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Abstract

In this paper, we show a procedure for solving multilevel fractional programming problems in a large hierarchical

decentralized organization using fuzzy goal programming approach. In the proposed method, the tolerance

membership functions for the fuzzily described numerator and denominator part of the objective functions of all levels

as well as the control vectors of the higher level decision makers are respectively defined by determining individual

optimal solutions of each of the level decision makers. A possible relaxation of the higher level decision is considered for

avoiding decision deadlock due to the conflicting nature of objective functions. Then, fuzzy goal programming

approach is used for achieving the highest degree of each of the membership goal by minimizing negative deviational

variables. We also provide sensitivity analysis with variation of tolerance values on decision vectors to show how the

solution is sensitive to the change of tolerance values with the help of a numerical example.
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Background

Hierarchical optimization or multilevel programming

problems (MLPPs) have the following common characteris-

tics: interactive decision making units exist within predom-

inantly hierarchical structures; the execution of decision

is sequential from higher level to lower level; each decision-

making unit independently controls a set of decision vari-

ables and is interested in maximizing its own objective but

is affected by the reaction of lower level decision makers

(DMs). Due to their dissatisfaction with the decision of the

higher level DMs, decision deadlock arises frequently in the

decision-making situation. Multilevel fractional program-

ming problems (MLFPPs) involve objective functions in

fractional form, i.e., f Xð Þ ¼ N Xð Þ
D Xð Þ at each level with the as-

sumption that the denominator of objectives remains posi-

tive at each level in the feasible region. Some important

existing solution approaches such as the extreme point

search, the procedure based on the Karush-Kuhn Tucker

condition, and the decent method (Anandilingam 1988;

Anandilingam and Apprey 1991; Biswas and Pal 2005;

Bellmann 1957; Charnes and Cooper 1962; Craven and

Mond 1975; Lai 1996) are effective only for solving simple

types of multilevel programming problems. Initially, fuzzy

approach was used to handle multiobjective optimization

problems (Chakraborty and Gupta 2002; Jimenez and Bilbas

2009). Lai and Hwang (1993) at first developed an effective

fuzzy approach using the concept of tolerance member-

ship functions for solving MLPPs in 1996. Shih et al.

(1996) extended Lai’s concept using a non-compensatory

maximum-minimum aggregation operator for solving

MLPPs. Shih and Lee (2000) further extended Lai’s concept

by introducing the compensatory fuzzy operator for solving

MLPPs. Sinha (2003a,b) studied alternative MLP techniques

based on fuzzy mathematical programming (FMP). The

basic concept of these fuzzy approaches is the same, and

evaluation of the problem again and again by redefining the

elicited membership values is essentially needed in the solu-

tion search process to obtain a satisfactory solution. So,

computational load is also inherently involved in the fuzzy

approaches developed so far. In the FMP techniques of

Sinha (2003a,b), the last (lower) level is the most important,

and the decision of the lowest level remains either un-

changed or closest to individual best decisions, which leads
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to the paradox that the decision power of the lowest level

DM dominates the higher level DM. To overcome such dif-

ficulties, the fuzzy goal programming (FGP) approach to

multidecision-making problems was introduced by

Mohamed (1997) which is extended by Pramanik and Roy

(2007) to solve MLPPs. Baky (2009) used fuzzy goal

programming to solve decentralized bilevel multiobjective

programming problems. Chang (2009) suggested goal

programming approach for fuzzy multiobjective fractional

programming problems. Recently, Pal and Gupta (2009)

studied a genetic algorithm to fuzzy goal programming

formulation of fractional multiobjective decision-making

problems.

In real-world decision-making situations, decision makers

sometimes may be faced with the decision to optimize

inventory/sales, actual cost/standard cost, output/employee,

etc. with respect to some constraints. Such type of problems

in a large hierarchical organization from higher level to

lower level and their sequential decisions on complex and

conflicting objectives formulate the MLFPPs. Practical

optimization situations involving multilevel with fractional

objectives have been rare, but such problems can be

encountered in the most complex design, pattern recogni-

tion, control theory, and resource allocation situations

(Mohamed 1997). Motivated by the concept of interactive

fuzzy goal programming and fractional programming, an

effort has been made to examine the possibility of unifying

the level-wise (hierarchical) and stage-wise operations with

the assumption of a positive denominator of objective

functions at each level. The aim of this paper is to present a

procedure to solve multilevel fractional programming

problems. Our proposed methodology involves the fuzzy

goal levels of the numerator and denominator part of each

objective as well as decision vectors controlled by the

higher level DMs, which are determined by individual opti-

mal solutions. Then, the fuzzy goals are characterized by

the associated membership functions which are trans-

formed into fuzzy flexible membership goals by means of

introducing negative and positive deviational variables and

assigning a higher membership value (unity) as aspiration

level to each of them. Since overdeviation from any fuzzy

goal implies the full achievement of the membership values,

we assign only negative deviational variables to the achieve-

ment function and minimize negative deviational variables

to get a compromise optimal solution. To illustrate our pro-

posed method, we solve a numerical example and compare

the results with the change in tolerance limits.

