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Summary

By a series of simple examples, we illustrate how the lack of mathematical concern can
readily lead to surprising mathematical contradictions in wave mechanics. The basic math-
ematical notions allowing for a precise formulation of the theory are then summarized and
it is shown how they lead to an elucidation and deeper understanding of the aforementioned
problems. After stressing the equivalence between wave mechanics and the other formu-
lations of quantum mechanics, i.e. matrix mechanics and Dirac’s abstract Hilbert space
formulation, we devote the second part of our paper to the latter approach: we discuss the
problems and shortcomings of this formalism as well as those of the bra and ket notation
introduced by Dirac in this context. In conclusion, we indicate how all of these problems
can be solved or at least avoided.

1This work was supported by the Alexander von Humboldt Foundation while the author was on leave of
absence at the Institut für Theoretische Physik of the University of Göttingen. The revised version of the
text was prepared during a sabbatical leave spent at the Institut für Theoretische Physik of the Technical
University of Vienna.

2I dedicate these notes to the memory of Tanguy Altherr who left us very unexpectedly in the mountains
which he liked so much (and where I could do some nice trips with him). As to the subject of these notes
(which I had the pleasure to discuss with him), Tanguy appreciated a lot Dirac’s formalism and certainly
knew how to apply it to real physical problems (like the ones he worked on with an impressive enthusiasm,
energy and productivity). Even if he did not share my preoccupations in this field, he liked to discuss the
problems related to the general formalism of quantum physics.
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Chapter 1

Introduction

Let us first provide an overview of the present article. The first part, covering section 2 and
some complements gathered in the appendix, deals with mathematical surprises in quantum
theory. It is accessible to all readers who have some basic notions in wave mechanics. The
second part, consisting of section 4, deals with Dirac’s abstract Hilbert space approach and
his bra and ket notation; it is devoted to a critical study of this formalism which has become
the standard mathematical language of quantum physics during the last decades. Both
parts are related by section 3 which discusses the equivalence between wave mechanics and
the other formulations of quantum mechanics. As a consequence of this equivalence, the
mentioned surprises also manifest themselves in these other formulations and in particular
in Dirac’s abstract Hilbert space approach. In fact, one of the points we want to make
in the second part, is that the lack of mathematical concern which is practically inherent
in Dirac’s symbolic calculus, is a potential source for surprises and that it is harder, if
not impossible, to elucidate unambiguously all mathematical contradictions within this
formalism.

Let us now come to the motivation for our work and present in greater detail the outline
of our discussion.

Mathematical surprises

In the formulation of physical theories, a lack of mathematical concern can often and
readily lead to apparent contradictions which are sometimes quite astonishing. This is
particularly true for quantum mechanics and we will illustrate this fact by a series of simple
examples to be presented in section 2.1. In the literature, such contradictions appeared in
the study of more complicated physical phenomena and they even brought into question
certain physical effects like the Aharonov-Bohm effect [1]. These contradictions can only
be discarded by appealing to a more careful mathematical formulation of the problems,
a formulation which often provides a deeper physical understanding of the phenomena
under investigation. Therefore, we strongly encourage the reader to look himself for a
solution of all problems, eventually after a reading of section 2.2 in which we review the
the mathematical formalism of wave mechanics. In fact, the latter review also mentions
some mathematical tools which are not advocated in the majority of quantum mechanics
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textbooks, though they are well known in mathematical physics. The detailed solution of
all of the raised problems is presented in the appendix. Altogether, this discussion provides
an overview of the subtleties of the subject and of the tools for handling them in an efficient
manner.

Dirac’s formalism

Since all of our examples of mathematical surprises are formulated in terms of the
language of wave mechanics, one may wonder whether they are also present in other for-
mulations of quantum theory. In this respect, we recall that there are essentially three
different formulations or ‘representations’ that are used in quantum mechanics for the de-
scription of the states of a particle (or of a system of particles): wave mechanics, matrix
mechanics and the invariant formalism. The first two rely on concrete Hilbert spaces, the
last one on an abstract Hilbert space. In general, the latter formulation is presented using
the bra and ket notation that Dirac developed from 1939 on, and that he introduced in the
third edition of his celebrated textbook on the principles of quantum mechanics [2]. Let
us briefly recall its main ingredients which will be discussed in the main body of the text:

• |Ψ〉 and 〈Ψ|
• A|Ψ〉 and 〈Ψ|A†

• 〈Φ|A|Ψ〉
• {|n〉}n∈N

and {|x〉}x∈R

• |n1, n2, ...〉 associated with a complete system of commuting observables {A1, A2, ...} .
This notation usually goes together with a specific interpretation of mathematical opera-
tions given by Dirac.

In this respect, it may be worthwhile to mention that Dirac’s classic monograph [2] (and
thereby the majority of modern texts inspired by it) contains a fair number of statements
which are ambiguous or incorrect from the mathematical point of view: these points have
been raised and discussed by J.M.Jauch [3]. The state of affairs can be described as
follows [4]: “Unfortunately, the elegance, outward clarity and strength of Dirac’s formalism
are gained at the expense of introducing mathematical fictions. [...] One has a formal
‘machinery’ whose significance is impenetrable, especially for the beginner, and whose
problematics cannot be recognized by him.” Thus, the verdict of major mathematicians
like J.Dieudonné is devastating [5]: “When one gets to the mathematical theories which
are at the basis of quantum mechanics, one realizes that the attitude of certain physicists
in the handling of these theories truly borders on the delirium. [...] One has to wonder
what remains in the mind of a student who has absorbed this unbelievable accumulation
of nonsense, a real gibberish! It should be to believe that today’s physicists are only at
ease in the vagueness, the obscure and the contradictory.” Certainly, we can blame many
mathematicians for their intransigence and for their refusal to make the slightest effort to
understand statements which lack rigor, even so their judgment should give us something
to think about. By the present work, we hope to contribute in a constructive way to this
reflection.
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In section 3, we will define Dirac’s notation more precisely while recalling some mathe-
matical facts and evoking the historical development of quantum mechanics. In section 4,
we will successively discuss the following questions:

1. Is any of the three representations to be preferred to the other ones from the mathe-
matical or practical point of view? In particular, we discuss the status of the invariant
formalism to which the preference is given in the majority of recent textbooks.

2. What are the advantages, inconveniences and problems of Dirac’s notations and of
their interpretation? (The computational rules inferred from these notations and
their interpretation are usually applied in the framework of the invariant formal-
ism and then define a symbolic calculus - as emphasized by Dirac himself in the
introduction of his classic text [2].)

To anticipate our answer to these questions, we already indicate that we will reach
the conclusion that the systematic application of the invariant formalism and the rigid use
of Dirac’s notation - which are advocated in the majority of modern treatises of quantum
mechanics - are neither to be recommended from a mathematical nor from a practical point
of view. Compromises which retain the advantages of these formalisms while avoiding their
shortcomings will be indicated. The conclusions which can be drawn for the practice and
for the teaching of quantum theory are summarized in the final section (which also includes
a short guide to the literature).
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Chapter 2

Wave mechanics

2.1 Mathematical surprises in quantum mechanics

Examples which are simple from the mathematical point of view are to be followed by
examples which are more sophisticated and more interesting from the physical point of
view. All of them are formulated within the framework of wave mechanics and in terms of
the standard mathematical language of quantum mechanics textbooks. The theory of wave
mechanics being equivalent to the other formulations of quantum mechanics, the problems
we mention are also present in the other formulations, though they may be less apparent
there. The solution of all of the raised problems will be implicit in the subsequent section
in which we review the mathematical formalism of wave mechanics. It is spelled out in
detail in the appendix (but first think about it for yourself before looking it up!).

Example 1

For a particle in one dimension, the operators of momentum P and position Q satisfy
Heisenberg’s canonical commutation relation

[P,Q] =
h̄

i
1 . (2.1)

By taking the trace of this relation, one finds a vanishing result for the left-hand side,

Tr [P,Q] = 0, whereas Tr (
h̄

i
1) 6= 0. What is the conclusion?

Example 2

Consider wave functions ϕ et ψ which are square integrable on R and the momentum

operator P =
h̄

i

d

dx
. Integration by parts yields1

∫ +∞

−∞
dxϕ(x) (Pψ)(x) =

∫ +∞

−∞
dx (Pϕ)(x)ψ(x) +

h̄

i
[(ϕψ) (x)]+∞

−∞ .

1The complex conjugate of z ∈ C is denoted by z̄ or z∗.
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Since ϕ and ψ are square integrable, one usually concludes that these functions vanish for
x → ±∞. Thus, the last term in the previous equation vanishes, which implies that the
operator P is Hermitian.

However, the textbooks of mathematics tell us that square integrable functions do,
in general, not admit a limit for x → ±∞ and therefore they do not necessarily vanish
at infinity. There are even functions which are continuous and square summable on R
without being bounded at infinity [6]: an example of such a function is given by f(x) =
x2 exp (−x8 sin2 x), cf. figure 2.1 where the period of the function has been multiplied by
a factor 20 in order to increase the number of oscillations.

Figure 2.1: Graph of f(x) = x2 exp [−x8 sin2 (20x)]

We note that this example essentially amounts to a refinement of the following better known
example [7] of a function which is continuous, positive and integrable on R, though it does
not tend to zero for x → ±∞ (cf. figure 2.2): consider the “shrinking comb function”

f(x) =
∑∞
n=2 fn(x) where fn vanishes on R, except on an interval of width

2

n2
centered at

n, where the graph of fn is a triangle, which is symmetrical with respect to n and of height
1.

Figure 2.2: Shrinking comb function

The area of this triangle being
1

n2
, we have

∫ +∞

−∞
dx f(x) =

∞
∑

n=2

1

n2
<∞ ,

5



but the function f does not tend to zero for x→ +∞.
Can one conclude that the operator P is Hermitian in spite of these facts and if so, why?

Example 3

Consider the operators P =
h̄

i

d

dx
and ‘Q = multiplication by x’ acting on wave

functions depending on x ∈ R. Since P and Q are Hermitian operators, the operator
A = PQ3 +Q3P also has this property, because its adjoint is given by

A† = (PQ3 +Q3P )† = Q3P + PQ3 = A .

It follows that all eigenvalues of A are real. Nevertheless, one easily verifies that

Af =
h̄

i
f with f(x) =











1√
2
|x|−3/2 exp

(−1

4x2

)

for x 6= 0

0 for x = 0 ,
(2.2)

which means that A admits the complex eigenvalue h̄/i. Note that the function f is
infinitely differentiable on R and that it is square integrable, since

∫ ∞

−∞
dx |f(x)|2 = 2

∫ ∞

0
dx |f(x)|2 =

∫ ∞

0
dx x−3e−1/(2x2) =

[

e−1/(2x2)
]∞

0
= 1 .

Where is the error?

Example 4

Let us consider a particle confined to the interval [0, 1] and described by a wave function
ψ satisfying the boundary conditions ψ(0) = 0 = ψ(1). Then the momentum operator P =
h̄

i

d

dx
is Hermitian, since the surface term appearing upon integration by parts vanishes:

∫ 1

0
dx

(

ϕ (Pψ)− (Pϕ)ψ
)

(x) =
h̄

i
[(ϕψ) (x)]10 = 0 . (2.3)

Since P is Hermitian, its eigenvalues are real. In order to determine the latter, we note
that the eigenvalue equation,

(Pψp)(x) = p ψp(x) (p ∈ R , ψp 6≡ 0) ,

is solved by ψp(x) = cp exp (
i

h̄
px) with cp ∈ C−{0}. The boundary condition ψp(0) = 0 now

implies ψp ≡ 0, therefore P does not admit any eigenvalues. Nevertheless, the spectrum
of P is the entire complex plane [8] and P does not represent an observable. How can one
understand these results which seem astonishing?

Example 5

6



If one introduces polar coordinates in the plane or spherical coordinates in space, then
the polar angle ϕ and the component Lz of angular momentum are canonically conjugate
variables in classical mechanics. In quantum theory, the variable ϕ becomes the operator

of ‘multiplication of the wave function ψ(ϕ) by ϕ’ and Lz =
h̄

i

∂

∂ϕ
, which implies the

commutation relation

[Lz , ϕ] =
h̄

i
1 . (2.4)

These operators acting on periodic wave functions (i.e. ψ(0) = ψ(2π)) are Hermitian.
Furthermore, Lz admits a complete system of orthonormal eigenfunctions ψm,

Lzψm = mh̄ψm with ψm(ϕ) =
1√
2π

exp (imϕ) and m ∈ Z . (2.5)

(For the wave functions ψ, we only specify the dependence on the angular variable ϕ and
for the orthonormalisation, we refer to the standard scalar product for square integrable
functions on the interval [0, 2π) :

〈ψ1, ψ2〉 =
∫ 2π

0
dϕ ψ1(ϕ)ψ2(ϕ) .)

By evaluating the average value of the operator [Lz, ϕ] in the state ψm [9, 4] and by taking
into account the fact that Lz is Hermitian, one finds that

h̄

i
= 〈ψm,

h̄

i
1ψm〉

(2.4)
= 〈ψm, Lzϕψm〉 − 〈ψm, ϕLz ψm〉

= 〈L†z ψm, ϕ ψm〉 −mh̄ 〈ψm, ϕ ψm〉 (2.6)

= (mh̄−mh̄) 〈ψm, ϕ ψm〉 = 0 .

