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ABSTRACT

We consider a class of optimization problems with switch-off/switch-on constraints, which is
a relatively new problem model. The specificity of this model is that it contains constraints
that are being imposed (switched on) at some points of the feasible region, while being
disregarded (switched off) at other points. This seems to be a potentially useful modeling
paradigm, that has been shown to be helpful, for example, in optimal topology design. The
fact that some constraints “vanish” from the problem at certain points, gave rise to the
name of mathematical programs with vanishing constraints (MPVC). It turns out that such
problems are usually degenerate at a solution, but are structurally different from the related
class of mathematical programs with complementarity constraints (MPCC). In this paper, we
first discuss some known first- and second-order necessary optimality conditions for MPVC,
giving new very short and direct justifications. We then derive some new special second-order
sufficient optimality conditions for these problems and show that, quite remarkably, these
conditions are actually equivalent to the classical/standard second-order sufficient conditions
in optimization. We also provide a sensitivity analysis for MPVC. Finally, a relaxation
method is proposed. For this method, we analyze constraints regularity and boundedness of
the Lagrange multipliers in the relaxed subproblems, derive a sufficient condition for local
uniqueness of solutions of subproblems, and give some convergence estimates.
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1 Introduction

We consider the optimization problem

minimize f(x)
subject to Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0, i = 1, . . . , m,

(1.1)

where f : Rn → R is a smooth function and G, H : Rn → Rm are smooth mappings. Prob-
lems with this structure have been called mathematical programs with vanishing constraints
(MPVC) [1, 9, 10, 8], because whenever Hi(x) = 0 for some index i, the second constraint
indexed by the same i becomes redundant. On the other hand, for points x ∈ Rn for which
Hi(x) > 0 for some index i, it must hold that Gi(x) ≤ 0 for the same i. Problem (1.1) is
therefore a prototype of the following problem with switch-on/switch-off constraints:

minimize f(x)
subject to Gi(x) ≤ 0 if x ∈ Di, i = 1, . . . , m,

(1.2)

whereDi ⊂ Rn, i = 1, . . . , m. At points x ∈ Di the constraintGi(x) ≤ 0 is switched on, while
at points x 6∈ Di it is switched off. When the sets Di can be represented by the inequalities
Hi(x) > 0, the general problem (1.2) is precisely (1.1). This seems to be a potentially useful
modeling paradigm, as the situation described is not uncommon in practical considerations.
For example, we may only care about a particular constraint when some variable is positive,
and not care about it otherwise. One specific example of a practical problem where vanishing
constraints arise naturally concerns optimal topology design, discussed in detail in [1, Section
2]. Very briefly, this application concerns computing cross-sectional areas for each potential
bar in the given structure such that failure of the whole structure is prevented, the external
load is supported by the structure, and some objective function is minimized (for example,
the weight of the structure) [4]. The constraints of the problem are therefore on stress
along each possible bar, and on internal force and buckling force along each possible bar.
Obviously, those constraints make sense (need to be satisfied) only when the corresponding
cross-sectional area is positive (i.e., the potential bar is actually present in the structure). An
intuitively very natural view of this requirement is precisely that of a vanishing constraint in
the sense specified above.

Before proceeding, we note that we could easily consider the more general problem with
the additional “usual” equality and inequality constraints

minimize f(x)
subject to h(x) = 0, g(x) ≤ 0, Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0, i = 1, . . . , m,

where h : Rn → Rp, g : Rn → Rq. The usual constraints do not add any important
structural differences, as all the essential difficulties in the analysis have to do with the
switch-off/switch-on constraints. We consider the form of (1.1) to keep the notation simpler.

Because of the fact that constraints in (1.1) are likely to be degenerate at a solution,
MPVC is a difficult class of problems requiring special treatment. To see why this happens, we
consider the following model example, to be used to illustrate various properties throughout
the paper.
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Example 1.1 Let n = 2, m = 1, f(x) = x2 + ax2
1/2, G(x) = x1, H(x) = x2, where a is a

real parameter.
The feasible set of problem (1.1) has the form

D = {x ∈ R2 | x1 ≤ 0, x2 ≥ 0} ∪ {x ∈ R2 | x2 = 0},

which is the union of an orthant and a ray (clearly, a rather special structure).
If a ≥ 0 then x̄ = 0 is a solution of (1.1), and it is the unique solution if a > 0. Evidently,

the point x̄ does not satisfy the Mangasarian-Fromovitz constraint qualification (MFCQ),
and hence also the linear independence constraint qualification (LICQ). And this situation is
typical in some sense, as discussed next.

(We note, for future reference, that the two sets in the right-hand side of the above
representation of D will be called branches of this set.)

Let x̄ ∈ Rn be a feasible point of problem (1.1). Following [1], define the index sets
(associated to x̄):

I+ = I+(x̄) = {i = 1, . . . , m | Hi(x̄) > 0},

I0 = I0(x̄) = {i = 1, . . . , m | Hi(x̄) = 0},

and further partitioning of I+:

I+0 = I+0(x̄) = {i ∈ I+ | Gi(x̄) = 0},

I+− = I+−(x̄) = {i ∈ I+ | Gi(x̄) < 0},

and of I0:
I0+ = I0+(x̄) = {i ∈ I0 | Gi(x̄) > 0},

I00 = I00(x̄) = {i ∈ I0 | Gi(x̄) = 0},

I0− = I0−(x̄) = {i ∈ I0 | Gi(x̄) < 0}.

Then, locally (near x̄), the feasible set of (1.1) can be written in the form

D = {x ∈ Rn | HI0+(x) = 0, HI00∪I0−(x) ≥ 0, GI+0(x) ≤ 0, Gi(x)Hi(x) ≤ 0, i ∈ I00}.
(1.3)

As is readily seen, the structure of D around x̄ has a clear combinatorial aspect associated to
the group of constraints indexed by I00 (if this set is nonempty), and this is precisely the cause
of difficulties in dealing with MPVC. On the other hand, if I00 = ∅ then the combinatorial
aspect disappears, and from (1.3) we obtain that

D = {x ∈ Rn | HI0+(x) = 0, HI0−(x) ≥ 0, GI+0(x) ≤ 0}.

The latter can be locally treated as a feasible set of a usual inequality-constrained problem,
and in this case MPVC can be tackled by standard tools.

Condition I00 = ∅ can be regarded as the lower level strict complementarity condition
(LLSCC). However, LLSCC is rather restrictive, just as the corresponding (strict comple-
mentarity) conditions in the literature on complementarity problems [6] and on mathematical
programs with complementarity constraints (MPCC) [13, 14].
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In Example 1.1, LLSCC actually holds at any feasible point, except for x̄ = 0 (where
I+ = ∅, I0 = I00 = {1}), while x̄ = 0 is the unique solution for all values of the parameter
a > 0.

It is important to emphasize that if LLSCC does not hold, then the constraints of (1.1)
are inevitably degenerate. Specifically, it was demonstrated in [1] that:

• If I0 6= ∅ then x̄ violates LICQ.

• If I00 ∪ I0+ 6= ∅ then x̄ violates MFCQ.

Because of this inherent constraints degeneracy, much of classical theory does not apply and
special analysis is needed.

In this respect, it should also be commented that MPVC can be reduced [1], in principle,
to MPCC (for which a considerable amount of theory and practice is already available).
Specifically, introducing a slack variable u ∈ Rm, MPVC can be equivalently reformulated
as MPCC

minimize f(x)
subject to G(x)− u ≤ 0, H(x) ≥ 0, u ≥ 0, Hi(x)ui = 0, i = 1, . . . , m.

(1.4)

However, this reformulation has the following serious drawback (apart form the increased
dimension, which is undesirable by itself). Given a (local) solution x̄ of MPVC (1.1) such
that I0 6= ∅, the corresponding value of the slack variable is not uniquely defined (for any uI0 ≥
GI0(x̄), (x̄, u) is a (local) solution of (1.4)), and since u does not enter the objective function
of (1.4), the corresponding local solutions of this problem will never be strict. This means that
natural sufficient optimality conditions will never hold for MPCC (1.4). Consequently, various
results based on sufficient optimality conditions (regarding convergence of numerical methods,
sensitivity, etc.) will not be applicable to (1.4). For this reason, while some of the ideas from
MPCC literature should certainly be useful to deal with MPVC, reformulation (1.4) is not
helpful and independent analysis is needed. In fact, second-order conditions discussed in
Section 3 show some important structural differences between MPCC and MPVC.

The rest of the paper is organized as follows. In Section 2, we discuss stationarity con-
ditions for MPVC, giving also their short justification. Section 3 is devoted to second-order
conditions. Among other things, we show that special second-order sufficient optimality con-
ditions for MPVC are actually equivalent to standard second-order sufficient conditions (i.e.,
stated for MPVC as a usual optimization problem, without making use of the structure).
Section 4 contains sensitivity analysis for MPVC, under different sets of assumptions (either
existence of a regular branch or MPVC-LICQ). In Section 5, we propose a relaxation scheme
for solving MPVC and analyze its properties.

2 First-Order Necessary Conditions

In this section, we discuss stationarity notions and special constraint qualifications relevant
for MPVC. The main items of both Proposition 2.1 and Theorem 2.1 below have first been
obtained in [1, 9, 8]. Nevertheless, as we have to introduce the terminology and state those
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results in any case, we prefer to give also their justification (in some cases different from
the references above, while being very short and simple). By analogy with MPCC, we also
introduce the notion of weak stationarity (and a tightened problem associated to MPVC),
the notion of B-stationarity, and the piecewise MFCQ.

Define the standard Lagrangian of problem (1.1):

L(x, λ) = f(x)− 〈λH , H(x)〉+
m∑
i=1

λGHi Gi(x)Hi(x), (2.1)

where x ∈ Rn and λ = (λG, λGH) ∈ Rm×Rm. Because of the lack of MFCQ (when LLSCC
fails to hold), local optimality of x̄ in (1.1) does not imply stationarity of this point in the
classical sense, in general. This means that a multiplier λ = (λG, λGH) ∈ Rm×Rm satisfying
the relations

∂L

∂x
(x̄, λ) = 0, (2.2)

λHI0 ≥ 0, λHI+ = 0, λGHI+0∪I0 ≥ 0, λGHI+− = 0, (2.3)

may not exist. However, as will be explained below, this standard stationarity concept is still
completely relevant for MPVC. In what follows, by Λ = Λ(x̄) we denote the set of Lagrange
multipliers associated to x̄, i.e., those λ = (λG, λGH) ∈ Rm ×Rm satisfying (2.2), (2.3).

