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MATHEMATICAL STATISTICS IN THE EARLY STATES!
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The history of mathematical statistics in the United States prior to 1885
is reviewed, with emphasis upon the works of Robert Adrain, Benjamin
and Charles Peirce, Simon Newcomb, and Erastus De Forest. While the
period before 1850 produced little of substance, the years from 1850 to 1885
saw such innovations as an outlier rejection procedure, randomized design
of experiments, elicitation of personal probabilities, kernel estimation of
density functions, an anticipation of sufficiency, a runs test for fit, a Monte
Carlo study, optimal linear smoothing, and the fitting of gamma distribu-
tions by the method of moments. Reasons for the rapid acceleration in the
growth of the field are explored.

1. Introduction. In 1799 Thomas Jefferson received a letter from a young
man asking which branches of mathematics it would be most useful for him to
study. Jefferson’s reply praised Euclid and Archimedes as useful sources, and
stated that trigonometry *- . . is most valuable to every man. There is scarcely
a day in which he will not resort to it for some of the purposes of common life;
the science of calculation also is indispensable as far as the extraction of the
square and cube roots, Algebra as far as the quadratic equation and the use of
logarithms are often of value in ordinary cases: but all beyond these is but a
luxury; a delicious luxury indeed; but not to be indulged in by one who is to
have a profession to follow for his subsistence” (Smith and Ginsburg, 1934,
page 62). Jefferson listed ““Algebraical operations beyond the 2nd dimension”
and calculus as among these luxuries, and doubtless would have added proba-
bility if he had been asked.

What follows is a report on an investigation into the question: Did Jefferson’s
contemporaries and their 19th century descendants follow his advice? How,
by whom, and why was the study of the “delicious luxury” of probability and
mathematical statistics pursued in the United States, in the first century of its
existence? There were good reasons for expecting that little, if any, American
work would be found. American science generally did not reach advanced stages
of development before the latter half of the nineteenth century, as American capi-
tal and genius had found other pursuits more rewarding. (See de Tocqueville,
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1840, and, for a modern assessment and recent references, Reingold, 1972.)
Nonetheless, this investigation was undertaken with a cautious optimism.
Although standard histories of statistics have little to say about American work
of this period, the years from 1770 to 1850 had been ones of great interest in
this subject in Europe: perhaps some Americans would have been inspired to
join in its study, and contribute to its development. But, at least in the years
before 1800 this was not the case. Upon closer examination it appears that the
founding fathers’ most significant contribution to mathematical statistics was
their decision to leave the Federalist Papers unsigned! (Mosteller and Wallace,
1964.)

Fortunately as the 19th century progressed some signs of American interest
in this field appeared. In what follows we shall review the early development of
mathematical statistics in America, from its beginnings until 1885. The choice
of 1885 as a cutoff date has been made for several reasons. First, by 1885 the
field (if we may be so anachronistic as to call nineteenth century mathematical
statistics a “field”) has achieved a relative maturity, both in Europe and America.
Those institutions most responsible for the early development of statistical tech-
niques, the geodetic surveys, the observatories, and the insurance companies, all
had reached advanced stages of growth, although the spread of these techniques
to other areas of application was still only tentative. Second, 1885 marks the
beginning of the major statistical works of Galton and Edgeworth, works that
led directly to that of Karl Pearson, R. A. Fisher, and the twentieth century
explosion of interest in the field. And third, 1885 marks the culmination of the
work of one of the major American figures to contribute to the early states of
statistics, Erastus De Forest.

In Section 2 the situation before 1850 will be surveyed, and the few oases in this
statistical desert discussed. Section 3 will consider the Peirces, a family closely
associated with the emergence of mathematical research in America, and Simon
Newcomb. Section 4 will discuss early work at Yale, and the remarkable
achievements of Erastus De Forest. Finally, Section 5 will consider the reasons
for the late development of mathematical statistics in America, and attempt an
assessment of these early efforts.

2. Before 1850. Prior to about 1850, the level of attainment in mathematical
statistics in America—indeed the level of attainment in American mathematics
generally—was quite primitive. In fact, the most important American mathe-
matical publication to appear before 1850 was Nathaniel Bowditch’s 1829-1834
translation of Laplace’s Mécanique Céleste, and the only widely circulated
American work on probability I have found to appear before 1850 was an
anonymous book review! (Anonymous, 1832.)

At first this dismal assessment of early American work may seem incredible.
After all, Harvard could boast of a professorship of mathematics as early as
1727, the year of Newton’s death. But upon closer inspection it appears that
this early professor was no fit companion of Newton: his only publication was
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Edward Wigglesworth (1732-1794)

an arithmetic, and, we are told, he was removed from his chair in 1738 as
“guilty of many acts of gross intemperance, to the dishonor of God and the
great hurt and reproach of society” (Cajori, 1890, page 24). It is true that
Thomas Jefferson’s Notes on the State of Virginia (1785) and Benjamin Franklin’s
Observations Concerning the Increase of Mankind (1755) made important contri-
butions to non-mathematical statistics, but the closest I have found to a contri-
bution to our subject is the publication in 1789 of the first American life table, by
a Harvard professor of divinity, Edward Wigglesworth (1732-1794) (O’Donnell,
1936, page 371). His publication contained no mathematics, and his dour ex-
pression is adequate commentary on the fortunes of statistics in America before
1800.

Nor did the beginning of the 19th century bring early relief from this drought
of mathematical and statistical research. We may recall that the first quarter
of the 19th century had produced exciting work in Europe: Gauss, Laplace,
and a host of lesser workers had written books on probability and statistics. The
greatest of these was Laplace’s Théorie analytique des probabilités, first published
in 1812. What, we might ask, was happening in American mathematics in 1812?
You may complain that preoccupation with the war of 1812 may make such a
comparison unfair, but recall that 1812 also marked the climax of the Napoleonic
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Robert Adrain (1775-1843)

wars in Europe. Well, in 1812 twenty-five books on mathematics were published
in the United States (Karpinski, 1940). Twenty-two these (including all those
written by Americans) were books of tables or elementary texts on arithmetic or
geometry. Two of the 25 were reprintings of English works on surveying, and
one was a reprinting of an English work on fluxions (incidentally, this was the
first text on calculus to be printed in the new world). .

