC (3) of the discretized
inverse optimal control problem can be formulated using the following functions with
zT = (xT , µT , λT , yT ) and z∗T = (x∗T , µ∗T , λ∗T , y∗T ):

φ̃(z) := Φ(x, y | Λ), g̃(z) := G(y), H̃(z) := λ, G̃(z) := −g(x) and

h̃(z) :=

 ∇xφ(x, y) +∇g(x)λ+∇h(x)µ
h(x)
H(y)

 .

The Jacobians of the functions describing the tightened problem have the following
structure:

Dg̃(z) = (0, 0, 0, DG(y)) ,

Dh̃(z) =

 ∇xxL(x, µ, λ) ∇h(x) ∇g(x) ∇xyφ(x, y)
Dh(x) 0 0 0

0 0 0 DH(y)

 ,

DG̃IG̃(z∗)(z) =

(
−DgI0+(z∗)(x) 0 0 0
−DgI00(z∗)(x) 0 0 0

)
,

DH̃IH̃(z∗)(z) =

(
0 0 II00(z∗) 0
0 0 II+0(z∗) 0

)
.

Here I is the ν × ν identity matrix.
The index set I00 is empty due to strict complementarity. Thus, the condition MPCC-

LICQ is fulfilled if the rows of the following matrix are linearly independent in z∗:

M =


∇xxL(z∗) ∇h(x∗) ∇gI0+(z∗)(x

∗) ∇gI+0(z∗)(x
∗) ∇xyφ(z∗)

Dh(x∗) 0 0 0 0
0 0 0 0 DH(y∗)

DgI0+(z∗)(x
∗) 0 0 0 0

0 0 0 I 0
0 0 0 0 DGA(y∗)

 ,

where A denotes the index set of active inequalities Gi in y∗. Next step is to cancel the



S. Albrecht and M. Ulbrich: MPCC in inverse optimal control for locomotion 15

block rows 3, 5 and 6 together with the last two block columns, thus the index sets

I = {1, . . . , n+ ω, n+ ω + q + 1, . . . , n+ ω + q + |I0+|},
J = {1, . . . , n+ ω + |I0+|},

are introduced. The resulting submatrix MI,J is identical to the matrix M(z∗ | I) with
I = ∅, and therefore Lemma 4.4 guarantees that the rows of MI,J are linearly independent
due to LICQ and SOSC for problem (2). The rows of the submatrix

MIc,Jc =

 0 DH(y∗)
I 0
0 DGA(y∗)


are linearly independent due to the LICQ fulfilled by H and G at y (cf. Lemma 4.7(a)).
Since MIc,J = 0, Lemma 4.7(a) shows that the MPCC-LICQ holds true. �

In case of degenerate components, i.e., I00 6= ∅, MPCC-LICQ can be violated even if
SSOSC is assumed. This problem could be avoided by introducing lifting variables (see
Theorem 5.5). Considering the weaker MPCC-CPLD condition instead of the MPCC-
LICQ, a corresponding theorem can be shown for the degenerate case if certain conditions
are fulfilled:

Definition 4.9 (Condition ISM)

Define the matrices M̃(z) and Ṽ (z) ∈ IRn+ω+|I0+(z∗)|+|I00(z∗)|×|I00(z∗)| by

M̃(z) :=


∇xxL(x, µ, λ) ∇h(x) ∇g(x) ∇xyφ(x, y)

Dh(x) 0 0 0
DgI0+(z∗)(x) 0 0 0
DgI00(z∗)(x) 0 0 0

 , Ṽ (z) :=


∇gI00(z∗)(x)

0
0
0

 .

Condition ISM is fulfilled in z∗ if for arbitrary index sets I and J of M̃ and j ∈ I00(z∗)

the following holds true: If ṼI,j(z
∗) 6∈ sp(M̃I,J(z∗)), then there exists a neighborhood

N(z∗) of z∗ such that

ṼI,j(z) 6∈ sp(M̃I,J(z)) ∀z ∈ N(z∗).

Theorem 4.10
Let x∗ be a local minimum of the discretized optimal control problem (2) for the given
parameters y∗ fulfilling LICQ and SSOSC with the corresponding Lagrange multipliers
λ∗ and µ∗. Let the structure of (4) be given and the condition ISM hold true in z∗. Then
MPCC-CPLD is satisfied in z∗ for the discretized inverse optimal control problem (3).