To a given feasible point x̄ of (1.1), we associate two auxiliary “usual” MP problems. The
relaxed nonlinear programming problem (RNLP) has the form

minimize f(x)
subject to HI0+(x) = 0, HI00∪I0−(x) ≥ 0, GI+0(x) ≤ 0,

(2.4)

while the tightened nonlinear programming problem (TNLP) has the form

minimize f(x)
subject to HI0+∪I00(x) = 0, HI0−(x) ≥ 0, GI+0∪I00(x) ≤ 0.

(2.5)

The feasible sets of these problems will be denoted by DRNLP = DRNLP(x̄) and DTNLP =
DTNLP(x̄), respectively. From (1.3) it evidently follows that locally (near x̄) it holds that

DTNLP ⊂ D ⊂ DRNLP, (2.6)

and the point x̄ is feasible in all the three problems.
In Example 1.1, DRNLP = {x ∈ R2 | x2 ≥ 0}, DTNLP = {x ∈ R2 | x1 ≤ 0, x2 = 0}.
Define further the MPVC-Lagrangian of problem (1.1):

L(x, µ) = f(x)− 〈µH , H(x)〉+ 〈µG, G(x)〉,

where x ∈ Rn and µ = (µH , µG) ∈ Rm×Rm. Evidently, this is the standard Lagrangian for
TNLP (2.5) with additional constraints (inactive at x̄)

HI+(x) ≥ 0, GI+−∪I0−(x) ≤ 0, GI0+(x) ≥ 0. (2.7)

MPVC-Lagrangian can also be regarded as the standard Lagrangian for RNLP (2.4) with
additional constraints (2.7) and

GI00(x) ≤ 0

(the latter constraint is active at x̄).
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Definition 2.1 A feasible point x̄ ∈ Rn of MPVC (1.1) is called a strongly (weakly) sta-
tionary point of this problem if it is stationary for RNLP (2.4) (TNLP (2.5)) in the classical
sense.

Thus, weak stationarity of x̄ means the existence of µ = (µH , µG) ∈ Rm ×Rm such that

∂L
∂x

(x̄, µ) = 0, (2.8)

µHI0− ≥ 0, µHI+ = 0, µGI+0∪I00
≥ 0, µGI+−∪I0+∪I0− = 0, (2.9)

while strong stationarity (the notion coined for MPVC in [8, Definition 2.1]) means that,
additionally,

µHI00
≥ 0, µGI00

= 0. (2.10)

In the latter case, µ is referred to as MPVC-multiplier associated to the strongly stationary
point x̄. The set of MPVC-multipliers associated to x̄ will be denoted by M =M(x̄).

It was established in [1, Remark 1] that strong stationarity is in fact equivalent to usual
stationarity for MPVC (1.1). More precisely, the following can be proved by a direct com-
putation. (We note that the relation (2.14) below is new and it will be crucial later on, in
the context of establishing the equivalence between various second-order sufficient optimality
conditions.)

Proposition 2.1 A feasible point x̄ of problem (1.1) is a stationary point of this problem if,
and only if, it is a strongly stationary point of this problem. Moreover, if λ = (λH , λGH) is
a Lagrange multiplier associated with x̄ then µ = (µH , µG) defined by

µHi = λHi = 0, i ∈ I+, µHi = λHi − λGHi Gi(x̄), i ∈ I0+ ∪ I0−, µHi = λHi , i ∈ I00, (2.11)

µGi = λGHi Hi(x̄), i ∈ I+0, µGi = λGHi Hi(x̄) = 0, i ∈ I+− ∪ I0, (2.12)

is an MPVC-multiplier associated with x̄. Conversely, if µ = (µH , µG) is an MPVC-
multiplier associated with x̄ then any λ = (λH , λGH) satisfying (2.11), (2.12) and

λGHi ≥ 0, i ∈ I00, λGHi ≥ max

{
0, − µHi

Gi(x̄)

}
, i ∈ I0+, 0 ≤ λGHi ≤ − µHi

Gi(x̄)
, i ∈ I0−,

(2.13)
is a Lagrange multiplier associated with x̄.

Furthermore, for any ξ ∈ Rn and any λ = (λG, λGH) ∈ Rm ×Rm and µ = (µH , µG) ∈
Rm ×Rm satisfying (2.11), (2.12), it holds that

∂2L

∂x2
(x̄, λ)[ξ, ξ] =

∂2L
∂x2

(x̄, µ)[ξ, ξ] + 2
∑

i∈I+0∪I0
λGHi 〈G′i(x̄), ξ〉〈H ′i(x̄), ξ〉. (2.14)

Following [9, Definition 4.1], we say that MPVC-linear independence constraint qualifica-
tion (MPVC-LICQ) holds at x̄ if the gradients

H ′i(x̄), i ∈ I0, G′i(x̄), i ∈ I+0 ∪ I00 are linearly independent. (2.15)
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Note that this is just the standard LICQ for TNLP (2.5) at x̄. According to the left inclusion
in (2.6), (local) optimality of x̄ in MPVC implies its (local) optimality in TNLP. In particular,
under MPVC-LICQ, weak stationarity is a necessary optimality condition for MPVC (1.1).
A more subtle result (known from [9, Corollary 4.5], and justified below) consists of saying
that under MPVC-LICQ, strong stationarity is also a necessary optimality condition.

Let I = I(x̄) stand for the set of all partitions of I00, i.e., pairs (I1, I2) of index sets
such that I1 ∪ I2 = I00, I1 ∩ I2 = ∅. Evidently, this set is finite, and |I| = 2|I00|. For each
(I1, I2) ∈ I define the branch problem

minimize f(x)
subject to HI0+∪I2(x) = 0, HI1∪I0−(x) ≥ 0, GI+0∪I1(x) ≤ 0,

(2.16)

and denote by D(I1, I2) = D(I1, I2)(x̄) its feasible set, which can be regarded as a branch (or
piece) of the original feasible set D (see (1.3)). It can be easily seen that locally (near x̄), the
set D can be partitioned into such branches. In particular, the relations (2.6) can be made
more precise: for any (I1, I2) ∈ I it holds that

DTNLP =
⋂

(J1, J2)∈I
D(J1, J2)

⊂ D(I1, I2)

⊂ D

=
⋃

(J1, J2)∈I
D(J1, J2)

⊂ DRNLP. (2.17)

Moreover, x̄ belongs to each branch, and each constraint defining each branch is active at x̄.

Definition 2.2 A feasible point x̄ ∈ Rn of MPVC (1.1) is called a B-stationary (or piecewise-
stationary) point of this problem if it is stationary in each of the branch problems (2.16),
(I1, I2) ∈ I.

Thus, B-stationarity means that for each (I1, I2) ∈ I, there exist µ = (µH , µG) ∈ Rm ×
Rm (depending on (I1, I2)) satisfying (2.8) and the relations

µHI1∪I0− ≥ 0, µHI+ = 0, µGI+0∪I1 ≥ 0, µGI+−∪I0+∪I2∪I0− = 0. (2.18)

Note that (2.18) is somewhat stronger than (2.9): it contains the additional condition µGI2 = 0.
We say that piecewise MFCQ holds at x̄ if MFCQ holds at x̄ for each branch problem

(2.16), (I1, I2) ∈ I. By the standard MP theory, and by the second inclusion in (2.17), it
follows that, under piecewise MFCQ, B-stationarity is a necessary optimality condition for
MPVC (1.1). Note that MPVC-LICQ evidently implies LICQ for each branch, and hence,
piecewise MFCQ.

Note further that strong stationarity of x̄ implies B-stationarity of this point, and more-
over, any MPVC-multiplier is a Lagrange multiplier for each branch problem. On the other
hand, B-stationarity of x̄ evidently implies weak stationarity.
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Suppose now that x̄ is a B-stationary point of problem (1.1), satisfying MPVC-LICQ.
According to the discussion above, this implies that for each partition (I1, I2) ∈ I, there
exists a unique multiplier µ = (µH , µG) satisfying (2.8) and (2.18). Moreover, as mentioned
above, MPVC-LICQ is just LICQ for TNLP (2.5), which implies that the multiplier satisfying
(2.8), (2.9) (and hence (2.8), (2.18)) must be unique. Therefore, the multipliers for all branch
problems coincide with each other, and with the unique multiplier for TNLP. Moreover, by
(2.18) we obtain that the relations µHI1 ≥ 0 and µGI2 = 0 must hold for each (I1, I2) ∈ I, which
implies (2.10), and hence, strong stationarity of x̄.

We thus proved the following result (we remind the reader that the most significant part
of this result was originally established in [9, Corollary 4.5]). We believe that under MPVC-
LICQ, strong stationarity of a local solution of MPVC can perhaps be obtained also using
the framework of [19] (in particular, the linear independence assumption used throughout
[19] becomes in our setting MPVC-LICQ (2.15)).

Theorem 2.1 Assume that a feasible point x̄ ∈ Rn of problem (1.1) satisfies MPVC-LICQ
(2.15).

If x̄ is a local solution of problem (1.1) then x̄ is a B-stationary point of this problem, and
moreover, B-stationarity of this point is equivalent to its strong stationarity, and the asso-
ciated MPVC-multiplier µ̄ = (µ̄H , µ̄G) is unique. Furthermore, weak stationarity condition,
as well as stationarity condition for branch problem (2.16) for any partition (I1, I2) ∈ I, do
hold only with this multiplier.

Summarizing, B-stationarity appears to be the most natural/proper stationarity concept
for MPVC among those mentioned above, since it reflects the combinatorial/piecewise struc-
ture of the feasible set, and since it holds as a necessary optimality condition under the
quite weak piecewise MFCQ. At the same time, combinatorial nature of B-stationarity is
precisely what makes it difficult to use: verifying this condition requires verification of usual
stationarity for 2|I00| “usual” MP problems.

At the same time, verifying weak or strong stationarity consists of verifying the usual
stationarity for just one “usual” MP problem (TNLP and RNLP, respectively). More-
over, according to Theorem 2.1, under MPVC-LICQ strong stationarity is equivalent to
B-stationarity.

In Example 1.1, MPVC-LICQ (2.15) holds at x̄ = 0, and this point is strongly stationary
with the unique associated MPVC-multiplier µ̄ = (µ̄H , µ̄G) = (1, 0). Note that this point is
also stationary in the usual sense, with the associated Lagrange multiplier λ = (µ̄H , λGH)
for an arbitrary λGH ≥ 0.

3 Second-Order Optimality Conditions

We next discuss second-order necessary optimality conditions, first obtained in [8], and give
a different very short justification. Then we proceed to establish some new results concerning
sufficient optimality conditions.