This situation persisted until about 1850. There was, however, one minor but
interesting exception to this assessment, one brief but early spark, that hinted
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at the latent Yankee ingenuity that would erupt in the latter half of the century.
That spark was the Irish-American Robert Adrain (1775-1843). For in 1809,
Adrain published two derivations of the normal probability distribution, deri-
vations that were published independently of and nearly simultaneously with
Gauss’s Theoria Motus.

Adrain had been born in Ireland in 1775, been well-trained in mathematics
there, and emigrated to America after being badly wounded while an officer
with the insurgent forces in the Irish uprising of 1798. The move was a wise
one in many respects; he not only escaped the English gallows, he also switched
from being an Irish mathematician, of which there were many, to being an
American mathematician, of which there were few. He had taught mathematics
in Ireland and continued to do so in America: by his death in 1843 he had taught
at several Academies, Rutgers, Columbia, and the University of Pennsylvania
(Coolidge, 1926; Babb, 1926).

His sole contribution to our field (and his sole original contribution to mathe-
matics) appeared in a mathematical magazine he started in 1808. The magazine,
called the Aralyst, was one of several dedi)cated to problems and recreations that
appeared in the first half of the 19th century. Adrain’s paper, “Research con-
cerning the probabilities of the errors which happen in making observations,”
was presented as a solution to a problem in surveying that had been posed as
a Prize Question in the second number of the magazine. In the fourth number
Adrain began his solution by presenting two derivations of the normal distri-
bution, both of which were more wishful thinking than proofs. Both have been
analyzed in modern notation by Coolidge (1926); the first was reprinted in the
original notation by Abbe (1871) and the second by Merriman (1877, page 140).
Essentially the first began by supposing probabilities of errors of observation
would be proportional to the quantity measured, and by an obscure argument
arrived at a differential equation of which the “simplest” solution was the nor-
mal density. The second derivation argued that a bivariate error distribution
should be symmetrically distributed with respect to either axis, and the chance
of an error should decrease in all directions from the origin, and must have con-
tinuous contours. The contour curve “must be the simplest possible having all
the preceding conditions, and must consequently be the circumference of a circie”
(Adrain, 1809, page 97); with independence of coordinates this leads to the bi-
variate normal distribution. Having derived the normal distribution of errors,
Adrain went on the deduce the “most probable” solutions to several estimation
problems by maximizing the likelihood function; that is, he found the least
squares solutions. The problems he considered were those of determining the
most probable position of a point in space (i.e., estimating a mean), correcting
the dead reckoning at sea (i.e., reconciling an observed latitude with the re-
corded times and directions sailed), and correcting a survey (i.e., reconciling
a system of inconsistent survey measurements).

Adrain’s work remained nearly totally obscure until it was rediscovered by
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Abbe in 1871 (Abbe, 1971). Only two references by other writers seem to exist.
His rule for correcting dead reckoning was incorporated, with a reference to
Adrain, in the third edition of Bowditch’s New American Practical Navigator
(1811, page 208), and his method of correcting a survey was cited by Gummere
in his treatise on that subject (1817, page 116), but neither author mentions the
connection with probability or with the general method of least squares.

Adrain, in his original paper (1809) and in two later applications (1818), does
not mention Legendre’s earlier work on least squares, and many writers have
concluded that his discovery of the method was independent of Legendre’s.
However, Babb (1926) tells us that Adrain had an original copy-of Legendre’s
1805 work in his library, and Coolidge (1926) documents an instance where
Adrain borrowed from a contemporary without citation.

Also, Adrain’s formulae deriving the method of least squares are quite similar
to Legendre’s, and his groping toward the normal distribution would be more
easily explained if Adrain had Legendre’s work in hand and was working toward
the method of least squares. On the other hand, there is no reason to doubt
that his derivation of the normal distribution was done in ignorance of Gauss’s
work. The publication of the number of Adrain’s magazine containing his paper
was evidently delayed; notwithstanding the nominal year of publication 1808,
internal evidence (such as a May 1809 date in a problem on page 110) suggests
a spring 1809 publication as more likely. But Adrain’s manuscript was dated
1808 (Abbe, 1871), and Gauss’s book Theoria Motus did not reach even Paris
until May 1809 (Plackett 1972, page 243), the preface being dated March 28,
1809. These facts and the total dissimilarity of their derivations of the normal
density make it clear that Adrain must be counted an independent discoverer
of this density, although his work had no apparent impact on the development
of statistics.

3. The Peirces and Simon Newcomb. The emergence of American mathemati-
cal research was closely linked to Benjamin Peirce (1809-1880). Peirce was born
in 1809 and graduated from Harvard in 1828, a classmate of Oliver Wendell
Holmes. His most influential teacher was the self-taught sea captain and trans-
lator of Laplace, Nathaniel Bowditch (1773-1838). Peirce revised and proof-
read Bowditch’s translation, and wrote several elementary books before being
appointed to Harvard’s Perkins professorship of Astronomy and Mathematics
in 1842, a chair he held until his death in 1880. Incidentally, his first published
work was the solution to a problem in one of Adrain’s mathematical magazines
in 1825 (Archibald, 1925).

Benjamin Peirce’s main contributions to our field were three. The first is of
a general nature, as a teacher and researcher in mathematics. He is generally
regarded as the first American professor of mathematics for whom research was
more than a hobby. With Peirce the character of mathematics in American
universities changed from that of a service department to that of a major field
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Benjamin Peirce (1809-1880)

of research. Although only his Linear Associative Algebra (1870) is considered
today as a genuinely important piece of research, his texts on all areas of mathe-
matics published from 1835 on and his many papers on mathematical astronomy
marked a change in the level of work in American mathematics. Peirce is also
reported to have been an inspiring and stimulating teacher, although descriptions
of his technique make one wonder. One of his students was Charles Eliot, later
President of Harvard, who wrote: “His method was that of the lecture or
monologue, his students never being invited to become active themselves in the
lecture room. He would stand on a platform raised two steps above the floor
of the room, and chalk in hand cover the slates which filled the whole side of
the room with figures, as he slowly passed along the platform; but his scanty
talk was hardly addressed to the students who sat below trying to take notes. . -
No question ever went out to the class, the majority of whom apprehended im-
perfectly what Professor Peirce was saying” (Eliot, 1925). Another student,
later a famous mathematician himself, wrote: “Although we could rarely follow
him, we certainly sat up and took notice. I can see him now at the blackboard,
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chalk in one hand and rubber in the other, writing rapidly and erasing recklessly,
pausing every few minutes to face the class and comment earnestly, perhaps on
the results of an elaborate calculation, perhaps on the greatness of the Creator”
(Byerly, 1925).

