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Abstract
In this paper, we study the equations of nonlinear poroelasticity derived from mixture
theory. They describe the quasi-static mechanical behavior of a fluid saturated porous
medium. The nonlinearity arises from the compressibility of the fluid and from the
dependence of porosity and permeability on the divergence of the displacement. We
point some limitations of the model. In our approach, we discretize the quasi-static
formulation in time and first consider the corresponding incremental problem. For this,
we prove existence of a solution using Brézis’ theory of pseudo-monotone operators.
Generalizing Biot’s free energy to the nonlinear setting, we construct a Lyapunov
functional, yielding global stability. This allows us to construct bounds that are uniform
with respect to the time step. In the case when dissipative interface effects between
the fluid and the solid are taken into account, we consider the continuous time case in
the limit when the time step tends to zero. This yields existence of a weak free energy
solution.
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1 Introduction

The elastic quasi-static deformation of a fluid saturated porous medium receivedmuch
attention in the civil engineering literature because of its relevance to many problems
of practical interest. In the framework of consolidation in soil mechanics, these prob-
lems relate to the physical loading of soil layers or the effect of soil subsidence due
to groundwater withdrawal for drinking water supply or industrial and agricultural
purposes. Examples and underlying theories are given in the well-known works of
Coussy (2004), Lewis and Schrefler (1998) and Verruijt (2015). They build on the
classical theory of Terzaghi (1951) and the pioneering approach of Biot (1962) and
Tolstoy (1992).

Recently, other examples of elastic deformation of porousmedia arise in the context
of industrial and biomedical applications, such as paper printing (Bosco et al. 2015),
bone regeneration (Cowin 1999; Cardoso et al. 2013), blood flow (Prosi et al. 2005;
Čanić et al. 2006) and car filters (Marciniak-Czochra and Mikelić 2015; Mikelić and
Tambača 2016).

In its simplest form, assuming both the fluid and the porous material (grains) to
be incompressible and assuming the porous medium to be homogeneous and linearly
elastic with small strains, the mathematical formulation reads (see Bear and Bachmat
1990; Verruijt 2015 or van Duijn et al. 2019):

div ∂tu + div

(
K

η f
(ρ f g − ∇ p)

)
= q (1)

and

− div σ = F, (2)

where

σ = Ge(u) − α pI, (3)

with

GE = 2μE + λTr(E)I, for symmetric matrices E . (4)

In these equations, u [m] denotes skeleton displacement,K [m2] intrinsic permeability
(a symmetric positive-definite rank−2 tensor), η f [Pa s] fluid viscosity, p [Pa] fluid
pressure and q [ 1/s ] sources/sinks. Further, σ [Pa] is the total stress, F a given body
force (generally linked to gravitational effects), G the symmetric, positive-definite,
rank-4Gassmann tensor, e(u) the linearized strain tensor andα ∈ (0, 1]Biot’s effective
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stress parameter. Finally, μ [Pa] and λ [Pa] are Lamé’s parameters. Using for G the
specific form (4), i.e., Hooke’s law, assumes that the skeleton ismechanically isotropic.

The linear quasi-static Biot system, aswell as its dynamical analog,was also derived
bymeans of amultiscale approach, where the starting point is the linear fluid–structure
interaction at the pore level. We refer to the monographs Sanchez-Palencia (1980) and
Mei andVernescu (2010) for derivations using two-scale expansions and toMikelić and
Wheeler (2012) for a rigorous mathematical derivation by means of homogenization.
The derivations using multiscale analysis confirm Biot’s models in the linear setting.
Hence, from different points of view system (1)–(4) is well accepted.

In the engineering literature, one writes α = 1 − K/Kg , where K is the drained
bulk modulus of the porous skeleton and Kg the bulk modulus of the grains. Since it
is assumed that Kg = +∞, we will set α = 1 in (3).

From a mathematical perspective, Eqs. (1)–(4) received much attention. Here, we
mention the pioneering paper by Auriault and Sanchez-Palencia (1977) and the work
of Ženíšek (1984), who were the first to demonstrate existence and uniqueness. More
recent studies include Showalter (2000), Owczarek (2010) and Marciniak-Czochra
and Mikelić (2015). Later, Cao et al. (2013) considered a nonlinear extension of (1),
by replacing the permeability tensorK by the productKk(div u). The function k(·) is
a relative permeability depending on the volumetric strain div u. From (1), we notice
that the overall mixture of two incompressible phases is not incompressible itself.