Define the standard critical cone of problem (1.1) at x̄:

C = C(x̄) = {ξ ∈ Rn | H ′I0+
(x̄)ξ = 0, H ′I00∪I0−(x̄)ξ ≥ 0, G′I+0

(x̄)ξ ≤ 0, 〈f ′(x̄), ξ〉 ≤ 0} (3.1)
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(see (1.3)). Note that this cone coincides with the critical cone for RNLP (2.4) at x̄.
Furthermore, for each partition (I1, I2) ∈ I define the critical cone of the corresponding

branch problem (2.16) at x̄:

C(I1, I2) = C(I1, I2)(x̄) =

{
ξ ∈ Rn

∣∣∣∣∣ H ′I0+∪I2(x̄)ξ = 0, H ′I0−∪I1(x̄)ξ ≥ 0, G′I+0∪I1(x̄)ξ ≤ 0,
〈f ′(x̄), ξ〉 ≤ 0

}
.

Set

C2 = C2(x̄)
=

⋃
(I1, I2)∈I

C(I1, I2)

=

{
ξ ∈ Rn

∣∣∣∣∣ H ′I0+
(x̄)ξ = 0, H ′I00∪I0−(x̄)ξ ≥ 0, G′I+0

(x̄)ξ ≤ 0,
〈G′i(x̄), ξ〉〈H ′i(x̄), ξ〉 ≤ 0, i ∈ I00, 〈f ′(x̄), ξ〉 ≤ 0

}
, (3.2)

where the subscript “2” indicates that, unlike C, this cone takes into account the second-
order information about the last constraint in (1.1). By direct comparison of (3.1) and (3.2),
we have that

C2 = {ξ ∈ C | 〈G′i(x̄), ξ〉〈H ′i(x̄), ξ〉 ≤ 0, i ∈ I00},

and in particular, C2 ⊂ C.
Assume that x̄ is a local solution of MPVC (1.1) satisfying MPVC-LICQ. Recall that the

latter implies LICQ for each branch problem (2.16) at x̄. From the second equality in (2.17)
it thus follows that for each (I1, I2) ∈ I, the standard second-order necessary condition holds
at x̄ for problem (2.16). Taking into account Theorem 2.1 and the second equality in (3.2),
we thus justified the following result (first established in [8, Theorem 4.3]).

Theorem 3.1 Assume that a feasible point x̄ ∈ Rn of problem (1.1) satisfies MPVC-LICQ
(2.15).

If x̄ is a local solution of problem (1.1) then for the unique MPVC-multiplier µ̄ = (µ̄H , µ̄G)
associated with x̄, it holds that

∂2L
∂x2

(x̄, µ̄)[ξ, ξ] ≥ 0 ∀ ξ ∈ C2.

By standard MP theory (using the stationarity conditions and standard arguments to
eliminate the dependence on f in the original definition of the critical cone), for any λ ∈ Λ
we can write

C =

{
ξ ∈ Rn

∣∣∣∣∣ H ′I0+
(x̄)ξ = 0, H ′I00∪I0−(x̄)ξ ≥ 0, G′I+0

(x̄)ξ ≤ 0,
λHi 〈H ′i(x̄), ξ〉 = 0, i ∈ I00 ∪ I0−, λ

GH
i 〈G′i(x̄), ξ〉 = 0, i ∈ I+0

}
. (3.3)

Similarly, for any µ ∈ M and for each (I1, I2) ∈ I, taking also into account the equality in
(2.10), we can write

C(I1, I2) =

{
ξ ∈ Rn

∣∣∣∣∣ H ′I0+∪I2(x̄)ξ = 0, H ′I0−∪I1(x̄)ξ ≥ 0, G′I+0∪I1(x̄)ξ ≤ 0,
µHi 〈H ′i(x̄), ξ〉 = 0, i ∈ I1 ∪ I0−, µ

G
i 〈G′i(x̄), ξ〉 = 0, i ∈ I+0

}
, (3.4)
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and hence, by the second equality in (3.2),

C2 =

ξ ∈ Rn

∣∣∣∣∣∣∣
H ′I0+

(x̄)ξ = 0, H ′I00∪I0−(x̄)ξ ≥ 0, G′I+0
(x̄)ξ ≤ 0,

µHi 〈H ′i(x̄), ξ〉 = 0, i ∈ I00 ∪ I0−, µ
G
i 〈G′i(x̄), ξ〉 = 0, i ∈ I+0,

〈G′i(x̄), ξ〉〈H ′i(x̄), ξ〉 ≤ 0, i ∈ I00

 (3.5)

(cf. [8, (21)]).
We proceed with sufficient optimality conditions, that are all either new or stronger than

previous results in the literature.

Theorem 3.2 Let x̄ ∈ Rn be a feasible point of problem (1.1). If

C2 = {0} (3.6)

then the linear growth condition holds at x̄ for problem (1.1), and in particular, x̄ is a strict
local solution of this problem.

Proof. According to the second equality in (3.2), condition (3.6) means that the equality

C(I1, I2) = {0}

holds for each (I1, I2) ∈ I. By standard MP theory, the latter condition evidently implies
the linear growth condition at x̄ for each branch problem (2.16), and the needed assertion
follows now from the second equality in (2.17).

Theorem 3.2 can be regarded as the second-order-relaxed first-order sufficient condition.
We next present the second-order sufficient condition.

Theorem 3.3 Let x̄ ∈ Rn be a feasible point of problem (1.1).
If x̄ is a strongly stationary point of problem (1.1), and

∀ ξ ∈ C2 \ {0} ∃µ ∈M such that
∂2L
∂x2

(x̄, µ)[ξ, ξ] > 0, (3.7)

then the quadratic growth condition holds at x̄ for problem (1.1), and in particular, x̄ is a
strict local solution of this problem.

Proof. According to the second equality in (3.2), condition (3.7) implies that for each
(I1, I2) ∈ I, the standard second-order sufficient optimality condition holds at x̄ for branch
problem (2.16). By standard MP theory, the latter implies the quadratic growth condition at
x̄ for each branch problem, and the needed assertion follows again from the second equality
in (2.17).

Note that condition (3.7) is weaker than the sufficient optimality condition from [8, The-
orem 4.4]: the latter employs a “universal” MPVC-multiplier (the same for all ξ ∈ C2 \ {0}).
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In Example 1.1, C2 = C = {ξ ∈ R2 | ξ2 = 0}, and (3.7) holds with the unique associated
MPVC-multiplier µ = µ̄ = (1, 0), for any a > 0.

The following example shows that, in general, condition (3.7) does not imply the standard
second-order sufficient condition for RNLP (2.4) even under MPVC-LICQ (this issue can be
relevant for justification of numerical methods and for sensitivity analysis, as will be seen in
the sequel).

Example 3.1 Consider the model Example 1.1, but with the objective function replaced by
f(x) = (x1 − x2)2.

The point x̄ = 0 is the unique solution of MPVC (1.1), and MPVC-LICQ (2.15) holds
at this point. It can be easily checked that M = {0}, C = {ξ ∈ R2 | ξ2 ≥ 0}, C2 = {ξ ∈
R2 | ξ2 ≥ 0, ξ1ξ2 ≤ 0}, and that (3.7) holds at x̄, while the second-order sufficient condition
for RNLP (2.4) does not (moreover, after adding some third-order terms to the objective
function, x̄ will no longer be a local solution of (2.4)).

However, quite remarkably, condition (3.7) turns out to be equivalent to the standard
second-order sufficient optimality condition for the original problem (1.1), which has the
form

∀ ξ ∈ C \ {0} ∃λ ∈ Λ such that
∂2L

∂x2
(x̄, λ)[ξ, ξ] > 0. (3.8)

Specifically, the following holds.

Theorem 3.4 Let x̄ ∈ Rn be a strongly stationary point of problem (1.1).
Then for any µ ∈M it holds that

∂2L

∂x2
(x̄, λ)[ξ, ξ] =

∂2L
∂x2

(x̄, µ)[ξ, ξ] ∀ ξ ∈ C2 (3.9)

for all λ = (λH , λGH) ∈ Rm ×Rm satisfying (2.11), (2.12) and

λGHI00∪I0− = 0. (3.10)

Moreover, condition (3.7) is equivalent to the condition

∀ ξ ∈ C2 \ {0} ∃λ ∈ Λ such that
∂2L

∂x2
(x̄, λ)[ξ, ξ] > 0, (3.11)

which is further equivalent to the condition (3.8).

Proof. By formula (2.14) in Proposition 2.1, and by (3.2), we obtain that for any ξ ∈ C2,
any µ ∈M, and any λ satisfying (2.11), (2.12) and (3.10), it holds that

∂2L

∂x2
(x̄, λ)[ξ, ξ] =

∂2L
∂x2

(x̄, µ)[ξ, ξ] + 2
∑
i∈I+0

λGHi 〈G′i(x̄), ξ〉〈H ′i(x̄), ξ〉

=
∂2L
∂x2

(x̄, µ)[ξ, ξ] + 2
∑
i∈I+0

µGi
Hi(x̄)

〈G′i(x̄), ξ〉〈H ′i(x̄), ξ〉

=
∂2L
∂x2

(x̄, µ)[ξ, ξ],
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where the last equality follows from the representation (3.5) of C2. We thus proved (3.9).
According to Proposition 2.1, for any µ ∈ M and any λ satisfying (2.11), (2.12), (3.10)

and the second group of conditions in (2.13), it holds that λ ∈ Λ. If for a given ξ ∈ C2 the
inequality in (3.7) holds with some µ ∈ M, we can take any λ satisfying these conditions so
that, by (3.9), the inequality in (3.11) would hold. Conversely, suppose that the inequality
in (3.11) holds with some λ. Define µ according to (2.11), (2.12). Then, by Proposition 2.1,
µ ∈M. Furthermore, by formula (2.14),

∂2L
∂x2

(x̄, µ)[ξ, ξ] =
∂2L

∂x2
(x̄, λ)[ξ, ξ]− 2

∑
i∈I+0∪I0

λGHi 〈G′i(x̄), ξ〉〈H ′i(x̄), ξ〉

=
∂2L

∂x2
(x̄, λ)[ξ, ξ]− 2

∑
i∈I00∪I0−

λGHi 〈G′i(x̄), ξ〉〈H ′i(x̄), ξ〉

=
∂2L

∂x2
(x̄, λ)[ξ, ξ]− 2

∑
i∈I00

λGHi 〈G′i(x̄), ξ〉〈H ′i(x̄), ξ〉

−2
∑
i∈I0−

λHi − µHi
Gi(x̄)

〈G′i(x̄), ξ〉〈H ′i(x̄), ξ〉

=
∂2L

∂x2
(x̄, λ)[ξ, ξ]− 2

∑
i∈I00

λGHi 〈G′i(x̄), ξ〉〈H ′i(x̄), ξ〉

≥ ∂2L

∂x2
(x̄, λ)[ξ, ξ]

> 0,

where the second equality is by (3.3) and by the inclusion C2 ⊂ C, the third is by (2.11),
the fourth is by (3.3) and (3.5), and the first inequality is by (3.5) and by the nonnegativity
condition λGH ≥ 0. We thus proved that the conditions (3.7) and (3.11) are equivalent.