The paper is organized as follows: In the ‘Formulation

of MLPP’ section, we discuss formulation of MLFPP and

the related terminology. In the ‘Fuzzy programming for-

mulation of MLFPP’ section, we characterize the linear

membership functions for the numerator and denomin-

ator of objective functions at each level as well as deci-

sion vectors controlled by the higher level DMs. In the

next section, we discuss the proposed FGP approach to

tackle MLFPPs and formulate different mathematical

models related to it. In the ‘Selection of compromise so-

lution’ section, selection criteria of compromise optimal

solution are described. To illustrate the proposed meth-

odology, a numerical example is considered and sensi-

tivity analysis is performed with the change in tolerance

limits in the ‘Numerical example’ section. Concluding

remarks are given in the last sections.

Results and discussion

Formulation of MLFPP

We consider a T-level fractional programming problem

of maximization-type objectives at each level. Mathemat-

ically, we can state it as follows:

Max
�
X1

Z1
�
Xð Þ ¼

�
C11

�
X1 þ

�
C12

�
X2 þ ::::þ

�
C1T

�
XT þ α1

�
D11

�
X1 þ

�
D12

�
X2 þ ::::þ

�
D1T

�
XT þ β1

Max
�
X2

Z2
�
Xð Þ ¼

�
C21

�
X1 þ

�
C22

�
X2 þ ::::þ

�
C2T

�
XT þ α2

�
D21

�
X1 þ

�
D22

�
X2 þ ::::þ

�
D2T

�
XT þ β2

Max
�
XT

ZT
�
Xð Þ ¼

�
CT1

�
X1 þ

�
CT2

�
X2 þ ::::þ

�
CTT

�
XT þ αT

�
DT1

�
X1 þ

�
DT2

�
X2 þ ::::þ

�
DTT

�
XT þ βT

subject to

�
Ai1

�
X1 þ

�
Ai2

�
X2 þ :::::::::þ

�
AiT

�
XT ≤;¼; ≥ð Þbi

8i ¼ 1; 2; ::::;m
and

�
X1≥0;

�
X2≥0; ::::;

�
XT ≥0

ð1Þ

�
X1 ¼ X1

1 ;X
2
1 ; ::::::::;X

N1

1

� �0
decision variables are under the

control of the first level DM;
�
XT ¼ X1

T ;X
2
T ; ::::::::;X

NT

T

� �0

decision variables are under the control of the t-level DM.

Where 0 denotes transposition,
�
Aij i ¼ 1; 2; ::::;m; and

j ¼ 1; 2; . . . ;T are m row vectors, each with dimension

1� Nj

� �

.
�
Ait

�
Xt ; t ¼ 1; 2; ::::;T is a column vector of di-

mension M � 1ð Þ.
�
C11 ;

�
C21 ; ::::;

�
CT1 are row vectors of di-

mension 1� N1ð Þ . Similarly,
�
C1T ;

�
C2T ; ::::;

�
CTT and

�
D1T ;

�
D2T ; ::::;

�
DTT are row vectors of dimension 1� NTð Þ.

We take
�
X ¼

�
X1∪

�
X2∪ . . . ∪

�
XT and N ¼ N1 þ N2 þ :::::::þ

NT . Here, one DM is located on each level. Decision vec-

tor
�
Xt ; t ¼ 1; 2; . . . ;T is the control of the t-th level DM

having Nt number of decision variables. Here, it is

assumed that the denominator of objective functions is

positive at each level for all the values of decision vari-

ables in the constraint region.

Fuzzy programming formulation of MLFPP

To formulate the fuzzy programming model of MLFPP,

the objective numerator fiN
�
Xð Þ þ αi;8t ¼ 1; 2; . . . ;T and

objective denominator fiD
�
Xð Þ þ αi; 8t ¼ 1; 2; . . . ;T at

Lachhwani and Poonia Journal of Industrial Engineering International 2012, 8:16 Page 2 of 11

http://www.jiei-tsb.com/content/8/1/16



each level and the decision vector
�
Xt ; t ¼ 1; 2; ::;T � 1ð Þ

would be transformed into fuzzy goals by means of assign-

ing an aspiration level to each of them. Then, they are to

be characterized by the associated membership functions

by defining tolerance limits for the achievement of the

aspired levels of the corresponding fuzzy goals.