There must be a slight problem somewhere... (We note that similar problems appear for
the phase and number operators which are of interest in quantum optics [9, 10].)

Example 6

Let us add a bit to the confusion of the previous example! In 1927, Pauli noted that the
canonical commutation relation (2.1) implies Heisenberg’s uncertainty relation ∆P ·∆Q ≥
h̄

2
by virtue of the Cauchy-Schwarz inequality. Since the commutation relation (2.4) has

the same form as (2.1), one can derive, in the same way, the uncertainty relation

∆Lz ·∆ϕ ≥
h̄

2
. (2.7)

The following physical reasoning shows that this inequality cannot be correct [11, 9, 12].
One can always find a state for which ∆Lz < h̄/4π and then the uncertainty for the angle
ϕ has to be larger than 2π, which does not have any physical sense, since ϕ takes values in
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the interval [0, 2π). How is it possible that relation (2.4) is correct, though the conclusion
(2.7) is not?

By the way, this example shows that the uncertainty relation ∆A·∆B ≥ 1

2
| 〈[A,B]〉 | for

any two observables A and B (whose derivation can be found in most quantum mechanics
texts) is not valid in such a generality.

Example 7

Let us consider a particle of mass m in the infinite potential well

V (x) =

{

0 if |x| ≤ a (a > 0)
∞ otherwise .

The Hamiltonian for the particle confined to the inside of the well is simply H =
−h̄2

2m

d2

dx2
.

Let

ψ(x) =

√
15

4a5/2
(a2 − x2) for |x| ≤ a ( and ψ(x) = 0 otherwise ) (2.8)

be the normalized wave function of the particle at a given time. SinceH2ψ =
h̄4

4m2

d4ψ

dx4
= 0,

the average value of the operator H2 in the state ψ vanishes :

〈H2〉ψ = 〈ψ,H2ψ〉 =
∫ +a

−a
dx ψ(x) (H2ψ)(x) = 0 . (2.9)

This average value can also be determined from the eigenvalues and eigenfunctions of H ,

Hϕn = Enϕn with En =
π2h̄2

8ma2
n2 (n = 1, 2, ...) , (2.10)

by applying the formula

〈H2〉ψ =
∞
∑

n=1

E2
n pn with pn = |〈ϕn, ψ〉|2 . (2.11)

Proceeding in this way, one definitely does not find a vanishing result, because E2
n > 0 and

0 ≤ pn ≤ 1,
∑∞
n=1 pn = 1. In fact, the calculation yields 〈H2〉ψ =

15h̄4

8m2a4
. Which one of

these two results is correct and where does the inconsistency come from? [4]

2.2 Clues to the understanding: the mathematical

formalism

The problems and contradictions presented in the previous subsection can only be eluci-
dated by resorting to a more precise mathematical formulation. Therefore, we now sum-
marize the basic mathematical tools [6, 8][13]-[18] of wave mechanics in three subsections.
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The first two are sufficient for tackling the raised problems (and actually provide already
some partial solutions); the last one has been added in order to round up the discussion
and to provide a solid foundation for the subsequent section 4.

We consider the motion of a particle on a straight line parametrized by x ∈ R. The
generalization to a bounded interval, to three dimensions, to the spin or to a system of
particles does not present any problems.

2.2.1 The space of states

Born’s probabilistic interpretation of the wave function ψ requires that

∫

R

|ψ(x, t)|2dx = 1 for all t ∈ R .

Thus, the wave function which depends continuously on the time parameter t, must be
square integrable with respect to the space variable x:

ψ : R×R → C

(x, t) 7→ ψ(x, t) ≡ ψt(x) with ψt ∈ L2(R, dx) .

Here, L2(R, dx) is the space of square integrable functions,

L2(R, dx) = {f : R→ C |
∫

R

dx |f(x)|2 <∞} ,

with the scalar product

〈f, g〉L2 =
∫

R

dx f(x) g(x) for f, g ∈ L2(R, dx) . (2.12)

For later reference, we recall that this space is related by the Fourier transformation to the
Hilbert space L2(R, dp) of wave functions depending on the momentum p :

F : L2(R, dx) −→ L2(R, dp) (2.13)

f 7−→ Ff with (Ff) (p) =
1√
2πh̄

∫

R

dx f(x) exp(− i

h̄
px) .

2.2.2 Operators

In this section, we will properly define the notion of an operator and its adjoint (the Her-
mitian conjugate operator), as well as Hermitian operators and self-adjoint operators (i.e.
physical observables). Furthermore, we will indicate how the properties of the spectrum
of a given operator are intimately connected with the mathematical characteristics of this
operator and of its eigenfunctions. We strongly encourage the reader who is not familiar
with the definitions and results spelled out at the beginning of this subsection to pursue
the reading with the illustrations that follow.
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The following considerations (i.e. sections 2.2.2 and 2.2.3) do not only apply to the
concrete Hilbert space L2(R, dx) of wave mechanics, but to any Hilbert space H that is
isomorphic to it, i.e. any complex Hilbert space which admits a countably infinite basis2;
therefore, we will refer to a general Hilbert space H of this type and only specialize to the
concrete realizations L2(R, dx) or L2([0, 1], dx) in the examples.

Just as a function f : R → R has a domain of definition D(f) ⊂ R, a Hilbert space
operator A : H → H admits such a domain:

Definition 1 An operator on the Hilbert space H is a linear map

A : D(A) −→ H (2.14)

ψ 7−→ Aψ ,

where D(A) represents a dense linear subspace of H. This subspace is called the domain
of definition of A or, for short, the domain of A. (Thus, strictly speaking, a Hilbert space
operator is a pair (A,D(A)) consisting of a prescription of operation on the Hilbert space,
together with a Hilbert space subset on which this operation is defined.)

If B denotes another operator on H (with domain D(B)), then the operator A is said to
be equal to the operator B if both the prescription of operation and the domain of definition
coincide, i.e. if

Aϕ = Bϕ for all ϕ ∈ D(A) = D(B) .

In this case, one writes A = B.

We note that, in the mathematical literature, the definition of an operator is usually
phrased in more general terms by dropping the assumptions that D(A) is dense and that
the map A is linear; however, these generalizations scarcely occur in quantum mechanics
and therefore we will not consider them here.

As emphasized in the previous definition, an operator is not simply a formal operating
prescription and two operators which act in the same way are to be considered as different if
they are not defined on the same subspace of Hilbert space. A typical example for the latter
situation is given by a physical problem on a compact or semi-infinite interval: the domain
of definition of operators then includes, in general, some boundary conditions whose choice
depends on the experimental set-up which is being considered. Clearly, two non equivalent
experimental set-ups for the measurement of a given physical observable generally lead to
different experimental results: thus, it is important to consider as different two Hilbert
space operators which act in the same way, but admit different domains of definition.
Actually, most of the contradictions derived in section 2 can be traced back to the fact
that the domains of definition of the operators under consideration have been ignored!

By way of example, let us first consider three different operators on the Hilbert space
H = L2(R, dx) and then another one on L2([0, 1]).

1.a) The position operator Q for a particle on the real line is the operator ‘multiplication
by x’ on L2(R, dx):

(Qψ) (x) = xψ(x) for all x ∈ R . (2.15)
2The precise definition of an isomorphism is recalled in section 3.2 below.
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The maximal domain of definition for Q is the one which ensures that the function Qψ
exists and that it still belongs to the Hilbert space :

Dmax(Q) = {ψ ∈ H | Qψ ∈ H}
= {ψ ∈ L2(R, dx) | ‖Qψ‖2 ≡

∫

R

dx x2|ψ(x)|2 <∞} . (2.16)

Obviously, this represents a proper subspace of L2(R, dx) and it can be shown that it is a
dense subspace [8, 14].

1.b) Analogously, the maximal domain of definition of the momentum operator P =
h̄

i

d

dx
on the Hilbert space L2(R, dx) is3

Dmax(P ) = {ψ ∈ L2(R, dx) |ψ′ ∈ L2(R, dx)} .

1.c) For certain considerations it is convenient to have at one’s disposal a domain of
definition that is left invariant by the operator (rather than a maximally defined operator).
For the operatorQ, such a domain is given by the Schwartz space S(R) of rapidly decreasing
functions. Let us recall that a function f : R→ C belongs to S(R) if it is differentiable an
infinite number of times and if this function, as well as all of its derivatives, decreases more
rapidly at infinity than the inverse of any polynomial). This implies that S(R) ⊂ Dmax(Q)
and

Q : S(R) −→ S(R) . (2.17)

The Schwartz space also represents an invariant domain of definition for the momentum

operator P =
h̄

i

d

dx
on L2(R, dx), i.e. P : S(R)→ S(R).

According to the definition given above, the operators P and Q introduced in the last
example are different from P and Q as defined in the preceding two examples, respectively;
however, in the present case where we have an infinite interval, this difference is rather
a mathematical one since physical measurements do not allow us to make a distinction
between the different domains.

2. Let us also give an example concerning a particle which is confined to a compact
interval e.g. [0, 1]. In this case, the wave function generally satisfies some boundary
conditions which have to be taken into account by means of the domains of the operators
under investigation. For instance, let us consider example 4 of section 2, i.e. the momentum
operator P onH = L2([0, 1], dx) with the usual boundary conditions of an infinite potential
well: the domain of definition of P then reads

D(P ) = {ψ ∈ H |ψ′ ∈ H and ψ(0) = 0 = ψ(1)} . (2.18)

3Since the integral involved in the definition of the space L2(R, dx) is the one of Lebesgue, one only needs
to ensure that the considered functions behave correctly ‘almost everywhere’ with respect to Lebesgue’s
measure (see textbooks on analysis): thus, ψ′ ∈ L2(R, dx) means that the derivative ψ′ exists almost
everywhere and that it belongs to L2(R, dx).
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Shortly, we will come to the mathematical and physical properties of this quantum me-
chanical operator.

The specification of the domain plays a crucial role when introducing the adjoint A† of
a Hilbert space operator A:

Definition 2 For an operator A on H, the domain of A† is defined by

D(A†) = {ϕ ∈ H | ∃ ϕ̃ ∈ H such that

〈ϕ,Aψ〉 = 〈 ϕ̃ , ψ 〉 for all ψ ∈ D(A)} .

(Here, the vector ϕ̃ depends on both A and ϕ.) For ϕ ∈ D(A†), one defines A†ϕ = ϕ̃, i.e.

〈ϕ,Aψ〉 = 〈A†ϕ, ψ〉 for all ψ ∈ D(A) . (2.19)

By way of example, we again consider the Hilbert space H = L2([0, 1], dx) and the
momentum operator P with the domain (2.18). According to the previous definition, the

domain of P † is given by

D(P †) = {ϕ ∈ H | ∃ ϕ̃ ∈ H such that 〈ϕ, Pψ〉 = 〈ϕ̃, ψ〉 for all ψ ∈ D(P )}

and the operating prescription for P † is determined by the relation

〈ϕ, Pψ〉 = 〈P †ϕ, ψ〉 for all ψ ∈ D(P ) . (2.20)

The integration by parts (2.3) or, more precisely,

∫ 1

0
dx (ϕPψ −

(

h̄

i

dϕ

dx

)

ψ)(x) =
h̄

i

[

ϕ(1)ψ(1)− ϕ(0)ψ(0)
]

= 0 for all ψ ∈ D(P )

shows that the boundary conditions satisfied by ψ ∈ D(P ) are already sufficient for anni-

hilating the surface term and it shows that P † acts in the same way as P . Hence,

P † =
h̄

i

d

dx
, D(P †) = {ϕ ∈ H |ϕ′ ∈ H} . (2.21)

Thus, the domain of definition of P † is larger than the one of P : D(P ) ⊂ D(P †).

In quantum theory, physical observables are described by Hilbert space operators which
have the property of being self-adjoint. Although many physics textbooks use this term as
a synonym for Hermitian, there exists a subtle difference between these two properties for
operators acting on infinite dimensional Hilbert spaces: as we will illustrate in the sequel,
this difference is important for quantum physics.
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Definition 3 The operator A on H is Hermitian if

〈ϕ,Aψ〉 = 〈Aϕ, ψ〉 for all ϕ, ψ ∈ D(A) (2.22)

i.e.
A†ϕ = Aϕ for all ϕ ∈ D(A) .

(In other words, the operator A is Hermitian if A† acts in the same way as A on all vectors

belonging to D(A), though A† may actually be defined on a larger subspace than D(A).)