It remains to show that (3.8) holds automatically for ξ ∈ C \ C2. (This is actually a
particular instance of a more general fact from optimization theory, see [2, Lemma 3], but in
this case it is easier to give a short proof instead of referring the reader elsewhere.) According
to (3.1) and (3.2), for any such ξ there exists i ∈ I00 such that

〈G′i(x̄), ξ〉〈H ′i(x̄), ξ〉 > 0. (3.12)

Take any λ ∈ Λ (it exists according to strong stationarity of x̄ and Proposition 2.1). By
Proposition 2.1, increasing λGHi while keeping the rest of the components of λ fixed preserves
the inclusion λ ∈ Λ ((2.11)–(2.13) remain valid), while by formula (2.14), and by (3.12), the
needed inequality in (3.8) will hold automatically for all λGHi large enough.

We finish our discussion of second-order optimality conditions with the following con-
jecture, indicating some important structural differencies between MPCC and MPVC. We
believe that in the case of MPVC (unlike for MPCC; see [12, Proposition 2]), the condition

∃ µ̄ ∈M such that
∂2L
∂x2

(x̄, µ̄)[ξ, ξ] > 0 ∀ ξ ∈ C2 \ {0}
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(existence of a “universal” MPVC-multiplier) generally does not imply the condition

∃ λ̄ ∈ Λ such that
∂2L

∂x2
(x̄, λ̄)[ξ, ξ] > 0 ∀ ξ ∈ C \ {0}

(existence of a “universal” Lagrange multiplier), even under MPVC-LICQ.

4 Sensitivity Analysis of MPVC

Let now f , G and H (and hence, all the objects defined by them) depend on a parameter
σ ∈ Rs characterizing perturbations. Thus, now we have a smooth function f : Rs×Rn → R
and smooth mappings G, H : Rs ×Rn → Rm. It is important to stress that here we deal
with perturbations of G and H, preserving the MPVC structure, rather than with arbitrary
perturbations of the constraints of (1.1).

Let x̄ be a local solution of the problem

minimize f(σ, x)
subject to Hi(σ, x) ≥ 0, Gi(σ, x)Hi(σ, x) ≤ 0, i = 1, . . . , m,

(4.1)

for σ = σ̄, where σ̄ ∈ Rs is the base parameter value. Furthermore, let the index sets I+,
I0, I+0, I+−, I0+, I00, and I0−, the function L, and the sets M, C and C2 be defined for the
base parameter value. Fix a closed ball B centered at x̄ such that x̄ is a global solution of
the problem

minimize f(σ, x)
subject to Hi(σ, x) ≥ 0, Gi(σ, x)Hi(σ, x) ≤ 0, i = 1, . . . , m, x ∈ B, (4.2)

for σ = σ̄. If x̄ is a strict local solution of (4.1) for σ = σ̄, we always assume that B is chosen
small enough, so that x̄ is the unique global solution of (4.2) for σ = σ̄. For each σ ∈ Rs, let
S(σ) stand for the (global) solution set of problem (4.2), and define the local optimal value
function v : Rs → R of problem (4.1) as the optimal value function of problem (4.2):

v(σ) = inf
x∈D(σ)∩B

f(σ, x),

where D(σ) stands for the feasible set of (4.1).

4.1 Sensitivity in the Case of Existence of a Regular Branch

Throughout this subsection, we assume that there exists at least one partition (I1, I2) ∈ I
such that MFCQ holds at x̄ for the corresponding branch problem

minimize f(σ, x)
subject to HI0+∪I2(σ, x) = 0, HI1∪I0−(σ, x) ≥ 0, GI+0∪I1(σ, x) ≤ 0,

(4.3)

for σ = σ̄, i.e.,

rank
∂HI0+∪I2

∂x
(σ̄, x̄) = |I0+|+ |I2|, (4.4)
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and there exists ξ̄ ∈ Rn such that

∂HI0+∪I2
∂x

(σ̄, x̄)ξ̄ = 0,
∂HI1∪I0−

∂x
(σ̄, x̄)ξ̄ > 0,

∂GI+0∪I1
∂x

(σ̄, x̄)ξ̄ < 0. (4.5)

Then, by Robinson’s stability theorem [16],

dist(x̄, D(I1, I2)(σ)) = O(‖σ − σ̄‖), (4.6)

where for each σ ∈ Rs, we denote by D(I1, I2)(σ) the feasible set of problem (4.3). At the same
time, it is easy to check that the second equality in (2.17) is preserved under perturbations
of the given class: for each σ ∈ Rs close enough to σ̄, locally (near x̄) it holds that

D(σ) =
⋃

(I1, I2)∈I
D(I1, I2)(σ), (4.7)

and hence, by (4.6),
dist(x̄, D(σ)) = O(‖σ − σ̄‖). (4.8)

According to [3, Theorem 3.1], an estimate of the distance from x̄ to the perturbed
feasible set guarantees solution stability and a certain upper bound for the optimal value of
the perturbed problem. Specifically, combining estimate (4.8) with [3, Theorem 3.1] results
in the following.

Theorem 4.1 Let x̄ be a local solution of problem (4.1) for σ = σ̄. Let there exist a partition
(I1, I2) ∈ I such that MFCQ holds at x̄ for the corresponding branch problem (4.3) for σ = σ̄.

Then v is continuous at σ̄, and for σ ∈ Rs it holds that

v(σ) ≤ v(σ̄) +O(‖σ − σ̄‖).

Moreover, S(σ) 6= ∅ for all σ ∈ Rs close enough to σ̄, and

sup
x∈S(σ)

dist(x, S(σ̄))→ 0 as σ → σ̄.

In particular, if x̄ is a strict local solution of problem (4.1) for σ = σ̄ then

sup
x∈S(σ)

‖x− x̄‖ → 0 as σ → σ̄. (4.9)

Furthermore, according to [3, Theorems 3.2, 3.3], an upper bound on the optimal value
function combined with certain sufficient optimality conditions results in solution estimates
and lower bounds for the optimal value of the perturbed optimization problem. Employing
the upper estimate from Theorem 4.1, we thus obtain the next two theorems.

Theorem 4.2 Under the assumptions of Theorem 4.1, suppose that (3.6) holds.
Then for σ ∈ Rs it holds that

sup
x∈S(σ)

‖x− x̄‖ = O(‖σ − σ̄‖), (4.10)

|v(σ)− v(σ̄)| = O(‖σ − σ̄‖).
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Proof. The constraints defining the feasible set of (4.1) can be locally written in the form

F (σ, x) ∈ K,

where F : Rs ×Rn → R|I0+| ×R|I00|+|I0−| ×R|I+0| ×R|I00|,

F (σ, x) = (HI0+(σ, x), HI00∪I0−(σ, x), GI+0(σ, x), y(σ, x)),

yi(σ, x) = Gi(σ, x)Hi(σ, x), i ∈ I00,

K = {0} ×R|I00|+|I0−|
+ ×R|I+0|

− ×R|I00|
− .

(cf. (1.3)). Note that F (σ̄, x̄) = 0, that K is a polyhedral cone, and that by the definition of
I00, for all i ∈ I00, all d ∈ Rs, and all ξ ∈ Rn, it holds that〈

∂yi
∂σ

(σ̄, x̄), d
〉

= Gi(σ̄, x̄)
〈
∂Hi

∂σ
(σ̄, x̄), d

〉
+Hi(σ̄, x̄)

〈
∂Gi
∂σ

(σ̄, x̄), d
〉

= 0, (4.11)

and similarly,〈
∂yi
∂x

(σ̄, x̄), ξ
〉

= Gi(σ̄, x̄)
〈
∂Hi

∂x
(σ̄, x̄), ξ

〉
+Hi(σ̄, x̄)

〈
∂Gi
∂x

(σ̄, x̄), ξ
〉

= 0. (4.12)

Now, in order to apply [3, Theorem 3.2 (iii)], it suffices to show that the following two
conditions hold:{
ξ ∈ Rn

∣∣∣∣∣ ∂F∂x (σ̄, x̄)ξ ∈ K, ∂
2F

∂x2
(σ̄, x̄)[ξ, ξ] ∈ K + im

∂F

∂x
(σ̄, x̄),

〈
∂f

∂x
(σ̄, x̄), ξ

〉
≤ 0

}
= {0},

(4.13)
and for each σ ∈ Rs

− ∂F
∂σ

(σ̄, x̄)(σ − σ̄) ∈ K + im
∂F

∂x
(σ̄, x̄). (4.14)

Using (3.2), it is an easy exercise to check that the set in the left-hand side of (4.13) is
contained in C2 (the reader can also check that the two sets coincide under MPVC-LICQ).
Thus, condition (3.6) implies (4.13).

Furthermore, taking into account (4.11) and (4.12), condition (4.14) can be stated as
follows: there exists x ∈ Rn such that

∂HI0+

∂x
(σ̄, x̄)x−

∂HI0+

∂σ
(σ̄, x̄)(σ − σ̄) = 0, (4.15)

∂HI00∪I0−
∂x

(σ̄, x̄)x−
∂HI00∪I0−

∂σ
(σ̄, x̄)(σ − σ̄) ≥ 0, (4.16)

∂GI+0

∂x
(σ̄, x̄)x−

∂GI+0

∂σ
(σ̄, x̄)(σ − σ̄) ≤ 0. (4.17)

By (4.4), we obtain the existence of x̃ ∈ Rn such that

∂HI0+∪I2
∂x

(σ̄, x̄)x̃ =
∂HI0+∪I2

∂σ
(σ̄, x̄)(σ − σ̄).
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Then from the equality in (4.5) it follows that for each t, the vector x = x̃+ tξ̄ satisfies (4.15)
and (as equalities) those inequalities in (4.16) that correspond to i ∈ I2. Finally, the rest of
the inequalities in (4.16), (4.17) will hold for t > 0 large enough, according to the inequalities
in (4.5). We thus proved (4.14).

