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From the perspective of an analyst, like myself, the General Theory of Relativity

provides an extrordii‘iary rich and vastly virgin territory. It is the aim of my lecture

to provide, first, an account of those aspects of the theory which attract me most and

second a perspective of what has been accomplished so far in that respect. In trying to

state our main objectives it helps to view General Relativity in the broader context of

Classical Field Theory. As we know today, among all classical field theories, only the

Maxwell equations and the Einstein field equations are known to have direct physical

content. Others, like the Yang—Mills equations, are believed to become relevant. only

after they suffer the painful and still mysterious, process of quantization. In view of

this fact one can describe the basic goals of the mathematical theory of classical fields

as follows:

(1) Investigate the mathematical consequences of the Einstein Field Equations in so far

as they describe the physical world.

(2) Investigate the mathematical properties of the other nonlinear field theories

(a) In View of the fact that the Einstein field equations are exceedingly complicated

some of the other field theories provide a simplified testing ground for new ideas.

From this point of view the final goal remains the understanding of the Einstein

field equations but we hope to get important insights from the simpler nonlinear

field theories. To this one might add our belief that any new ideas which lead to

significant progress made on problems of nonlinear classical fields will prove useful

in other areas of lvlathcmatical Physics Where nonlinear P.D.E’s, in particular

hyperbolic, are at the heart of the subject.

(b) Investigate the mathematical properties of nonlinear field theories in view of their

possible relevance to quantum field theory.

This final goal is most vague. One may attempt to render it slightly more meaningful

by pointing out the importance of uncovering the fundamental properties of classical

mechanical systems as carried out by mathematicians such as Euler, Lagrange, HamiL

ton, Poincare and others, to the very formulation of Quantum Mechanics.

Since according to the above scheme, General Relativity and the Einstein ficld equa:

tions play the dominant role in the mathematical theory of classical fields, I will conv

centrate my attention to it and refer to other field theories from the perspective of

2a. The mathematical structure of the EinsteiniVacuum equations, or shortly E—V, is

already sufficiently complicated. I will thus restrict my attention to them.

Clearly, the aim of the mathematical theory of General Relativity is to understand

the main features concerning the behaviour of general solution to the Einstein Field

equations. Since general solutions can be naturaly parametrized by initial data sets one

can reformulate our goal as being that of studying the main features of the evolution

of general initial data sets. Now this goal is too broad since without an appropriate

asymptotic restriction the evolution of an arbitrary initial data set can be very wild. A

reasonable physical restriction is to consider initial data sets which look flat outside a

* Supported by the N.S.F. grant DMS-9103613



102 General Relativity and Gravitation I992

sufficiently large compact set of H. The evolution of such initial data sets correspond
to “isolated physical systems.” These systems are particularly important in G.R. since,
it is only for such systems that we can define the physical notions of mass, linear and
angular momentum.

We thus redefine our central theme as being the study of the main features regard—
ing the evolution of general classes of asymptotically flat initial data sets. From the
perspective of (2a) we can broaden this to include all classical field theories. In this
respect I will restrict myself to a discussion of field theories in Minkowski space—time.

Having thus defined our object of study I can turn my attention to What is considered
to be the most fundamental mathematical question concerning the differential equa—
tions of General Relativity and the other classical Field theories. This is to understand
when and how, solutions to a classical, nonlinear, field theory can breakdown.

The break—down phenomenon can occur despite the existence of the basic conser—
vation laws, in particular the energy, or total mass, which is positive. To understand
what this means consider the comparable situation in one dimension, namely systems
of ordinary differential equations which arise as the Euler—Lagrange equations of a
Lagrangean with positive energy. To be more precise consider the example of the
differential equation,

7132+ Vl(.’1,‘) = 0

subject to the initial conditions at if : 0,

C(0) : 1'0, 1(0) 2 .721 .

The total energy of the system is given by the expression %I.Tl2 * V(.7:), where flilz is
the kinetic energy and ~V the potential energy. For any reasonable physical system

7V Z 0. Since the total energy is conserved we immediately conclude that, for any
initial conditions, the corresponding solutions exist for all time. There can be no finite
time blow—up of the solutions.

The situation is very different for Classical field theories. Though We have a positive
energy momentum tensor which leads, in Minkowski spaceitime, to well defined con

served quantities, we cannot infer in general that the solutions, starting with perfectly
smooth inital conditions, remain so for all time. Take as an example the field theory
closest to our one dimensional example, namely the scalar wave equation in Minkowski
space—time M"+1,

so + V’(¢) : 0, (N.WE)

subject to the initial conditions at t = 0,

45(0) 2 foy 3145(0): f1-

Assume that f0,f1 are as regular as we want, say f0, f1 6 C€°(§R”). Assume also that
—V Z 0 so that the energy-momentum tensor satisfies the required positivity condition.

The total energy 1 at time t has the form,

E0) = f n (gaw + (31¢)? - - . + (aw) — we) dx
' which is the conserved quantity corresponding to the Killing vectorfield To = 3,
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One can easily check directly that %E(t) = 0 and hence, if the initial data at time

= 0 are such that E(O) is bounded, we infer that EU) is bounded for all time.