Proof:
In the first part of the proof we show that for this problem the positive linear dependence
of rows of the matricesMα(z) andMβ(z) (cf. Definition 4.2) implies the linear dependence

of corresponding rows of a smaller matrix M̂(z). Furthermore, we prove that the linear

dependence of these rows of M̂(z) implies linear dependence of the rows of the matrices
Mα(z) and Mβ(z). In the second part of the proof the conditions LICQ, SSOSC and

ISM are used to show that linear dependence of rows of M̂(z∗) implies the existence of
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a neighborhood N(z∗) of z∗ such that the rows of M̂(z) are linearly dependend for all
z ∈ N(z∗). The combination of the two parts then shows that MPCC-CPLD is satisfied
in z∗ for the discretized inverse optimal control problem (3).

The functions used to formulate the MPCC (3) of the discretized inverse optimal
control problem according to the structure of the tightened nonlinear program (6) have
been introduced at the beginning of the proof of Theorem 4.8.

In consequence, the matrices Mα(z) and Mβ(z) of Definition 4.2 introducing the
MPCC-CPLD have the following structure:
Mα(z) := Dg̃(z) and Mβ(z) :=
∇xxL(x, µ, λ) ∇h(x) ∇gI0+(z∗)(x) ∇gI00(z∗)(x) ∇gI+0(z∗)(x) ∇xyφ(x, y)

Dh(x) 0 0 0 0 0
DgI0+(z∗)(x) 0 0 0 0 0
DgI00(z∗)(x) 0 0 0 0 0

0 0 0 I 0 0
0 0 0 0 I 0

 .

Note that the sign of the lines corresponding to Îg+ and Îg0 has been changed to obtain
a more standard structure without changing the properties related to the MPCC-CPLD.

Assuming that index sets Iα ⊆ Ig̃(z∗) and Iβ ⊆ IT (z∗) exist such that the rows of the
matrices Mα(z∗) and Mβ(z∗) are positive-linearly dependent with respect to Iα and Iβ
with vectors α ≥ 0 and β, it has to be shown that there exists a neighborhood N(z∗) of
z∗ such that these rows are linearly dependent for all z ∈ N(z∗) (cf. Definition 4.2).

Two cases can be distinguished: In the first case, the rows of Mα[Iα](z∗) are linearly
dependent. Then the structure of the Jacobian (cf. (4))

DG(y) =

 −I 0
0 I
0 −I

 (8)

implies that, for all z, the rows of Mα[Iα](z) are linearly dependent.
In the second case, which is considered in the remaining proof, the rows of Mα[Iα](z∗)

are linearly independent. Introduce the following subsets IL, Ih, Ig+, Ig0, Iλ0 and Iλ+ for
referencing the matrix blocks of Mβ[Iβ](z) (the arguments are dropped for brevity):

Mβ[Iβ](z) =


∇xxLIL ∇hIL ∇gIL,I0+(z∗) ∇gIL,I00(z∗) ∇gIL,I+0(z∗) ∇xyφIL
DhIh 0 0 0 0 0
DgIg+ 0 0 0 0 0
DgIg0 0 0 0 0 0

0 0 0 IIλ0 0 0
0 0 0 0 IIλ+ 0

 .

In the following we will show that positive-linearly dependence of the matrices

Mα[Iα](z∗) and Mβ[Iβ](z∗) implies linear dependence of the rows of a matrix M̂(z∗)

defined in (9) and that linear dependence of the rows of M̂(z) results in linear depen-
dence of the corresponding rows of Mα[Iα](z) and Mβ[Iβ](z). The last part of the proof

will then show: if the rows of M̂(z∗) are linearly dependent, then a neighborhood N(z∗)

exists such that M̂(z) has linear dependent rows for all z ∈ N(z∗).
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Define the following submatrix of Mβ[Iβ](z) by:

M̂(z) :=


∇xxLIL ∇hIL ∇gIL,I0+(z∗) ∇gIL,Icλ0 ∇gIL,Icλ+ ∇xyφIL,Îy
DhIh 0 0 0 0 0
DgIg+ 0 0 0 0 0
DgIg0 0 0 0 0 0

 , (9)

where Îy denotes the maximal set of column indices with DG[Iα, Îy](z
∗) = 0 (if Iα = ∅,

the index set Îy contains all column indices of ∇xyφ(x, y)). The matrix M̂(z) is obtained
from Mβ[Iβ](z) by removing all columns where the last two block rows have a nonzero
entry, all columns where Mα[Iα](z) has a nonzero entry, and the last two block rows.