The needed result now follows from [3, Theorem 3.2 (iii)] and Theorem 4.1.

It is obvious that the estimates obtained in Theorems 4.1 and 4.2 cannot be improved.

Theorem 4.3 Under the assumptions of Theorem 4.1, let x̄ be a strongly stationary point
of problem (4.1) for σ = σ̄, and suppose that (3.7) holds.

Then for σ ∈ Rs we have that

sup
x∈S(σ)

‖x− x̄‖ = O(‖σ − σ̄‖1/2),

|v(σ)− v(σ̄)| = O(‖σ − σ̄‖).

Proof. This follows immediately from [3, Theorems 3.3] and Theorems 3.4, 4.1.

The next example (cf. [5, Example 4.23], [3, Example 6.1]) demonstrates that the esti-
mates obtained in Theorem 4.3 cannot be improved, even when perturbations are performed
along a given direction in the space of parameter values.

Example 4.1 Let s = 1, n = 4, m = 2, f(σ, x) = −x2 + (x2
3 + x2

4)/2, G(σ, x) = (x3, x4),
H(σ, x) = (−x2 − x2

1 + σ, −x2 + x2
1).

It can be easily seen that x̄ = 0 is the unique solution of MPVC (4.1) for σ = σ̄ = 0,
I+ = ∅, I0 = I00 = {1, 2}, and for (I1, I2) = ({1, 2}, ∅) (and only for this partition!), MFCQ
holds at x̄ for branch problem (4.3) for σ = σ̄. Furthermore,

M = {µ = (µH , 0) ∈ R2 ×R2 | µH1 + µH2 = 1, µH1 ≥ 0, µH2 ≥ 0},

C2 = C = {ξ ∈ R4 | ξ2 = 0},

and (3.7) holds even with a “universal” multiplier, say µ = ((1, 0), 0)).
The reader can easily check that for any σ ≥ 0 small enough

v(σ) = −σ/2, S(σ) = {(±(σ/2)1/2, σ/2, 0, 0)}.

4.2 Sensitivity under MPVC-LICQ

Let now a local solution x̄ of the problem (4.1) for σ = σ̄ satisfy MPVC-LICQ. In this case,
the sensitivity results obtained in Section 4.1 can be quantitatively sharpened and completed.

Recall that, according to Theorem 2.1, under the stated assumptions there exists the
unique µ = µ̄ = (µ̄H , µ̄G) ∈ Rm ×Rm satisfying (2.8), (2.9). And, moreover, this multiplier
satisfies (2.10) as well, i.e., µ̄ is the MPVC-multiplier associated to the strongly stationary
point x̄. Moreover, for each partition (I1, I2) ∈ I, the point x̄ is a local solution of the
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corresponding branch problem (4.3) for σ = σ̄, satisfying LICQ, and the sensitivity theory
presented in [5, Chapters 4, 5] is completely applicable to each of the branch problems. Note
finally that µ̄ is the unique Lagrange multiplier associated to a stationary point x̄ of each
branch problem. These are the key observations for the approach adopted in this section.

For each partition (I1, I2) ∈ I, and each σ ∈ Rs, let S(I1, I2)(σ) stand for the (global)
solution set of problem

minimize f(σ, x)
subject to HI0+∪I2(σ, x) = 0, HI1∪I0−(σ, x) ≥ 0, GI+0∪I1(σ, x) ≤ 0, x ∈ B, (4.18)

and define the local optimal value function v(I1, I2) : Rs → R of problem (4.3) as the optimal
value function of problem (4.18):

v(I1, I2)(σ) = inf
x∈D(I1, I2)(σ)∩B

f(σ, x).

From this point on, we will need the explicit dependence of MPVC-Lagrangian on the
parameter: let

L(σ, x, µ) = f(σ, x)− 〈µH , H(σ, x)〉+ 〈µG, G(σ, x)〉,

where σ ∈ Rs, x ∈ Rn and µ = (µH , µG) ∈ Rm ×Rm.
We first deal with perturbations along a given direction d ∈ Rs. Since LICQ implies

directional regularity (Gollan’s condition, to be discussed in more detail in Section 5) in
any direction (see [5, Proposition 5.50 (v)]), by [5, Proposition 5.50 (ii), Theorem 5.51 (i)]
we obtain that for any partition (I1, I2) ∈ I, and any mapping ρ : R+ → Rs such that
ρ(t) = o(t), for t ≥ 0 it holds that

v(I1, I2)(σ̄ + td+ ρ(t)) ≤ v(I1, I2)(σ̄) +
〈
∂L
∂σ

(σ̄, x̄, µ̄), d
〉
t+ o(t), (4.19)

where 〈∂L∂σ (σ̄, x̄, µ̄), d〉 coincides with the optimal value of the LP problem

minimize
〈
∂f
∂σ (σ̄, x̄), d

〉
+
〈
∂f
∂x (σ̄, x̄), ξ

〉
subject to

∂HI0+∪I2
∂σ (σ̄, x̄)d+

∂HI0+∪I2
∂x (σ̄, x̄)ξ = 0,

∂HI1∪I0−
∂σ (σ̄, x̄)d+

∂HI1∪I0−
∂x (σ̄, x̄)ξ ≥ 0,

∂GI+0∪I1
∂σ (σ̄, x̄)d+

∂GI+0∪I1
∂x (σ̄, x̄)ξ ≤ 0.

(4.20)

In particular, the optimal value of the latter problem does not depend on (I1, I2) ∈ I.
Furthermore, let x̄ be a strict local solution of MPVC (4.1) (and hence, of any branch

problem) for σ = σ̄. Then by [5, Theorem 4.26], and by the uniqueness of the multiplier µ̄,
estimate (4.19) is exact (holds as an equality), which implies that v(I1, I2) is differentiable at
σ̄, and the derivative

v′(I1, I2)(σ̄) =
∂L
∂σ

(σ̄, x̄, µ̄)

does not depend on a partition (I1, I2) ∈ I.
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In order to transmit these results onto the original problem (4.1), let us employ the
equality (4.7), which immediately yields that for σ ∈ Rs close enough to σ̄ we have that

v(σ) = min
(I1, I2)∈I

v(I1, I2)(σ), (4.21)

S(σ) =
⋃

(I1, I2)∈I,
v(I1, I2)(σ)=v(σ)

S(I1, I2)(σ). (4.22)

(In order to avoid the discussion of a local nature of (4.7), we can assume from now on that
B is so small that (4.7) holds for each σ ∈ Rs close enough to σ̄, with the left-hand side and
the right-hand side intersected with B.) By (4.21) and the discussion above, we immediately
obtain the following result.

Theorem 4.4 Assume that a local solution x̄ of problem (4.1) for σ = σ̄ satisfies MPVC-
LICQ (2.15), and let µ̄ be the unique MPVC-multiplier associated with x̄.

Then for any direction d ∈ Rs and for t ≥ 0, it holds that

v(σ̄ + td+ ρ(t)) ≤ v(σ̄) +
〈
∂L
∂σ

(σ̄, x̄, µ̄), d
〉
t+ o(t). (4.23)

Moreover, if x̄ is a strict local solution of problem (4.1) for σ = σ̄ then this estimate is exact
(holds as an equality), which implies that v is differentiable at σ̄, and its gradient is given by

v′(σ̄) =
∂L
∂σ

(σ̄, x̄, µ̄). (4.24)

For MPCC, the equality similar to (4.24) was obtained in [11]. It is interesting to note
that under MPVC-LICQ, the first derivative of the optimal value function does not reflect
the combinatorial structure of the feasible set of MPVC. However, the combinatorial aspect
inevitably appears in the higher-order analysis.

Indeed, for each partition (I1, I2) ∈ I, and each d ∈ Rs, denote by S(I1, I2)(d) =
S(I1, I2)(σ̄, x̄; d) the solution set of LP problem (4.20), and consider another auxiliary prob-
lem:

minimize ∂2L
∂(σ, x)2 (σ̄, x̄, µ̄)[(d, ξ), (d, ξ)]

subject to ξ ∈ S(I1, I2)(d)
(4.25)

(this is actually a QP problem). By [5, Theorem 5.51 (ii)], employing the optimal value of
problem (4.25), one can sharpen the estimate (4.19) as follows: for t ≥ 0 it holds that

v(I1, I2)(σ̄ + td) ≤ v(I1, I2)(σ̄) +
〈
∂L
∂σ

(σ̄, x̄, µ̄), d
〉
t

+
1
2

inf
ξ∈S(I1, I2)(d)

∂2L
∂(σ, x)2

(σ̄, x̄, µ̄)[(d, ξ), (d, ξ)]t2 + o(t2). (4.26)

Now, by (4.21), we obtain the following sharpened version of estimate (4.23).
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Theorem 4.5 Assume that a local solution x̄ of problem (4.1) for σ = σ̄ satisfies MPVC-
LICQ (2.15), and let µ̄ be the unique MPVC-multiplier associated with x̄.

Then for any direction d ∈ Rs and for t ≥ 0, it holds that

v(σ̄ + td) ≤ v(σ̄) +
〈
∂L
∂σ

(σ̄, x̄, µ̄), d
〉
t

+
1
2

min
(I1, I2)∈I

inf
ξ∈S(I1, I2)(d)

∂2L
∂(σ, x)2

(σ̄, x̄, µ̄)[(d, ξ), (d, ξ)]t2 + o(t2). (4.27)

Note that the combinatorial aspect is explicit in the estimate (4.27).
Moreover, since I is finite, according to (4.22), (4.27), [5, Theorem 4.95], and relation

(4.9) in Theorem 4.1, we obtain the following result.

Proposition 4.1 Assume that a strict local solution x̄ of problem (4.1) for σ = σ̄ satisfies
MPVC-LICQ (2.15), and let µ̄ be the unique MPVC-multiplier associated with x̄.

Then for any sequences {tk} ⊂ R+ \ {0} and {xk} ⊂ Rn such that {tk} → 0, and
xk ∈ S(σ̄ + tkd) ∀ k, any limit point of the sequence {(xk − x̄)/tk} is a solution of problem
(4.25) for some partition (I1, I2) ∈ I such that

lim inf
k→∞

v(I1, I2)(σ̄ + tkd)− v(σ̄)−
〈
∂L
∂σ (σ̄, x̄, µ̄), d

〉
tk

t2k

≤ min
(J1, J2)∈I

inf
ξ∈S(J1, J2)(d)

∂2L
∂(σ, x)2

(σ̄, x̄, µ̄)[(d, ξ), (d, ξ)].