Yet, unlike in the previous example we cannot conclude that the solutions remain

smooth at all later times. It is easy to see that as long as (15 remains bounded its

time evolution preserves the regularity of the initial conditions in the L2 norm . The

problem, thus, is to show that (15 stays bounded. In space dimension n : 1 we can

conclude, from the boundedness of EU) and a simple form of the Sobolev inequalities,

that (15 is poiznt—wise bounded. Indeed, since —V Z 0, we infer that at any time t,

fw G ((6t¢)2 + (81¢)? +(8n ¢)2 )) d1 < E(0 ) On the other hand, according to the

simplest version of the basic Sol)olev inequalities the sup— norm of a function 1n R" can

be bounded 1n terms of the squa1e integials of the sum of all its derivatives of o1der2

[g]. Hence for 71. : 1,

1/2
sup [¢(t,r)l g e </ gag, Q5)? , , . + (3n¢)2)d$) g cE(0)1/2 .

:r. . 1‘"

The form of the Sobolev inequality we have used above fails just a little for n : 2.

In fact we can only estimate (f |¢5(t, :1')l”)1/7’ for any 39 < 00, this turns out nevertheless

to be enough to conclude that the solutions remain smooth for all time3. For n 2 3

the above form of the Sobolev inequality require a little more than 3/2 derivatives in

L2 in order to estimate the sup norm of (13. The boundedness of the energy provides

11s with a bound of only one derivative in L2. We have thus a gap of more than 1/2

derivatives. The situation gets, of course, even worse in higher dimensions. We can still,

nevertheless, show that (1) remains bounded provided that V((l>) does not grow too fast

as <15 —» 00 For simplicity consider the ease of the power potential V(¢)) : 7% |q5|1’+1_

Presc1ibing to the space time variables 1 — :00, .131, . . . ,1‘" the same scale L, the solution

d) of the equation Dd>+ V’ (4/1) _ 0, aequires the scale L The1efoie the total energy

E has the scale Lg wheie s is the exponent s — n — 2 i10:471.

The case when the exponent s is stiictly negative is called s11bc1itical” It is quite

easy to analyze and has lead to the well known global rcgulaiity result of Jorgens

[J6]. The case 3 : 0 is called “critical ” while 3 > 0 is called “supercritical.” In

the snpercritical regime we have no results, even for spherically symmetric solutions,

despite the relatively large attention this problem has received. The critical case has

been recently settled by the combined efforts of Struwe [Stru], Grillakis [Grl] and more

recently ShatahrStruwe [Sh—Stru].

Theorem. Consider the initial value problem D115 + V'(¢) = 0 with initial conditions

¢(0,$) = f0(m),3t¢(0,m) = f1(:c) which, for simplicity, we may assume in CS”. Assume

that n g 7 and that the exponent s g 0. Then the equations admits unique smooth

solutions globally in Mn‘H.

Despite the difficulty of the problem it is widely believed that, even in the super—

critical case, the solutions to (N.VV.E.) remain smooth for all time.

A more interesting field theory is provided by the equations of Wave Maps defined

from Minkowski space—time M"+1 with values in a Riemannian manifold N. Relative

2 [g] denotes the smallest integer strictly greater than g.

3 provided that V(¢) has polynomial growth in gt for large gt.
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to standard coordinates r“, or = 0,. . . ,n and local coordinates y“, a = 1, . . . m in N
the equations take the form,

at“ + rgcwnnwambamc = 0 (W.M.)

where I‘gc are the Christoffel symbols of N. Consider the initial conditions at 3:0 =
t = 0,

W0) = f0, 5t¢(0) = fi

with f0,f1 compactly supported smooth maps defined from R" R” to N.
Since the nonlinear terms are quadratic in the first derivatives of the map gt, in order

to preserve the L2 regularity of the initial conditions, we now need to have pointwise
bounds not only on d) but also its first derivatives. The total energy, in this case, has
the form,

Em = / <é<l51¢l2+l31¢lgw+3n¢l2))d$
with Wart]? : IzabanW‘OHz/Jb, h the Riemannian metric of N. The law of conservation
of total energy is, as before,

E(t) = E(0) .

This provides us with only with an L2 bound for the derivatives of (15. We therefore
see that the conservation law for the total energy does not suffice to control the L"0
norm of the first derivatives of <35 even for wave maps in M1“. A simple remark,
however, allows us to bypass the difficulty in this case (see [Sh] and also [G11]). Indeed

consider the energy momentum tensor T. It has the form, Tag : % (¢’a,¢_fi> ~

%g(,/j(g“"(¢‘ll¢,,,)) with <, > the scalar product in N. Since we are in 1+1 dimensions

T has only the components T00,T01 : T10,T11. Moreover, since T is trace—less
in MH'I, we have Too 2 T“. New recall that T verifies the divergence equation
afiTag = 0. Hence,

aeToo = 31T01

atTUl : arToo

and therefore T00 is a solution of the linear wave equation in M1“, DToo : 0. One can
now easily check that T remains bounded for any t > 0 provided that TomatToo are
bounded at t = 0. Since T00 = %(l8,q§l2 + [81(1)]2) we conclude that all first derivatives
of the map g6 are bounded. Therefore, in M1“, all wave maps, which are initially
smooth remain so.