Then all prerequistists of Lemma 4.7 are fulfilled, and consequently the following two

implications hold true: on the one hand, the rows of M̂(z∗) are linearly dependent if the
matrices Mα[Iα](z∗) and Mβ[Iβ](z∗) are positive-linearly dependent (cf. Lemma 4.7(a)).

And on the other hand, see Lemma 4.7(b), if the rows of M̂(z) are linearly dependent,
the rows of Mα[Iα](z) and Mβ[Iβ](z) are linearly dependent, too.

To focus on the relevant structure of M̂(z), we introduce the following additional index
sets:

Î1 = (Ig0(z∗) ∩ Icλ0(z∗)) ∪ Ig+,
Î2 = Ig0(z∗) \ Icλ0(z∗),

Î3 = (Ig0(z∗) ∩ Icλ0(z∗)) ∪ I0+(z∗),

Î4 = (Icλ0(z∗) \ Ig0(z∗)) ∪ Icλ+(z∗),

where the following inclusion holds true: Î1 ⊆ Î3. Consequently, the matrix M̂(z) can
be written using the following block structure:

M̂(z) =


∇xxLIL(x, µ, λ) ∇hIL(x) ∇gIL,Î3(x) ∇gIL,Î4(x) ∇xyφIL,Îy(x, y)

DhIh(x) 0 0 0 0
DgÎ1(x) 0 0 0 0

DgÎ2(x) 0 0 0 0

 .

Due to Corollary 4.5 and Corollary 4.6 not only the rows of the top left block are
linearly independent in a neighborhood of z∗, but also the rows of the matrix

∇xxLIL(x, µ, λ) ∇hIL(x) ∇gIL,Î3(x) ∇gIL,Î2(x)

DhIh(x) 0 0 0
DgÎ1(x) 0 0 0

DgÎ2(x) 0 0 0


and there exists subsets J1 ⊆ {1, . . . , n}, J2 ⊆ {1, . . . , ω}, J3 ⊆ Î3 and J4 ⊆ Î2 of the
column indices such that a quadratic matrix with full rank is obtained in a neighborhood
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of z∗:
∇xxLIL,J1

(x, µ, λ) ∇hIL,J2
(x) ∇gIL,J3

(x) ∇gIL,J4
(x)

DhIh,J1
(x) 0 0 0

DgÎ1,J1
(x) 0 0 0

DgÎ2,J1
(x) 0 0 0

 =:

(
A(z) B(z)
C(z) 0

)
.

(10)

Since there exists an inverse of matrix (10), it follows that the rows of M̂(z) are linearly

independent if and only if for all i ∈ {1, . . . , |J4|}:
((
B(z)T

)
i
, 0T
)T ∈ sp

(
M̂(z)

)
.

By the first part of the proof positive linear dependence of arbitrarily chosen rows of the
matrices Mα(z∗) and Mβ(z∗) implies linear dependence of the rows of the corresponding

M̂(z∗). Since M̂(z∗) is a submatrix of M̃(z∗) (cf. Definition 4.9), define the index sets

I and J of M̃(z∗) such that M̃I,J(z∗) = M̂(z∗). Consequently, the linear dependence

of the rows of M̂(z∗) yields that there exists an index j ∈ I00(z∗) such that ṼI,j(z
∗) 6∈

sp(M̃I,J(z∗)). The condition ISM shows then that there exists a neighborhood N(z∗) of

z∗ such that ṼI,j(z) 6∈ sp(M̃I,J(z)) ∀z ∈ N(z∗). Therefore, the rows of M̂(z) are linearly
dependent for all z in this neighborhood. In consequence, the chosen rows of Mα(z) and
Mβ(z) are linearly dependent for z ∈ N(z∗) which shows that the MPCC-CPLD hold
true. �

Remark 4.11 The proof shows that the MPCC-MFCQ may not hold for problem (3)
if degenerate components exist, because one condition of MPCC-MFCQ is that the rows
of Mβ(z∗) are linearly independent: If the number of degenerate components is greater

than the number of considered cost functions, i.e., |I00(z∗)| > k + 1, the matrix M̂(z∗)
has more rows than columns, thus the rows are linearly dependent.