Further analysis must employ sufficient optimality conditions. For example, for a given
partition (I1, I2) ∈ I, let the corresponding unperturbed branch problem satisfy the standard
second-order sufficient condition at x̄:

∂2L
∂x2

(σ̄, x̄, µ̄)[ξ, ξ] > 0 ∀ ξ ∈ C(I1, I2) \ {0},

where C(I1, I2) is defined for the base parameter value. By [5, Theorem 5.9], we then obtain
the Lipschitzian solution estimate: for σ ∈ Rs

sup
x∈S(I1, I2)(σ)

‖x− x̄‖ = O(‖σ − σ̄‖). (4.28)

Moreover, by [5, Theorem 5.53 (b), (d)], for any fixed d ∈ Rs, the estimate (4.26) is exact,
i.e., for t ≥ 0

v(I1, I2)(σ̄ + td) = v(I1, I2)(σ̄) +
〈
∂L
∂σ

(σ̄, x̄, µ̄), d
〉
t

+
1
2

inf
ξ∈S(I1, I2)(d)

∂2L
∂(σ, x)2

(σ̄, x̄, µ̄)[(d, ξ), (d, ξ)]t2 + o(t2), (4.29)

and for any solution ξ̄ of problem (4.25), branch problem (4.3) for σ = σ̄ + td has an o(t2)-
solution of the form x̄ + tξ̄ + O(t2). Employing (4.21), (4.22), (4.28), and (4.29), we now
obtain the following.
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Theorem 4.6 Assume that a local solution x̄ of problem (4.1) for σ = σ̄ satisfies MPVC-
LICQ (2.15), and suppose that

∂2L
∂x2

(σ̄, x̄, µ̄)[ξ, ξ] > 0 ∀ ξ ∈ C2 \ {0}, (4.30)

where µ̄ is the unique MPVC-multiplier associated with x̄.
Then for σ ∈ Rs, (4.10) holds. Moreover, for any direction d ∈ Rs, the estimate (4.27)

is exact, i.e., for t ≥ 0

v(σ̄ + td) = v(σ̄) +
〈
∂L
∂σ

(σ̄, x̄, µ̄), d
〉
t

+
1
2

min
(I1, I2)∈I

inf
ξ∈S(I1, I2)(d)

∂2L
∂(σ, x)2

(σ̄, x̄, µ̄)[(d, ξ), (d, ξ)]t2 + o(t2), (4.31)

and for any solution ξ̄ of problem (4.25) for any partition (I1, I2) ∈ I such that

inf
ξ∈S(I1, I2)(d)

∂2L
∂(σ, x)2

(σ̄, x̄, µ̄)[(d, ξ), (d, ξ)]

= min
(J1, J2)∈I

inf
ξ∈S(J1, J2)(d)

∂2L
∂(σ, x)2

(σ̄, x̄, µ̄)[(d, ξ), (d, ξ)],

MPVC (4.1) for σ = σ̄ + td has an o(t2)-solution of the form x̄+ tξ̄ +O(t2).

For MPCC, an estimate similar to (4.31) was derived in [11].
Finally, let us discuss the case when, in addition to MPVC-LICQ, for a given partition

(I1, I2) ∈ I the so-called strong second-order sufficient condition holds at x̄ for the corre-
sponding unperturbed branch problem:

∂2L
∂x2

(σ̄, x̄, µ̄)[ξ, ξ] > 0 ∀ ξ ∈ C+
(I1, I2) \ {0}, (4.32)

where

C+
(I1, I2) = C+

(I1, I2)(σ̄, x̄, µ̄) =

ξ ∈ Rn

∣∣∣∣∣∣∣
H ′I0+∪I2(x̄)ξ = 0,
µ̄Hi 〈H ′i(x̄), ξ〉 = 0, i ∈ I1 ∪ I0−,
µ̄Gi 〈G′i(x̄), ξ〉 = 0, i ∈ I+0

 (4.33)

(by (3.4), C(I1, I2) ⊂ C+
(I1, I2) ). Then according to [5, Proposition 5.38], (x̄, µ̄) is a strongly

regular solution of the KKT system of problem (4.3) for σ = σ̄, and it now follows from [5,
Theorem 5.13] that for each σ ∈ Rs close enough to σ̄, problem (4.3) has near x̄ the unique
local solution and the unique stationary point x(σ), with the unique associated Lagrange
multiplier µ(σ) = (µH(σ), µG(σ)). Moreover, the mapping (x(·), µ(·)) is Lipschitz-continuous
near σ̄. Then by the above-mentioned result on differentiability of v(I1, I2) at σ̄, it can be
easily derived that this function is actually continuously differentiable near σ̄ (just apply the
differentiability result with σ̄ replaced by σ and x̄ replaced by x(σ)). Furthermore, assuming
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that (4.32) holds for each partition (I1, I2) ∈ I, by (4.21) we immediately obtain that v is
piecewise smooth, and, according to (4.22), the perturbed MPVC (4.1) for σ close to σ̄ can
have near x̄ only a finite number (not more than 2|I00|) of different solutions.

We say that the upper-level strict complementarity condition (ULSCC) holds at x̄ for the
associated MPVC-multiplier µ̄ if

µ̄HI00∪I0− > 0, µ̄GI+0
> 0. (4.34)

If this condition holds then, by (4.33), for each partition (I1, I2) ∈ I we have that

C+
(I1, I2) = {ξ ∈ Rn | H ′I0(x̄)ξ = 0, G′I+0

(x̄)ξ = 0},

and condition (4.32) takes the form

∂2L
∂x2

(σ̄, x̄, µ̄)[ξ, ξ] > 0 ∀ ξ ∈ Rn \ {0} such that H ′I0(x̄)ξ = 0, G′I+0
(x̄)ξ = 0 (4.35)

(independent of (I1, I2)).
For MPCC, the following argument goes through:

1. Under ULSCC, strong second order sufficient condition for each branch is just strong
second order sufficient condition for TNLP. Combined with MPCC-LICQ, this implies
strong regularity for TNLP, and hence, perturbed TNLP has the unique local solution
with the unique associated multiplier.

2. Under ULSCC, a solution of the KKT system for any branch problem is a solution of
the Lagrange system for TNLP.

Thus, under these assumptions, the solutions of all perturbed branch MPCC problems co-
incide with the unique solution of perturbed TNLP, and hence, for each σ ∈ Rs close to σ̄,
the perturbed MPCC has near x̄ the unique local solution x(σ), with the unique associated
MPCC-multiplier µ(σ). The mapping (x(σ), µ(σ)) is Lipschitz-continuous near σ̄, while v is
continuously differentiable near σ̄ (the fact first established in [17, Theorem 11]).

For MPVC, item 1 is valid, but not item 2: the KKT system for TNLP contains the
condition GI2(σ, x) ≤ 0, which is missing in the KKT system for the corresponding branch
problem. And vice versa: the KKT system for the branch problem subsumes the condition
µI2 = 0, which does not follow from the KKT system for TNLP.

The next example demonstrates that item 2 is indeed not valid for MPVC.

Example 4.2 Let s = 4, n = 2, m = 1, f(σ, x) = x2+ax2
1/2+σ1x1+σ2x2, G(σ, x) = x1−σ3,

H(σ, x) = x2 − σ4, where a > 0. This is just a parameterized version of model Example 1.1,
with the linear perturbation of the objective function, and the simplest perturbations of G
and H (right-hand side perturbations).

The point x̄ = 0 is the unique solution of the unperturbed MPVC corresponding to
σ = σ̄ = 0, satisfying MPVC-LICQ (2.15) and the second-order sufficient condition (4.30)
with the unique associated MPVC-multiplier µ̄ = (µ̄H , µ̄G) = (1, 0). Moreover, ULSCC
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(4.34) holds at x̄ for this multiplier, and condition (4.35) is satisfied too (actually, for each
of the two partitions (I1, I2) ∈ I, it holds that C+

(I1, I2) = C(I1, I2) = C = C2).

Furthermore, for each d ∈ R4, it holds that 〈∂L∂σ (σ̄, x̄, µ̄), d〉 = d4, and for each of the
two partitions (I1, I2) ∈ I, the equality S(I1, I2)(d) = {ξ ∈ R2 | ξ2 = d4} holds, and problem
(4.25) takes the form

minimize aξ2
1/2 + d1ξ1 + d2ξ2

subject to ξ2 = d4.

The unique solution of this problem is ξ̄ = (−d1/a, d2), and the optimal value is equal to
−d2

1/(2a) + d2d4.
It can be easily checked that for each σ ∈ R2 close enough to 0, it holds that

v(σ) = σ4 −
1
2a
σ2

1 + σ2σ4, S(σ) =
{(
−1
a
σ1, σ4

)}
,

which completely agrees with the result of Theorem 4.6.
Note, however, that for each σ ∈ R2 close enough to 0,

S(∅, {1})(σ) = {(−σ1/a, σ4)},

while

S({1}, ∅)(σ) =

{
{(−σ1/a, σ4)} if σ1 ≥ −aσ3,
{(σ3, σ2)} if σ1 < −aσ3,

the latter being also the solution set of the perturbed TNLP. Thus, the solutions of TNLP
(and of the second branch problem) do not coincide with the solution of the first branch
problem when σ1 < −aσ3.

However, in this example the solution of the perturbed MPVC is still unique, and this is
not accidental. This is clarified by the next theorem, where we refer to the branch problem
(4.3) corresponding to I1 = ∅, I2 = I00 as the minimal branch problem. (One should not take
this terminology literally: the feasible set of this branch problem is not necessarily contained
in the feasible sets of the other branches, and in particular, the feasible set of this problem
is not necessarily contained in DTNLP.)

Theorem 4.7 Assume that a local solution x̄ of problem (4.1) for σ = σ̄ satisfies MPVC-
LICQ (2.15), that ULSCC (4.34) holds at x̄ for the unique associated MPVC-multiplier µ̄,
and that (4.35) holds.

Then for σ ∈ Rs close enough to σ̄, problem (4.1) has near x̄ the unique local so-
lution and the unique strongly stationary point x(σ). Moreover, this solution coincides
with the unique solution of the minimal branch problem, the associated MPVC-multiplier
µ(σ) = (µH(σ), µG(σ)) is unique, and the mapping (x(σ), µ(σ)) is Lipschitz-continuous near
σ̄, while v is continuously differentiable near σ̄.