The proof we have presented is typical to the sweeping simplifications which occur
only in 1+ 1 dimensions. The case of wave maps defined in M1+2 is already much more
complicated. We can proceed as before and classify the (WHM) according to the scale
associated to the total energy E. Thus, prescribing to the space-time variables the scale
L and to ¢ the scale L0 we find that E has the scale L3 with s = n — 2. Consequently
the (W.M.) is subcritical in M1“, critical in M1+2 and supercritical in M1+", n 2 3.
Under reasonable geometric assumptions we expect global regularity in the critical case
M1“. This conjecture has been recently checked for wave maps satisfying additional
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symmetry assumptions, see [Ch-Za] in the case of spherical symmetry and [Sh~Za],

[Gr2] in the equivariant case.

Of course, we also know examples of partial differential equations, for which blow—up

actually occurs. This is the case of the Burger equation

111+ uttr = 0.

Despite the fact that the equation has, not only one but infinitely many positive con—

served quantities, e.g flu(t,.r)|2kd.r, any initial condition u0(ac) E C€°(§R) leads to

blow-up in finite time3 Remark that the Burger equation is supercritical relative to the

total energy E = (f |u(t, m)|2dr)1/2 and critical relative to the L°° norm of u. Indeed if
we prescribe to t, a: the same scale L and to u the scale L0 then the conserved quantities

(f |u(t,x)]2kdm)1/2k acquire the scales LilE

There are also known examples4 of finite time breakdown of solutions for wave;

maps in the supercritical case M3“. But more important, from a physical point of

View, is the well known fact that the Einstein equations also leads to singularities. It is

interesting to remark in this respect that, relative to the total ADM mass, the Einstein

field equations are supercritical 5.

According to the classification we. have indicated above it is widely expected that

in subcritical situations break—down can be ruled out. We also believe that the same

holds true in most critical problems. Finally, in the supercritical cases we have a lot

of evidence that break—down can in fact occur.

Though we do not expect any bad behaviour in the subcritical problems, proving

that it is indeed so is not necessarily an easy task. This is the case of the beautiful

result of Eardley and Moncrief [ELM] for the Yang—Mills equations6 in M3“. The proof

required an insightful observation concerning the structure of the nonlinear terms of

the Yannills equations expressed in the Cronstrom gauge. As we have indicated

above the question of regularity in the critical case has been solved for (NW.E.) and

is now the focus of considerable attention for (W.M.)

It is helpful to divide the general question of break—down and regularity into a.

sequence of simpler ones for which is easier to envision ongoing progress. Once more

I will refer directly to the Einstein field equations and look at the other field theories

from the perspective of (2a). The simplest of them all is,

Question 1. Under What assumptions on the initial conditions is the Cauchy problem

locally well posed 7

Technically this is the question of local in time existence and uniqueness of the

development of an initial data set. Our present technology, based on energy estimates

and Sobolev inequalities, requires too much differentiability on the initial data set.

3 u

4 see [Sh]
5 Proceeding as before for (N.VV.E.) and (WM.) we assign to the space—time metric

the scale L0 and remark that the ADM mass E = Té_7r lim f5. 2(31‘91‘1‘ — ajgii)da
“Too F 111

has the “supercritical” scale L1.

6 Proceeding as before we associate to the vector potential A the scale L‘1 and to

the electromagnetic field F the scale L‘Q. Thus the total energy at time t has the scale

L"_4 which is subcritical for n — 3.
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Lowering these differentiability requirements is crucial in understanding the regularity
properties of the solutions to (E—V) and also the general Einstein equations in the
presence of matter.

Question 2. Under What assumptions on the initial data sets do there exist global,
smooth and geodesically complete solutions of the EinsteinJhcuum equations .7

This question is intimately connected to that of stability of the Minkowski spacee
time. Namely the Minkowsky space~time M3+1 is a special solution of E—V free of
singularities. As mentioned above an initial data set is said to be flat if its development
is diffeomorphic to M3“. It is thus natural to ask what happens to the developments
of initial data sets which are small perturbations of a flat initial data set. The answer
to this question is not only important in View of the general program of studying
the regularity of solutions evolving from regular Cauchy data but also in regard to
the question of the structure of null infinity7 of general solutions which evolve from
asymptotically fiat initial data sets. Indeed any AF. initial data set can be interpreted,
outside a sufficiently large relatively compact set )C, as a small perturbation of a flat
initial data set. Thus the methods used in the study of the global stability of the
Minkowski space—time can also be used in the study of the asymptotic properties of
the development of any AF. initial data set outside the future set of a sulhciently large
set [C C H.

The problem of the stability of the Minkowski spaeeitimc has been recently ad
dressed in my joint work with D. Cln‘istodoulou [CHlZ]. The result which we were
able to prove asserts the following1

Theorem CH—Kl . An S.A.F. ’ initial data set which satisfies. in addition a Global1 . 7

Smallness Assunmtion leads to a uni( ue smooth and eodesicall ' com )lete (levelsI 7 , , u I

opment, solution of the Einstein—Vacuum Equations, iMoreover, this development is
globally asymptotically fiat, by which we mean that its Riemann curvature tensor
approaches zerog on any causal or spacelike geodesic, as the corresponding affine pa.»
rameter tends to infinity.

The global smallness assumption requires that an appropiatc Lzrnorm of up to 2
derivatives of the curvature tensor of g and 3 derivatives of k are small. A more
primitive version of our result requires one derivative less7 in line with the statement of
the local existence theorem. Further improvements of our result will depend crucially
on progress made on Question 1.
Question 3. Under What conditions do initial data sets develop black holes and

singularities?