Characterization of membership function of MLFPP

In the decision-making context, each DM is interested in

maximizing his or her own objective function; the optimal

solution of each DM when calculated in isolation would be

considered as the best solution, and the associated objective

values can be considered as the aspiration level of the corre-

sponding fuzzy goal. Let
�
X

B
t be the best solution of the t-th

level DM. It is quite natural that objective values which are

equal to or larger than ZB
t ¼ Zt

�
X

B
t

� �

¼ Max
�
X2X

Zt
�Xð Þ; t ¼ 1;

2; . . . ;T should be absolutely satisfactory to the t-th level

DM. If the individual best solutions
�
X

B

t ; t ¼ 1; 2; . . . ;T are

the same, then a satisfactory optimal solution of the system

is reached. However, this rarely happens due to the

conflicting nature of the objectives. To obtain a satisfactory

solution, the higher DM should give some tolerance

(relaxation), and the relaxation of the decision of the higher

level DM depends on the needs, desires, and practical

situations in the decision-making situation. Then, the fuzzy

goals take the form

Zt
�
Xð Þ≥Zt

�
X

B
t

� �

; t ¼ 1; 2; . . . ;T

and
�
Xt ffi

�
XB
t ; t ¼ 1; 2; . . . ; T � 1ð Þ.

To build membership functions, fuzzy goals and

tolerance should be determined first. However, they could

hardly be determined without meaningful supporting data.

Using the individual best solution, we find the values of all

the numerator objective functions and denominator

objective functions at each best solution and construct a

payoff matrix as follows:

XB
1 N1 N2 : : NT

�
XB
1 N1

�
XB
1

� �

N2
�
XB
1

� �

: : NT
�
XB
1

� �

�
XB
2 N1

�
XB
2

� �

N2
�
XB
2

� �

: : NT
�
XB
2

� �

: : : : : :
: : : : : :
�
XB
T N1

�
XB
T

� �

N2
�
XB
T

� �

: : NT
�
XB
T

� �

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

and

XB
1 D1 D2 : : DT

�
XB
1 D1

�
XB
1

� �

D2
�
XB
1

� �

: : DT
�
XB
1

� �

�
XB
2 D1

�
XB
2

� �

D2
�
XB
2

� �

: : DT
�
XB
2

� �

: : : : : :
: : : : : :
�
XB
T D1

�
XB
T

� �

D2
�
XB
T

� �

: : DT
�
XB
T

� �

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð2Þ

Here,
�
Xt t ¼ 1; 2; . . . ;Tð Þ are assumed to be the main

decision vectors. The maximum value of each column

Nt
�
XB
t

� �

and Dt
�
XB
t

� �

give upper tolerance limit or aspired

level of achievement for the t-th numerator objective

function and denominator objective function, respectively,

where NB
t ¼ Nt

�
X

B
t

� �

¼ Max�
X2X

Nt
�Xð Þ; t ¼ 1; 2; . . . ;T . The

minimum value of each column gives the lower tolerance

limit or lowest acceptable level of achievement for the

t-th numerator objective function and denominator ob-

jective function, respectively, where NL
t ¼ Min

�X2X
Nt

�
XB
1

� �

;
�

Nt
�
XB
2

� �

; . . . ; Nt
�
XB
T

� �

g; . t ¼ 1; 2; . . . ;T . Then, the linear

membership functions for the defined fuzzy goals are as

follows (see also Figures 1 and 2):

μZt
Nt

�
Xð Þð Þ ¼

1 if Nt
�
Xð Þ≥NB

t

Nt
�Xð Þ � NL

t

NB
t � NL

t

if NL
t ≤Nt

�
Xð Þ≤NB

t

0 if Nt
�
Xð Þ≤NL

t

8t ¼ 1; 2; . . . ;T

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð3Þ

( ( ))
tZ t

D X

L

t
D

B

t
D

1

( ( ))
t

Z t
N X

( )
t

N XL

t
N

B

t
N

1

( )
t

D X

(a)

(b)

Figure 1 (a): Membership function for μZt Di

�
Xð Þð Þ (b): Membership

function for μZt
Ni

�
Xð Þð Þ.
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μZt
Dt

�
Xð Þð Þ ¼

0 if Dt
�
Xð Þ≥DB

t

DB
t � Dt

�Xð Þ

DB
t � DL

t

if DL
t ≤Dt

�
Xð Þ≤DB

t

1 if Dt
�
Xð Þ≤DL

t

8t ¼ 1; 2; . . . ;T

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð4Þ

Here, linear membership functions are more suitable

than nonlinear functions as less computational difficulties

arise in models due to it. Let
�
p�t ;

�
pþt t ¼ 1; 2; . . . ;T � 1ð Þ

be the negative and positive tolerance values on deci-

sion vectors
�
Xt considered by the t-th level DM. This

is a triangular fuzzy number. Then, the linear mem-

bership functions for decision vectors
�
Xt can be

formulated as follows:

μ�
Xt

�
Xtð Þ ¼

�
Xt �

�
X

B
t �

�
p�t

� �

�
p�t

if
�
X

B

t �
�
p�t

� �

≤
�
Xt≤

�
X

B

t

�
X

B
t þ

�
pþt

� �

�
�
Xt

�
pþt

if
�
X

B
t ≤

�
Xt≤

�
X

B
t þ

�
pþt

� �

0 otherwise

8t ¼ 1; 2; . . . ;T

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð5Þ

Here,
�
p�t and

�
pþt are the negative and positive tolerance

vectors;
�
p�t and

�
pþt are not necessarily same. Generally,

�
Xt lies between

�
X

B
t �

�
p�t and

�
X

B
t þ

�
pþt . DMs may prefer to

shift the range of
�
X

B
t which may be the left of

�
X

B
t or the

right of
�
X

B
t , only depending on the needs and desires of

the higher level DMs in the decision-making situation.