An operator A on H is self-adjoint if the operators A and A† coincide (A = A†), i.e.
explicitly

D(A) = D(A†) and A†ϕ = Aϕ for all ϕ ∈ D(A) . (2.23)

Thus, any self-adjoint operator is Hermitian, but an Hermitian operator is not necessarily
self-adjoint. Our previous example provides an illustration for the latter fact. We found

that P and P † act in the same way, though the domain of definition of P † (as given
by equation (2.21)) is strictly larger than the one of P (as given by equation (2.18)):

D(P ) ⊂ D(P †), but D(P ) 6= D(P †). From these facts, we conclude that P is Hermitian,

but not self-adjoint: P 6= P †.
One may wonder whether it is possible to characterize in another way the little “extra”

that a Hermitian operator is lacking in order to be self-adjoint. This missing item is
exhibited by the following result which is proven in mathematical textbooks. If the Hilbert
space operator A is self-adjoint, then its spectrum is real [6, 8][13]-[18] and the eigenvectors
associated to different eigenvalues are mutually orthogonal; moreover, the eigenvectors
together with the generalized eigenvectors yield a complete system of (generalized) vectors
of the Hilbert space4 [19, 20, 8]. These results do not hold for operators which are only
Hermitian. As we saw in section 2.1, this fact is confirmed by our previous example:
the Hermitian operator P does not admit any proper or generalized eigenfunctions and
therefore it is not self-adjoint (as we already deduced by referring directly to the definition
of self-adjointness).

Concerning these aspects, we recall that the existence of a complete system of (gen-
eralized) eigenfunctions is fundamental for the physical interpretation of observables. It
motivates the mathematical definition of an observable which is usually given in text-
books on quantum mechanics: an observable is defined as a “Hermitian operator whose
orthonormalized eigenvectors define a basis of Hilbert space” [21]. The shortcomings of
this approach (as opposed to the identification of observables with self-adjoint operators)
will be discussed in section 4. Here, we only note the following. For a given Hilbert
space operator, it is usually easy to check whether it is Hermitian (e.g. by performing
some integration by parts). And for a Hermitian operator, there exist simple criteria for
self-adjointness: the standard one will be stated and applied in the appendix.

4The vectors which satisfy the eigenvalue equation, though they do not belong to the Hilbert space H,
but to a larger space containing H, are usually referred to as “generalized eigenvectors”, see section 2.2.3
below.
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Finally, we come to the spectrum of operators for which we limit ourselves to the general
ideas. By definition, the spectrum of a self-adjoint operator A on the Hilbert space H is
the union of two sets of real numbers,

1. the so-called discrete or point spectrum, i.e. the set of eigenvalues of A (that is
eigenvalues for which the eigenvectors belong to the domain of definition of A).

2. the so-called continuous spectrum, i.e. the set of generalized eigenvalues of A (that
is eigenvalues for which “the eigenvectors do not belong to the Hilbert space H”).

These notions will be made more precise and illustrated in the next subsection as well as in
the appendix. From the physical point of view, the spectral values of an observable (given
by a self-adjoint operator) are the possible results that one can find upon measuring this
physical quantity. The following two examples are familiar from physics.

1. For a particle moving on a line, the observables of position and momentum can both
take any real value. Thus, the corresponding operators have a purely continuous and
unbounded spectrum: SpQ = R and SpP = R. A rigorous proof of this result will be
given shortly (equations (2.26)-(2.29) below).

2. For a particle confined to the unit interval and subject to periodic boundary conditions,
we have wave functions belonging to the Hilbert space L2([0, 1], dx) and satisfying the
boundary conditions ψ(0) = ψ(1). In this case, the position operator admits a continuous
and bounded spectrum given by the interval [0, 1]. The spectrum of the momentum op-
erator is discrete and unbounded, which means that the momentum can only take certain
discrete, though arbitrary large values.

In order to avoid misunderstandings, we should emphasize that the definitions given in
physics and mathematics textbooks, respectively, for the spectrum of an operator acting
on an infinite dimensional Hilbert space, do not completely coincide. In fact, from a math-
ematical point of view it is not natural to simply define the spectrum of a generic Hilbert
space operator as the set of its proper and generalized eigenvalues (e.g. see references [3]
and [8]): by definition, it contains a third part, the so-called residual spectrum. The latter
is empty for self-adjoint operators and therefore we did not mention it above. However,
we will see in the appendix that the residual spectrum is not empty for operators which
are only Hermitian; we will illustrate its usefulness for deciding whether a given Hermitian
operator can possibly be modified so as to become self-adjoint (i.e. precisely the criteria
for self-adjointness of a Hermitian operator that we already evoked).

Before concluding our overview of Hilbert space operators, we note that all definitions
given in this subsection also hold if the complex Hilbert space H is of finite dimension n,
i.e. H ≃ Cn. In this case (which is of physical interest for the spin of a particle or for a
quantum mechanical two-level system), the previous results simplify greatly:

- any operator A on H (which may now be expressed in terms of a complex n × n
matrix) and its adjoint (the Hermitian conjugate matrix) are defined on the whole Hilbert
space, i.e. D(A) = H

- Hermitian and self-adjoint are now synonymous
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- the spectrum of A is simply the set of all its eigenvalues, i.e. we have a purely discrete
spectrum.

Yet, it is plausible that the passage to infinite dimensions, i.e. the addition of an infinite
number of orthogonal directions to Cn opens up new possibilities! As S.MacLane put it:
“Gentlemen: there’s lots of room left in Hilbert space.” [14]

2.2.3 Observables and generalized eigenfunctions

When introducing the observables of position and momentum for a particle on the real
line, we already noticed that they are not defined on the entire Hilbert space, but only on
a proper subspace of it. In this section, we will point out and discuss some generic features
of quantum mechanical observables.

Two technical complications appear in the study of an observable A in quantum me-
chanics:
(i) If the spectrum of A is not bounded, then the domain of definition of A cannot be all
of H.
(ii) If the spectrum of A contains a continuous part, then the corresponding eigenvectors
do not belong to H, but rather to a larger space.

Let us discuss these two problems in turn before concluding with some related remarks.

(i) Unbounded operators

The simplest class of operators is the one of bounded operators, i.e. for every vector
ψ ∈ D(A), one has

‖Aψ‖ ≤ c ‖ψ‖ where c ≥ 0 is a constant . (2.24)

This condition amounts to say that the spectrum of A is bounded. Bounded operators
can always be defined on the entire Hilbert space, i.e. D(A) = H. An important example
is the one of an unitary operator U : H → H ; such an operator is bounded, because
it is norm-preserving (i.e. ‖Uψ‖ = ‖ψ‖ for all ψ ∈ H) and therefore condition (2.24) is
satisfied. (The spectrum of U lies on the unit circle of the complex plane and therefore
it is bounded. For instance, the spectrum of the Fourier transform operator F defined by
(2.13) is the discrete set {±1,±i} [13, 16].)

A large part of the mathematical subtleties of quantum mechanics originates from the
following result [8, 14].

Theorem 1 (Hellinger-Toeplitz) Let A be an operator on H which is everywhere de-
fined and which satisfies the Hermiticity condition

〈ϕ,Aψ〉 = 〈Aϕ, ψ〉 (2.25)

for all vectors ϕ, ψ ∈ H. Then A is bounded.
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In quantum theory, one often deals with operators, like those associated to the position,
momentum or energy, which fulfill the Hermiticity condition (2.25) on their domain of
definition, but for which the spectrum is not bounded. (In fact, the basic structural relation
of quantum mechanics, i.e. the canonical commutation relation, even imposes that some
of the fundamental operators, which are involved in it, are unbounded - see appendix.)
The preceding theorem indicates that it is not possible to define these Hermitian operators
on the entire Hilbert space H and that their domain of definition necessarily represents
a proper subspace of H. Among all the choices of subspace which are possible from the
mathematical point of view, certain ones are usually privileged by physical considerations
(boundary conditions, ...) [22, 14, 8, 23, 24].

By way of example, we consider the position operator Q defined on the Schwartz space
S(R), see eqs.(2.15)(2.17). This operator is Hermitian since all vectors ϕ, ψ ∈ S(R) satisfy

〈ϕ,Qψ〉 =
∫

R

dxϕxψ =
∫

R

dx xϕψ = 〈Qϕ, ψ〉 .

As we are going to prove shortly, the spectrum of this operator is the entire real axis
(reflecting the fact that Q is not bounded). For this specific operator, we already noticed
explicitly that there is no way to define Q on all vectors of Hilbert space: at best, it can
be defined on its maximal domain (2.16) which represents a nontrivial subspace of Hilbert
space.

(ii) Generalized eigenfunctions (Gelfand triplets)

The position operator Q defined on S(R) also illustrates the fact that the eigenvectors
associated to the continuous spectrum of a self-adjoint operator do not belong to the
Hilbert space5. In fact, the eigenfunction ψx0

associated to the eigenvalue x0 ∈ R is
defined by the relation

(Qψx0
) (x) = x0 ψx0

(x) (x0 ∈ R , ψx0
∈ S(R) , ψx0

6≡ 0) (2.26)

or else, following (2.15), by

(x− x0)ψx0
(x) = 0 for all x ∈ R .

This condition implies ψx0
(x) = 0 for x 6= x0. Consequently, the function ψx0

vanishes
almost everywhere6 and thus represents the null vector of L2(R, dx) [8, 13, 14]. Hence, the
operator Q does not admit any eigenvalue: its discrete spectrum is empty.

We note that the situation is the same for the operator P defined on S(R) which is
also essentially self-adjoint: the eigenvalue equation

(Pψp) (x) = p ψp(x) (p ∈ R , ψp ∈ S(R) , ψp 6≡ 0), ,
5To be precise, the operator Q defined on S(R) is essentially self-adjoint which implies that it can be

rendered self-adjoint in a unique manner by enlarging its domain of definition in a natural way (see [14, 8]
for details).

6Actually, ψx0
∈ S(R) implies that ψx0

is continuous and therefore it follows that ψx0
vanishes every-

where.
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is solved by ψp(x) = 1/
√

2πh̄ exp(ipx/h̄), but ψp 6∈ S(R). Thus P does not admit any
eigenvalue.

On the other hand, the eigenvalue equations for Q and P admit weak (distributional)
solutions. For instance, Dirac’s generalized function (distribution) with support in x0, i.e.
δx0

(x) ≡ δ(x− x0), is a weak solution of the eigenvalue equation (2.26): in order to check
that x δx0

(x) = x0 δx0
(x) in the sense of distributions, we have to smear out this relation

with a test function ϕ ∈ S(R):
∫

R

dx x δx0
(x)ϕ(x) = x0 ϕ(x0) =

∫

R

dx x0 δx0
(x)ϕ(x) . (2.27)

Dirac’s generalized function and the generalized function xδx0
do not belong to the domain

of definition S(R) of Q, rather they belong to its dual space

S ′(R) = {ω : S(R)→ C linear and continuous} ,

i.e. the space of tempered distributions on R [14, 8, 15, 25, 19]. They are defined in an
abstract and rigorous manner by

δx0
: S(R) −→ C (2.28)

ϕ 7−→ δx0
(ϕ) = ϕ(x0)

and

x δx0
: S(R) −→ C

ϕ 7−→ (x δx0
) (ϕ) = δx0

(xϕ)
(2.28)
= x0 ϕ(x0) .

With these definitions, the formal writing (2.27) takes the precise form

(x δx0
) (ϕ) = (x0 δx0

) (ϕ) for all ϕ ∈ S(R) .

Thus, the eigenvalue equation Qψx0
= x0 ψx0

admits a distributional solution ψx0
for every

value x0 ∈ R. Since the spectrum of the (essentially self-adjoint) operator Q is the set
of all real numbers for which the eigenvalue equation admits as solution either a function
ψ ∈ D(Q) = S(R) (discrete spectrum) or a generalized function ψ ∈ S ′(R) (continuous
spectrum), we can conclude that SpQ = R and that the spectrum ofQ is purely continuous.

Analogously, the function ψp(x) = 1/
√

2πh̄ exp(ipx/h̄) defines a distribution lp accord-
ing to

lp : S(R) −→ C (2.29)

ϕ 7−→ lp(ϕ) =
∫

R

dxψp(x)ϕ(x)
(2.13)
= (Fϕ)(p) ,

where Fϕ denotes the Fourier transform (2.13). The distribution lp represents a solution
of the eigenvalue equation P lp = p lp since the calculational rules for distributions and
Fourier transforms [8, 19] and the definition (2.29) imply that

(P lp) (ϕ) =

(

h̄

i

dlp
dx

)

(ϕ) = lp

(

h̄

i

dϕ

dx

)

(2.29)
= (F

(

h̄

i

dϕ

dx

)

)(p) = p (Fϕ)(p)
(2.29)
= p lp(ϕ) .
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It follows that SpP = R (purely continuous spectrum).
The eigenvalue problem for the operators P and Q which admit a continuous spectrum

thus leads us to consider the following Gelfand triplet (“rigged or equipped Hilbert space”)7

S(R) ⊂ L2(R, dx) ⊂ S ′(R) . (2.30)

Here, S(R) is a dense subspace of L2(R, dx) [14] and every function ψ ∈ L2(R, dx) defines
a distribution ωψ ∈ S ′(R) according to

ωψ : S(R) −→ C

ϕ 7−→ ωψ(ϕ) =
∫

R

dxψ(x)ϕ(x) . (2.31)

However S ′(R) also contains distributions like Dirac’s distribution δx0
or the distribution lp

which cannot be represented by means of a function ψ ∈ L2(R, dx) according to (2.31). The
procedure of smearing out with a test function ϕ ∈ S(R) corresponds to the formation of
wave packets and the theory of distributions gives a quite precise meaning to this procedure
as well as to the generalized functions that it involves.