Peirce’s second contribution to statistics was specific. In 1852 he published the
first significance test designed to tell an investigator whether an outlier should be
rejected (Peirce, 1852, 1878). The test, based on a likelihood ratio type of argu-
ment, had the distinction of producing an international debate on the wisdom
of such actions (Anscombe, 1960, Rider, 1933, Stigler, 1973a). While the debate
was never satisfactorily resolved, Peirce was the victor in one sense: From 1852
to 1867 he served as director of the longitude determinations of the U. S. Coast
Survey, and from 1867 to 1874 as superintendent of the Survey. During these
years his test was consistently employed by all the clerks of this, the most active
and mathematically inclined statistical organization of the era. Few statisticians
have such an opportunity to put their test into routine use!

Benjamin Peirce’s third major contribution to our field was his son, Charles
Sanders Peirce (1839-1914). It is to his son and other workers of the period
after 1860 that I shall shortly turn. '

Now, during the first half of the 19th century America was largely preoccupied
with territorial expansion and was primarily an agricultural nation. The English
divine and wit Sidney Smith spoke more in truth than jest when he wrote early
in the century: “Why should the Americans write books, when a six weeks’
passage brings them, in their own tongue, our sense, science and genius, in bales
and hogsheads? Prairies, steamboats, grist-mills, are their natural objects for
centuries to come. Then, when they have got to the Pacific Ocean—epic poems,
plays, pleasures of memory, and all the elegant gratifications of an ancient people
who have tamed the wild earth, and set down to amuse themselves” (Smith, 1818).
Sidney Smith’s forecast was accurate, but his timing was off. With respect to
science and mathematics, the period after mid-century saw rapid advancement.
For mathematical statisticians, the three most important evidences of this growth
were the rapid expansion of the U. S. Coast (later Coast and Geodetic) Survey,
which was charged with measuring and mapping the new land; the founding
and staffing of new observatories; and the growth of higher education, with its
increasing emphvasis on research. Charles Sanders Peirce was a product of this
changing, intellectually charged atmosphere.

C. S. Peirce, son of Benjamin Peirce, was born in 1839 and like many young
men of the era, went into the family business after he finished his schooling.
Only in his case, “schooling” meant Harvard University and the “family busi-
ness” was the newly expanded U. S. Coast Survey. Charles Peirce is best known
today as a philosopher and logician—in fact there is today a C. S. Peirce Society
which publishes a journal largely devoted to his thought. But for nearly thirty
years he was an assistant at the Coast Survey, and a major portion of his life’s
work was tied to physical science and mathematics (Weiss, 1934; Eisele, 1974).
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C. S. Peirce (1839-1914)

While his time with the Coast Survey included the years his father was super-
intendent, no charge of nepotism seems to have been leveled; in fact the son is
generally conceded to have been the intellectual superior of the two.

Charles Peirce’s interests covered an enormous range, and probability and
statistics formed an integral part of both his philosophical views and his scientific
method. Probability was basic to his view of scientific logic, and in one passage
he defined “induction” to be “‘reasoning from a sample taken at random to the
whole lot sampled” (Peirce, 1957, page 217). Indeed, Peirce’s work contains
one of the earliest explicit endorsements of mathematical randomization as a
basis for inference of which I am aware (Peirce, 1957, pages 216-219).

What was perhaps Peirce’s most influential statistical work came in the field
of psychophysics, or experimental psychology. In 1884 Peirce and a student,
Joseph Jastrow, performed an experiment to test the existence of a least per-
ceptible difference in sensations. Gustav Fechner, in an important 1860 book
(Elemente der Psychophysik) had argued that for each sense there was a nonzero
threshold, such that if two sensations differed by less than the threshold they
could notbedistinguished. Peirce and Jastrow performed a large scale experiment
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involving the sensation of pressure, with themselves as subjects, and they effec-
tively refuted the existence of such a threshold. Their methodology is of par-
ticular interest.

Peirce and Jastrow’s (1885) report would be considered as a good example of
a well-planned and well-documented experiment today; as a nineteenth century
experiment it was unexcelled. (Incredibly, Peirce later described the precautions
he took as “more careful and studied and elaborate than the memoir states”
(Eisele, 1957).) They sought to refute the notion of a least perceptible difference
by performing what we would now call a quantal response experiment using
probit analysis, and showing that the results were inconsistent with Fechner’s
theory. Two slightly different known weights would be presented sequentially
to the subjects, and they would state (or guess) in which of two possible orders
they had been presented. In addition, the subject would estimate the confidence
he had in his judgment on a scale from 0 to 3. The frequency of correct guesses
for differing combinations of weights was then used to fit a probit response curve.
Experiments of this general type were familiar to psychophysicists; this was
called the method of “right and wrong cases.”” The authors gave few details
on the method of fitting the probit response curve. They took “dosage” to be
the ratio of the two weights used, so it could be assumed that a dosage of 1.0
led to a 0.5 probability of a correct guess, and there remained only one param-
eter, the scale parameter, to be determined. They apparently determined this
separately for each dosage level d (by ¢, = (d — 1)/®@~'(p,)) and averaged the
results. But they were painstaking in their description of the experimental pro-
cedures followed, and two aspects of these were strikingly original.

The first novel point was the way in which the estimates of confidence were
used. Peirce and Jastrow used them to fit a relationship of the form m =
clog (p/(1 — p)) for each subject where m was the estimate of confidence, ¢ an
“index of confidence” peculiar to each subject, and p the “true” probability of
a correct guess, estimated by the observed relative frequency. Peirce’s concep-
tion of probability was that of an objective frequentist, but his work here shows
he was also one of the first individuals (perhaps the very first) to experimentally
elicit subjective or personal probabilities, determining that these probabilities
varied approximately linearly with the log odds.