Then, the membership function becomes one-sided. For

example, if
�
X ¼

�
0 , then

�
X should lie on the right of

�
0.

Then, the DM should assign
�
p�t ≤

�
0;

�
pþt ≥

�
0 and

�
p�t
�

�

�

�≤
�
pþt
�

�

�

�. If the DM wants the shift towards the left of
�
X

B
t , then

�
p�t should be assigned a positive value while

�
pþt

should be assigned a negative value, i.e.,
�
p�t ≥

�
0 ,

�
pþt ≤

�
0 ,

and
�
p�t
�

�

�

�≥
�
pþt
�

�

�

� . Similarly, if the shift is required to the

right of
�
X

B
t , then the DM should assign

�
p�t ≤

�
0,

�
pþt ≥0, and

�
p�t
�

�

�

�≤

�
pþt

�

�

�

�

�

�. We may treat the tolerance as variables with

the restrictions that
�
p�t ≤

�
X

B
t (so that the value of the

variables remain non-negative).

FGP solution approach

FGP is an extension of conventional goal programming

(GP) introduced by Charnes and Cooper (1962). GP has

been extensively studied and widely circulated in

literature (Arora and Gupta 2009; Pramanik and Roy

2007). In this paper, GP approach to fuzzy multiobjective

decision-making problems introduced by Mohamed

(1997) is extended to solve MLFPP problems. In a

decision-making situation, the aim of each DM is to

achieve the highest membership value (unity) of the

associated fuzzy goal in order to obtain the absolute

satisfactory solution. However, in real practice,

achievement of all membership values to the highest

degree (unity) is not possible due to conflicting

objectives. Therefore, the decision policy for minimizing

the regrets of the DMs for all the levels should be taken

into consideration. Then, each DM should try to

maximize his or her membership function by making

them as close as possible to unity by minimizing its

negative deviational variables. Therefore, in effect, we are

simultaneously optimizing all the objective functions. So,

for the defined membership functions in Equations 3, 4,

and 5, the flexible membership goals having the aspired

level unity can be represented as follows:

μZt
Nt

�
Xð Þð Þ þ D�

t1 � Dþ
t1 ¼ 1; t ¼ 1; 2; . . . ;T ð6Þ

μZt
Dt

�
Xð Þð Þ þ D�

t2 � Dþ
t2 ¼ 1; t ¼ 1; 2; . . . ;T ð7Þ

μ�X t

�
Xtð Þ þ

�
D

�
t3 �

�
D

þ
t3 ¼

�
I ; t ¼ 1; 2; . . . ; T � 1ð Þ ð8Þ

Here, D�
t1;D

�
t2 are negative deviational variables, and

Dþ
t1;D

þ
t2 are positive deviational variables;

�
D

þ
t3;

�
D

�
t3

represent the vector of negative deviational and

positive deviational variables. It is to be noted that

any overdeviation from a fuzzy goal implies the full

achievement value. Then, Equations 6, 7, and 8 can

be written as follows:

μZt
Nt

�
Xð Þð Þ þ D�

t1≥1 ; t ¼ 1; 2; . . . ;T ð9Þ

μZt
Dt

�
Xð Þð Þ þ D�

t2≥1 ; t ¼ 1; 2; . . . ;T ð10Þ

μ�X t

�
Xtð Þ þ

�
D

�
t3≥

�I ; t ¼ 1; 2; . . . ; T � 1ð Þ ð11Þ

( )
t

tX
X

t
X

B

t t
X p

B

t
X

1

B

t t
X p

Figure 2 Membership functions of decision vector
�
Xt t ¼1; 2; ::;ð

T�1Þ.
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FGP formulation can be presented as follows:
Model I: Find �X so as to minimize λ subject to

μZt
Nt

�
Xð Þð ÞþD�

t1≥1; t ¼ 1; 2; . . . ;T

μZt
Dt

�
Xð Þð Þ þ D�

t2≥1; t ¼ 1; 2; . . . ;T

μ�X t

�
Xtð Þ þ

�
D

�
t3≥

�
I ; t ¼ 1; 2; . . . ; T � 1ð Þ

λ≥D�
t1;t ¼ 1; 2; . . . ;T

λ≥D�
t2; t ¼ 1; 2; . . . ;T

λ≥�D
�
t3
�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

D�
t1≥0;t ¼ 1; 2; . . . ;T

D�
t2≥0;t ¼ 1; 2; . . . ;T

�
D

�
t3≥

�
0;t ¼ 1; 2; . . . ; T � 1ð Þ

�
Ai1

�
X1 þ

�
Ai2

�
X2 þ :::::::::::::: þ

�
AiT

�
XT ≤;¼; ≥ð Þbi

8i ¼ 1; 2; ::::;m

and �X1≥0; �X2≥0; :::::::::::; �XT ≥0

ð12Þ

The above problem can be rewritten as follows:

Minimize λ subject to

Nt
�
Xð Þ � NL

t

NB
t � NL

t

þ D�
t1≥1; t ¼ 1; 2; . . . ;T

DB
t � Dt

�
Xð Þ

DB
t � DL

t

þ D�
t2≥1; t ¼ 1; 2; . . . ;T

�
Xt �

�
X

B

t �
�
p�t

� �

�
p�t þ

�
D

�
t31≥

�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

�
X

B
t þ

�
pþt

� �

�
�
Xt

�
pþt þ

�
D

�
t32≥

�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

λ≥D�
t1; t ¼ 1; 2; . . . ;T

λ≥D�
t2; t ¼ 1; 2; . . . ;T

λ≥
�
D

�
t31
�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

λ≥
�
D

�
t32
�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

D�
t1≥0; t ¼ 1; 2; . . . ;T

D�
t2≥0; t ¼ 1; 2; . . . ;T

�
D

�
t31≥

�0; t ¼ 1; 2; . . . ; T � 1ð Þ
�

D
�
t32≥

�0; t ¼ 1; 2; . . . ; T � 1ð Þ
�
Ai1

�
X1 þ

�
Ai2

�
X2 þ :::::::::::::: þ

�
AiT

�
XT ≤;¼; ≥ð Þbi

8i ¼ 1; 2; ::::;m
and

�
X1≥0;

�
X2≥0; :::::::::::;

�
XT ≥0

ð13Þ

Here, D�
t1;D

�
t2 are negative deviational variables.

�
D

�
t31;

�
D

�
t32 represent the vector of underdeviational vari-

ables. �I is the column vector having all components

equal to 1, and its dimension depends on
�
X .

Model IIa: Find
�
X so as to minimize

λ ¼
X

T

t¼1

W�
t1D

�
t1 þ

X

T�1

t¼1

W�
t2D

�
t2 þ

X

T�1

t¼1

�
W

�
t3
�
D

�
t3

Model IIb: Find �X so as to minimize

λ ¼
X

T

t¼1

D�
t1 þ

X

T�1

t¼1

D�
t2 þ

X

T�1

t¼1

�
D

�
t3

subject to

μZt
Nt

�
Xð Þð Þ þ D�

t1≥1; t ¼ 1; 2; . . . ;T

μZt
Dt

�
Xð Þð Þ þ D�

t2≥1; t ¼ 1; 2; . . . ;T

μ�X t

�
Xtð Þ þ

�
D

�
t3≥

�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

D�
t1≥0; t ¼ 1; 2; . . . ;T

D�
t2≥0; t ¼ 1; 2; . . . ;T

�
D

�
t3≥

�0; t ¼ 1; 2; . . . ; T � 1ð Þ
�
Ai1

�
X1 þ

�
Ai2

�
X2 þ :::::::::::::: þ

�
AiT

�
XT ≤;¼; ≥ð Þbi

8i ¼ 1; 2; ::::;m
and

�
X1≥0;

�
X2≥0; :::::::::::;

�
XT ≥0

ð14Þ

Here,D�
t1;D

�
t2 are negative deviational variables. �D

�
t3

represents the vector of underdeviational variables.

The numerical weights are taken as W�
t1 ¼ 1

NB
t �NL

tð Þ

.

,

W�
t2 ¼ �1= DB

t �DL
tð Þ , and �W

�
t3 ¼

1
�p�tð Þ;

1
�pþtð Þ

. i.h

. �I is

the column vector having all components equal to 1,

and its dimension depends on �X . The above problem

in models IIa and IIb can be rewritten as follows:

Minimize

λ ¼
X

T

t¼1

W�
t1D

�
t1 þ

X

T�1

t¼1

W�
t2D

�
t2 þ

X

T�1

t¼1

�
W

�
t31

�
D

�
t31

þ
X

T�1

t¼1

�
W

�
t32

�
D

�
t32

Minimize

λ ¼
X

T

t¼1

D�
t1 þ

X

T�1

t¼1

D�
t2 þ

X

T�1

t¼1

�D
�
t31 þ

X

T�1

t¼1

�D
�
t32

subject to

Nt
�Xð Þ � NL

t

NB
t � NL

t

þ D�
t1≥1 ; t ¼ 1; 2; . . . ;T

DB
t � Dt

�
Xð Þ

DB
t � DL

t

þ D�
t2≥1 ; t ¼ 1; 2; . . . ;T

�
Xt �

�
X

B
t �

�
p�t

� �

�
p�t þ

�
D

�
t31≥

�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

�
X

B

t þ
�
pþt

� �

�
�
Xt
�
pþt þ

�
D

�
t32≥

�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

D�
t1≥0 ; t ¼ 1; 2; . . . ;T

D�
t2≥0 ; t ¼ 1; 2; . . . ;T

�
D

�
t3≥

�0 ; t ¼ 1; 2; . . . ; T � 1ð Þ

�
Ai1

�
X1 þ

�
Ai2

�
X2 þ :::::::::::::: þ

�
AiT

�
XT ≤;¼;≥ð Þbi

8i ¼ 1; 2; ::::;m
and
�
X1≥0;

�
X2≥0; :::::::::::;

�
XT ≥0

ð15Þ
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Here, D�
t1;D

�
t2 are negative deviational variables. �D

�
t31 and

�
D

�
t32 represent the vector of underdeviational variables.