The abstract definition of the triplet (2.30) can be made more precise (e.g. specification
of the topology on S(R),...) and, furthermore, S(R) can be generalized to other subspaces
of L2(R, dx) (associated to Q or to other operators defined on L2(R, dx)). Up to these
details (which are important and which have to be taken into account in the study of a
given Hilbert space operator), we can say that

the triplet (2.30) describes in an exact and simple manner the math-
ematical nature of all kets and bras used in quantum mechanics.8

In fact, according to the Riesz lemma (which is recalled in section 3.1.1 below), the Hilbert
space L2(R, dx) is isometric to its dual: thus, to each ket belonging to L2(R, dx), there
corresponds a bra given by an element of L2(R, dx), and conversely. Moreover, a ket
belonging to the subspace S(R) always defines a bra belonging to S ′(R) by virtue of
definition (2.31). But there exist elements of S ′(R), the generalized bras, to which one
cannot associate a ket belonging to S(R) or L2(R, dx). We note that the transparency of
this mathematical result is lost if one proceeds as one usually does in quantum mechanics,
namely if one describes the action of a distribution on a test function ϕ in a purely formal
manner as a scalar product between ϕ ∈ S(R) ⊂ L2(R, dx) and a function which does not
belong to L2(R, dx):

lp(ϕ) = 〈ψp, ϕ〉L2 ≡
∫

R

dxψp(x)ϕ(x) ( ignoring that ψp 6∈ L2(R, dx) )

δx0
(ϕ) = 〈δx0

, ϕ〉L2 ≡
∫

R

dx δx0
(x)ϕ(x) ( ignoring that δx0

6∈ L2(R, dx) ). (2.32)

7Gelfand triplets are discussed in detail in the textbook [19] (see also [20] and [26] for a slightly modified
definition). A short and excellent introduction to the definitions and applications in quantum mechanics
is given in references [23, 27, 8]. Concerning the importance of Gelfand triplets, we cite their inventors
[19]: “We believe that this concept is no less (if indeed not more) important than that of a Hilbert space.”

8The reader who is not acquainted with bras and kets may skip this paragraph and come back to it
after browsing through section 3.
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Quite generally, let us consider a self-adjoint operator A on the Hilbert space H. The
eigenfunctions associated to elements of the continuous spectrum of A do not belong to
the Hilbert space H: one has to equip H with an appropriate dense subspace Ω and its
dual Ω′ which contains the generalized eigenvectors of A,

Ω ⊂ H ⊂ Ω′ .

The choice of the subspace Ω is intimately connected with the domain of definition of
the operator A one wants to study9. While the introduction of the space Ω is mandatory
for having a well-posed mathematical problem, the one of Ω′ is quite convenient, though
not indispensable for the determination of the spectrum of A. In fact, there exist several
characterizations of the spectrum which do not call for an extension of the Hilbert space10.
Let us mention three examples. The different parts of the spectrum of A can be described
by different properties of the resolvent RA(z) = (A − z1)−1 (where z ∈ C) [8, 15] or
(in the case where A is self-adjoint) by the properties of the spectral projectors EA(λ)
(where λ ∈ R) associated to A [28, 8, 14] or else by replacing the notion of distributional
eigenfunction of A by the one of approximate eigenfunction [15]. (The latter approach
reflects the well-known fact that distributions like δx0

can be approximated arbitrarily well
by ordinary, continuous functions.)

(iii) Concluding remarks

As we already indicated, the examples discussed in the previous subsection exhibit both
the problems raised by an unbounded spectrum and by a continuous part of the spectrum.
We should emphasize that these problems are not related to each other; this is illustrated
by the position and momentum operators for a particle confined to a compact interval and
described by a wave function with periodic boundary conditions (see example 2 at the end
of section 2.2.2).

We note that it is sometimes convenient to pass over from unbounded to bounded
operators. One way to do so consists of using exponentiation to pass from self-adjoint to
unitary operators (which are necessarily bounded). For instance, if Q and P denote the
(essentially) self-adjoint operators of position and momentum with the common domain
of definition S(R), then Ua ≡ exp (− i

h̄
aQ) and Vb ≡ exp (− i

h̄
bP ) (with a, b ∈ R) define

one-parameter families of unitary operators. In particular, Vb represents the translation
operator for wave functions:

(Vbψ) (x) = ψ(x− b) for ψ ∈ L2(R, dx) .
9Generally speaking, one has to choose the space Ω in a maximal way so as to ensure that Ω′ is as

“near” as possible to H : this provides the closest possible analogy with the finite-dimensional case where
Ω = H = Ω′ [20, 23]. In fact, if one chooses Ω large enough, the space Ω′ is so small that the generalized
eigenvectors of A which belong to Ω′ “properly” characterize this operator (see references [23, 20] for a
detailed discussion).

10In this context, let us cite the authors of reference [14]: “We only recommend the abstract rigged
space approach to readers with a strong emotional attachment to the Dirac formalism.” This somewhat
provocative statement reflects fairly well the approach followed in the majority of textbooks on functional
analysis.
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This bounded operator admits a continuous spectrum consisting of the unit circle. If

written in terms of Ua and Vb, the canonical commutation relation (CCR) [P,Q] =
h̄

i
1

takes the so-called Weyl form

UaVb = e−
i

h̄
abVbUa . (2.33)

This relation can be discussed without worrying about domains of definition since it only
involves bounded operators. It was used by J. von Neumann to prove his famous uniquess
theorem for the representations of the CCR: this result states that the Schrödinger repre-

sentation ‘Q = multiplication by x′, P =
h̄

i

d

dx
is essentially the only possible realization

of the CCR [14, 12].
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Chapter 3

Quantum mechanics and Hilbert
spaces

The different representations used in quantum mechanics are discussed in numerous mono-
graphs [21] and we will summarize them in the next subsection while evoking the his-
torical development. The underlying mathematical theory is expounded in textbooks on
functional analysis [13]. Among these books, there are some excellent monographs which
present the general theory together with its applications to quantum mechanics [14, 8, 15]
(see also [6, 16, 17, 18]). The basic result which is of interest to us here (and on which
we will elaborate in subsection 3.2) is the fact that all representations mentioned above
are equivalent. This implies that the problems we presented in section 2 are not simply
artefacts of wave mechanics and that such problems manifest themselves in quantum the-
ory whatever formulation is chosen to describe the theory. In fact, we could have written
some of the equations explicitly in terms of operators P, Q, Lz, ϕ, ... acting on an abstract
Hilbert space and in terms of vectors |m〉, ... belonging to such a space, e.g. eqs.(2.1) and
(2.4)-(2.7).

3.1 The different Hilbert spaces

As in section 2.2, we consider the motion of a particle on a straight line parametrized by
x ∈ R. There are essentially three Hilbert spaces which are used for the description of the
states of this particle.

(1) Wave mechanics:

Wave mechanics was developed in 1926 by E. Schrödinger “during a late erotic outburst
in his life” [29, 30]. There were two sources of inspiration. The first was the concept of
matter waves which L. de Broglie had introduced in his thesis a few years earlier (1923). The
second was given by the papers on statistical gas theory that Einstein had published in 1925
with the aim of extending some earlier work of S.N. Bose (which papers led to the famous
“Bose-Einstein statistics” for indistinguishable particles): Einstein believed that molecules
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as well as photons must have both particle and wave characters [30]. E. Schrödinger
laid the foundations of wave mechanics in three remarkable papers that he wrote in early
1926, just after returning from the studious Christmas holidays that he had spent with
an unknown companion in the ski resort of Arosa [30]. Looked upon in retrospective and
from the mathematical point of view, he considered the Hilbert space L2(R, dx) of square
integrable functions (i.e. wave functions) with the scalar product (2.12) (or, equivalently,
the space L2(R, dp) of wave functions depending on the momentum p, i.e. the so-called p-
representation). It is worthwhile recalling that any element ψ ∈ L2(R, dx) can be expanded
with respect to a given orthonormal basis {ϕn}n∈N of L2(R, dx):

ψ =
∞
∑

n=0

cnϕn with cn = 〈ϕn, ψ〉L2 ∈ C . (3.1)

If ψ′ =
∑

n c
′
nϕn denotes another element of L2(R, dx), its scalar product with ψ takes the

form

〈ψ, ψ′〉L2 =
∞
∑

n=0

c̄nc
′
n . (3.2)

In particular, for the norm ‖ψ‖ ≡
√

〈ψ, ψ〉 of ψ, we have

‖ψ‖2 =
∞
∑

n=0

|cn|2 . (3.3)

(2) Matrix mechanics:

Once an orthonormal basis {ϕn}n∈N of L2(R, dx) has been chosen, the expansion (3.1)
of ψ ∈ L2(R, dx) with respect to this basis expresses a one-to-one correspondence between
the wave function ψ and the infinite sequence ~c = (c0, c1, ...) of complex numbers. By virtue
of relation (3.3), the square integrability of the function ψ (i.e. ‖ψ‖2 ≡ ∫

R
|ψ(x)|2dx <∞)

is equivalent to the square summability of the sequence ~c (i.e.
∑

n |cn|2 <∞).
Thus, quantum mechanics can also be formulated using the Hilbert space l2 of square

summable sequences,

l2 = {~c = (c0, c1, ...) | cn ∈ C and
∞
∑

n=0

|cn|2 <∞} ,

with the scalar product

〈~c,~c ′ 〉l2 =
∞
∑

n=0

cn c
′
n for all ~c,~c ′ ∈ l2 .

The linear operators on l2 are then given by square matrices of infinite order. This formu-
lation of quantum theory is known as matrix mechanics and was actually the first one to
be discovered [29, 31, 30]:

- In 1925, Heisenberg wrote his pioneering paper pointing in the right direction.
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- A first comprehensive account of the foundations of matrix mechanics was given in
November 1925 in the famous “Dreimännerarbeit” (three men’s work) of Born, Heisenberg
and Jordan.

- Some of these results have been put forward independently by Dirac who introduced
the concept of commutator of operators and identified it as the quantum analogon of the
classical Poisson brackets [32].

- Pauli’s subsequent derivation of the spectrum of the hydrogen atom using matrix
methods provided strong evidence for the correctness of this approach.

Despite this success, matrix mechanics was still lacking clearly stated physical princi-
ples and therefore only represented high mathematical technology. The situation changed
in 1926 after Schrödinger proved the equivalence between wave mechanics and matrix me-
chanics, which is based on the correspondence

wave function
ψ ∈ L2(R, dx)

}

1−1←→
{

sequence
~c ∈ l2 .

(3.4)

This result led Born to propose his probabilistic interpretation of wave functions which
finally provided the physical principles of the theory. The equivalence (3.4) also represented
the starting point for the search of an “invariant” version of quantum mechanics. Through
the work of Dirac and Jordan, this undertaking led to the study of linear operators acting
on an abstract Hilbert space [33][28, 34].

It is a remarkable coincidence that the monograph of Courant and Hilbert [35] devel-
oping the mathematics of Hilbert space was published in 1924 and that it appeared to be
written specifically for the physicists of this time1. Incidentally, the space l2 has been intro-
duced in 1912 by D.Hilbert in his work on integral equations, but an axiomatic definition
of Hilbert space was only given in 1927 by J. von Neumann in a paper on the mathematical
foundation of quantum mechanics [18]. In the sequel, the theory of Hilbert space operators
was further refined, mainly through the contributions of von Neumann [28], Schwartz [25]
and Gelfand [19]. Thanks to these refinements, it allows for a precise description of all
states and observables in quantum mechanics. To conclude our historical excursion on the
mathematical formulation of quantum theory, we recall the remarkable fact that some of its
main protagonists (namely Heisenberg, Dirac, Jordan, Pauli and von Neumann) achieved
their ground-breaking contributions to physics and mathematics around the age of 23.

(3) The invariant formalism: [Dirac, Jordan, von Neumann, 1926 - 1931]

One uses an abstract complex Hilbert space H that is separable (which means that it
admits an orthonormal basis consisting of a denumerable family of vectors) and infinite
dimensional.

It was in this framework that Paul Adrien Maurice Dirac invented the astute bra and
ket notation, following a particular interpretation of the expressions involving vectors and

1D. Hilbert: “I developed my theory of infinitely many variables from purely mathematical interests
and even called it ‘spectral analysis’ without any pressentiment that it would later find an application to
the actual spectrum of physics.” [36]
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operators2. Before discussing this interpretation and the resulting advantages and short-
comings (section 4.2), we first summarize Dirac’s notation together with some fundamental
concepts of the theory of Hilbert spaces [6, 8][13]-[18].

3.1.1 Dirac’s notation

A vector |Ψ〉 ∈ H is called a ket and to this vector we can associate a linear form ω|Ψ〉 ≡ 〈Ψ|
called a bra and defined by means of the scalar product (“bracket” ):

ω|Ψ〉 ≡ 〈Ψ| : H lin.−→ C (3.5)

|Φ〉 7−→ ω|Ψ〉 (|Φ〉) = 〈 |Ψ〉 , |Φ〉 〉H ≡ 〈Ψ|Φ〉 .