The second departure from tradition was the manner in which the order of
presentation of the weights was determined. The Peirce-Jastrow experiment is
the first of which I am aware where the experimentation was performed accord-
ing to a precise, mathematically sound randomization scheme! The assignment
was done in blocks of twenty-five (to achieve balance) by using, alternately,
two well-shuffled packs of 25 cards, one with 12 red and 13 black cards, and
one with 13 red and 12 black cards. They wrote “A slight disadvantage in this
mode of proceeding arises from the long runs of one particular kind of change,
which would occasionally be produced by chance and would tend to confuse the
mind of the subject. But it seems clear that this disadvantage was less than
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that which would have been occasioned by his knowing that there would be no
such long runs if any means had been taken to prevent them.” Jastrow’s later
development and advocacy of this methodology had an important influence on
later psychological research (Jastrow, 1888), although randomization in the de-
sign of experiments did not become part of the mainstream of statistical thought
until R. A. Fisher’s book on the subject appeared, a half-century later.

The breadth of Peirce’s interests and thie statistical turn of his mind are illus-
trated by a paper he read to the Philosophical Society of Washington in 1872.
He, the abstract says, “called attention to the striking resemblance between the
map showing the distribution of illiteracy - - - in the United States, given in the
Report of the Census of 1870, and the map showing the distribution of rainfall
during the three winter months published [by the Sinithsonian]. Mr. Peirce
suggested as a possible explanation for the resemblance, that the copious winter
rains would produce agricultural plenty, which in its turn would favor indo-
lence” (Peirce, 1872). Iexpect that farmers of his day would have taken offense
at his informal path analysis, if they could have read his paper.

In another work the question whether or not meteorologists could successfully
predict tornados led Peirce in 1884 to derive a latent structure measure of asso-
ciation for 2 x 2 tables (Peirce, 1884, Goodman and Kruskal, 1959). But his
work for the Coast Survey is probably of more immediate interest to modern
mathematical statisticians. In one 1879 paper on the “Economy of Research”
(Peirce, 1879), he provided a rigorous mathematical analysis of the problem of
optimally allocating experimental observations between competing experiments,
under a model with two components of variance. This paper attacked the allo-
cation problem from the point of view of a quite general utility theory, and
contains an early and possibly independent formulation of a basic result in what
economists call marginal utility theory.

Probably Peirce’s best known statistical investigation was an 1873 paper “On
the theory of errors of observations” (Peirce, 1873). At the close of this paper
he presented the results of an extensive empirical investigation into the nature
of laws of error. He hired an untrained 18 year old boy to react on a telegraph
key to signals received. Five hundred measurements a day were recorded for
24 days, and Peirce sought to determine the distribution, that is, the density, of
the reaction times for each day. The manner in which he estimated this density
is interesting, particularly in view of recent work. He did rot just present a
histogram. Rather, “The curve has, however, not been plotted directly from
the observations, but after they have been smoothed off by the addition of ad-
jacent numbers in the table eight times over, so as to diminish the irregularities
of the curve. The smoother curve on the figures is a mean curve for every day
drawn by eye so as to eliminate the irregularities entirely.” What he had done
was to employ a form of repeated adjustment that was similar to techniques
then in use for the interpolation and smoothing of mortality tables. What his
technique did was to replace each ordinate of the histogram by a binomially
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FiG. 1. C. S. Peirce’s graph of his estimated probability density, by the kernel method and by
a freehand sketch (smoother curves).

weighted average of nine consecutive ordinates. This is what we would now
call a “kernel-type” estimate of the density using a binomial kernel that pro-
duces essentially the same effect as would a normal density kernel, although this
kernel estimate produces a curve slightly out of phase with Peirce’s. Fifty-five
years later E. B. Wilson and Margaret Hilferty (1929) reanalyzed these data and
concluded that Peirce’s qualitative conclusion that the distribution differed little
from the normal was not supported under closer scrutiny. In particular, data
set 14 (Figure 1) was found to have a skewness of y,/¢° = 5.74 and kurtosis of
B, — 3 = 63.6. But Peirce had provided experimental evidence that human re-
action times exhibited a regularity and distribution at least qualitatively similar
to the normal curve’s bell shape, and he had contributed substantially to Ameri-
can work on a major line of development in statistical thought, the concept of
a distribution (Stigler, 1975).

Two years after Peirce’s paper appeared, the British Astronomer Royal G. B.
Airy added an appendix to the second edition of his text on the theory of errors
(Airy, 1875) presenting an essentially similar example, apparently inspired by
Peirce (although no citation was given). Unlike Peirce, however, Airy omitted
the raw data and published only the smoothed frequency counts, and in this
form Peirce’s innovation was later to draw Karl Pearson’s scorn in his famous
paper on chi-square: . . . that Appendix really tells us absolutely nothing as to
the goodness of fit of his 636 observations --- to a normal curve. [We] find
that he has thrice smoothed his observation frequency distribution before he al-
lows us to examine it. It is accordingly impossible to say whether it really does
or does not represent a random set of deviations from a normal frequency curve”
(Pearson, 1900).
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Simon Newcomb (1835-1909)

In his 1879 paper Charles Peirce had argued that in scientific research, the
expected marginal utility of further investigation decreases as experimentation
continues. He based this argument on the fact that the probable errors of esti-
mated quantities are convex functions of sample size, and felt that the principle
held more generally. ‘““All the sciences exhibit the same phenomenon, and so
does the course of life. At first we learn very easily, and the interest of experi-
ence is very great; but it becomes harder and harder, and less and less worth
while, until we are glad to sleep in death” (Peirce, 1879). As if to confirm this
as prophecy, Peirce became increasingly withdrawn in later life and died in
isolation on a farm, in 1914,

Another, purely intellectual, descendent of Benjamin Peirce was the astrono-
mer-statistician-economist Simon Newcomb (1835-1909). Newcomb was a stu-
dent of Peirce’s at Harvard’s Lawrence Scientific School, where he graduated in
1858. But that cold statement of fact fails to capture the flavor of Newcomb’s
youth, which was like that of a plot from a Horatio Alger novel. He was born
in Nova Scotia where his father, a teacher, lived a nomadic life. At 16 Simon
Newcomb began an apprenticeship to a doctor that was to last 5 years. But his
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autobiography (Newcomb, 1903) tells a dramatic tale of how after 2 years his
prospects for a career in medicine faded as the doctor proved to be a total fraud,
a quack herbalist, and he was forced to flee in the middle of the night from what
had become onerous servitude, to seek his way in the world with little more than
his wits to support him. At 18 he made a living as a teacher, relying on what he
had taught himself in odd hours. At 21 he obtained employment he Cambridge
with the Nautical Almanac office. At 23 he had a Harvard degree, and at 24
he read a paper to the American Association for the Advancement of Science
on the untenability of the hypothesis that the asteroids had a common origin.
He went on to become America’s most honored scientist in the 19th century
(Campbell, 1924). .