Though system (1)–(4) is linear, its mathematical complexity lies in the fact that it
is of quasi-static nature. In particular (2)–(4) allow to control the size of the volumetric
strain only through the size of the data. Some authors circumvent this by introducing
a time dependence in (2)–(4) as well. For instance, Bociu et al. (2016) replace u in (3)
by u+δ∂tu, where δ ≥ 0 is a visco-elastic parameter. Their study allows δ = 0, hence
it includes the true quasi-static case as well. A different regularization was proposed
by Murad and Cushman (1996) who replaced (3) and (4) by

σ = 2μe(u) + (λdiv u + λ∗div ∂tu − α p)I, (5)

with λ∗ > 0. This form arises in the non-equilibrium theory, where the fluid pressure
and the solid pressure differ by λ∗ div ∂tu.

In this paper, we propose to study the quasi-static formulation in which we replace
Eq. (1) by the nonlinear fluid phase mass balance based on the mixture theory of
Bedford andDrumheller (1978) andBedford andDrumheller (1983), see, e.g.,Rutqvist
et al. (2001) and Lewis and Schrefler (1998):

n∂tρ + ρdiv ∂tu + div j = Q, (6)

where j denotes the Darcy mass flux

j = Kk(n)ρ

η f
(ρg − ∇ p). (7)

Here, n denotes porosity, ρ = ρ f [kg/m3] fluid density, k relative permeability and Q
[kg/m3 s] sources/sinks.
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In Eqs. (6)–(7), the porosity n is a given function of the volumetric strain: i.e.,

n = n(div u). (8)

An explicit expression for (8) is derived from the Lagrangian solid mass balance
equation. This is shown in Sect. 2. Through (8), the relative permeability depends on
div u.

Since n is the volume fraction of voids in the porous medium, it should satisfy the
natural bounds

0 < n < 1. (9)

However, in Sect. 2 we show by means of a counter example that the porosity can
attain negative—and thus physically unrealistic—values. Therefore, the bounds in (9)
are a major concern in the mathematical model.

To close system (2)–(4), (6)–(7), we introduce a constitutive relation for the fluid
density in terms of the pressure. Assuming weak compressibility, we write

ρ = ρ(p) = ρ0(1 + β(p − p0)). (10)

Further, we propose an explicit expression for the relative permeability in terms of the
porosity

k = k(n). (11)

In (10), ρ0 and p0 are reference values for, respectively, density and pressure and
β [Pa−1] is the fluid compressibility coefficient. The relative permeability in (11)
satisfies

{
k ∈ C1[0, 1],
k(0) > 0 and k′ > 0 in ([0, 1). (12)

A well-known example is the Kozeny–Carman formula, see for instance Bear and
Bachmat (1990),

k(n) = k0
n3

(1 − n)2
(k0 > 0), (13)

in a realistic porosity interval, bounded away from n = 0 and n = 1. Thus, taking k
such that (12) holds and

k(n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

≥ k0
2

n3∗
(1 − n∗)2

, for n ≤ n∗,

k0
n3

(1 − n)2
, for 0 < n∗ < n < n∗ < 1,

≤ 2k0
(n∗)3

(1 − n∗)2
, for n ≥ n∗,

(14)
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for appropriately chosen 0 < n∗ < n∗ < 1, gives a relative permeability satisfying
(13) in the interval [n∗, n∗].

We notice that Eq. (6), coupled with (2) and (4), is nonlinear due to the relation
k = k(n) and the products involving time derivatives. Assuming constant fluid phase
density in the poroelastic mixture is therefore an important simplification. This is
studied in Cao et al. (2013) and Bociu et al. (2016).

In studying system (2)–(4), (6)–(11), a crucial role is played by its free energy.
The idea is to generalize Biot’s free energy (Biot 1962), which is quadratic in strain
and fluid density, to the nonlinear poroelastic setting. This free energy serves as a
Lyapunov functional. This approach is linked to general entropy methods for PDEs.
For a detailed survey covering various fields of applications, we refer to Evans (2004)
and to the recent book by Jüngel (2016). An interesting application of the entropy
method is discussed in Mikelić (2010), Cao and Pop (2016) andMilišić (2018), where
the authors consider dynamic capillary pressure effects in two-phase porous media
flow.

This paper is organized as follows. In Sect. 2, we present details of the model
formulation. The starting point is the mass balance for the fluid and the solid phase.
The latter implies an explicit expression for (8). Introducing a lower bound for the
porosity, we modify the fluid mass balance so that a Lyapunov functional can be
constructed for the modified system. This modification is such that the fluid equation
reduces to its original form in the physical range of the fluid density ρ and solid
volumetric strain E . Section2 is concluded by a weak formulation of the modified
system.