According to the Cauchy-Schwarz inequality relating the scalar product and the norm

‖Ψ‖ ≡ ‖|Ψ〉‖ =
√

〈Ψ|Ψ〉 in H,

|〈Ψ|Φ〉| ≤ ‖Ψ‖ · ‖Φ‖ ,

the linear form ω|Ψ〉 is continuous on H: this means that for every |Φ〉 ∈ H there exists a
constant c ≥ 0 such that |ω|Ψ〉(|Φ〉)| ≤ c ‖Φ‖. Consequently, the bra 〈Ψ| is an element of
the dual Hilbert space

H∗ = {ω : H −→ C linear and continuous} .

Conversely, to each bra 〈Ψ| ∈ H∗ we can associate a ket |Ψ〉 ∈ H; in fact, by virtue of
the Riesz lemma, every element ω ∈ H∗ uniquely determines a vector |Ψω〉 ∈ H such that

ω (|Φ〉) = 〈Ψω|Φ〉 for all |Φ〉 ∈ H .

(The vector |Ψω〉 “realizes” the map ω by means of the scalar product.) The vector associ-
ated to the linear form 〈Ψ| is denoted by |Ψ〉 and thus we have a one-to-one correspondence
between |Ψ〉 ∈ H and 〈Ψ| ∈ H∗:

H ∋ |Ψ〉 1−1←→ 〈Ψ| ∈ H∗ . (3.6)

Hence we can identify3 H and H∗ and completely do without H∗. The introduction of a
dual vector space is only necessary for defining generalized vectors, as we saw in section
2.2.3.

2As pointed out by H.Kragh [31], a peculiar feature of Dirac’s physics was his interest in notation and
his readiness to invent new terms and symbols. Apart from the bra and ket notation, the δ-function and
the commutator of operators that he introduced, we should mention that he coined the terms c-number,
fermion and boson and that he defined h̄ as a short form for h/2π.

3If one defines the norm of ω ∈ H∗ by ‖ω‖ = sup |ω(f)| (where the supremum is taken over all unit
vectors f ∈ H), then one can show that the bijection H → H∗ is antilinear and that it is norm-preserving,
i.e. it represents an isometry.
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An orthonormal basis {|Φn〉 ≡ |n〉}n∈N
of H is a set of vectors satisfying the orthonor-

malization relation
〈n|m〉 = δnm for all n,m ∈ N (3.7)

and the closure relation
∞
∑

n=0

|n〉〈n| = 1H . (3.8)

Applying the latter to any vector |Ψ〉 ∈ H, we find the expansion

|Ψ〉 =
∞
∑

n=0

|n〉〈n|Ψ〉 ,

that we encountered already for wave functions, cf. eq.(3.1). Note that the relation (3.8)
involves the sum of the operators |n〉〈n| which are obtained by composing two maps:

H 〈n|−→ C
|n〉−→ H (3.9)

|Φ〉 7−→ 〈n|Φ〉 7−→ 〈n|Φ〉 |n〉 .

Here, the first map is the linear form (3.5) and the second represents the multiplication of
a complex number by the vector |n〉 ∈ H.

As stated in section 2.2.2, an operator on H is a linear map

A : D(A) −→ H (3.10)

|Ψ〉 7−→ A|Ψ〉 ,

where D(A) is a dense linear subspace of H. The scalar product of the vectors |Φ〉 and
A|Ψ〉 is denoted following Dirac by

〈 |Φ〉 , A|Ψ〉 〉H ≡ 〈Φ|A|Ψ〉 . (3.11)

Thus, the expression 〈Φ|A|Ψ〉 may be considered as the result of the composition of two
linear maps,

D(A)
A−→ H 〈Φ|−→ C (3.12)

|Ψ〉 7−→ A|Ψ〉 7−→ 〈Φ|A|Ψ〉 ,

where the composition is defined as usual by (〈Φ| ◦ A) |Ψ〉 := 〈Φ| (A|Ψ〉). However, as
we will discuss further in section 4.2.1, Dirac did not restrict himself to this unambiguous
interpretation of the notation that he introduced.

3.2 Relations between the Hilbert spaces

In order to describe the relations between the Hilbert spaces introduced in the previous
section, we need the concepts of unitary operator and of isomorphism [14]. By way of
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motivation, we recall that equation (3.4) expresses a one-to-one correspondence between
the Hilbert spaces of wave mechanics and of matrix mechanics, and that equation (3.2)
implies that this correspondence preserves scalar products, i.e. it is realized by a unitary
operator: this is an example of an isomorphism of Hilbert spaces.

Definition 4 For i = 1, 2, let Hi be a complex separable Hilbert space with scalar product
〈 , 〉Hi

. A linear operator U : H1 →H2 is called unitary if
(i) U is everywhere defined on H1.
(ii) The image of H1 under U is all of H2.
(iii) U preserves the scalar product :

〈Uf, Ug〉H2
= 〈f, g〉H1

for all f, g ∈ H1 . (3.13)

Two Hilbert spaces H1 and H2 which are related by an unitary operator are said to be
isomorphic and one writes H1 ≃ H2.

To summarize, we can say that two isomorphic Hilbert spaces represent different re-
alizations of the same abstract structure and that they can be considered as completely
equivalent.

Concerning the Hilbert spaces occurring in quantum mechanics, we have at our disposal
a classic result of functional analysis :

Theorem 2 (i) The complex Hilbert spaces l2, L
2(R, dx) and L2(R, dp) are separable and

infinite dimensional.
(ii) Every complex Hilbert space which is separable and infinite dimensional is isomorphic
to l2.

From this result it follows that all Hilbert spaces introduced above are isomorphic :

H ≃ l2 ≃ L2(R, dx) ≃ L2(R, dp) . (3.14)

In particular, the Parseval-Plancherel theorem states that the Fourier transformation (2.13)
realizes the isomorphism between L2(R, dx) and L2(R, dp) :

〈Ff,Fg〉 = 〈f, g〉 for all f, g ∈ L2(R, dx) .

Quite generally, the passage between H and the other Hilbert spaces is performed by
choosing an orthonormal basis {|n〉}n∈N (or a generalized basis {|x〉}x∈R) of H and by
associating to each vector of |Ψ〉 ∈ H the set of its components with respect to this basis:

ψn := 〈n|Ψ〉 for n ∈ N , ~ψ ≡ (ψ0, ψ1, ...) ∈ l2
ψ(x) := 〈x|Ψ〉 for x ∈ R , ψ ∈ L2(R, dx) . (3.15)

In the second line, the action of 〈x| on |Ψ〉 is to be understood in the sense of the action
of a distribution on a test vector - see equations (2.28)(2.32). (Thus, strictly speaking, |Ψ〉
has to belong to an appropriate test vector subspace Ω ⊂ H.) Schematically:
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|Ψ〉 ∈ H

~ψ ∈ l2ψ ∈ L2

@
@

@
@

@R

�
�

�
�

�	

〈x| 〈n|

The passage between L2(R, dx) and l2 is realized in an analogous manner and was
already described above: to the function ψ ∈ L2(R, dx), one associates the sequence
(c0, c1, ...) ∈ l2 consisting of the components cn := 〈ϕn, ψ〉L2 of ψ with respect to an
orthonormal basis {ϕn}n∈N of L2(R, dx). If the wave functions ϕn are associated to the
state vectors |n〉 ∈ H, i.e. ϕn(x) = 〈x|n〉, then consistency with the notation (3.15) requires
that cn = ψn, i.e. 〈ϕn, ψ〉L2 = 〈n|Ψ〉.
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Chapter 4

Discussion of the invariant formalism
and of Dirac’s notation

In this section, we try to disentangle two matters which are generally presented in an
interwoven way, namely the choice of an abstract Hilbert space for formulating quantum
mechanics and the use of the bra and ket notation. By discussing the advantages and
disadvantages of each of these choices, we aim to highlight their positive points, which one
should try to preserve in practice, and to draw attention to the pitfalls which are to be
avoided.

4.1 The invariant formalism

Since the different Hilbert spaces used in quantum mechanics are all isomorphic, they
represent completely equivalent mathematical structures. However, from the practical
point of view, certain spaces are more appropriate than others1.

1. The matrix calculus based on the space l2 is not easy to handle and this formalism
has barely been used after the advent of quantum mechanics for which it played an
important role [37].

2. The arena of physical phenomena is the so-called configuration space parametrized by
x, and boundary or regularity conditions directly concern the wave functions defined
on this space: this privileges the use of the Hilbert space L2(R, dx).

3. The choice of an abstract Hilbert space H is usually motivated by the analogy with
geometry in Euclidean space Rn (or Cn): the use of “abstract vectors” is more
geometrical than the one of their components. Thus, it is tempting to work with
the vectors |Ψ〉 ∈ H while interpreting the sequences belonging to l2 or the functions
belonging to L2(R, dx) as the components of the vectors |Ψ〉 with respect to different
bases of H. In this spirit, the use of an abstract Hilbert space in quantum mechanics

1G.Orwell: “All animals are equal, but some animals are more equal than others.”
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is often presented as something more general than wave or matrix mechanics [21].
However, there are crucial differences between finite and infinite dimensional vector
spaces which render the analogy with ordinary geometry quite subtle and doubtful.
In the following, we will discuss the resulting problems which show that the choice of
an abstract Hilbert space in quantum mechanics obscures or complicates important
points of the theory.

4.1.1 Problems

• For the study of simple problems like the determination of the energy spectrum of the
harmonic oscillator (for which the eigenfunctions of the Hamiltonian are well defined
elements of L2(R, dx)), one has to start with the introduction of the eigendistributions
|x〉 of the position operator which do not belong to the Hilbert spaceH (section 2.2.3).

• As we emphasized in section 2.2.2 and illustrated in the appendix, the definition of a
linear operator on an infinite dimensional Hilbert space necessitates the specification
of an operating prescription and of a domain of definition for this operation. This
aspect does not simply represent a mathematical subtlety, since the spectrum of
the operator is quite sensitive to the domain of definition (boundary conditions,...).
For instance, depending on the choice of domain, the spectrum of the momentum

operator
h̄

i

d

dx
on a compact interval [a, b] ⊂ R can be empty, all of C or a subset

of R (see appendix and reference [8]). While this problem is well posed, from the
beginning on, for wave functions defined on configuration space, it is not to the same
extent for an abstract Hilbert space.

This problematics also appears in quantum statistical mechanics, e.g. the definition
of the pressure associated to a set of particles confined to a box involves the boundary
conditions [38].

• Let us come back to the mathematical characterization of observables which was
already touched upon in section 2.2.2.

In the invariant formalism of quantum mechanics, an observable is defined as an “Her-
mitian operator whose orthonormalized eigenvectors define a basis of Hilbert space”
[21]. Starting from this definition, it can then be shown, in a formal manner, that
the position and momentum operators on R are observables. Notable complications
already occur in R2 or R3 if non-Cartesian coordinates are considered, e.g. the radial
component Pr of momentum in R3 is Hermitian, but it does not represent an observ-
able - see Messiah [21] chap.9. And there are distinctly more complicated operators
like Hamiltonians involving random potentials, potentials of the form 1/xn or δx0

(x)
or else Hamiltonians on topologically nontrivial configuration spaces like those for
the Aharonov-Bohm effect or for anyons [14, 39, 23]. The definition of an observ-
able given above then requires to impose ad hoc conditions on the wave functions
associated to eigenstates (conditions of regularity, finiteness, single-valuedness,...);
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furthermore, it necessitates the explicit determination of an orthonormal system of
eigenvectors and the verification of the closure relation for this system.

In an approach which takes into account the domains of definition, an observable is
simply given by a self-adjoint operator (section 2.2.2). This condition ensures that
the spectrum of the operator is real and that its (generalized) eigenvectors define a
(generalized) basis of Hilbert space (“Hilbert’s spectral theorem”). Moreover, there
exist simple criteria for checking whether a given Hermitian operator is self-adjoint,
or for classifying the different manners according to which it can be rendered self-
adjoint - see [14, 8, 24] and appendix. (In general, if an operator admits several
self-adjoint extensions, the latter describe different physical situations [22, 14].) In
particular, it is not necessary to resort to some ad hoc properties of wave functions
like those mentioned above or to try to determine a complete system of orthonormal
eigenvectors. The relevance of such a simple and precise approach also comes to light
in perturbation [24, 40] or scattering theory [41].

• An important concept of quantum mechanics is the one of CSCO (complete system
of commuting observables). It involves the commutativity of self-adjoint operators
which represents a subtle notion for unbounded operators. In fact, two self-adjoint
operators A and B commute if and only if all projection operators occurring in their
respective spectral decompositions commute [14]. Unfortunately, counterexamples
show that, in order to have the commutativity of A and B, it is not enough that
[A,B] = 0 on a dense subspace of H on which this relation is well defined [14]!
Admittedly, these examples ever scarcely appear in practice, but, in an approach
which takes into account the domains of definition, one has at ones disposal all the
tools that have to be called for, if a mathematical complication manifests itself.

Concerning the raised mathematical points, we emphasize that in quantum mechanics a
precise formulation is not only required for deciding about the existence or non-existence
of physical effects (like the Aharonov-Bohm effect [1]), but also for discussing the difficult
interpretational problems (measurement theory, objectivity and reality,...) [42]. Besides,
such a formulation directly applies to other fields of physics, one example being chaos in
classical dynamical systems [43].