Probability and statistical thinking played a major role in Simon Newcomb’s
lifework. His early work in robust estimation has received attention recently
with the resurgence of interest in the subject (Stigler, 1973a), and he was the first
probabilist to present the logarithmic distribution of leading digits (Newcomb,
1881). But the large volume of his published work—at least 541 notes, papers,
and books (Archibald, 1924), much of this at least tangential to statistics—makes
it impossible to do him justice in a short space. Rather, I will only briefly
mention one minor, but interesting passage he published in some ‘“Notes on
probability” at the age of 25.

This paper appeared in the Mathematical Monthly, one of the better of the
numerous magazines which fanned the growing interest in mathematics in
America before the Analyst (1874-1883) approached, and the American Journal
of Mathematics (cofounded by Newcomb in 1878) finally achieved international
respectability. Among other topics, Newcomb considered the problem of esti-
mating the number of serially numbered tickets in a bag, based on the numbers
observed on s tickets drawn, with replacement. That is, based on a random
sample of size s from a discrete distribution, uniform from 1 to n, estimate x.
Before he went on to present a sound and well-explained Bayesian analysis of
this problem, he gave the clearest statement of the idea of sufficiency I have
encountered before Fisher. (See also Stigler 1973b.) Simon Newcomb wrote,
“Let i be the largest number drawn in the s drawings. The number of Tickets,
then, cannot be less than i. We need not know any of the drawn numbers except
the largest, because after we know this, every combination of smaller numbers
will be equally probable on every admissible hypothesis, and will therefore be
of no assistance in judging of these hypotheses” (Newcomb, 1860-1861). Of
course Newcomb did not abstract the concept, but at the least, this early state-
ment is evidence of a clear mind capable of quickly reaching to the essentials
of a problem, a signal of the brilliant career that was to come.

4. Work at Yale: E. L. De Forest. The major figures I have discussed so
far—the two Peirces, Simon Newcomb, even Wigglesworth—-all attended
Harvard and continued their careers at Harvard, in Washington, or both. This
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hints at a Boston-Washington scientific axis that did indeed exist. For example,
Admiral Charles Henry Davis was instrumental in obtaining government appro-
priations needed to start the Nautical Almanac in 1849, and he played a key role
in locating its headquarters at Harvard with Benjamin Peirce in charge. Admiral
Davis was also Peirce’s brother-in-law. But it would be a mistake to suppose
that the only scientific activity in America was localized in these two centers.

Another center of learning where early and important contributions to math-
ematical statistics were made was Yale University. It was there in the Sheffield
Scientific School that the first doctorate in America was awarded for a thesis in
mathematical statistics. The thesis was on the method of least squares, and it
was awarded to Mansfield Merriman in 1876, the nation’s centennial. Merriman
went on to become the first American statistician to capture the market for ele-
mentary statistics textbooks, with his 4 Textbook on the Method of Least Squares
(First Edition, 1884; Eighth Edition, 1907), and his extensive “List of writings
relating to the method of least squares” remains the best bibliography of this
subject (Merriman, 1877a).

From 1871 until his death in 1903, the major intellectual force in science at
Yale was J. Willard Gibbs (Wheeler, 1951). Shortly after Gibbs died, Lord
Kelvin visited Yale and forecast that “‘by the year 2000 Yale will be best known
to the world for having produced J. Willard Gibbs” (Fisher, 1930), and while
some modern Yale professors might question that prediction, no one of them
who is familiar with Gibbs’ work could take it as an insult. Gibbs himself
published nothing in statistics, although he taught least squares (Wilson, 1931)
and his work on statistical mechanics relied heavily on probabilistic concepts.
Gibbs, through his development of vector analysis and of statistical mechanics,
may indirectly have had a more profound influence on 20th century work in
mathematical statistics than any other man I have mentioned, but his more
obvious impact was as a teacher. Two of his students, Irving Fisher and E. B.
Wilson, served as presidents of the American Statistical Association, and a third,
E. L. Dodd, had a significant impact on mathematical statistics, partly as a
teacher of Sam Wilks.

But the Yale man I most wish to discuss here was not a student of Gibbs,
although he was Gibbs’ contemporary and his work shows some Gibbsian influ-
ences. I wish to turn to the remarkable work of Erastus Lyman De Forest.
De Forest’s name is not widely recognized today, but his name was well known
to Edgeworth and Karl Pearson, who respected and cited his work. Between
1870 and 1885 De Forest published a series of over 20 papers which cover such
topics as a runs test for the residuals from a regression; a Monte Carlo deter-
mination of the variance of a statistic; the gamma distribution for one, two,
and three dimensions; a measure of skewness; and an analysis of the bivariate
normal distribution.

De Forest was born in 1834, the son of a Yale graduate, and he received two
degrees himself at Yale, a B.A. in 1854 and Ph. B. in 1856. I suspect he was
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De Forest (1834-1888)

viewed by the Yale administration as an ideal student: he did well in his studies
(Gibbs is said to have called him “one of the most brilliant and promising” of
Yale’s students (Wolfenden, 1968)) and he was both independently wealthy and
generous. Yale’s Erastus De Forest Professorship of Mathematics was endowed
by him in 1888 (Anderson, 1896; Wolfenden 1925, 1968).

Shortly after he graduated, De Forest surprised his family (and possibly him-
self) by vanishing from sight while on a visit to New York, leaving his suitcase
behind and no forwarding address. His family feared the worst, and the search
concentrated on New York’s East River, but two years later he turned up in
Australia, teaching in Melbourne. Nowadays we would probably say he had
been “ﬁnding himself.” The reports of his trip are contradictory, but he must
have eventually decided that he preferred bulldogs to kangaroos, for he returned
to New Haven and after 1865 seldom ventured further than New York.

The direction of most of De Forest’s work seems to have been determined bya
project he undertook in 18671868 for his uncle, the president of Knickerbocker
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Life Insurance Company in New York. In the process of determining the com-
pany’s policy liabilities, De Forest encountered the problem of smoothing mor-
tality or life tables.