In Sect. 3, we consider, for the relaxation parameter λ∗ ≥ 0, the incremental version
of themodified system. Using Brézis’ theory of pseudo-monotone operators, existence
is demonstrated. Applying the Lyapunov functional yields global (in time) estimates.
Next, in Sect. 4, we use these estimates to solve the time-continuous problem when
λ∗ > 0. In both Sects. 3 and 4, we borrow ideas from Roubiček (2005). Finally, in
Sect. 5 we present a discussion and conclusions.

2 Problem Formulation

In a number of steps, we construct in this section the equations that serve as starting
point for the analysis. The general setting of the problem is as follows:

Let Ω ⊂ R
m (m=2,3) denote a smooth bounded domain, occupied by a linear

elastic skeleton. The skeleton material (grains) is assumed incompressible: i.e., the
bulk modulus of the grains is infinitely large. The voids in the porous structure are
completely filled with a slightly compressible fluid, in the sense that the fluid pressure
p and density ρ are related by (10).

2.1 Balance Equations

For given ξ ∈ Ω , let x(ξ, t) denote the location of a solid particle at time t > 0, that
started at x(ξ, 0) = ξ,. Then the skeleton velocity vs is given by vs = ∂tx|ξ.
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Restricting themselves to small displacements u (within the elastic regime),
Rutqvist et al. (2001) and Lewis and Schrefler (1998) argue that in the mass bal-

ance equation for the fluid and solid, the material derivative
D

Dt
= ∂t + vs · ∇ can be

replaced by the partial derivative ∂t . This is made explicit by a scaling argument in
van Duijn et al. (2019). The resulting Lagrangian form of the mass balances reads:

n∂tρ + ρdiv vs + div j = Q (fluid phase) (15)

and

∂t (1 − n) + (1 − n)div vs = 0 (solid phase), (16)

where j is mass flux (7).
Within the same approximation, one may write

div vs = ∂tdiv u.

Using this in (15) and (16) gives

n∂tρ + ρ∂tdiv u + div j = Q (17)

and

∂t (1 − n) + (1 − n)div ∂tu = 0. (18)

Integrating (18) in time from t = 0, say, to t > 0, we have

1 − n = (1 − n0)e
−div (u − U0) for t > 0.. (19)

Here, U0 is the initial displacement and n0 the initial porosity. With n0 ∈ (0, 1) in Ω ,
expression (19) ensures

n < 1 in Ω for all t > 0. (20)

To avoid technical complications, we restrict ourselves to n0 = constant in Ω .

For small displacements u − U0, expression (19) is approximated by

n = n0 + (1 − n0)div (u − U0). (21)

Remark 1 Frequently, the linear form (21) is used for values of div u in a neighborhood
of divU0 : i.e., in practical circumstances (21) is appliedwhenE∗ < div (u−U0) < E∗,
where E∗ < 0 < E∗ are appropriately chosen.
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Throughout the paper, we redefine

u := u − U0, (22)

where U0 ∈ H1
0 (Ω)m ∩ H2(Ω)m is the initial displacement. Redefining accordingly

F := F + div (Ge(U0)), (23)

we obtain for the fluid pressure p and the skeleton displacement u the system:

n∂tρ + ρ div ∂tu + div
(
Kk(n)ρ

η f
(ρg − ∇ p)

)
= Q, (24)

− div (Ge(u) − pI) = F, (25)

where

ρ = ρ(p) = ρ0(1 + β(p − p0)), (26)

n = n(div u) = 1 − (1 − n0)e
−div u (27)

≈ n0 + (1 − n0)div u (small strains). (28)

Remark 2 Concerning the initial displacementU0, we note that only divU0, the initial
volumetric strain, is used. However, when discussing the free energy, one needs in
addition that U0 is such that the corresponding elastic energy is finite. For simplicity,
we suppose U0 ∈ H2(Ω)m .

In the next sections, we will develop the mathematical theory for system (24)–(28).
The issue of negative porosity in (27) (or, for that matter, a porosity exceeding one

in approximation (28)), is discussed next.

2.2 Negative Porosity

We consider a simplified version of the linear problem (1)–(4) and show that div u can
attain values for which the porosity from (27)–(28) becomes negative.

For simplicity, we give the construction in R
2.