4.1.2 “Solution” of problems

Certain of the problems pointed out in the previous subsection are so involved that it seems
more advisable to avoid them, rather than to look for a remedy. The complications mainly
arise from the fact that - for conceptual reasons - one wishes to put forward the geometric
Hilbert space structure which is underlying the theory. But this structure is also implicit
in wave mechanics where the raised problems are absent or, at least, well posed from the
beginning on. Thus, it is easy to avoid mathematical troubles or at least to render them
more transparent by working with wave mechanics.
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However, one cannot ignore that the abstract Hilbert space formalism is so widely used
in the physics literature that all physicists need to be acquainted with it, though, at the
same time, they should be able to resolve mathematical puzzles like those presented in
section 2; thus, for the teaching of quantum mechanics, an obvious “solution” of problems
is to start with an introduction to wave mechanics which emphasizes the underlying geo-
metric structures and to indicate the arbitrariness of this formulation by passing over to
other representations like matrix mechanics. (Such an approach to quantum theory and
Schrödinger operators is supported by a vast and easily accessible mathematical litera-
ture.) In modifying the explicit definition of the Hilbert space and its scalar product, the
formalism of wave mechanics on R can then be generalized straightforwardly to several
spatial dimensions, to the spin or to systems of particles. A subsequent discussion of the
abstract Hilbert space H and its relation to L2(R, dx) then paves the way to the literature
and to formal calculations.

4.2 Dirac’s notation

As we mentioned already, Dirac’s bra and ket formalism consists, on one hand, of a certain
writing of vectors, linear forms, ... and, on the other hand, of a particular interpretation
of the mathematical operations which involve these entities.

4.2.1 Inconveniences

This writing, or rather its interpretation, presents a certain number of drawbacks which
are more or less embarrassing. Among these, the most troublesome is the fact that it is

impossible to give a precise meaning to the adjoint A† (of an unbounded operator A) if one
strictly adheres to Dirac’s interpretation (see [4] and also [44]). Concerning this aspect, let
us recall Dirac’s fundamental definition (e.g. see equations (B.45) and (B.51) of chapter II
of Cohen-Tannoudji et al. [21]):

(〈Φ|A) |Ψ〉 = 〈Φ| (A|Ψ〉) ≡ 〈Φ|A|Ψ〉 with 〈Φ|A = 〈A†Φ| . (4.1)

According to these relations, one cannot tell whether the expression 〈Φ|A|Ψ〉 is to be
interpreted as

〈A†Φ|Ψ〉 ( in which case |Φ〉 ∈ D(A†) and |Ψ〉 ∈ H )

or as
〈Φ|AΨ〉 ( in which case |Ψ〉 ∈ D(A) and |Φ〉 ∈ H ),

unless one reintroduces the parentheses (which obviously takes away the simplicity and

elegance of the calculus). Alas [14], it is possible that D(A†) = {0} for an operator A which
is defined on a dense subspace ofH. Even though this case scarcely ever appears in practice,
the examples 3 and 7 of section 2 show that the ignorance of domains of definition can
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readily lead to contradictions and incorrect results; accordingly, the correct treatment of a
problem involving operators which cannot be defined everywhere (unbounded operators)
is subtle.

If one agrees upon the assumption that 〈Φ|A|Ψ〉 is to be interpreted as 〈Φ| (A|Ψ〉), so

that 〈Φ|A does not stand for 〈A†Φ|, but simply for a composition of operators (according
to equation (3.12)), then the mathematical ambiguities concerning matrix elements are
discarded. Yet, some inconveniences remain: we will discuss these in the familiar case
where one strictly applies the bra and ket notation in an abstract, infinite dimensional
Hilbert space H.

• Rigid notation: Let us first recall the standard definition of the adjoint A† of a linear
operator2 A : H → H :

〈 |Φ〉 , A|Ψ〉 〉H = 〈A†|Φ〉 , |Ψ〉 〉H for all |Φ〉, |Ψ〉 ∈ H . (4.2)

If one rigidly adheres to Dirac’s notation, the expression on the right-hand side has to
be rewritten using the skew-symmetry of the scalar product, 〈Φ|Ψ〉 = 〈Ψ|Φ〉∗; thus,
relation (4.2) which defines the adjoint of A becomes

〈Φ|A|Ψ〉 = 〈Ψ|A†|Φ〉∗ for all |Φ〉, |Ψ〉 ∈ H . (4.3)

Consequently, the matrix element 〈A|Φ〉, |Ψ〉 〉H can only be represented by 〈Ψ|A|Φ〉∗
or by 〈Φ|A†|Ψ〉. A frequently used example is given by

‖A|Ψ〉‖2 = 〈A|Ψ〉, A|Ψ〉〉H = 〈 |Ψ〉, A†A|Ψ〉〉H ≡ 〈Ψ|A†A|Ψ〉 ,

where the last expression is the only acceptable writing according to Dirac.

• Lack of naturalness and simplicity: As indicated in section 3.1.1, one can do without
the discussion of the dual space H∗ (the space of bras), since this one is isometric to
H. Now Dirac’s formalism makes a systematic use of H∗. While we are accustomed
to operators and matrices acting on “everything in front of them”, in this formalism
one has to distinguish between the action of linear operators to the right and to the
left [21],

A (λ|Φ〉+ µ|Ψ〉) = λA|Φ〉+ µA|Ψ〉 (λ, µ ∈ C)

(λ〈Φ|+ µ〈Ψ|)A = λ〈Φ|A+ µ〈Ψ|A , (4.4)

which entails potential ambiguities concerning the domains of definition. Further-
more, one has to change the natural order of vectors in certain expressions that are
often used (e.g. compare equations (4.2) and (4.3)).

2In order to avoid the discussion of domains of definition, we assume that A is a bounded operator: in

this case, A and A† can be defined on the entire Hilbert space H.
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• Changing computational rules: When passing from H to L2(R, dx) (which one is
practically always obliged to do at a certain point, since physics is happening in
configuration space), some of the calculational rules change: the operators of differ-
entiation on L2(R, dx) only act to the right, their matrix elements can be written as
〈Aϕ, ψ〉L2, ... and so on.

• Difficult mathematical interpretation in an abstract Hilbert space H: If one assumes
(as we did) that the vectors belong to an abstract, infinite dimensional Hilbert space,
then one recovers all of the problems mentioned in section 4.1. In this case, Dirac’s
bra and ket formalism represents a purely symbolic calculus and it is certainly
not by chance that von Neumann did not look for an explanation or mathematical
formulation of this approach when working out the mathematical foundations of
quantum mechanics [28] (see also [34]). The modern introductions to this formalism
try to render its mathematical content a bit more precise, but there exist only a few
serious attempts which try to translate Dirac’s approach into a rigorous mathematical
theory, following an appropriate interpretation of it [26, 45, 46, 47, 3]. The resulting
theories (most of which involve, from the beginning on, abstract Gelfand triplets and
spectral families) are quite complicated and difficult to handle.

• Non pedagogical approach: The basic concepts of linear algebra (like linear maps,
scalar products,...) are heavily used in all fields of physics (analytical mechanics,
electrodynamics, relativity,...) with the standard mathematical notation and not
with Dirac’s formalism. Functional analysis based on the space L2(R, dx) (or on
l2) is a natural synthesis of linear algebra and real analysis and some notions of
this theory are part of the standard mathematical luggage of any physicist (e.g. by
means of Fourier analysis). On the other hand, Dirac’s symbolic calculus sometimes
conveys the impression of representing something qualitatively new and essentially
unavoidable for the development of quantum mechanics3.

For the finite dimensional Hilbert spaces involved in the description of the spin (or the
angular momentum) of particles, one has H ≃ Cn and Dirac’s notation then represents
a rewriting of vectors and a particular interpretation of the operations of standard linear
algebra [44]. In this case, all expressions are mathematically well defined, but not all of
the other inconveniences that we mentioned are discarded.

4.2.2 Advantages

The great power of Dirac’s notation consists of the fact that it allows us to perform formal
calculations which automatically lead to the correct form of the results. For instance,

3It may be worthwhile to recall that quantum theory has been developed without the use of this
formalism [37] and to note that its teaching can largely or completely do without it, as demonstrated by
a fair number of excellent textbooks [12, 48, 49].
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insertion of the identity operator (3.8) between two operators A and B,

〈Φ|AB|Ψ〉 (3.8)
= 〈Φ|A

(

∞
∑

n=0

|n〉〈n|
)

B|Ψ〉 =
∞
∑

n=0

〈Φ|A|n〉〈n|B|Ψ〉 , (4.5)

immediately yields the right form of the final result without the need to contemplate
the successive action of the maps |n〉 and 〈n| described in equation (3.9). Similarly, the
projection P|Φ〉 on the state |Φ〉 ∈ H simply reads

P|Φ〉 = |Φ〉〈Φ|

and for its matrix elements, one readily gets

〈Ψ|P|Φ〉|Ψ′〉 = 〈Ψ|Φ〉〈Φ|Ψ′〉 . (4.6)

4.2.3 “Solution” of problems

As we just emphasized, the notation |Ψ〉 for vectors and 〈Ψ| for linear forms is quite
useful for mnemonic and computational purposes. Thus, it would be out of place to avoid
this notation and to do without its advantages. A good compromise which we will now
summarize is the one adopted or mentioned in a certain number of texts [12, 48, 49, 24].

Since the concrete Hilbert space L2(R, dx) is isomorphic to the abstract Hilbert space
H of Dirac’s approach, we can “identify” them: by writing H = L2(R, dx), we already
avoid the mathematical complications of the invariant formalism (section 4.1). In any case
- whether or not this identification is made - it is often convenient to use Dirac’s bra and
ket notation within wave mechanics. Henceforth, ones writes the wave functions as |ψ〉
rather than ψ - or as ψ〉 as suggested by Dirac himself [2] - in order to memorize the
following relations which hold for any orthonormal basis {|ϕn〉}n∈N of L2(R, dx):

〈 |ϕn〉 , |ϕm〉 〉L2 ≡ 〈ϕn|ϕm〉 = δnm
∑

n∈N

|ϕn〉〈ϕn| = 1L2 .

Here, the last relation means that

|ψ〉 =
∑

n∈N

|ϕn〉〈ϕn|ψ〉 for all |ψ〉 ∈ L2(R, dx)

or |ψ(x)〉 =
∑

n∈N

|ϕn(x)〉〈ϕn|ψ〉 for all x ∈ R .

In the same vein, the projector Pψ on |ψ〉 ∈ L2(R, dx) can be written as Pψ = |ψ〉〈ψ|.
For operators, it is convenient to use the notation [21]

|Aψ〉 ≡ A|ψ〉 ,
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while avoiding the interpretation (4.1) of matrix elements which represents a source of
ambiguities; a matrix element can then be written in any of the following forms:

〈ϕ|A|ψ〉 = 〈ϕ|Aψ〉 = 〈A†ϕ|ψ〉 = 〈ψ|A†ϕ〉∗ = 〈ψ|A†|ϕ〉∗ .

The insertion of the identity operator or of a projection operator are realized as in expres-
sions (4.5) and (4.6), respectively.

Finally, the notation |n..m〉, instead of ϕn..m , for the vectors of a Hilbert space basis
indexed by n, ..,m is quite useful for writing matrix elements4,

an..m,n′..m′ = 〈n..m|A|n′..m′〉 .

Hence, by allowing for some flexibility, one can benefit of the advantages of Dirac’s notation
while avoiding its inconveniences.

4However, beware of the fact that the resulting matrix represents a linear operator on the infinite
dimensional Hilbert space l2 so that one has to worry about its domain of definition: the existence of
matrix realizations and their mathematical pitfalls are discussed in reference [8].
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Chapter 5

Conclusion

Let us try to draw some conclusions from the previous discussions, in particular for the
teaching of quantum mechanics.

Physics and mathematics are two different sciences and one can fully justify that a
physicist’s presentation does not take into account a perfect mathematical rigor even if
the author completely masters this one. In physics, it probably is an art to use a mini-
mum of mathematics while remaining precise enough in ones reasoning and presentation
that a mathematical physicist can complete all technical details without ambiguities and
thereby establish the results and their domain of validity in an irrefutable manner. For a
quantum mechanics course, such an approach amounts to providing precise definitions in
the beginning (for linear operators on L2(R, dx)) while avoiding systematic discussions of
mathematical details (domains of definition, distributions, ...) in the sequel. On the other
hand, any approach which starts with a symbolic calculus that is quite difficult to render
rigorous (and thus capable of precise conclusions) seems questionable. This is all the more
true since the first approach is not more complicated and since it is based on a standard,
well developed mathematical theory finding applications in many other fields of physics
(dynamical systems, relativity, optics, ...).

For the reader’s convenience, we conclude with a short guide to the literature which only
considers the presentation of the mathematical formalism and not the one of the physical
applications. In view of the vast number of textbooks on the subject, such a list can only
be incomplete and provide some hints for the interested reader.