Proof. According to (4.7), for any σ ∈ Rs close enough to σ̄, any local solution x(σ) of
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MPVC (4.1) near x̄ must be a local solution of the branch problem (4.3) for some partition
(I1, I2) ∈ I. According to the discussion above, there exists the unique associated Lagrange
multiplier µ(σ), and µ(σ)→ µ̄ as σ → σ̄. Substituting (x(σ), µ(σ)) into the KKT system of
the branch problem, and employing ULSCC (4.34), we obtain the relations

HI0(σ, x(σ)) = 0, GI0+(σ, x(σ)) = 0,

assuring that x(σ) belongs to the feasible set of the minimal branch problem. But then, again
according to (4.7), x(σ) is a local solution of the minimal branch problem. The rest follows
from the discussion above applied to the minimal branch.

We finally provide an example demonstrating that the perturbed MPVC may have in-
finitely many solutions if the strong second-order sufficient condition (4.32) does not hold for
some partition (I1, I2) ∈ I.

Example 4.3 Let s = n = 2, m = 1, f(σ, x) = (x1 − x2)2, G(σ, x) = x1 − σ1, H(σ, x) =
x2 − σ2. This is just the parameterized version of Example 3.1, with the right-hand side
perturbations of G and H.

The point x̄ = 0 is the unique solution of the unperturbed MPVC corresponding to
σ = σ̄ = 0, satisfying MPVC-LICQ (2.15) and the second-order sufficient condition (4.30)
with the unique associated MPVC-multiplier µ̄ = 0. The strong second-order sufficient
condition (4.32) holds for (I1, I2) = (∅, {1}), but it does not hold for the second possible
partition (I1, I2) = ({1}, ∅).

Furthermore, for each d ∈ R2, it holds that 〈∂L∂σ (σ̄, x̄, µ̄), d〉 = 0, and for each of the two
partitions (I1, I2) ∈ I, (4.20) is just a feasibility problem, giving S(∅, {1})(d) = {ξ ∈ R2 | ξ2 =
d2} and S({1}, ∅)(d) = {ξ ∈ R2 | ξ2 ≥ d2, ξ1 ≤ d1}. In the first case, problem (4.25) takes the
form

minimize 2(ξ1 − ξ2)2

subject to ξ2 = d2,

and its unique solution is ξ̄ = (d2, d2). In the second case, problem (4.25) takes the form

minimize 2(ξ1 − ξ2)2

subject to ξ2 ≥ d2, ξ1 ≤ d1,

and its solution set is [(d2, d2), (d1, d1)] if d1 > d2, and {(d2, d2)} if d1 ≤ d2. In both cases,
the optimal value of problem problem (4.25) equals 0.

It can be easily checked that for each σ ∈ R2 it holds that

v(σ) = 0, S(σ) =

{
[(σ2, σ2), (σ1, σ1)] if σ1 > σ2,
(σ2, σ2) if σ1 ≤ σ2,

which again completely agrees with the result of Theorem 4.6.
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5 A Relaxation Method

One of the approaches to solving MPCC consists in embedding the original problem into a
family of perturbed problems, where the “troublesome” complementarity constraint is relaxed
[18, 15]. Applying this idea to MPVC, we consider problems of the form

minimize f(x)
subject to Hi(x) ≥ 0, Gi(x)Hi(x) ≤ t, i = 1, . . . , m,

(5.1)

where t ≥ 0 is the relaxation parameter. Note that, unlike in MPVC (1.1), for t > 0 the
constraints in problem (5.1) can be expected to be regular at its solution, which makes the
problem more tractable. In Example 1.1, this relaxation is actually “exact”, in the sense that
if a > 0 then the unique solution x̄ = 0 of (1.1) is also the unique solution of (5.1) for any
t > 0. Moreover, LICQ holds for (5.1) at x̄ = 0.

In general, of course, exactness cannot be expected and the behaviour of (5.1) as t→ 0+
should be investigated. Let D and D(t) be the feasible sets of (1.1) and (5.1), respectively.
Evidently, D(0) = D and

D ⊂ D(t) ∀ t ≥ 0. (5.2)

Let x̄ be a local solution of (1.1) and let B be a closed ball centered at x̄, defined for
the unperturbed problem (corresponding to the base parameter value t = 0) the same way
as in Section 4. At issue is the behaviour of the relaxed problem (5.1), localized to the ball
B around x̄. To this end, for each t ≥ 0, let S(t) and v(t) denote the solution set and the
optimal value of the problem

minimize f(x)
subject to Hi(x) ≥ 0, Gi(x)Hi(x) ≤ t, i = 1, . . . , m, x ∈ B.

We are interested in estimates of how close is the solution x̄ of the original problem (1.1)
to the set S(t), and how close is the optimal value f(x̄) of (1.1) to v(t). Note that since
x̄ ∈ D(t), it holds that

v(t) ≤ f(x̄) ∀ t ≥ 0. (5.3)

Some facts follow immediately from observations above and sensitivity results of [3, The-
orems 3.1, 3.2] (we note that these facts are actually valid for any relaxation schemes). In
particular, it holds that v is continuous at 0 from the right, and

sup
x∈S(t)

dist(x, S(0))→ 0 as t→ 0 + .

Moreover, if the first-order sufficient condition

C = {0}

is satisfied, then
sup
x∈S(t)

‖x− x̄‖ = O(t), (5.4)

v(t) ≥ f(x̄) +O(t). (5.5)

It is obvious that those (Lipschitzian) estimates cannot be improved.
In the case of MPVC specifically, further analysis gives the following.
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Theorem 5.1 Let x̄ be a strongly stationary point of problem (1.1), and suppose that (3.7)
holds.

Then for t ≥ 0 it holds that

sup
x∈S(t)

‖x− x̄‖ = O(t1/2), (5.6)

and the estimate (5.5) is satisfied.

Proof. By Theorem 3.4, (3.7) is equivalent to the standard second order sufficient condition
(3.8). The assertions now follow from [3, Theorem 3.3], taking into account (5.3).

The estimate (5.6) is sharp, as can be seen from the following example.

Example 5.1 Consider the problem from Example 3.1. Recall that x̄ = 0 is the unique
solution of MPVC (1.1), MPVC-LICQ (2.15) holds at this point, M = {0}, C2 = {ξ ∈ R2 |
ξ2 ≥ 0, ξ1ξ2 ≤ 0}, and that (3.7) holds at x̄.

As is readily seen, for t ≥ 0 it holds that

v(t) = 0, S(t) = {x ∈ R2 | 0 ≤ x1 = x2 ≤ t1/2},

and hence,
sup
x∈S(t)

‖x− x̄‖ = t1/2.

Note that Theorem 5.1 does not employ any CQ-type conditions. Estimate (5.6) can be
improved under the assumptions of MPVC-LICQ and the second-order sufficient condition
for RNLP (2.4) (recall that the latter is violated in the example above). By Theorem 2.1, in
the case of MPVC-LICQ the MPVC-multiplier µ̄ is unique, and since the critical cones for
MPVC (1.1) and for RNLP (2.4) coincide, the second-order sufficient condition for RNLP
takes the form

∂2L
∂x2

(x̄, µ̄)[ξ, ξ] > 0 ∀ ξ ∈ C \ {0}. (5.7)

Theorem 5.2 Assume that a local solution x̄ of problem (1.1) satisfies MPVC-LICQ (2.15),
and suppose that the second-order sufficient condition (5.7) is satisfied, where µ̄ = (µ̄H , µ̄G)
is the unique MPVC-multiplier associated with x̄.

Then for t ≥ 0 the estimate (5.4) is valid.

Proof. The assertion would follow from [5, Theorem 4.55], once we show that problem
(5.1) satisfies at x̄, for t = 0, the directional regularity condition of Gollan [7] in the direction
d = 1, as well as the associated (directional) second-order condition (see [5, (4.139)]).

We start with the latter. To this end, for t ≥ 0, x ∈ Rn, λ = (λG, λGH) ∈ Rm ×Rm, let

L(t, x, λ) = f(x)− 〈λH , H(x)〉+
m∑
i=1

λGHi (Gi(x)Hi(x)− t),
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be the Lagrangian of (5.1). Note that, for t = 0, this function coincides with the Lagrangian
of the original problem (1.1), as defined in (2.1). Hence, by Theorem 2.1 and Proposition 2.1,
the set Λ of Lagrange multipliers for problem (5.1) with t = 0 consists precisely of λ =
(λG, λGH) ∈ Rm ×Rm that satisfy (2.11)–(2.13) for µ = µ̄. Observe that

∂L

∂t
(0, x̄, λ) = −

m∑
i=1

λGHi . (5.8)

From (2.11)–(2.13) it is evident that the maximum of (5.8) over Λ is attained at the unique
point λ̄ = (λ̄G, λ̄GH) ∈ Rm ×Rm corresponding to

λ̄GHi = 0, i ∈ I00 ∪ I0−, λ̄GHi = max

{
0, − µ̄Hi

Gi(x̄)

}
, i ∈ I0+. (5.9)

(The other components of λ̄ are all fixed according to (2.11), (2.12).)
By Proposition 2.1 (see (2.14)), for any ξ ∈ C it holds that

∂2L

∂x2
(0, x̄, λ̄)[ξ, ξ] =

∂2L
∂x2

(x̄, µ̄)[ξ, ξ] + 2
∑

i∈I+0∪I0
λ̄GHi 〈G′i(x̄), ξ〉〈H ′i(x̄), ξ〉

=
∂2L
∂x2

(x̄, µ̄)[ξ, ξ] + 2
∑

i∈I+0∪I0+

λ̄GHi 〈G′i(x̄), ξ〉〈H ′i(x̄), ξ〉

=
∂2L
∂x2

(x̄, µ̄)[ξ, ξ], (5.10)

where the second equality follows from (5.9), and the last follows from (3.3). The assumption
(5.7) and the relation (5.10) now imply that

∂2L

∂x2
(0, x̄, λ̄)[ξ, ξ] > 0 ∀ ξ ∈ C \ {0},

which is the needed second-order condition from [5, (4.139)].
It remains to show that problem (5.1) satisfies for t = 0 the directional regularity condition

in the direction d = 1. In this context, this means that there should exist ξ̄ ∈ Rn such that

H ′I0(x̄)ξ̄ > 0, Gi(x̄)〈H ′i(x̄), ξ̄〉 < 1, i ∈ I0+ ∪ I0−, Hi(x̄)〈G′i(x̄), ξ̄〉 < 1, i ∈ I+0.

By MPVC-LICQ, one can always find ξ̄ satisfying the first inequality above, while the other
inequalities will be satisfied after the appropriate re-scaling of this ξ̄. This completes the
proof.