Remark 4.12 Condition ISM holds true in z∗ if there exists a neighborhood N(z∗) of

z∗ such that every submatrix M̃I,J(z) has constant rank for all z ∈ N(z∗). However,
this constant rank assumption is so strong that MPCC-CPLD can be proven without
demanding LICQ and SSOSC: By the first part of the proof the positive linear dependence

results in linear dependence of the rows of M̂(z∗). The assumption of constant rank

then shows that there exists a neighborhood N(z∗) where the rows of M̂(z) are linearly
dependent for all z ∈ N(z∗). In consequence the MPCC-CPLD holds true.

5. Numerical Optimization Methods for MPCCs

A large number of numerical optimization methods for MPCC has been studied, see
the introduction for some references. A popular approach is the relaxation technique of
Scholtes [53] where the kink resulting from the complementarity conditions is globally
regularized. In addition, the local relaxation approach of Steffensen and Ulbrich [55] con-
siders only a region around the origin for locally smoothing the kink. Both relaxation
methods consequently solve a series of relaxed problems where the update strategies
for the relaxation parameters has to be attuned to the theoretical convergence consid-
erations. On the other hand, the lifting approaches of Stein [56] and Hatz et al. [36]
add additional variables to the constraints and possibly the cost function to avoid the
standard formulation of the complementarity conditions.
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5.1 Relaxation Approach of Scholtes

The regularization scheme of Scholtes [53] relaxes the complementarity condition to

G̃i(p) ≥ 0, H̃i(q) ≥ 0, G̃i(p)H̃i(q) ≤ δi by introducing a parameter δi > 0. The
feasible region of this regularization approach is displayed in figure 2.

δi

δi

G̃i(p)

H̃i(q)

G̃i(p)

H̃i(q)

δi

δi

Figure 2. Illustration of the relaxation approach of [53] for one scalar complementarity condition, and of the

relaxation approach of [60] for one scalar complementarity condition using the smoothing function βp.

It is proven in [53] (Theorem 3.1) that under assumptions including the MPCC-LICQ
the sequence of stationary points for the relaxed problems converge to a C-stationary
point with unique multipliers; B-stationarity or M-stationarity follows if additional as-
sumptions are fulfilled. Furthermore, it is shown that a piecewise smooth mapping relat-
ing the relaxation parameter δi to the corresponding stationary point exists if suitable
assumptions are met. Note that in [39] (Theorem 3.1) it is shown that MPCC-MFCQ
suffices to proof that each limit point is C-stationary.

Remark 5.1 Keeping in mind that in numerical computations for each relaxation step
only an approximate stationary point is computed (up to the given tolerance ε), the C-
stationarity of the limit point can still be proven if the MPCC-MFCQ holds and εi = o(δi),
confer Theorem 3.2 in [41].

5.2 Relaxation Approach of Steffensen and Ulbrich

The basic idea of the relaxation scheme of Steffensen and Ulbrich [55, 60], which can be
seen as a combination of the relaxation approach of [53] and the regularization approach

of [29], is to relax the complementarity condition for each pair G̃i(p) and H̃i(q), i =
1, . . . , s̃, only on a subset of the triangle with the vertices (0, 0), (δi, 0) and (0, δi). Note
that for a sufficiently small relaxation parameter δi > 0 the complementarity conditions
are only modified for degenerate components, i.e., G̃i(p) = H̃i(q) = 0, and for the choice
of δi = 0 the original complementarity condition is obtained. Since the approach is
independent for each of the scalar complementarity conditions, it is sufficient to discuss
how to handle one of them and therefore, the range of the index i is not mentioned at
each instance in the following. The presentation follows closely the one of [55, 60].

A reparametrization of the complementarity problem G̃i(p) ≥ 0, H̃i(q) ≥ 0,

G̃i(p)H̃i(q) = 0 into the problem z = |z| by introducing z := G̃i(p) + H̃i(q) and

z := G̃i(p) − H̃i(q) allows to post the relaxation problem as a problem of smoothing
the absolute value function within the interval [−δi, δi]. Consequently, one is interested
in smoothing the kink of the absolute value function. A function β : I → IR defined on an
open interval I with [−1, 1] ⊂ I ⊂ IR is called an kink smoothing function if the following
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conditions hold: β|[−1,1] ∈ C2([−1, 1], IR), β(−1) = β(1) = 1, β′(−1) = −1, β′(1) = 1,

β′′(−1) = β′′(1) = 0, and β′′(z) > 0 ∀z ∈ (−1, 1).
Two of such kink smoothing functions are introduced in [60]:

βs(z) :=
2

π
sin

(
(z + 3)π

2

)
+ 1 and βp(z) :=

1

8

(
−z4 + 6z2 + 3

)
.