The physics books which do not follow the symbolic calculus approach (and which
mention the domains of definition as well as the difference between Hermitian and self-
adjoint operators) are not very numerous: let us cite the monographs [12] which are not
based on the abstract Hilbert space formalism and which make a liberal use of Dirac’s
notation any time this appears to be beneficial (see also [50, 51]). Reference [52] is a
nice mathematically minded introduction to quantum mechanics which does not strive for
an overly complete rigor. A presentation which is comparable, though more mathemat-
ical and oriented towards the conceptual foundations, is given in [53] while the treatises
[23, 24, 54, 47] can be qualified as belonging to the field of mathematical physics. Among
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the textbooks [21], those of Peebles, Schwabl and Messiah discuss in detail wave mechanics
and its geometric structure before presenting the invariant formalism and Dirac’s notation.
Finally, we also mention some texts which avoid the invariant formalism and a rigid use
of Dirac’s notation, though they do not discuss the mathematical details concerning op-
erators on L2(R, dx): apart from the ‘classics’ [48], these are the elementary and modern
introductions [49] which clearly present the principles of the theory while applying a strict
minimum of useful mathematics.
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Appendix A

There is no surprise

The solution of the problems and apparent contradictions encountered in section 2.1 can be
rephrased in the following way [14]: the theory of linear operators on infinite dimensional
vector spaces is more complicated and interesting than the theory of finite order matrices.
Let us now discuss the aforementioned problems while applying the mathematical results
of section 2.2.

(1) Suppose the commutation relation [P,Q] =
h̄

i
1 is satisfied by operators P and Q

acting on a Hilbert space H of finite dimension n (i.e. H ≃ Cn). In this case, P and Q
can be realized by n× n matrices, the trace is a well defined operation and we obtain the
result

0 = Tr [P,Q]
(2.1)
= Tr (

h̄

i
1n) =

h̄

i
n .

From this senseless result, one concludes that Heisenberg’s relation cannot be realized on
a finite dimensional Hilbert space. Thus, quantum mechanics has to be formulated on an
infinite dimensional Hilbert space: on such a space, the trace is not anymore a well defined
operation for all operators (in particular, the trace of the operator 1 does not exist) and
therefore one can no more deduce a contradiction from Heisenberg’s commutation relation
in the indicated manner.

An inconsistency can still be deduced in another way on an infinite dimensional Hilbert
space by assuming that P and Q are both bounded operators [14]; accordingly, at least one
of the operators P andQ satisfying Heisenberg’s relation has to be unbounded and therefore
this fundamental relation cannot be discussed without worrying about the domains of
definition of operators.

(2) As noted in section 2.2.2, the maximal domain of definition of the operator P =
h̄

i

d

dx
on the Hilbert space L2(R, dx) is

Dmax(P ) = {ψ ∈ L2(R, dx) |ψ′ ∈ L2(R, dx)} .

The functions belonging to Dmax(P ) therefore enjoy certain regularity properties and their
derivative is square integrable on R. In particular, these functions are continuous and their
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limit for x → ±∞ is zero [6, 15]; this implies that the operator P , acting on Dmax(P ), is
Hermitian. The aforementioned function, which is unbounded at infinity, is differentiable,
but its derivative is not square integrable and therefore it does not belong to Dmax(P ).

Another choice of domain for P is given by the Schwartz space S(R) ⊂ Dmax(P ). In
this case, the functions on which the operator P acts, do even have a rapid decrease at
infinity.

(3a) The Schwartz space S(R) ⊂ L2(R, dx) is an invariant domain of definition for the

operators P and Q and thereby also for A = PQ3 +Q3P :

A : S(R) −→ S(R) .

Integration by parts shows that the so-defined operator A is Hermitian :

〈g, Af〉 = 〈Ag, f〉 for all f, g ∈ D(A) = S(R) .

The function f given by (2.2) belongs to the Hilbert space L2(R, dx), but it does not
belong to the domain of A, since it does not decrease more rapidly than the inverse of
any polynomial at infinity: for instance, x3f(x) ∝ x3/2 exp [−1/(4x2)] is not bounded for
x→ +∞. By way of consequence, h̄/i is not an eigenvalue of A.

However [27], h̄/i is an eigenvalue of the operator A† which has the same operating
prescription as A. Before discussing this point, it is preferable to first consider the solution
of the other problems.

(4a) The astonishing results we referred to in this example, indicate that it is not enough
to verify that an operator is Hermitian to identify it with an observable: we already dealt
with this well-known fact in section 2.2.2 where we showed that the operator P and its
adjoint act in the same way, but admit different domains of definition (given by (2.18) and
(2.21), respectively). Thus, we established that P is Hermitian, but not self-adjoint.

The results concerning the spectrum of P which are cited in this example, indicate that
the spectrum of a Hermitian operator is not simply the set of its proper or generalized
eigenvalues. Since this point is a more subtle one, we postpone its discussion.

(5) The operator of multiplication by ϕ on the Hilbert space H = L2([0, 2π], dϕ) is
everywhere defined and self-adjoint:

〈g, ϕ f〉 = 〈ϕ g, f〉 for all g, f ∈ H .

The discussion in section 2.2.2 concerning the operator P =
h̄

i

d

dx
on L2([0, 1], dx) applies

verbatim to the operator Lz =
h̄

i

d

dϕ
on L2([0, 2π], dϕ) : integration by parts yields

∫ 2π

0
dϕ (g Lzf −

(

h̄

i

dg

dϕ

)

f)(ϕ) =
h̄

i

[

g(2π)f(2π)− g(0)f(0)
]

for all f ∈ D(Lz) . (A.1)
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Due to the periodic character of the polar angle, the functions belonging to the domain of
Lz are periodic1:

Lz =
h̄

i

d

dϕ
, D(Lz) = {f ∈ H | f ′ ∈ H and f(0) = f(2π)} . (A.2)

Accordingly, the surface term in (A.1) vanishes if and only if g(0) = g(2π) : this implies

that L
†
z operates in the same way as Lz and that it admits the same domain, hence the

operator (A.2) is self-adjoint.
In order to determine the domain of definition of the commutator [Lz, ϕ], we note that

for any two operators A and B, we have

D(A+B) = D(A) ∩ D(B) (A.3)

D(AB) = {f ∈ D(B) |Bf ∈ D(A)} .

Thus, D([Lz, ϕ]) = D(Lzϕ) ∩ D(ϕLz) with

D(ϕLz) = {f ∈ D(Lz) |Lzf ∈ D(ϕ) = H} = D(Lz)

D(Lzϕ) = {f ∈ D(ϕ) = H |ϕf ∈ D(Lz)} .

But the function f̃ ≡ ϕf , which appears in the last expression, takes the values

f̃(0) = (ϕf)(0) = 0

f̃(2π) = (ϕf)(2π) = 2π f(2π)

and f̃ ∈ D(Lz) implies f̃(0) = f̃(2π), i.e. f(2π) = 0.
In summary,

D(ϕLz) = D(Lz)

D(Lzϕ) = {f ∈ H | f ′ ∈ H and f(2π) = 0} (A.4)

D([Lz, ϕ]) = {f ∈ H | f ′ ∈ H and f(0) = 0 = f(2π)} .

The eigenfunctions ψm(ϕ) =
1√
2π

exp (imϕ) of Lz do not belong to the domain of definition

of [Lz , ϕ] since they do not vanish at the points 0 and 2π : therefore the derivation (2.6)
does not make any sense.

(6) Let us consider two observables A and B (i.e. self-adjoint operators on the Hilbert
space H) and a state ψ (i.e. a unit vector belonging to H). The uncertainty relation for
A,B is usually written in the form [12]

∆ψA ·∆ψB ≥
1

2
| 〈ψ, i[A,B]ψ〉 | , (A.5)

1Concerning this point, we note that the use of polar coordinates assigns a distinguished role to the
polar semi-axis ϕ = 0, while this axis is not privileged if one chooses other coordinate systems like Cartesian
coordinates: therefore a discontinuity of wave functions on this axis (f(2π) = eiαf(0) with α 6= 0) has no
raison d’être.
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where (∆ψA)2 = ‖ (A− 〈A〉ψ1)ψ‖2 with 〈A〉ψ = 〈ψ,Aψ〉 and likewise for B. Thus, the
left-hand side of relation (A.5) is defined for ψ ∈ D(A) ∩ D(B) (which is precisely the
subspace of H containing all states ψ for which the uncertainties ∆ψA and ∆ψB both
have a physical meaning). On the other hand, the right-hand side is only defined on the
subspace D([A,B]) = D(AB) ∩ D(BA) which is much smaller in general.

However, A,B being self-adjoint, relation (A.5) can be rewritten in the form [55]

∆ψA ·∆ψB ≥
1

2
| i〈Aψ,Bψ〉 − i〈Bψ,Aψ〉 | , (A.6)

where the domain of the right-hand side now coincides with the one of the left-hand side,
i.e. D(A) ∩ D(B). Thus, the product of uncertainties for two observables A and B is not
determined by their commutator, but by the Hermitian sesquilinear form2

ΦA,B(f, g) = i〈Af,Bg〉 − i〈Bf,Ag〉 for all f, g ∈ D(A) ∩ D(B) .

The derivation of inequality (A.6) is the same as the derivation of (A.5) (see for instance
[18] for the latter). It can be done in a few lines: let ψ ∈ D(A) ∩ D(B) and let

Â = A− 〈A〉ψ1 , B̂ = B − 〈B〉ψ1 ;

by using the fact that A and B are self-adjoint and by applying the triangle as well the
Cauchy-Schwarz inequalities, we obtain the inequality (A.6) :

| i〈Aψ,Bψ〉 − i〈Bψ,Aψ〉 | = | i〈Âψ, B̂ψ〉 − i〈B̂ψ, Âψ〉 |
≤ | 〈Âψ, B̂ψ〉 | + | 〈B̂ψ, Âψ〉 | = 2 | 〈Âψ, B̂ψ〉 |
≤ 2 ‖Âψ‖ · ‖B̂ψ‖ = 2 ∆ψA ·∆ψB .

Let us now show that this modification is not simply a cosmetic one. For A = P =
h̄

i

d

dx
and B = Q = x on H = L2(R, dx), the right-hand side of inequality (A.6) is

easily evaluated using integration by parts; it implies the well-known uncertainty relation

∆ψP · ∆ψQ ≥
h̄

2
for ψ ∈ D(P ) ∩ D(Q). On the other hand, for A = Lz =

h̄

i

d

dϕ
and

B = ϕ on H = L2([0, 2π], dϕ), the surface term occurring upon integration by parts does
not vanish and it leads to the uncertainty relation

∆ψLz ·∆ψϕ ≥
h̄

2
| 1− 2π|ψ(2π)|2 | for all ψ ∈ D(Lz) ∩ D(ϕ) = D(Lz) . (A.7)

Thus, the product of the uncertainties ∆ψLz and ∆ψϕ may become smaller than h̄/2 -
see Galindo and Pascual [12] for an example. For states ψ which belong to D([Lz, ϕ]), i.e.
satisfy ψ(2π) = 0, the inequality (A.5) can also be applied and it yields the same result as
(A.7).

2i.e. ΦA,B(f, g) is linear with respect to g, antilinear with respect to f and ΦA,B(g, f) = ΦA,B(f, g).
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While the inequality (A.7) is mathematically correct, it is not acceptable in the present
form from the point of view of physics: if one defines the average value and the uncertainty
of the observable ϕ by the usual formulae, then these expressions do not have the adequate
transformation properties with respect to rotations, for which

ψ(ϕ)→
(

e
i

h̄
αLzψ

)

(ϕ) = ψ(ϕ+ α) .

We refer to the literature [11, 55] for a slight modification of (A.7) which takes this problem
into account, as well for estimates of the product ∆ψLz · ∆ψϕ which do not explicitly
depend on the particular state ψ that one considers. Similar issues concerning the phase
and number operators in quantum optics are discussed in reference [9].

(7) A purely formal solution of the problem can be obtained, if one considers the wave
function to be defined on the entire real axis, rather than limiting oneself to the interval
[−a,+a]. In fact, for the function ψ defined by (2.8), the discontinuity of ψ′′ at the points
x = ±a implies that ψ′′′′ is given by derivatives of Dirac’s generalized function:

ψ′′′′(x) = −
√

15

2a5/2
[δ′(x+ a)− δ′(x− a)] for x ∈ R .

Substitution of this expression in 〈ψ,H2ψ〉 then leads to the same non-vanishing result as
the evaluation of

∑∞
n=1E

2
npn. The mentioned inconsistency therefore originates from the

fact that one has not properly taken into account the boundary conditions in the calculation
(2.9).

In the sequel, we will show how a rigorous reasoning limited to the interval [−a,+a]
allows to incorporate the boundary conditions and to confirm the non-vanishing result for
〈H2〉ψ. To start with, we define H and H2 as self-adjoint operators on the Hilbert space
H = L2([−a,+a], dx).