One expects the suggested relaxation approach to be useful if for t > 0 the constraints of
problem (5.1) will be regular at its solution x(t). We next establish this property, as well as
boundedness of Lagrange multipliers associated with x(t) as t→ 0+, under the assumptions
of Theorem 5.2.
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Theorem 5.3 Assume that a feasible point x̄ of problem (1.1) satisfies MPVC-LICQ (2.15).
Let the sequences {tk} ⊂ R+ \ {0} and {xk} ⊂ Rn be such that {tk} → 0,

‖xk − x̄‖ = o(t1/2k ), (5.11)

where for each k, xk is a feasible point of problem (5.1) with t = tk.
Then for each k large enough, the constraints of (5.1) satisfy LICQ at xk, and if xk is a

stationary point of problem (5.1) with t = tk, then the sequence of associated uniquely defined
Lagrange multipliers λk = ((λH)k, (λGH)k) is bounded, and

(λHI+)k = 0, (λGHI+−∪I00∪I0−)k = 0, (λHi )k(λGHi )k = 0 ∀ i ∈ I0+. (5.12)

Moreover, if x̄ is a strongly stationary point of problem (1.1), with the unique associated
MPVC multiplier µ̄ = (µ̄H , µ̄G), then {λk} has no more than 2|I0+| different accumulation
points, and

(λHi )k → µ̄Hi ∀ i ∈ I00 ∪ I0−, (λGHi )kHi(xk)→ µ̄Gi ∀ i ∈ I+0,

(λHi )k − (λGHi )kGi(xk)→ µ̄Hi ∀ i ∈ I0+.

Proof. By the definition of the index sets involved, there exists a neighborhood of x̄ such
that for any t > 0, the constraints HI+(x) ≥ 0 and Gi(x)Hi(x) ≤ t, i ∈ I+− ∪ I0−, cannot be
active at any feasible point of problem (5.1) in this neighborhood. Furthermore, according
to (5.11), for i ∈ I00 it holds that

Gi(xk)Hi(xk) = O(‖xk − x̄‖2)
= o(tk)
< tk

for all k large enough. Hence, the constraints Gi(x)Hi(x) ≤ tk, i ∈ I00, are also inactive at
xk for such k. Thus, the only constraints of problem (5.1) that can be active at xk are the
following: HI0(x) ≥ 0, Gi(x)Hi(x) ≤ tk, i ∈ I+0 ∪ I0+. Moreover, for i ∈ I0+, the constraints
Hi(x) ≥ 0 and Gi(x)Hi(x) ≤ tk cannot be active simultaneously.

Set IH = {i ∈ I0 | Hi(xk) = 0}. Generally, IH depends on k, but we may omit this
dependence without loss of generality (it suffices to split the sequence {xk} into a finite number
of subsequences, each corresponding to some fixed IH , and to consider these subsequences
separately). Now the only constraints of (5.1) that can be active at xk are the following:
HIH (x) ≥ 0 and Gi(x)Hi(x) ≤ tk, i ∈ I+0 ∪ (I0+ \ IH). The corresponding gradients have the
form:

H ′i(x
k), i ∈ IH ,

Gi(xk)H ′i(x
k) +Hi(xk)G′i(x

k), i ∈ I+0, Gi(xk)H ′i(x
k) +Hi(xk)G′i(x

k), i ∈ I0+ \ IH .
Again taking into account the definition of the index sets involved, we obtain that the gra-
dients in the second group tend to Hi(x̄)G′i(x̄) as k → ∞, while the gradients in the third
group tend to Gi(x̄)H ′i(x̄). Thus, the entire collection of gradients tends to

H ′i(x̄), i ∈ IH , Hi(x̄)G′i(x̄), i ∈ I+0, Gi(x̄)H ′i(x̄), i ∈ I0+ \ IH ,
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which, after the appropriate re-scaling, is a subset of the linearly independent system in (2.15).
This shows asymptotic regularity of constraints in (5.1). Boundedness of the sequence of
multipliers associated to stationary points of the subproblems follows by a standard argument,
while (5.12) is a consequence of inactivity of the subset of the constraints along the sequence,
as established above.

Furthermore, according to the last group of equalities in (5.12), there exists an index set
I ⊂ I0+ such that for all k large enough

0 =
∂L

∂x
(tk, xk, λk)

= f ′(xk)−
∑
i∈I0

(λHi )kH ′i(x
k) +

∑
i∈I+0∪I0+

(λGHi )k(Gi(xk)H ′i(x
k) +Hi(xk)G′i(x

k))

= f ′(xk)−
∑

i∈I00∪I0−
(λHi )kH ′i(x

k) +
∑
i∈I+0

(λGHi )k(Hi(xk)G′i(x
k) +Gi(xk)H ′i(x

k))

−
∑
i∈I0+

((λHi )kH ′i(x
k)− (λGHi )k(Gi(xk)H ′i(x

k) +Hi(xk)G′i(x
k)))

= f ′(xk)−
∑

i∈I00∪I0−
(λHi )kH ′i(x

k) +
∑
i∈I+0

(λGHi )k(Hi(xk)G′i(x
k) +Gi(xk)H ′i(x

k))

−
∑
i∈I

(λHi )kH ′i(x
k) +

∑
i∈I0+\I

(λGHi )k(Gi(xk)H ′i(x
k) +Hi(xk)G′i(x

k)), (5.13)

(λHI0+\I)
k = 0, (λGHI )k = 0. (5.14)

We next split the sequence {λk} into (no more than 2|I0+|) subsequences corresponding
to different I (and we split {tk} and {xk} accordingly). In the rest of the proof, we deal with
one of these subsequences, without using subindices.

Similarly to the argument above, we observe that

H ′i(x
k)→ H ′i(x̄) ∀ i ∈ I ∪ I00 ∪ I0−,

Hi(xk)G′i(x
k) +Gi(xk)H ′i(x

k)→ Hi(x̄)G′i(x̄) ∀ i ∈ I+0,

Gi(xk)H ′i(x
k) +Hi(xk)G′i(x

k)→ Gi(x̄)H ′i(x̄) i ∈ I0+ \ I,

where the limiting vectors are linearly independent. It then follows from the first two groups
of equalities in (5.12), and from (5.13) and (5.14), that the sequence {λk} converges to some
λ̄ = (λ̄H , λ̄GH), and

f ′(x̄)−
∑

i∈I00∪I0−
µ̃Hi H

′
i(x̄) +

∑
i∈I+0

µ̃Gi G
′
i(x̄)−

∑
i∈I

µ̃Hi H
′
i(x̄)−

∑
i∈I0+\I

µ̃Hi H
′
i(x̄) = 0,

where µ̃HI∪I00∪I0− = λ̄HI00∪I0− , µ̃Gi = λ̄GHi Hi(x̄), i ∈ I+0, µ̃Hi = −λ̄GHi Gi(x̄), i ∈ I0+ \ I,
while the rest of the components of µ̃ = (µ̃H , µ̃G) are zero. Then µ̃ satisfies (2.8) and the
equalities in (2.9), (2.10). Observe finally that for all k, it holds that λk ≥ 0 (since it is a
Lagrange multiplier of an inequality-constrained problem), and hence, λ̄ ≥ 0. This implies
the nonnegativity conditions in (2.9), (2.10). Thus, µ̃ is an MPVC-multiplier associated with
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x̄. And since µ̄ is the unique MPVC-multiplier associated with x̄, we have that µ̃ = µ̄. The
needed assertion is now evident.

We complete this section with conditions that guarantee that the solution set S(t) is a
singleton for all t ≥ 0 small enough.

Theorem 5.4 Assume that a local solution x̄ of problem (1.1) satisfies MPVC-LICQ (2.15),
that ULSCC (4.34) holds at x̄ for the unique associated MPVC-multiplier µ̄, and that the
second-order condition (4.35) holds. Assume further that I0+ = ∅.

Then for t ≥ 0 small enough, S(t) consists of a single element x(t), which is a stationary
point of problem (5.1) with the unique associated Lagrange multiplier λ(t) = (λH(t), λGH(t)),
and the mapping (x(·), λ(·)) is Lipschitz-continuous near 0.

Proof. Under the assumptions of this theorem, Theorem 5.2 is obviously applicable and
implies the estimate (5.4). Then, by Theorem 5.3, for any t > 0 small enough, any x(t) ∈ S(t)
must be a stationary point of problem (5.1), with the unique associated Lagrange multiplier
λ(t) = (λH(t), λGH(t)), and λHI+(t) = 0, λGHI+−∪I0(t) = 0 (recall the assumption I0+ = ∅).
Thus, the only constraints of problem (5.1) that can be active at x(t) are the following:
HI00∪I0−(x) ≥ 0, Gi(x)Hi(x) ≤ t, i ∈ I+0. Hence, x(t) must be a stationary point of the
problem

minimize f(x)
subject to HI00∪I0−(x) ≥ 0, Gi(x)Hi(x) ≤ t, i ∈ I+0,

(5.15)

with the associated Lagrange multiplier (λHI00∪I0−(t), λGHI+0
(t)).

Furthermore, it follows from (2.8)–(2.10) and from the assumption I0+ = ∅ that x̄ is
a stationary point of problem (5.15) for t = 0, with the associated Lagrange multiplier
(µ̄HI00∪I0− , λ̄

GH
I+0

), where λ̄GHi = µ̄Gi /Hi(x̄), i ∈ I+0. Moreover, MPVC-LICQ (2.15) implies
the usual LICQ for the constraints of problem (5.15) at x̄, while ULSCC (4.34) ensures that
(4.35) is the usual strong second-order sufficient condition for problem (5.15) at x̄. Then
according to [5, Proposition 5.38], (x̄, ((µ̄HI00∪I0− , λ̄

GH
I+0

))) is a strongly regular solution of
the KKT system of problem (5.15) for t = 0, and according to [5, Theorem 5.13], for each
t > 0 small enough, x(t) is the unique stationary point of problem (5.15) near x̄, while
(λHI00∪I0−(t), λGHI+0

(t)) is the unique Lagrange multiplier associated with x(t). The same result
ensures that the mapping (x(·), (λHI00∪I0−(·), λGHI+0

(·))) is Lipschitz-continuous near 0.

Employing the last statement of Theorem 5.3, the following extension of Theorem 5.4 can
be proved. Let the assumptions of the latter hold, but with the condition I0+ = ∅ replaced
by µ̄Hi 6= 0 ∀ i ∈ I0+. Then for t ≥ 0 small enough, S(t) consists of no more than 2|I0+|

elements, each of which is a stationary point of problem (5.1) with the unique associated
Lagrange multiplier.
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