Let u,, u,, - - -, u, be a sequence of numbers; the problem is to “‘adjust” or
smooth the sequence in the hope that a better estimate of an underlying func-
tional relation is thus obtained. We have already encountered one example in
C. S. Peirce’s density estimate; in the primary application that motivated most
early work on the subject, the u4,’s would be empirically determined estimates
of the probabilities that an individual of age / in the class under study would
die in the next year. A plot of u, vs. i would be an empirically determined
“mortality curve” that would give the chance of death in‘the next year for indi-
viduals of all ages. However, if the u,’s are simple crude death rates or relative
frequencies of deaths in a sample population, as may well be the case, the plot
of u; vs. i will show marked irregularities, in contradiction to the smooth relation
believed to hold.

Long before De Forest, actuaries had grappled with this problem, employing
a variety of parametric models and averaging schemes. De Forest’s early work
centered on that species of averaging which Sheppard later named “linear com-
pounding.” That is, replace each #, by a symmetric linear function of surround-
ing values, say

v, = lLu, + L(#, + Uiy) + o0 A L(Mym + Ui_y) -

Of course a different rule would be needed near the extremes of the series, and
an asymmetric rule could be used, too. Many schemes equivalent to ones of
this type, such as the one Peirce applied, had been considered before De Forest,
but they were (with one exception) ad hoc in nature. De Forest’s first innova-
tion was the introduction, in two papers in the Smithsonian Reports for 1871
and 1873, of optimality criteria into this problem (De Forest, 1873, 1874).

De Forest supposed that the observed u,; differed from underlying values U,
by small errors “of an accidental nature” which he supposed independent,
with equal variances (we will use ¢* for the variance; De Forest used ¢ for the
“probable error”: ¢ = .67450). He then assumed that the U, sequence was
“smooth” in the sense that any 2m + 1 U;’s differed little from a polynomial of
degree j in /; that is, given 2m + 1 U;’s, a polynomial g(x) of degree j could be
found such that U, = g(i), approximately. In his 1873 paper (De Forest, 1874)
he carried out much of his investigation for the case m = 2, j = 3 and so we
too shall specialize to this case. Thus he supposed that any 5 consecutive U,’s
could be represented “very nearly” by a cubic in i. By making his assumption
of smoothness a local one and relying on local weights, a great deal of flexibility
was retained over assuming U, cubic for all i, or assuming a particular parametric
model.

One approach De Forest considered was to determine /,, [, I, by least squares:
if a cubic function of the index or year is fit to u,_,, u;_,, u;, Uy, U, by least
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squares, ignoring all other u,’s, the ordinate of the fitted cubic at / will be the
required v, = Lu, + L(u;_; + u,,,) + L4, , + u;,,) and will give the minimum
mean square estimate of U, under the cubic assumption and the restriction to
estimates linear in the local u,_,, - - -, u;,,. An alternative (and equivalent) for-
mulation is, since Var (v,) = (I’ + 2(/;* + ’))¢?, to minimize [’ + 2(/* + 1)
subject to the condition

U= LU + (U, + Uiy) + (U, + Uits)

for every cubic U, in k. De Forest solved this problem and found the /s (which
of course do not depend on the 4’s), but as he noted (De Forest, 1873, page 335)
he was thus far anticipated by 1867 work of the Italian astronomer Schiaparelli,
of which he had at first been unaware. But De Forest continued, and broke new
ground when he noticed that the minimum mean square error criterion applied
to each five u,’s separately need not produce a very smooth relation globally,
notwithstanding the assumption the function was cubic locally. As an alterna-
tive to the criterion “minimize [} 4 2(/’ + 1) subject to the constraint U, =
LU, + LU,y + Upy) + L(U;_, + U,,,) for all cubics U,” he proposed a criterion
based on smoothness: minimize the probable error of the fourth difference of
the smoothed series v;, or equivalently, minimize E(A*,)?, subject to the same
constraint. He solved this problem for several different cases.

As a contribution to nineteenth century work on smoothing or adjustment,
De Forest’s introduction of this measure of smoothness as an optimality criteri-
on was well ahead of its time, and his work was not generally appreciated until
Wolfenden (1925) rediscovered it in the 1920’s. By then, others had come upon
his main techniques independently. Variants of De Forest’s and others’ criteria
are currently enjoying great popularity in the related field of spline interpolation.

While De Forest’s introduction of optimality criteria into interpolation and
smoothing problems was a major, if unappreciated, advance at the time, modern
statisticians are liable to be more interested in his evaluations of the fit of the
smoothed to the observed series. De Forest was acutely aware of the contra-
dictory combination of the desires for a close fit to the observed series and for
smoothness, and he devised several goodness-of-fit tests to determine whether or
not the series had been over or under-smoothed.

The first tests he discussed (De Forest, 1874, 1876, 1877) were of the nature
of large sample significance tests based on the magnitude of the residuals. In
the first place, if independent (possibly theoretical) estimates of the variances
of the errors were available, then these could be compared with the residuals.
For example, if the u, were relative frequencies based on given numbers of trials,
then a binomial model using the fitted values to estimate the probabilities would
provide estimates of variances to compare with the corresponding residuals. To
actually perform this test he dropped the “equal variances” assumption and took,
for each year, the ratio of the squared residual over the estimate of variance
for that year, and averaged these ratios over all years. He then compared the
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difference between this average and 1.0, with the calculated sample variance of
the ratios, a sort of large sample two-tailed r-test. In suggesting that a difference
of  or 2 times the estimated probable error be considered large (De Forest,
1876, page 12), he seems to have had a significance level of 0.31 or 0.18 in
mind. De Forest noted that this test was similar to one proposed in 1871 by
Thiele, although he criticized Thiele’s choice of n-m as a divisor in calculating
the average ratio.

If no separate or theoretically based estimate of variance was available, De
Forest suggested that the residuals be compared with the fourth differences of
the original series. In a privately printed pamphlet, he proposed as a statistic,
the average (over the series) of log (r,/d;) (our notation), where r, and d, are the
absolute values of the ith residual #, — v, and a constant multiple of the corre-
sponding fourth difference of the u,’s. The multiple was chosen so that E(d;?) =
o*. The basic idea was that if the U,’s were locally cubic, fourth differencing
would eliminate their effect leaving only variation due to random errors; then
by choosing the constant multiplier so that E(d}?) = ¢?, an estimate of ¢* not
based on the residuals could be obtained. Similar procedures were later redis-
covered in the ballistics literature; see Von Neumann et al. (1941).