Using an kink smoothing function for the scaled interval [−δi, δi] and the absolute value
function for the complement, the following function ξ ∈ C2(IR× IR≥0, IR) with

ξ(z, δi) :=


|z| for |z| ≥ δi,

δiβ
(
δ−1
i z

)
for |z| < δi,

is obtained and can be used to write a relaxed version of the complementarity condition
z = |z|: z ≥ −z, z ≥ z, z ≤ ξ(z, δi). Switching back to the original variables G̃i(p) and

H̃i(q), the function Ξi ∈ C2(IR× IR× IR≥0, IR) defined by

Ξi(G̃i(p), H̃i(q), δi) := G̃i(p) + H̃i(q)− ξ(G̃i(p)− H̃i(q), δi)

allows to state the complementarity condition for G̃i(p) and H̃i(q) in the form G̃i(p) ≥
0, H̃i(q) ≥ 0, Ξi(G̃i(p), H̃i(q), δi) ≤ 0. Combining the individual functions Ξi for all
i = 1, . . . , s̃, the definition of the vector-valued function Ξ ∈ C2(IRs̃ × IRs̃ × IRs̃

≥0, IR
s̃)

is straightforward and results in G̃(p) ≥ 0, H̃(q) ≥ 0, Ξ(G̃(p), H̃(q), δ) ≤ 0. Note that
the vector δ ∈ IRs̃

≥0 allows to individually determine a suitable relaxation for each scalar
complementarity condition.

In consequence, the following parametric nonlinear optimization problem R(δ) is ob-
tained:

Definition 5.2 (Relaxed Problem R(δ))

min
z
φ̃(z)

subject to h̃(z) = 0, g̃(z) ≤ 0,

G̃(p) ≥ 0, H̃(q) ≥ 0, Ξ(G̃(p), H̃(q), δ) ≤ 0.

By construction the relaxation properties of the scheme are evident: If a variable z∗ is
feasible for the original MPCC problem (5), then it also feasible for the relaxed problem
5.2. Denote the feasible set of R(δ) by if the inequality δII ≤ δI holds componentwise,
then the following inclusion for the feasible set results: XR(δII) ⊆ XR(δI). Furthermore,
if a strict local solution z∗ of R(δI) is feasible for the MPCC problem (5), then z∗ is a
strict local solution for all δII with 0 ≤ δII ≤ δI . For more details and the proofs of these
properties see [60].

Theorem 5.3 (Convergence to C-stationary Point)
Let (δ(i)) ⊂ IR+ be a sequence satisfying δ(i) → 0 and let (z(i)) ⊂ IRñ be a sequence of
stationary points of R(δ(i)) that satisfies z(i) → z∗. If MPCC-CPLD holds in z∗, then z∗

is a C-stationary point of the MPCC (5).

Proof:
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If the MPCC-CPLD is replaced by the slightly more restrictive MPCC-CRCQ (constant
rank constraint qualification for MPCCs), a proof can be found in [55] (cf. Theorem
5.2 in [55]). As noted in section 3.2 in [38], the proof has not to be modified for
the MPCC-CPLD assumption, because the essential step of the proof uses a set
being by construction not only linearly dependent but positive-linearly dependent and
the only drawn deduction is the linear dependency for all elements in the neighbor-
hood, which exactly matches the MPCC-CPLD. Consequently, confer the proof in [55]. �

Since MPCC-MFCQ implies MPCC-CPLD, this theorem shows the convergence of
stationary points for the relaxed problems to a C-stationary point for the locomotion
problem.

Remark 5.4 In general, only approximate stationary points can be obtained (up to the
given tolerance ε) with numerical computations and in consequence, the convergence to
a C-stationary point might be lost and then only weak stationarity can be proven if the
MPCC-MFCQ holds (cf. Theorem 5.3 in [41]). In order to also guarantee C-stationarity
for the approximate case additional conditions considerably restricting the feasible region
of the complementarity condition have to be introduced (for details see [41]).

The relaxation scheme of Steffensen and Ulbrich can result in problems where no se-
quence of proper interior points of the feasible region converging to a stationary point
exists. Therefore, a two-sided relaxation variant is introduce in [60] for interior point
methods. However, whether the inequalities resulting from the complementarity condi-
tions are realized via barrier terms or penalty terms highly depends on the realization
of the interior-point methods. Where in the first case the two-sided approach is indis-
pensable, in the second case the numerical tolerance ε might already make this advanced
approach dispensable.