The famous incompleteness theorem of Penrose asserts that if an initial data set of a
space—time verifying the Einstein field equations (with very general assumptions on the
energy—momentum tensor T) has a trapped sphere9 then some outgoing null geodesics
normal to 5 must be future—incomplete. Though the Penrose theorem indicates that

7 of order k = 4. We note that the precise fall-oft conditions of the initial data set
are in fact given in Lg-Weighted norms, and thus differ slightly from those we have
discussed below

8 Our result gives precise information on the rate of decay of different components of
the curvature tensor.

9 i.e. a space—like sphere S on H with a compact filling such that the outgoing null
normal to S are everywhere converging
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singularities can indeed occur for general solutions of the Einstein equations it remains

entirely unclear what is the nature of these singularities and, more important, if the

trapped sphere hypothesis is of any relevance in the actual process of a gravitational

collapse.

At the present time we have no results concerning the formation of black holes

for the (EV) equations. Since the general problem is too hard one needs to look

first at simplified situations. Unfortunately the (E—V) does not allow interesting A.F.

solutions with additional symmetries, e.g. spherically symmetric. To overcome this

one has to consider the general Einstein field equations coupled with some matterfield.

The simplest such field is the linear scalar wave equation (SW) with V = 0. This

coupling allows one to obtain nontrivial dynamics even in the spherically symmetric

case. In this case the group 50(3) acts as an isommetry group on the space—time

(M,g). The group orbits are spacelike metric 2aspheres S of Gauss curvature 1"2

where 7‘ is the area radius of S, i.e. A(S) : 47r7‘2. Due to the 50(3) symmetry the

field equations can be reduced to quotient Q of the spaceitime by the group. This a

2»dim(r:nsional manifold with boundary. The boundary corresponds to the set of fixed

points of the group action and forms a timcrlike geodesic F. Choosing, on Q, a pair

of conjugate optical functions 71,2: with a constant on any future directed null curve

initiating at F, '1) constant along each of the conjugate familly of null curves and such

that both functions are increasing towards the future, the induced metric on Q has the

form illgdudo. Remark that 11,2) are determined up to general transformations of the

form u H flu), v >—> flv) with f,g arbitrary increasing functions. The reduced field

equations form a system on Q for the functions 7‘, Q, (I),

. 02/" , 1S22 07: 8—7

7 (91100 T 4 an 81)

827' . 07' (99 896 '2
# :25247— a 7
0mg all an 7 (all)

827- 8T 69 63¢ 2
i :252’17—7‘ i
8112 01) 81} 7 (81))

82¢ (97' 345 (97‘ 0o

7 01181) _ 07% — 5v Bu (E _ S-VV-l

The above system is invariant under the transformations u H ft“), 1) r—v g(v) and
(2 H (f'g')'/2Q.

The program of studying the spherically symmetric solutions of the coupled Einstein—

scalar wave equation was initiated and carried out with remarkable success by D.

Christodoulou, see [ChZ],[Ch3]. A basic ingredient of his analysis relies on the mono-

tonicity properties of the mass function in defined by the formula 1—2—21— : —4Q_2gfi—g—Z.

We have 213 > 0 and M < 0,: 0, Z 0 according to whether 1 — 2—7" S 0,: 0,2 0.
61) -— 6n — r

In [C112] Christodoulou combines this montonicity properties of m together with the

powerful method of characteristics, typical to 2—dimensional hyperbolic problems, to

prove a deep result concerning the formation of black holes for the system (E-S.W.).

He considers the evolution of regular initial conditions defined on an outgoing null

curve 00+, starting at a point on T, and shows that under reasonable assumptions of

the data trapped spheres must form.

Question 4. What are the global regularity features of arbitrary devlopments ofA.F.

initial data sets 17
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One of the main distant goals of the mathematical theory of General Relativity is
to give a correct formulation and solve what is referred to as the “Cosmic Censorship”
conjecture. Loosely speaking the conjecture asserts that there are no singularities
outside black holes or, more picturesque, there exist no naked singularities.

Once again the understanding of the global regularity properties of the general Ein—
stein equations is beyond our reach. To make progress we have to either restrict our
attention to solutions with spherical symmetry or to consider simpler field theories.
Concerning the first approach I have to mention once more the pioneering work of
Christodoulou on the coupled E—S.VV. equations. Following his result on the forma—
tion of black holes, which was mentioned above, he has concentrated his efforts on the
regularity of solutions outside black holes. His results show that though “naked sin—
gularities” are possible they are unstable in the sense that the initial conditions from
which these could evolve form an exceptional set of strictly positive codimension in the
set of all allowable initial conditions.

In what follows I will give a short description on some of the progress made recently
on the questions 1,3,4 and give a short description of the proof of Theorem (CHl)
mentioned in connection with question 2.