This was an interesting and novel idea, although its execution was flawed by
his neglecting the autocorrelation of the d;’s, among other types of correlation.
But the manner in which he sought to determine the asymptotic variance of this
second statistic may be of more interest than the statistic itself. He began by
making a quick determination of the standard deviation of log (r/d), using a first
order differential approximation, based on the supposition that » and d are in-
dependent absolute values of normal random variables. Today we might recog-
nize this as half the logarithm of a random variable with an F-distribution with
1 and 1 degrees of freedom, but De Forest’s work shows little feeling for exact
sampling distributions.

De Forest did not, however, have full confidence in his derivation. He wrote:
“The demonstration [of the formula for the asymptotic standard deviation is] not
a strictly rigorous one, and it has been thought desirable to test the accuracy of
the formula by trials made on a sufficiently large scale, in the following manner”
(De Forest, 1876, page 23). De Forest’s “following manner” was a Monte Carlo
study! From a table of the normal distribution, he found 100 percentiles for the
absolute value of a normal deviate ranging from the 0.005th to the 0.995th, in
steps of 0.01. These numbers he “inscribed upon 100 bits of card-board of equal
size, which were shaken up in a box and all drawn out one by one, and entered
in a column in the order in which they came” (De Forest, 1876, page 23). He
then repeated this procedure to get four columns in all, and, considering them
in pairs, took ratios, then logs. These he squared and averaged. He found close
agreement with his formula, which he then adopted as “trustworthy.”

Of course, we can now suggest more efficient methods of proceeding, and
the correlation structures of both De Forest’s Monte Carlo experiment and his
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analysis were not the same as that of his intended application. Nonetheless, his
appeal to a Monte Carlo experiment for verification of his analysis was a re-
markable innovation in the study of sampling distributions.

Another of De Forest’s innovations was first mentioned in this same privately
printed pamphlet, and more fully developed in several papers in the Analyst (De
Forest 1876, 1877, 1878a, 1878b), a journal with international circulation and
impact printed in Des Moines, lowa. This is the idea of testing fit by analyzing
the grouping of signs of the residuals. Step by step he was led to a runs test.

Unknown to De Forest, Quetelet had employed one type of runs test in 1852,
with a different aim (Stigler, 1975). Quetelet had examined the distribution of
lengths of runs of days of rainfall to test independence against the alternative
of Markov dependence; De Forest sought to examine the signs of successive
residuals to determine whether or not the small number of runs would provide
evidence of too much smoothing. Actually, he began by considering the dis-
tribution of the number of runs of each of several given lengths, and comparing
the numbers of runs actually observed with the numbers expected under the
hypothesis that the fitted curve was the actual curve (plus or minus a probable
error) (De Forest, 1876, pages 29 ff). In a later paper (De Forest, 1878b),
though, he approached the modern version of the test when he proposed count-
ing the number of ‘“permanences” (non-changes) of signs, which equals the
number of terms in the series less the number of runs.

In suggesting a test of fit based on the number of permanences of signs in the
residuals, De Forest provided no exact distribution theory; he did not attempt
a combinatorial theory of runs. Rather he provided approximations to the mean
and probable error of his statistic, based on an unproved assumption that
asymptotically the number of permanences among the residual’s sign behaved
as would a like statistic based on tosses of a fair coin. A little reflection shows
that with the mode of fitting he employed this is not the case. Since the fitting
is accomplished by local averaging, the signs of consecutive residuals will show
a strong negative association rather than be approximately independent. A test
based on the latter assumption would be severely biased, as the number of runs
will tend to greatly exceed what would be expected under the null hypothesis,
even with an adequate fit.

This problem did not escape De Forest’s notice, and he provided an approxi-
mate rule to deal with this dependence. He reasoned that if n, terms were aver-
aged in a simple arithmetic average, then one would expect the signs of the n,
residuals, on average, to be evenly divided (De Forest, 1878a). Thus given one
residual is positive, the probability the succeeding one is positive is (37, — 1)/
(n, — 1) = (1 — 2r*)/(2 — 2r*) = g, where r = n,~}, the ratio of the probable
error of the mean to that of a single term. Then g is the chance two successive
residuals form a permanence. As he did not use simple means but weighted
means, he took r to be the corresponding ratio, (/’ 4+ 2(/’ 4 L7))! in our ex-
ample, so n, becomes a sort of effective sample size. De Forest then, by appealing
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to a binomial model with probability of success g, provided an approximate
means of correcting the distribution of the number of permanences for this de-
pendence (De Forest, 1878b). He felt this correction should be adequate when
r < 4. De Forest’s model for the behavior of successive signs is equivalent to
a two state Markov chain with transition matrix

Lt 5
l—q ¢ 1

In a later series of papers in the Analyst De Forest was led by a series of steps
to the consideration of some families of probability densities. He began by con-
sidering “repeated adjustments”; that is, iterated smoothing of a series by the
same linear smoothing scheme (De Forest, 1878c, and following papers). An
iterated linear smoothing scheme is itself a linear smoothing scheme whose co-
efficients are derivable from the original coefficients by convolution; Peirce’s
density estimate is one example. De Forest employed generating functions and
differential equation approximations to difference equations to determine the
character of the limiting curve of coefficients. For recent contributions to this
problem see Greville (1966, 1974).