5.3 Lifting Approach of Stein

The lifting approach of Stein [56] is based on the construction of a smooth set in IR3

for each complementarity condition normally stated in IR2 such that the projection of
this set on to IR2 coincides with the typical complementarity set with the kink L :=
{(x1, x2) ∈ IR2 | x1 ⊥ x2}.

The basis element for the construction is a at least continuously differentiable function
s : IR→ IR being surjective from IR+ to IR+ fulfilling s(x) = 0 ∀x ≤ 0, s(x) > 0 ∀x > 0.
Possible candidates are s(x) = (max{0, x})p with p ∈ IN and p > 1. This can be used to
introduce the function ψ : IR3 → IR2 by

ψ(x1, x2, x3) :=

(
x1 − s(x3)
x2 − s(−x3)

)
and the corresponding zero set S := {x ∈ IR3 | ψ(x) = 0}. Note that S is a smooth
curve in IR3 and the project of S on the first two components equals L (cf. Lemma 2.1
in [56]). If the function ψ is used to lift the complementarity conditions of an MPCC
by introducing the corresponding number of additional variables, the minimizers of the
MPCC are the first components of minimizers of the lifted problem. It can be shown
that a point is stationary for the lifted problem if and only if the first components are
weakly stationary for MPCC (cf. Proposition 4.1 in [56]).

In order to proof a stronger concept than weak stationarity, the lifted problem is regu-
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larized by coupling the lifting variables to the cost function and a corresponding stability
concept is introduced, the tilting stability (cf. Definition 5.1 in [56]). This concept is used
to relate stationary points of the lifted problem to non-degenerate C-stationary points
of MPCC, see [56] for more details.

5.4 Lifting Approach of Hatz et al.

Considering the complementarity constraint of the discretized inverse optimal control
problem (3) the lifting approach of Hatz et al. [35, 36] introduces the additional vector
of variables v ∈ IRν to modify the left-hand term: v ≤ −g(x) ⊥ λ ≥ 0. Using a penalty
parameter χ > 0 and a penalty function P , e.g., P (v) = ||v||1 or P (v) = ||v||22, the
following modified cost function is considered: Φ(x, y | Λ) +χP (v). The main advantage
of the lifted MPCC is the following theorem proven in [35, 36] (cf. Theorem 2.1 in [36]):

Theorem 5.5
If at a given point both LICQ and SOSC are fulfilled for the discretized optimal control
problem with the modified inequality constraints v ≤ −g(x), then the lifted MPCC satisfies
MPCC-LICQ at this point.

This theorem guarantees the setting used by [29] to proof convergence results for SQP
methods applied to MPCCs under relatively mild conditions.

However, the choice of the penalty function poses some problems: if the exact penalty
function P (v) = ||v||1 is used, a nonsmooth problem is obtained. This could be avoided
by constraining the sign of the lifting variables v by v ≤ 0, but then the theorem 5.5
does not hold in full generality anymore, because constellations with vi = gi(x) = λi = 0
violated the MPCC-LICQ. On the other hand, using the inexact penalty function P (v) =
||v||22 results in a smooth optimization problem, but the penalty parameter χ has to
tend to infinity to obtain convergence of the lifted problem toward the original MPCC.
However, for increasing penalty parameters the condition of the Hessian worsens and
consequently, further problem reformulations might be needed as known from standard
nonlinear penalty problems (cf. [49]).

6. Numerical Results

In this section numerical results for locomotion problems are stated considering the
relaxation scheme of Steffensen and Ulbrich and the lifting approaches of Stein and
Hatz et al. and comparing them to obtained results for the non-relaxed and non-lifted
problem. In addition to the problem properties specified in the sections 2 and 3, further
details are now provided on the chosen time discretization, the boundary conditions of
the locomotion tasks and the set of basic cost functions. Additionally, the numerical
optimization method used to solve the resulting nonlinear optimization problems has to
be specified and the data generation has to be discussed.

6.1 Time Discretization

The discretization of the time interval has to be sufficiently fine to assure that the
solution of the discretized optimal control problem comes close to the solution of the
original optimal control problem. On the other hand using a fine uniform discretization
increases the problem size significantly and consequently, a strategy is needed that assures
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a reasonable trade-off between the two.
We use a static adaptation strategy for the optimal control problem which updates the

time discretization after having solved the discretized problem for the current discretiza-
tion. Other discretization strategies are known where the time discretization is updated
during the optimization of an optimal control problem (e.g., [61]), but this introduces fur-
ther nonlinearities and additional conditions have to be added to the discretized optimal
control problem.