W�
t1 ¼ 1

NB
t �NL

tð Þ

.

, W�
t2 ¼ �1= DB

t �DL
tð Þ and

�
W

�
t31 ¼

1
�p�tð Þ;

.

�
W

�
t31 ¼

1
�pþtð Þ

.

. �I is the column vector having all

components equal to 1, and its dimension depends on �X .

By solving Equation 15, if the DMs are satisfied with this

solution, then a satisfying solution is reached. Otherwise,

higher level DMs should provide new tolerance limits for

the control variable until a satisfying solution is reached. In

general, considering a set of positive relaxation offered by

the higher level DMs, the solution of Equation 15 becomes

satisfying for all the level DMs.

Numerical example

Let us consider the following tri-level linear fractional

programming problem as

Max
x1;x2

Z1 ¼
7x1 þ 3x2 � 4x3 þ 2x4

x1 þ x2 þ x3 þ 1

Max
x3

Z2 ¼
x2 þ 3x3 þ 4x4

x1 þ x2 þ x3 þ 2

Max
x4

Z3 ¼
2x1 þ x2 þ x3 þ x4

x1 þ x2 þ x3 þ 3

subject to

x1 þ x2 þ x3 þ x4≤5

x1 þ x2 � x3 � x4≤2

x1 þ x2 þ x3≥1

x1 � x2 þ x3 þ 2x4≤4

x1 þ 2x3 þ 2x4≤3

x4≤2

and x1≥0; x2≥0; x3≥0; x4≥0.

We find the best optimal solution

NL
1 ¼ �6 at 0; 0; 1:5; 0ð Þ;

NB
1 ¼ 17 at 2:3333; 0; 0;0:3333ð Þ,

NB
2 ¼ 9:5 at ð0;3:5; 0;1:5Þ,

NL
2 ¼0 at ð1; 0; 0;0Þ,

NL
3 ¼1 at ð0; 1; 0;0Þ, and

NB
3 ¼ 5 at 2:3333; 0;0:3333;0ð Þ.

Similarly, DB
1 ¼ 6 at 0; 3:5;1:5;0ð Þ;

DL
1 ¼ 2 at 1; 0; 0;0ð Þ;

DB
2 ¼ 7 at 0; 3:5;ð 1:5; 0Þ;

DL
2 ¼ 3 at ð1; 0; 0;0Þ,

DB
3 ¼ 8 at ð0;3:5;1:5;0Þ,

and DL
3 ¼ 4 at ð1; 0; 0;0Þ.

Let the first level DM decide that x1 ¼ 2:3333 with −2

(negative) and +2 (positive) tolerance limits and x2 ¼ 0

with −6.43 (negative) and +6.43 (positive) tolerance

limits. Let the second level DM decide that x3 ¼ 0 with −1

(negative) and +1 (positive) tolerance limits.

Then, following the procedure, FGP model I gives the

problem as follows:

Minimize λ subject to

Nt
�Xð Þ � NL

t

NB
t � NL

t

þ D�
t1≥1; t ¼ 1; 2; . . . ;T

⇒ 7x1 þ 3x2 � 4x3 þ 2x4 þ 23D�
11≥17

⇒ x2 þ 3x3 þ 4x4 þ 9:5D�
21≥9:5

⇒ 2x1 þ x2 þ x3 þ x4 þ 4D�
31≥5

DB
t � Dt

�Xð Þ

DB
t � DL

t

þ D�
t2≥1 ; t ¼ 1; 2; . . . ;T

⇒ x1 þ x2 þ x3 � 4D�
12≥1

⇒ x1 þ x2 þ x3 � 4D�
22≤1

⇒ x1 þ x2 þ x3 � 4D�
32≤1

�Xt � �X
B
t � �p�t

� �

�p�t þ �D
�
t31≥

�I ;

�X
B
t þ

�pþt

� �

� �Xt
�pþt þ �D

�
t32≥

�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

⇒� 0:5x1 þ D�
1311≥� 1:1666

⇒� 0:5x1 þ D�
1321≥� 1:1666

⇒� 0:1555x2 þ D�
1312≥0

⇒� 0:1555x2 þ D�
1322≥0

⇒� x3 þ D�
2311≥0

⇒� x3 þ D�
2321≥0
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Figure 3 Description (a) and solution (b) of example 1 with model I in LINDO 10.0 (trial version).