One limiting curve De Forest was led to was of course the normal (De Forest,
1879), but when he considered the limiting properties of unsymmetric adjustment
schemes, he was led to something new. By considering differential equation
approximation to the coefficients of binomial distribution, he derived the gamma
distribution, which he called the “gamma curve” (De Forest, 1882-1883, page
140). The gamma distribution had appeared as a sampling distribution earlier
than 1882 (see Lancaster, 1966), but apparently not outside of that sampling
context. Pearson’s and Edgeworth’s work on asymmetric curves was yet to
come, and the English school appears not to have noticed De Forest’s work
before about 1895, when Edgeworth called Pearson’s attention to it. Pearson’s
own derivation of the gamma (or Type III) curve had then appeared (Pearson,
1895a), but he graciously acknowledged De Forest’s priority as respects this
type (saying De Forest’s deduction had ““the advantage of greater generality” and
praising “the excellency of his work,” Pearson, 1895b). Actually, De Forest’s
anticipation of Pearson went beyond the simple gamma curve. De Forest also
showed how this density could be fit by the method of moments, and explored
the third moment as a measure of skewness (he called it “cubic mean inequality”)
that was useful for distinguishing between the gamma and its limiting form, the
normal. This work of De Forest has been commented on by Edgeworth (1896,
1902), Pearson (1895), Hatai (1910), McEwen (1921), Walker (1929) and
Wolfenden (1925, 1942).

Another area in which De Forest worked was that of multivariate densities.
Starting with the problem of smoothing two and three dimensional arrays, he
derived differential equations for the limiting curve of coefficients after repeat-
ed adjustments, and was led to consider multidimensional normal (De Forest,
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1881a, 1881b, 1882) and gamma distributions (De Forest, 1884). In the normal
case he did not restrict attention to the independent case as he did in the gamma,
although he noted that a simple rotation of axes was sufficient to reduce the
general case to the independent (De Forest, 1881a). In this he was preceded by
Bravais, to whom he referred (Walker, 1929, page 96). He added little new to
the study of the bivariate normal, although in his final paper in 1885, after fit-
ting a general bivariate normal distribution to target data, his thoughtful check
for marginal asymmetry with respect to the transformed axes was a refreshing
change from European work of that period.

In 1885 De Forest’s health began to fail, and he ceased mathematical work.
De Forest died in 1888; his work spanned two decades and was wholly on topics
in mathematical statistics. It was widely circulated-and extensively abstracted
in the German Jahrbuch iiber die Fortschritte der Mathematik (Garver, 1932), but
its impact was diminished by his failure to develop his methods much beyond
the limited class of problems in adjustment which had suggested them in the
beginning.

5. Additional work and conclusions. 1 have surveyed a major portion of
American work in mathematical statistics before 1885, but the survey has by
no means been complete. I have omitted discussion of early work on the errors-
in-the-variables problem by a Monmouth, Illinois attorney (Adcock, 1877~1878)
and by an assistant with the U.S. Lake Survey (Kummell, 1879), published in
1877-1879. 1 have skipped an early use of the range as a short-cut estimate of
a standard deviation (Wright, 1882), and countless computational algorithms
designed to simplify the calculation of least squares estimates, including the
aptly named Doolittle method (Doolittle, 1881). I have included no discussion
of work on the design of experiments, including an 1885 note which suggested
that an experiment designed so that the factors would be orthogonal would “se-
cure the maximum precision with the minimum of computation,” after which
the discussants allowed that they had known that all along (Woodward, 1885).

Also hidden from view are the gaffes, blunders, and absurdities that have
sometimes crept into our forefathers’ work. I have spared you their promiscu-
ous use of dx and co as positive real numbers, and their petty disputes over
ill-posed problems in probability. But lest the picture seem totally one-sided, it
may be worth noting as evidence that American understanding of concepts did
have limits, that just a year after getting his degree, Mansfield Merriman, Ph. D.
Yale 1876, wrote of Gauss’s elegant demonstration of the “Gauss-Markov”
theorem that “The proof is entirely untenable’” (Merriman, 1877b). In charity
to Merriman it might be added that no less a mathematician than Poincaré also
misconstrued the nature of Gauss’s result (Poincaré, 1912, page 188).

Despite these omissions, it should be clear that by the latter part of the last
century, the United States had produced a quantity and variety of work in
statistics that, while not the equal of European efforts, at least permits a
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respectable comparison. It had taken Americans quite a while to show an inter-
est in mathematical statistics. I think the major reason for this was not a lack
of talent, but the fact that the United States was quite late in undertaking a sys-
tematic and large scale measurement of its land, and equally late in founding
observatories and beginning extensive astronomical observation. In Europe the
major impetus to the development of mathematical statistics in the eighteenth
and early nineteenth centuries had come from astronomy and surveying. The
concepts of linear models, least squares and similar methods, had been developed
between 1750 and 1820 in Europe, primarily for the reduction and analysis of
astronomical observations. These techniques had then received further refine-
ment when applied in the major geodetical surveys, for example in the survey
of Britain from 1783 on. .

In both spheres of activity the U.S. lagged. When President John Quincy
Adams proposed a program for the construction of observatories in 1825, his
phrase “lighthouses of the sky” was derisively trumpeted in the press, and fund-
ing was denied (Shepherd, 1975, page 285). The Harvard observatory was not
operational before 1839, the U.S. Naval Observatory began observation in 1845.
While the U.S. Coast Survey was founded in 1807 with a Swiss in charge (he
was Ferdinand Hassler, Simon Newcomb’s grandfather-in-law), work was begun
only in 1816, and the survey did not really get on the ground on a large scale
before the middle of the century, over 50 years after the British survey had
reached a similar state (Cajori, 1890, pages 286 ff).

When America finally did commit itself to astronomy and land survey, it
moved rapidly and energetically, and work in statistics progressed accordingly.
Of the men I have discussed, only Wigglesworth and De Forest had no direct
tie with astronomy or the Coast Survey. Even the European-educated Adrain’s
stumbling upon the normal distribution was inspired by an attempt to apply
Legendre’s methods for analyzing astronomical data to a problem in surveying.

De Forest’s work belongs to another, separately developing tradition, that of
actuarial mathematics. Here too the British led, as the major American insur-
ance companies only reached full development in the mid-nineteenth century.

While early American work has not received much attention from historians,
it did make some international impact. Peirce’s outlier technique stimulated
a debate which at one point involved the British Astronomer Royal. Simon
Newcomb’s work on robust estimation influenced the direction of Edgeworth’s
work. De Forest’s precursor to the chi-square test and his anticipation of the
gamma distribution and the method of moments may have played a role in Karl
Pearson’s later work on these subjects, as may also have been true of American
work on the errors-in-the-variables problem, although I know of no direct evi-
dence on this latter point. But at the least, the burst of activity in statistics
after 1850, some at a remarkably high level, signaled that the talents available
in America were second to none. Statistics in the early States had remained
largely a dormant field; the second century would tell a different story.
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