Following the line of [11], a (relative) local discretization error is used to formulate the
adaptation strategy for the time discretization. The goal is to refine a given discretiza-
tion by subdividing the intervals with a large relative local discretization error. The most
simple approach is to bisect these intervals, but, if one wants to add more than one in-
termediate discretization point, the error reduction has to be predicted. Consequently,
the type of discretization strategy influences the choice of the time discretization. Using
the order of consistency for a given Runge-Kutta method, the iterative adaptation strat-
egy of [11] allows to divide intervals into multiple subintervals such that the maximal
discretization error is minimized.

Here we use this adaptation strategy for solving the optimal control problems (1), how-
ever we assume for the discretized inverse optimal control problem (3) that the specified
time grid is fixed and suitable for the corresponding optimal control problem. The adap-
tation strategy could also be applied to the inverse optimal control problem, however
this will result in different time grids for each solution approach of the corresponding
MPCC and thus make comparisons of these approaches significantly harder.

6.2 Basic Cost Functions

The following basic cost functions φi are chosen in the numerical examples, where the
integrals of the definitions in section 3.2 are replaced by suitable approximations using
the discretized state and control values (this is indicated by the superscript a):
φ1(x) := fau,1(x) + fau,2(x), φ2(x, v) := faref,4(x, v), φ3(x) := ftime(x), φ4(x) := faline(x),

φ5(x) := fajerk(x). Consequently, wT := (w1, . . . , w5) and π := v.

6.3 Interior-Point Method IPOPT

The interior-point method IPOPT of Wächter and Biegler [64] is used here to solve the
nonlinear optimization problems arising in the examples. The basic idea of interior-
point methods is to solve a sequence of barrier problems whose solutions define the
so-called central path. The goal is to stay in a suitable neighborhood of the central
path and successively reduce to barrier parameter. IPOPT is based an a combination
of outer iterations modifying the barrier parameter and inner iterations for solving the
corresponding barrier problem up to a suitable tolerance. In addition, a filter approach is
used to determine whether new iterates guarantee sufficient decrease in the cost function
or the violation of the constraints in order to proof local and global convergence properties
of the method [62, 63]. An implementation of the algorithm is available under an open
source license.

6.4 Data Generation

The focus of the numerical examples presented here is on the comparison of different
approaches to handle the MPCC-structure of the discretized inverse optimal control
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problem (3), therefore we consider here only synthetic data, i.e., the data is computed by
solving the optimal control problem (1) for a given vector y. To avoid possible numerical
artifacts resulting from the perfect fit of the model and the computed data, a certain
amount of Gaussian white noise is added to the computed data. This approach allows to
avoid model errors and the obtained results are solely based on the problem structure,
the solution technique and the added noise level.

If data of recorded human motions is to be considered, differences between the model
of the dynamics and the true dynamics of the human body are obvious. To handle
the resulting modeling errors, the data needs to be processed, e.g., the velocity profiles
of recorded human motions exhibit characteristic peaks where the individual steps are
made, but the unicycle model generates smooth velocity profiles, cf., [3]. The most im-
portant consequence is that specially tailored distance measures are needed. Thus all
these technicalities needed for recorded data are avoided here to concentrate on the ba-
sic mathematical problem. Please, confer the publications [1, 3] for inversion results of
human data.

6.5 Three Motions Example

The considered locomotion example combines three motions from a common starting
point to three different goal positions. Note that the structure of the discretized inverse
optimal control problem (3) when instead of a single motion multiple motions that share a
common y are considered. The corresponding boundary conditions are the following ones:

PPx(t0) PPy(t0) βP (t0) vP (t0) PPx(tf ) PPy(tf ) βP (tf ) vP (tf )

0 0 0 0.5 0 4 0.5π 0.5
0 0 0 0.5 1 2 π 0.5
0 0 0 0.5 1 3 0 0.5

Confer Figure 3 for motions fulfilling these boundary conditions for a given choice of
cost function. For the three motions common upper and lower bounds are introduced for
all state variables. However, only the bounds on the forward velocity will become active
and the others simply increase the performance of the numerical methods by specifing a
suitable range for these values:

PPx(t) PPy(t) βP (t) vP (t) βP
′(t) vP

′(t) βP
′′(t) t

5 5 4 0.55 3 3 3 20
−5 −5 −4 0.20 −3 −3 −3 0.1

In this example we use the values wT := (0.1, 0.05, 0.3, 0.2, 0.35) and π = v = 0.8
for the data generation and add to the solution of the corresponding optimal control
problem Gaussian white noise with a standard deviation of 10−4, which corresponds to
an accuracy in the measurement in the range of a millimeter.
The velocity profiles clearly show that the upper constraint on the forward velocity
becomes active for each of the three motions. Note that the time grids are not chosen or
adapted in such a way that the time instances of the continuous solution of the optimal
control problem where the constraint becomes active or inactive are part of the grid, i.e.,
the inequality constraint might be violated in the interior of the intervals and in most
cases problems with strict complementarity will result.
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Figure 3. Trajectories and velocity profiles for the three data motions.

In order to achieve a good trade-off between problem sizes and integration accuracy,
the time grid of the optimal control problem for the data generation is non-uniformly
refined, cf. section 6.1. However, the adapted time grids are then fixed for the inversion
part to avoid introducing a further source of measurement errors due to differing grids.
The grids displayed in figure 4 are used for this example (each has 40 subintervals).

Figure 4. Refined time-meshes for the three individual motions.

The starting values for the inversion are generated by solving the optimal control
problem for random w and π values, i.e., uniformly distributed wi ∈ [0, 1] with

∑
iwi = 1

and v ∈ [0.7, 0.9]. The considered upper and lower bounds for v in the optimization are
0.5 and 1.0, i.e., the generated starting values are feasible.
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Φ(z∗ | Λ)

10−12 10−9 10−6 10−3 100 103
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0.4

0.6

0.8

1

Φ(z∗ | Λ)

Figure 5. Performance profile with respect to value of cost function for various starting values for data with
(right) and without (left) noise

Numerical results for these multiple starting values are displayed in the following using
performance profiles of the Dolan-Moré-type [19]: The x-axes gives the values of some
measure to compare the obtained solution to the generated data and the y-axis shows
the relative number of starting values which resulted in value smaller or equal than the
corresponding x-value.

The three figures (Figures 5 to 7) display results obtained by the interior-point method
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IPOPT [64] considering data without noise (left plots) and with a noise level of 10−3

which results in an optimal value for the distance measure about 10−6 (right ones). The
following color code was used for the six tested approaches: the non-modified problem

, the lifting approach of Hatz with l2-penalty term and with l1-penalty term
, the lifting approach of Stein with exponent 2 and with exponent 3 , and

the relaxation approach of Steffensen and Ulbrich .
The result show that about twenty percent of the starting values yield an optimal

reconstruction result with respect to the distance measure for the non-modified problem,
whereas it seems to be a rather hard problem for the other starting values. The lifting
approach of Stein with exponent 2 seem to considerably increase the performance com-
pared to non-modified version and outperforms the lifting with exponent 3 considerably.
On the other hand, the lifting approach of Hatz et al. results in scaling problems for
the interior-point method IPOPT and yields stationary points for the discretized inverse
optimal control problem that are rather different from the values used to generate the
data. The relaxation approach of Steffensen and Ulbrich yields the best reconstruction
results for about 90 percent of the random starting values.
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Figure 6. Performance profile with respect to value of the weighting factor w1 for various starting values for data
with (right) and without (left) noise
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Figure 7. Performance profile with respect to value of the nonlinear parameter r4 for various starting values for
data with (right) and without (left) noise

Figure 6 shows values of the distance measure Φ(z∗ | Λ) directly relate to the obtained
weight distributions y∗; here the weight w1 of the first cost function is chosen, but the
other weight show similar behavior. The differences displayed in Figure 7 indicate that
the nonlinear parameter r4 is matched best by the relaxation approach of Steffensen and
Ulbrich, whereas the lifting approaches yields larger deviations. Naturally, a misfit in this
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nonlinear parameter results in considerable errors with respect to Φ(z∗ | Λ). However, if
this parameter is fixed, the performance profiles are not that different from the case with
an unknown parameter (cf. left plot in Figure 6.5). If the upper bound on the velocity is
considerably increased such that the bound does not become active for the three motions,
i.e., no active inequality constraints, then the structure of the reconstruction problem
simplifies and the advantage of the relaxation formulation compared to the non-modified
problem reduces considerably.
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Figure 8. Performance profile with respect to value of cost function for various starting values for data with

noise. The left plot shows results for a fixed nonlinear parameter r4 and for the right plot he upper bound vmax

is additionally increased.
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