Q1. As we have mentioned below the first solution to this problem was given by Y.C.
Bruhat, see [Brl], under the assumption that the initial metric g has 3 derivatives,
and the tensor It has 2 derivatives locally on L201). Her proof is based on two
ingredients. The first consists on an auxilliary construction of wave coordinates
relative to which the EWV equations take the form of a system of nonlinear wave
equations. The special choice of wave coordinates is in fact not important, they
can be replaced by other more geometric structures 10. The second ingredient
is more basic as it reflects on our present, limited, techniques in dealing with
the local theory for all systems of nonlinear hyperbolic equations in more than 2
space—time dimensions“. It combines standard energy estimates for derivatives
of solutions of the hyperbolic system together with Sobolev inequalities and an
iteration procedure. The procedure has a built in limitation, as it requires too
many derivatives on the initial data. For EeV it means that we have to restrict
ourselves to initial data sets with one derivative of the curvature tensor and two
derivatives of k in LIZOJ'H). This limitation is very significant when one passes from
the local to the global study of the regularity properties of the system. To overcome
the limitation it seems imperative to develop new analytic techniques. It helps,
of course, to first address this question for a much simpler field theory. A good
example is provided by the equations of Wave Maps from the Minkowski space-
time M”+1 to an arbitrary Riemannian manifold (N, h). Recall that, relative to

10 In [Ch-K12] the local existence theorem is proved relative to a maximal foliation.
In other words the space—time is constructed locally together with a “time function” t
whose level hypersurfaces are maximal, i.e. trk = 0.

11 In 2 space—time dimensions the situation is radically different because of the
method of characteristics which allows better results based on the method of charac-
teristics. This remains true in higher dimensions if one considers only solutions with
spherical symetry.



0n the mathematical theory of classical fields and general relativity 109

a local chart in N, the VV.M. equations take the form,

w’+§jru.WoQIwJIw“> I=1t~,N (u
Jlt

where,

“13¢,l = D0¢Da¢ = mOfiDagffiDgt/L (2)

Here ¢ = (¢])I=1,...,N is a vector valued function defined on M3“. The FIJK’S
are given arbitrary smooth functions of 45.
We consider the initial value problem on the hyperplane t = 330 : 0,

WW) : fot'rt 340$) : f1(37)- (3)

The classical local existence result for equations of type (1) requires f0 6 H3(R3),
f] E H2(R3). Recently, in collaboration with M. Machedon [KlrMa] we were able to

prove the following,

Theorem (Kl-Ma). Consider systems of nonlinear wave equations in M3+1 of the
type (1), (2) subject to the initial conditions (3) under the assumptions f0 6 H2(R3),
f1 6 H.(R3). There exists a T, > 0 and a unique solution d) defined in the slab

D, : [0,T,.] X R3 and verifying the following,

awwcm<w
outptflww¢r+mM¢¢Ham<m

Wt )llH7(R3) < 00-

As we have mentioned above the L2 estimates, provided by the energy method,

are not enough to prove a result like this. On the other hand any attempt to replace
L2 with any other LT’ is known to fail (see [LD even for the linear problem, in M"’+1,

(iii) supl0 71]

D¢=Fs (MOW): .Jfot 7)8t(0 $)=_-7>-f1() (4)

The only other possibility to get additional information is to consider space-time inte—
grals. The best known result of this type, for the wave equation (4), is due to Strichartz
[Str1, 2] who has proved the following inequality,

Immschmum+wtfln+wtq (o

where L”, L" are space-time norms with exponents, p—— 2%”, q = 2 2:}

The novelty of our result consists of estimating, in space time, the Lorentz i11-
variant bilinear form Q(¢,1/)) and derive for it an estimate which is stronger than that
which could be derived from the Strichartz inequality. This allows us to gain a full
derivative over the classical result. The basic new tool is contained in the following

Proposition. Let (i), it; be solutions in M“1 to the equations no = F, 07/} = G
with initial conditions ¢(0,.r) = f0(.r), 81¢(0,x) = f1(.r) and 7,!)(0,.r) = go(;r),
811/}(0,x) 2 91(50). Assume that f0,go E H2(R3), f1,91 E H2(R3) and that the

integrals f0T||DF(t, )||L2( R3) (11‘, ff HDF(t, )||L2(Ra)dt are both finite. Then the
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space—time integral fOTfRa lDQ(o. it")? (ltdrr is also bounded. with a bound depend—

ing only on the product of (llfollHUR‘U + Hf] llHltRs) + f0] HDFtt, ")HL2(R3) (It) with

T(ltgollmma) + plums) +10 “Dec. -)tlL2(m> (1t)-
Remark 1. The result of the proposition remains true if we replace the quadratic
form Q by n(¢,1/l) = 80968” — eat/ram. On the other hand the result is wrong if we
replace the bilinear form Q with any other bilinear form in the space—time gradients

of (15, it). The result of Theorem (Kl—Ma.) remains true if we also allow the forms Qafl
but we believe is wrong if one considers in (1) general expressions quadratic in the
Do. This suggests that any future improvements of the classical local existence and

uniqueness results require special features of the equations one is interested in.

Remark 2. The proof of Theorem (Kl-Ma) depends heavily on the fact that the

nonlinear terms in (1), (2) do not depend on the top derivatives. 11. is reasonable to
believe. however that the result of the theorem can be extended to certain classes of

quasilinear equations. Most important we believe that a similar result holds true for

the Einstein vacuum equations, in other words the (E V) equations should be well

posed for initial data sets (71,9, l‘) for which the (omponents curvature tensor I?(g)

and the first derivatives of lo are bounded in L2.