Lachhwani and Poonia Journal of Industrial Engineering International 2012, 8:16 Page 7 of 11

http://www.jiei-tsb.com/content/8/1/16



Figure 4 Description (a) and solution (b) of example 1 with model IIb in LINDO 10.0 (trial version).
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λ≥D�
t1; t ¼ 1; 2; . . . ;T

⇒λ≥D�
11; λ≥D�

21; λ≥D�
31

λ≥D�
t2; t ¼ 1; 2; . . . ;T

⇒λ≥D�
12; λ≥D�

22; λ≥D�
32

λ≥�D
�
t31
�I;λ≥�D

�
t32
�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

⇒λ≥D�
1311; λ≥D�

1321; λ≥D�
1312;

λ≥D�
1322; λ≥D�

2311; λ≥D�
2321

D�
t1≥0; t ¼ 1; 2; . . . ;T

⇒D�
11≥0;D

�
21≥0;D

�
31≥0

D�
t2≥0; t ¼ 1; 2; . . . ;T

⇒D�
12≥0;D

�
22≥0;D

�
32≥0

�D
�
t31≥

�0;�D
�
t32≥

�0; t ¼ 1; 2; . . . ; T � 1ð Þ

⇒D�
1311≥0;D

�
1321≥0;D

�
1312≥0;D

�
1322≥0;

D�
2311≥0;D

�
2321≥0

�Ai1
�X1 þ �Ai2

�X2 þ :::::::::::::: þ �AiT
�XT ≤;¼;≥ð Þbi

8i ¼ 1; 2; ::::;m
⇒x1 þ x2 þ x3 þ x4≤5
x1 þ x2 � x3 � x4≤2

x1 þ x2 þ x3≥1

x1 � x2 þ x3 þ 2x4≤4

x1 þ 2x3 þ 2x4≤3

x4≤2

and �X1≥0; �X2≥0; :::::::::::; �XT ≥0

⇒x1≥0; x2≥0; x3≥0; x4≥0:

Solving the above programming problem using

nonlinear packages (as shown in Figure 3a,b), we obtain

solution x1 ¼ 0:4471; x2 ¼ 1:69105; x3 ¼ 0:0000; and

x4 ¼ 1:2764; λ ¼ 0:2845 ; and Z1 ¼ 3:42738; Z2 ¼
1:642437; and Z3 ¼ 0:7515643.

Model IIb: Find �X so as to minimize

λ ¼
X

T

t¼1

D�
t1 þ

X

T�1

t¼1

D�
t2 þ

X

T�1

t¼1

�D
�
t3

min λ ¼ D�
11 þ D�

21 þ D�
31

� �

þ D�
12 þ D�

22 þ D�
32

� �

þ D�
1311 þ D�

2311 þ D�
1321 þ D�

1312 þ D�
2321 þ D�

1322

� �

subject to

μZt
Nt

�Xð Þð Þ þ D�
t1≥1; t ¼ 1; 2; . . . ;T

⇒7x1 þ 3x2 � 4x3 þ 2x4 þ 23D�
11≥17

⇒x2 þ 3x3 þ 4x4 þ 9:5D�
21≥9:5

⇒2x1 þ x2 þ x3 þ x4 þ 4D�
31≥5

μZt
Dt

�Xð Þð Þ þ D�
t2≥1; t ¼ 1; 2; . . . ;T

⇒x1 þ x2 þ x3 � 4D�
12≥1

⇒x1 þ x2 þ x3 � 4D�
22≤1

⇒x1 þ x2 þ x3 � 4D�
32≤1

μ�X t
�Xtð Þ þ �D

�
t3≥

�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

�Xt � �X
B
t � �p�t

� �

�p�t þ �D
�
t31≥

�I ;

�X
B
t þ

�pþt

� �

� �Xt
�pþt þ �D

�
t32≥

�I ; t ¼ 1; 2; . . . ; T � 1ð Þ

⇒� 0:5x1 þ D�
1311≥� 1:1666

⇒� 0:5x1 þ D�
1321≥� 1:1666

⇒� 0:1555x2 þ D�
1312≥0

⇒� 0:1555x2 þ D�
1322≥0

⇒� x3 þ D�
2311≥0

⇒� x3 þ D�
2321≥0

D�
t1≥0; t ¼ 1; 2; . . . ;T

⇒D�
11≥0;D

�
21≥0;D

�
31≥0

D�
t2≥0; t ¼ 1; 2; . . . ;T

⇒D�
12≥0;D

�
22≥0;D

�
32≥0

�;D
�
t3≥

�0; t ¼ 1; 2; . . . ; T � 1ð Þ

⇒D�
1311≥0;D

�
1321≥0;D

�
1312≥0;

D�
1322≥0;D

�
2311≥0;D

�
2321≥0

�Ai1
�X1 þ �Ai2

�X2 þ :::::::::::::: þ �AiT
�XT ≤;¼;≥ð Þbi

8i ¼ 1; 2; ::::;m

⇒x1 þ x2 þ x3 þ x4≤5

x1 þ x2 � x3 � x4≤2

x1 þ x2 þ x3≥1

x1 � x2 þ x3 þ 2x4≤4

x1 þ 2x3 þ 2x4≤3

x4≤2 and �X1≥0; �X2≥0; :::::::::::; �XT ≥0

⇒x1≥0; x2≥0; x3≥0; x4≥0:

Solving the above FGP model problem using nonlinear

packages (as shown in Figure 4a,b), we obtain solution

x1 ¼ 1:0000, x2 ¼ 0:0000, x3 ¼ 0:0000, and x4 ¼ 1:0000;
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λ ¼ 1:426773 ; and Z1 ¼ 3:42738 , Z2 ¼ 1:642437 , and
Z3 ¼ 0:7515643 (see Table 1 for a comparison of Euclidean

distance and Table 2 for the solution set of example 1).

Conclusion

An effort has been made to solve the multilevel fractional

programming problem based on the fuzzy set theory and

goal programming approach. The main advantage of the

proposed approach is that computational complexity is

reduced by defining separate membership functions for

numerator and denominator functions of objectives at each

level, but tolerance values (positive and negative) are chosen

so that the satisfying solution is forced towards the optimal

solutions. However, the main difficulties of these methods

are the following: (1) Preference information required from

the DM cannot easily be given, particularly when the

information thus required is large and complex and/or the

objective functions in fractional form are measured on

different scales, and (2) if DMs are not satisfied with

solution, then higher level DMs should provide new

tolerance limits for the control variables until a satisfying

solution is reached.

Besides this, the proposed methodology can be easily

reduced to the solution procedure as given by Sinha

(2003b) and Pramanik and Roy (2007) for the multilevel

linear programming case by avoiding the goal membership

functions for denominators of objectives and corresponding

goal variables.

Methods
Selection of compromise solution

The concept of utopia point (the ideal point) and the use

of distance function for group decision analysis was first

studied by Yu (1973). Biswas and Pal (2005) used the

Euclidean distance function to select the appropriate

priority structure in the application of fuzzy goal

programming technique to land use planning in the

agricultural system. Here, different FGP models provide

different optimal solutions. The Euclidean distance

function is used only to identify which FGP model

(model I, model IIa, and model IIb) offers a better

optimal solution. In the FGP formulation, since the

aspired level of each of the membership function goals is

unity, the point consisting of the highest membership

value of each of the goals would represent the ideal

point. The Euclidean distance function can be defined in

this case as follows:

D2 ¼
X

T

t¼1

1� μZt
Nt

�X tð Þð �
2
þ 1� μZt

Dt
�X tð Þð �

2
h oh i1

2;=
	

"

where μZt
Nt

�
X tð Þð and μZt

Dt
�
X tð Þð represent the achieved

membership value of the t-th numerator and denominator

objective goals, respectively. The solution for which D2 is

minimum would be the most satisfying solution.
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Table 1 Comparison of euclidean distance for the solution of example 1

Method x1; x2; x3; x4ð Þ Z1; Z2; Z3ð Þ μz1 N1
�Xð Þ; μz1 D1

�Xð Þ; μz2 N2
�Xð Þ; μz2 D2

�Xð Þ; μz3 N3
�Xð Þ; μz3 D3

�Xð Þð Þ
������

Euclidean distance

Proposed
method I

(0.4471, 1.69105,
0.0000, 1.2764)

(3.42738, 1.642437,
0.7515643)

(0.7285, 0.7155, 0.7154, 0.7155, 0.7154, 0.7154) 0.6918

Proposed
method IIb

(1.0000, 0.0000,
0.0000,1.0000)

(4.5, 1.3333, 0.75) (0.6521, 1, 0.42105, 1, 0.5000, 1) 0.706163

Based on proposed FGP methods I and IIb.

Table 2 Solution set (for example 1) based on the tolerance on the decision variables for model

p�1 ; p
þ
1

� �

p�1 ; p
þ
1

� �

p�2 ; p
þ
2

� �

x1; x2; x3; x4; λð Þ Z1; Z2; Z3ð Þ

(−2, 2) (−6.43, 6.43) (−1, 1) (0.4471, 1.69105, 0.0000, 1.2764, 0.2845) (3.42738, 1.642437, 0.7515643)

(−2, 2) (−5.5, 5.5) (−1, 1) (0.46383, 1.623581, 0.0000, 1.268083, 0.295167) (3.450697, 1.638180, 0.7507402)

(−2, 2) (−5, 5) (−1, 1) (0.48427, 1.54088, 0.0000, 1.25786, 0.3081761) (3.480241, 1.632814, 0.7496851)

(−2, 2) (−4.5, 4.5) (−1, 1) (0.50655, 1.450743, 0.0000, 1.24672, 0.322355) (3.513862, 1.626774, 0.7485059)

(−2, 2) (−4, 4) (−1, 1) (0.5310345, 1.351724, 0.0000, 1.234481, 0.337931) (3.552630, 1.619892, 0.7471748)
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