The infinite potential well is a mathematical idealization which is to be interpreted as
the limit V0 → ∞ of a potential well of finite height V0. For the latter, one finds that,
outside the well, the wave functions of stationary states tend to zero if V0 →∞; by way of
consequence, ψ(±a) = 0 is the appropriate boundary condition for the particle confined to
the inside of the infinite well. Let us now study whether H is self-adjoint, when acting on
sufficiently smooth functions satisfying ψ(±a) = 0 : by virtue of two integration by parts,
we find

〈ϕ,Hψ〉 ≡ −h̄2

2m

∫ +a

−a
dxϕ(x)ψ′′(x)

=
−h̄2

2m

∫ +a

−a
dxϕ′′(x)ψ(x) +

h̄2

2m

[

(ϕ′ψ − ϕψ′)(x)
]+a

−a

= 〈H†ϕ, ψ〉 − h̄2

2m
[ϕ(a)ψ′(a)− ϕ(−a)ψ′(−a)] .

Since we do not have any constraints on ψ′(±a), the surface term vanishes if and only if

ϕ(±a) = 0. In summary, H† operates in the same way as H and the functions ϕ belonging
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to its domain of definition satisfy the same conditions as those belonging to the domain of

H . Hence, the operator H =
−h̄2

2m

d2

dx2
acting on H, with the domain of definition

D(H) = {ψ ∈ H | ψ′′ ∈ H and ψ(±a) = 0} (A.8)

represents a self-adjoint operator (i.e. an observable). Its spectrum, which has been made
explicit in equation (2.10), is discrete and non-degenerate and the associated eigenfunctions
are given by

ϕn(x) =



















1√
a

sin
(

nπ

2a
x
)

for n = 2, 4, 6, ...

1√
a

cos
(

nπ

2a
x
)

for n = 1, 3, 5, ... .

Accordingly, the spectral decomposition of H reads H =
∑∞
n=1EnPn where Pn denotes the

projector on the normed state ϕn : Pnψ = 〈ϕn, ψ〉ϕn.
By virtue of the spectral theorem [14], the operatorH2 is defined in terms of the spectral

decomposition of H ,

H2 =
∞
∑

n=1

E2
n Pn , (A.9)

which implies that H2ϕn = E2
nϕn. In order to determine explicitly the domain of definition

on which this operator is self-adjoint, one successively performs four integrations by parts:

〈ϕ,H2ψ〉 ≡ h̄4

4m2

∫ +a

−a
dxϕ(x)ψ′′′′(x)

=
h̄4

4m2

∫ +a

−a
dxϕ′′′′(x)ψ(x) +

h̄4

4m2

[

(ϕψ′′′ − ϕ′ψ′′ + ϕ′′ψ′ − ϕ′′′ψ)(x)
]+a

−a
.

The boundary conditions ψ(±a) = 0 = ϕ(±a) of the infinite well eliminate the first and the
last contribution of the surface term. In order to annihilate the others, there are different
possibilities, e.g. ψ′(±a) = 0 = ϕ′(±a) or ψ′′(±a) = 0 = ϕ′′(±a). But, according to the
definition (A.9) of H2, the eigenfunctions ϕn of H must belong to the domain of H2: since
these functions satisfy ϕ′′

n(±a) = 0, the domain of definition of the observable H2 is

D(H2) = {ψ ∈ H | ψ′′′′ ∈ H and ψ(±a) = 0 = ψ′′(±a)} . (A.10)

We note that this represents but one way to render the operator
h̄4

4m2

d4

dx4
on

L2([−a,+a]) self-adjoint among many other possibilities (determined by other boundary
conditions, e.g. ψ(±a) = 0 = ψ′(±a)); but it is the one corresponding to the physical
system that we consider here.

Let us now come to the paradox pointed out in our example. For ψ ∈ D(H2) ⊂ D(H),
the decomposition (A.9) yields

〈H2〉ψ ≡ 〈ψ,H2ψ〉 (A.9)
=

〈

ψ,
∞
∑

n=1

E2
nPnψ

〉

=
∞
∑

n=1

E2
n〈ψ,Pnψ〉

=
∞
∑

n=1

E2
n pn (A.11)
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with pn = |〈ϕn, ψ〉|2. If ψ ∈ D(H), we can reach the same result in another way by using
the fact that the projectors Pn are self-adjoint and orthogonal (i.e. PnPm = δnmPn) :

‖Hψ‖2 ≡ 〈Hψ,Hψ〉 =

〈

∞
∑

n=1

EnPnψ,
∞
∑

m=1

EmPmψ
〉

=
∞
∑

n,m=1

EnEm〈Pnψ,Pmψ〉

=
∞
∑

n,m=1

EnEm〈ψ,PnPmψ〉

=
∞
∑

n=1

E2
n pn . (A.12)

The function ψ(x) =
√

15/(4a5/2) (a2 − x2) of our example does not satisfy ψ′′(±a) = 0,
hence it does not belong to the domain of definition of H2: thus the expression 〈ψ,H2ψ〉
is not defined, because the variable H2 that it involves is not simply characterized by its
operating prescription, but also by its domain of definition. (In other words: although the
integral in equation (2.9) is properly evaluated, it cannot be identified with 〈ψ,H2ψ〉 =
〈H2〉ψ for the function ψ considered here.) On the other hand, we have ψ ∈ D(H) and the
average value 〈H2〉ψ can be evaluated according to

∑∞
n=1E

2
n pn or, equivalently, according

to

‖Hψ‖2 ≡
∫ +a

−a
dx |(Hψ)(x)|2 =

h̄4

4m2

∫ +a

−a
dx |ψ′′(x)|2 =

15h̄4

8m2a4
.

(4b) Let us now consider the second point mentioned in example 4, i.e. the spectrum of
P . As indicated in section 2.2.2, the spectrum of an operator P , which is not self-adjoint,
contains in general a part called residual spectrum: by definition, these are all numbers

z ∈ C which are not eigenvalues of P , but for which z̄ is an eigenvalue of P †. In the present

example, the domains of P and P † are given by (2.18) and (2.21), respectively; thus the

functions belonging toD(P †) do not satisfy any boundary conditions, while those belonging

to D(P ) vanish at the boundaries x = 0 and x = 1. Since the functions ϕp(x) = exp (
i

h̄
px)

with p ∈ C are solutions of the eigenvalue equation for P †,

(P †ϕp)(x) = p ϕp(x) (ϕp ∈ D(P †) , ϕp 6≡ 0) , (A.13)

all complex numbers are eigenvalues of P †. But none of these is an eigenvalue of P ,
because ϕp does not vanish on the boundaries and therefore does not belong to D(P ). By
way of consequence, the residual spectrum of P is C. In fact, this represents the complete
spectrum of P since its discrete and continuous spectra are empty.

This conclusion resolves the puzzle of example 4, but it leaves the physicist perplexed:
since P is not self-adjoint, its spectrum does not admit a direct physical interpretation.
However, we will show right away that it contains information which is important for
physics.

In order to study whether the domain of the Hermitian operator P can be enlarged in
such a way that P becomes self-adjoint, it is suitable to apply von Neumann’s theory of
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defect indices [14, 8]: according to this theory, one has to study the complex eigenvalues

of P † (and this is precisely what we just did). As a special case of (A.13), we have3

P †ϕ± = ±iϕ± with ϕ±(x) = e∓x/h̄ ,

or (P † ∓ i1)ϕ± = 0. Thus, the kernel of the operator P † ± i1 is a one-dimensional vector
space:

n−(P ) ≡ dim Ker (P † + i1) = 1

n+(P ) ≡ dim Ker (P † − i1) = 1 . (A.14)

The natural numbers n+(P ) and n−(P ) are called the deficiency or defect indices of P .
Their usefulness is exhibited by the following result:

Theorem 3 (Criterion for self-adjointness) Let A be a Hermitian operator with defi-
ciency indices n+ and n−.
(i) A is self-adjoint if and only if n+ = 0 = n−. In this case (and only in this one), the
spectrum of A is a subset of the real axis.
(ii) A admits self-adjoint extensions (i.e. it is possible to render A self-adjoint by enlarging
its domain of definition) if and only if n+ = n−. If n+ > 0 and n− > 0, the spectrum of A
is the entire complex plane.
(iii) If either n+ = 0 6= n− or n− = 0 6= n+, the operator A has no nontrivial self-adjoint
extension. Then, the spectrum of A is, respectively, the closed upper, or the closed lower,
complex half-plane.

In the case (ii), there exist explicit expressions for the possible self-adjoint extensions of
A [14].

In our example, we have n+ = n− > 0 ; therefore the operator P is not self-adjoint
and its spectrum is the entire complex plane (what we are already aware of). The explicit
expressions for the possible self-adjoint extensions of P that we just alluded to, are as
follows [14]: for every real number α, the operator

Pα =
h̄

i

d

dx
, D(Pα) = {ψ ∈ H |ψ′ ∈ H and ψ(0) = eiαψ(1)} (A.15)

is self-adjoint (as may easily be verified) and one has SpPα = R.
From the point of view of physics, the boundary condition ψ(0) = eiαψ(1) means that

everything that leaves the interval [0, 1] on the right-hand side, again enters the interval
on the left-hand side with a certain phase-shift (determined by α ∈ R): this allows for the
existence of states with a well-defined value of momentum, whereas the boundary condition
ψ(0) = 0 = ψ(1) excludes such states. For α = 0, one has periodic wave functions and one
recovers the self-adjoint operator (A.2).

3For the present mathematical considerations, one ignores the dimensions of the eigenvalues which
should coincide with the dimensions of the operators.
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(3b) We now come back to the statement that h̄/i is an eigenvalue of A†. For f ∈
D(A) = S(R), integration by parts yields

〈g, Af〉 = 〈 h̄
i

[

(x3g)′ + x3g′
]

, f〉+ 2
h̄

i

[

x3(ḡf)(x)
]+∞

−∞
. (A.16)

Since f decreases rapidly at infinity, the surface term on the right-hand side vanishes if
the function g does not grow faster than a polynomial at infinity. Assuming g has this

property, the previous equation implies that the operator A† acts in the same way as A,

A†g =
h̄

i

[

(x3g)′ + x3g′
]

=
h̄

i

[

3x2g + 2x3g′
]

, (A.17)

though its domain is larger than S(R): this domain contains all functions g which are
such that expression (A.17) exists and is square integrable. (For all of these functions, the
surface term in equation (A.16) vanishes automatically.)

In summary, the domain of definition of A† is larger than the one of A, thus the operator
A is not self-adjoint. Moreover, the function (2.2) does not belong to D(A), but it belongs

to D(A†), so h̄/i is an eigenvalue of A†.
To conclude, we briefly investigate whether the domain of A can be enlarged so as to

render A self-adjoint. For this problem, we again resort to von Neumann’s theory. One
easily checks that

A†g± = ±i g± with







g±(x) = |x|−3/2 exp
(

± 1

4h̄x2

)

for x 6= 0

g−(0) = 0 .

We have g− ∈ D(A†), but g+ 6∈ D(A†) (due to the exponential growth of g+ at the origin),
hence

n−(A) ≡ dim Ker (A† + i1) = 1

n+(A) ≡ dim Ker (A† − i1) = 0 .

From point (iii) of the last theorem, it now follows that there is no way to render the
Hermitian operator A self-adjoint.

Although the introduction of the residual spectrum looks, at first sight, like a gratuitous
and unphysical complication, the last two examples show that it is quite interesting from
the point of view of physics. In fact, the deficiency indices of A (which are closely related
to the residual spectrum of A) allow us to tell whether a given Hermitian operator can be
rendered self-adjoint; and for those A which can, von Neumann’s theory also provides a
simple and constructive method for determining all possible self-adjoint extensions, i.e. it
explicitly describes all possible ways of turning a Hermitian operator into an observable.

A more intuitive understanding of the last two examples can be obtained by looking
at the potential eigenfunctions of the involved operators and at their admissibility for the
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physical problem under consideration. For the momentum operator P on the interval [0, 1],

the plane wave exp (
i

h̄
px) (with p ∈ R) formally solves the eigenvalue equation for P , but

it is not compatible with the boundary conditions ψ(0) = 0 = ψ(1) of the infinite potential

well; on the other hand, the function fλ(x) ∝ |x|−3/2 exp (
−iλ

4h̄x2
) can formally be associated

to the real eigenvalue λ of A = PQ3+Q3P , but it is not square integrable due to its singular
behavior at the origin. Thus, the crucial constraints for turning Hermitian operators into
observables come, respectively, from the boundary conditions for a problem on a compact
(or semi-infinite) interval and from the condition of square integrability for a problem on
the whole space4. (As a matter of fact, these are the very same conditions which lead to
the quantization of energy levels, respectively, on a finite interval and on the whole space.)

4Actually, the lack of square integrability only points towards potential problems for self-adjointness
and, to be more precise, we should say the following. The eigenfunctions associated with the continuous
spectrum do not belong to the Hilbert space and thus are not square integrable (section 2.2.3). However,
in the case of differential operators, these eigenfunctions enjoy certain smoothness properties (which imply
some local square integrability) and what matters for the continuous spectrum, is that the singularities

of the functions are “mild enough”. For instance, for n = 1, 2, .., the potential eigenfunctions f
(n)
λ of

An = PQn + QnP satisfy |f (n)
λ (x)| ∝ |x|−n/2 and, for n ≥ 3, they are too singular at x = 0 to allow for

the self-adjointness of An; however, A1 and A2 are self-adjoint, when defined on appropriate domains.
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[13] F. Hirzebruch und W. Scharlau: “Einführung in die Funktionalanalysis ”, B.I.-
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