Q2. In proving the result on the stability of the Minkowski spacotime 111entioned above

we had to overcome the following major obstacles,

a. The problem of coordinates.

b. The strongly nonlinear character of the equations.

c. The longr range character of the initial data set.

d. The nontrivial Character of the asymptotic properties of the. causal structure of

any small perturbation of the .Minltowslri space—time.

e. The conjunction of all of the above.

The scope of this lecture doesn‘t allow me to discuss in detail each of the above

difficulties and describe our strategy for overcoming them. For those interested I would

like to refer to the extensive introduction of [CHlZ] or the recent Bourbaki seminar

[Bour]. In what follows I will only give a very short description of the main ideas in

[Ch—K12].

The difficulty (a) is typical to General Relativity. In short one is faced with the

following dilemma. To write the equations in a meaningful way one, seems forced

to introduce an additional structure, e.g. wave coordinates. Such a structure seems

necessary even to allow the formulation of well posed Cauchy problem and a proof of a

local in time existence result. Nevertheless, as the particular case of wave coordinates

illustrates, the structure, if not carefully chosen, may lead, in the large, to problems

of its own making. Indeeed, as pointed by Y. ChocqueteBruhat [B12], the “wave

coordinates” are unstable in the large even when one starts with initial conditions close

to flat. In [Ch-K12] we solve this problem by constructing our space—times together

with two additional geometric stuctures. One is given by a time function t whose

level hypersurfaces are maximal. The second, much more important, is given by the

level hypersurfaces of an optical function . This is a special solution it of the Eikonal

equation gafiaouagu = 0, whose level hypersurfaces are outgoing null hypersurfaces

with correct asymptotic properties at null future infinity.

The other major obstacle in the study of the Einstein equations consists in their

hyperbolic and strongly nonlinear character. As we have already mentioned the only
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apriori bounds we have available in the study of quasilinear hyperbolic equations,
in the physical space-time dimension. are those based on energy estimates. Yet the
classical energy estimates are limited to proving estimates which are local in time. The
difficulty has to do with the fact that, in order to control the higher energy norms
of the solutions, one has to control the integral in time of their bounds in uniform
norm. For this we need to control the decay of the L00 norms for which we have no
direct information. This difficulty was overcome by us using a strategy based on two
important ideas. The first has to do with the existence of the so called Bell-Robinson
tensor which plays, for the Einstein field equations, a role simmilar to that played by
the the energy~momentum tensor of the standard field theories of matter. The second

is a technique, developed by us, of deriving all the asymptotic behaviour of a field
based entirely on energy estin’iates. Recall that, if T is the energyemomentum tensor
of a field theory we have,

Dqu : 0 .

Let X be an arbitrary veetorfield and P be the leform obtained by contracting the

energy momentum tensor with X i.e. Pu : nXfl. Then, since T is symmetric and

divergencerless,
1

Dflpo : ETfi/i 770;} (6)

where,

7rd,? : D;3Xo 'l‘ DOAYS (7)

is the deformation tensor of X. \‘Ve now integrate (6) on a lens shaped domain 'D be

bounded by two space—like hypersurfzufies H”, H]. In view of the divergence theorem
we derive the integral identity,

/ TtX,T)dag — / T(.Y,T)dag 2 ~/ TM; 7mg (8)
Ha , 'H1 '17

where T is the future oriented unit normal, g the induced metric and dag the area

element of (9D.

In the particular case when X is Killing12 its deformation tensor 7r vanishes identir

cally and we derive the conservation law,

/ T(X,T)day = / T(X,T)day (9)
'H0 (H1

Remark that the result (9) remains true if X is a conformal Killing vector field, i.e. it
generates conformal isometries, and T is traceless. Indeed, if X is conformal Killing,

mm = Agag and hence WagTafi = .\t7‘(T) = 0. One can easily show that if the action

integral S[1/},g] is invariant under conformal rescalings of the metric, i.e. g 2 (Pg,
then the corresponding energyflnomentum tensor is traceless. This is the case of the
YangeMills Theory in 3 + 1 dimensions.

The identities (8) and (9) are usually applied to time—like future oriented vectorfields
X, in which case, in View of the positive energy condition, the integrand T(X, T) is
positive. This is the essence of the standard energy method. The method allows us
to obtain apriori bounds, typically L2 on space-like hypersurfaces, of the field under

12 i.e. it generates a one parameter group of isometries
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consideration. Our main new idea is based on a simple extension of this method in
situations when the background has symmetries or, more appropiate for the stability
of the Minkowski space-time7 approximate symmetries.

To illustrate the method consider the Maxwell equations in M3“. As mentioned
above the Maxwell theory is conformal invariant. This means that whenever F is a
solution and X is an arbitrary conformal Killing vectorfield the Lie derivative of F
with respect to X is also a solution to the Maxwell equations. Combining this fact
with the standard energy method described above we can now derive L2 estimates for
various vectorfields applied to F. For example, consider the following quantities,

Q00) 2/ T(F)(KO,T0)(I$

Q1(t) — Z/l’m((‘Cfla FMI\(),T0)(1.I +/ T(£SF)(Y\7(;, T0 )d]:

71!:

+/ T(£T0F)(T'0, T0)d;r
71:

Q20?) _ Z /T((‘CU()(1))£Q(b Fl) 1\(1,T0) (II + Z/T(Cs£9(a)F)(F0,T0)d.r
a b: I

+/ T(£5£SF)(E,T0)d:c+/ T(caT0F)(m,T0)dx. (10)
. Ht ’ 1

Here H; are the level hypersurfaces of the time function i : 9:0 with future directed
unit normal T0 : 80. To is also the generator of time translations. The veetorfields
(2(a) : eabczrbac, a = 1,2,3 are the usual angular momentum operators. S = 3:080,
is the generator of dilations while K0 : K0 + T0 with K0 : (t2 + 7'2)30 + 2t$i3i the
generator of inverted time translations.

In view of the above discussion the quantities Q00), Q1(t),Q2(t) are all time in—
dependent and therefore bounded for all t E ER if (Qt-(0), i : 0,1,2 are all bounded.
These L2 bounds can be combine with some global version of the classical Sobolev
inequalities to derive very sharp uniform estimates for F.

To do this we decompose F lelative to the pair of conjugate null vectors 6+ :
at + 21:1 7:315 e_ ——8; H 21— 1 £107 and an arbitrary orthonormal frame (6A)A_1 2
on the 2— spheres SH U obtain by the intersection of the level hypei surfaces of u = t — r
with those of v =t +17“, into the vectors 01A: F(e+, eA) aA—— F(e_,eA) and scalars
p—— .1F(e+,e_ ) 0—— ,- F(e+,e _). This 1s called the null decomposition of F. We can
now state the following,

Proposition 1 [Ch-K11]. Let F be a solution of (M) and assume that the initial
conditions on the hypezplanet—— 0 are such that the quantities Q1(0),i= 0,1,2 are all
bounded Consider the asymptotic behaviour ofF for t > 0 In the space- time region
7' < 1 +21,— all components ofF behave in the same way, |F(t :c)l < C(l +t) 7 Outside
that lregionm we have, |a(t .r )l < (1 +t+ r)_7, |p(t e) 0(t, z)l S (1 +t+r) 2(1 + [t—

M) ,Ia(m)l<<1+t+r> (H-It—TD'?
13 The crucial region, Where different null components ofF decay in different ways, is
the wave zone region Where u = t — 7‘ is bounded.
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We have thus been able to derive the asymptotic properties of the Maxwell-equations
relying only on their geometric properties. This feature is crucial in applications to
nonlinear problems. A similar method lies also at the heart of our proof of the sta—
bility of the Minkowski space—time. It consists in the derivation of L2 estimates for
the modified Lie derivatives of the curvature tensor R of a space—time M, g verifying
the Einstein~Vacuun1 equtions (EiV) relative to some modification of the vectorfields
T0, 9, S, ITO, as above. This is based on the crucial observation that the Bianchi iden—
tities,

D5R05‘15 + DORfie'yé ‘t’ Dn.,,5 = 0 (B)

if interpreted as equations satisfied by R relative to a fixed background metric
g, are conformally covariant. The role of the BellsRobinson tensor, Tafi‘yb :
%(R(,,,fl,,R7 It 6 V + *RWM *R, ,t 5 V) where, *R0,«;.,5 : ; gum RM ,5, plays
the same role for (B) as that played by the energyrmomentuin tensor before. Indeed
T exhibits all the properties of an energy—momenti1m tensor. Thusl4 T is syn’nnetr
ric relative to all pair of indices and satisfies the conservation law, DbTwflw : 0.
Moreover it verifies the positive energy condition, i.c. T(X,Y,X,Y) is positive
whenever X,Y are future directed timerlike vectors The conformal covariance of
(B) translates into the very important fact that T is traceless. Also, if we def
fine the modified Lie derivative of R relative to a vectorfield X by the formula,
lR : LXRryfl'yé 7 %(7fi(Lafiyb 'i' ”léRapfifi + 7"];R031L5 i nm/i'fll) + gt7'7e/3757

we see that the commutation of LN with (B) produces error terms depending on the
vector X only through the trace—less part of its deformation tensor 7r. Thus, if the
background metric. is that of the Minkowski spaceitime the modified Lie derivative
relative to a conformal Killing vectorfield commutes with the Bianchi equations (B)
These properties of (B) allow us to define generalized energy norms for R, as we have
done previously for F. These norms allow us to control the asymptotic behaviour
of R. We illustrate this in Minkowski spacestime as follows, Assume that W is a
4rcovariant tracerlcss tensor \r'crifying all the symmetry properties of the curvature
tensor R. Assume that W is a solution of the Bianchi equations (B) in Mii‘H. Let
Q0(t),Q1(t), Q2“) be the quantities,

Q0(t):/ T(U”)(m,m,T0TU)d;r
k

3

we : Z A Ttiniitii"i/)(Tb,m.TuToM-r
(1:1

+ / T<£T0W>mmmroida~,H,
3

QM): Z / TrinaifimbmaimmTo,Todw
a,b=1 Ht

3

+2 / T<émaéaivitmmmTom
71:a=1

14 These properties hold true as a consequence of the symmetries of R and, in view of
the E—V equations, the condition Rag = 0.
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+/ TastymmTx’ETodm
. n,

+ / Trziafinwxmmmrodm (11)

Wlth T0,Q,S,R0 as in (10).

The null decomposition of \V is given by 01,; = VV(e,4,e+,eB,e+)7 flA :

%W(eA,e+,e_,e+), p = %IVV(e_,e+,e_,e+), a = iVV(e-,e+,e_,e+), EA 2

%W(eA,e_,e_,e+). QAB = W(eA,e_., eB,e_). We can now state the following,

Proposition 2. Let W be a solution of the Bianchi equations in M3+1 and assume

that the initial conditions on the hyperplanet = 0 are such that the quantities (LL-(0)

are all bounded. Consider the asymptotic behaviour of W for t > 0. In the space

time region 1‘ S 1 + % all components of W behave in the same way, |W(t,.r)| S

c(1 + 07%. Outside that region we have, |o(t,a;)| S (1+t+ r)_%, ,8 g (1+t + TlTTa

Ip<t,x),a<t,ol s <1 +t+v~r3<1 + ltvv'lfl, lfil : (1+t+r)'2(1+lt—rl)’%
moi : (1 +t+r)“(1+l1—rl)‘%-

Both Propositions 1,2 have been proved in [Ch—K11].

The implementation of a similar strategy for the actual EiV equations requires some

fundamental modifications. We rely on the same quantities 15 Q1(t), Q1305) introduced

in (11). The major departure from the linear theory of Prop. 2 is that the vectorfields

TO,Q,S,K0 are now themselves unknown and have to be constructed together with

our spaceitime. This is due to the difficulty (d). Indeed, if the asymptotic behaviour

of the causal structure of the spacetime we construct would have been trivial we

could have chosen as vectorfields TU,SZ,S,K0 the ones given to us in M3+1. As it

stands, due to the mass term which appears in the Schwarzschild part of an (S.A.F.)

initial data set, has the long range effect of changing the asymptotic position of the

null geodesic cones relative to the maximal foliation. They are expected to diverge

logarithmically from their corresponding position in flat spaccrtime. In addition to

this their asymptotic shear16 differs drastically from that in the Minkowski space—

time. This difference reflects the presence of gravitational radiation in any nontrivial

perturbation of the Minkowski space—time. To take this effect into account we rely

heavily on our optical function u and construct the vectorfields TMQ, 5,1{0 based on

its properties”. The construction of u itself is very elaborate and requires a systematic

study of the geometry of null hypersurfaces.

In linear theory the time derivatives of the Q1, Q2 are zero. In the case of the (EeV)

equations they give rise to cubic error18 terms which depend linearly on the traceless

part of the deformation tensors of K0, T, S, Q , and quadratic with respect to R and its

covariant and Lie derivatives in the direction of T, S, Q. The crucial point of our overall

strategy is to control the time integral of these error terms. This depends on the one

15 Because of the difficulty (c) we have to avoid the use of Q0(t) which would be infinite

at t = 0.

16 the traceless part of their null second fundamental form

17 and also those of the maximal foliation induced by the time function t.

'8 generated each time we commute the Bianchi Identities with a one of the veetorfields

used in the definition of (2t
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band on the asymptotic behaviour of all components of R and its covariant derivatives,
which are themselves controlled by the basic quantities Q1,Q2. On the other hand
it depends on the asymptotic behavior of the deformation tensors of our vectorfields,
and finally, due to the general covariance of the equations, on the cancellations of
the “worst possible” cubic terms. It is well known that arbitrary quadratic nonlinear
perturbations of the scalar wave equation, even when derivable from a. Lagrangean,
could lead to formation of singularities unless a certain structural condition, which we
have called the Null condition, is satisfied (see [K12], anad [Chl], [K12]). It turns out
that the appropriate, tensorial version of this structural condition is satisfied by the
Einstein equations. Roughly speaking one could say that the troublesome nonlinear
terms, which could have led to formation of singularities, are in fact excluded due to
to the covariance and algebraic properties19 of the Einstein equations.

Putting together all the elements discussed above requires an elaborate bootstrap
argument based on the method of continuity. In the end we show that Q|,Q2 can
never become large, it they are sufficiently small at t : 0. The local existence theorem
then guarantees that we can extend our spacertime indefinitely.

Finally it remains to note that our work has many important conclusions. Far from
beeing an abstract proof of existence it provides precise information on the asymptotic
nature of gravitational radiation, 50a of our conclusions confirm the nonwigurous
results20 obtained by Bondi, Sachs, Pcnrose etc.

Some of them are however new. One of these has lead D. Christodoulou to a real
experimental prediction. In [C114] he shows that gravitational waves generated by
astronomical sources can have a nonlinear effect on laser interferomctcr detectors on
Earth. This effect is shown to be of the same order of magnitude as the linear effects
upon which all previous efforts to detect gravitational waves were based. Moreover
the nonlinear effect is shown to produce a permanent displacement of test masses after
the passage of a wave. it can thus alter significantly the startegy upon which the
experimentalists plan to build their future detectors.

19 These basic algebraic properties of the Einstein equations. which allow us to prove
the above stated global existence result, are in sharp contrast with the nonlinear hy-
perbolic equations of classical continuum mechanics. Indeed the equation of Nonlinear
Elasticity [John] and of Compressible fluids [Si], in four space and time dimensions,
form singularities even for arbitrary small initial conditions.
20 I want to point out however that our results are inconsistent with the assumption,
made by Penrose [Pei], [PeZ], concerning the smoothness of null infinity. Our results
ShOW weaker “peeling”7 than those implied by the Penrose requirement. It remains
questionable whether there are any smooth initial conditions which lead to Ricci flat
space—times for which the Penrose requirement is valid.
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