Let Ω = (0, L)2 for some L > 0. We suppose, as in the rest of this paper, that div
u|t=0 = 0. Further we set F = 0 in (25). Using (4) in (25) gives

− div
(
2μe(u) + (λdiv u − p)I

) = 0 in Ω., (29)

Proceeding as in Verruijt (2015), when he discusses the Mandel problem, we take the
divergence of (29) to obtain

Δ
(
(2μ + λ)div u − p

) = 0 in Ω. (30)
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Fig. 1 Sketch of level set of porosity n at some t > 0. The region where n > 0 shrinks with increasing time
and disappears after a finite time Tp > 0

Hence the function

H = (2μ + λ)div u − p

is harmonic in Ω .
The idea is to prescribe boundary conditions for Eqs. (24) and (25) so that H |∂Ω is

given. For instance, if we set along the four edges, see Fig. 1,

⎧⎪⎪⎨
⎪⎪⎩

{x1 = 0} : u2 = 0, σ11 = Σ1,0 and p = 0;
{x1 = L} : u2 = 0, σ11 = Σ1,L and p = 0;
{x2 = 0} : u1 = 0, σ22 = Σ2,0 and p = 0;
{x2 = L} : u1 = 0, σ22 = Σ2,L and p = 0,

(31)

and use

σ11 = 2μ
∂u1
∂x1

+ λdiv u − p,

we have

Σ1,0 = (2μ + λ)
∂u1
∂x1

at {x1 = 0},

implying

H = Σ1,0 at {x1 = 0}.
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Repeating this along the other edges gives

H |∂Ω = Σb,

where Σb denotes the given value of σ along the edges.
Then, we have

Proposition 1 Let E = divu denote the volumetric stress and let n(E) be given by (27).
Suppose there exists a constant Σ > 0 such that Σb ≤ −Σ . Then, for Σ sufficiently
large, there exists a Tp = Tp(Σ) > 0 such that

n(E(x, t)) < 0 for t > Tp and x ∈ Ω. (32)

Proof Note that the sign of Σb implies compression of the medium. Restricting our-
selves to the linear case (1) in a homogeneous and isotropic porous medium in which
sources/sinks and gravity are absent, we have

∂tdiv u − K

η f
Δp = 0 in Ω, t > 0. (33)

Since

Δp = (2μ + λ)Δ(div u)

and

div u|∂Ω = Σb

2μ + λ
≤ − Σ

2μ + λ
,

we have for E = div u the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tE = (2μ + λ)K

η f
ΔE in Ω, t > 0;

E |∂Ω ≤ − Σ

2μ + λ
for t > 0;

E |{t=0} = 0 in Ω.

(34)

By the strong maximum principle, E < E in Ω and for t > 0, where E is the solution
of problem (34) with E = −Σ/(2μ + λ) on ∂Ω . Writing E as a Fourier series, one
observes that

E(x, t) → − Σ

2μ + λ
as t → +∞,

uniformly in x ∈ Ω .
Thus, if

(1 − n0)e
Σ/(2μ+λ) > 1,
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or

Σ > (2μ + λ) ln
1

1 − n0
,

the result is immediate. ��
This example shows that there is a problem with the model. A modification is

needed to prevent the porosity (27), or (28), to become negative. Of course, one could
argue that this is outside the scope of the model or outside the range of practical
applications, since linear elasticity and small strains are supposed. However, since it
is not clear how to ensure that indeed small displacements/strains are guaranteed, one
needs to impose a porosity modification to prevent negative values.

2.3 Modification of Balance Equations

In a number of steps, we modify Eq. (24) so that it becomes well-posed in a
mathematical sense and reduces to its original form in the physical range of the
unknowns.

First, to satisfy the natural bounds (9), we replace the porosity approximation (28)
by a smooth increasing function n : R → R such that

n(E) =

⎧⎪⎪⎨
⎪⎪⎩

lim
E→−∞

n(E) = δ0 > 0,

n0 + (1 − n0)E, for E∗ ≤ E ≤ E∗;
lim

E→+∞
n(E) = 1.

(35)

Here, E∗ and E∗ are practical values chosen such that −n0/(1 − n0) < E∗ < 0 <

E∗ < 1 and δ0 = n(E∗)/2, see Fig. 2for a sketch.
This construction ensures that the modified porosity n(E) remains in the physical

range (0, 1) and coincides with the linear approximation in the interval (E∗, E∗).
Realistic porosity measurements are always done away from the bounds n = 0 and
n = 1, see, e.g., Bear and Bachmat (1990).

We choose to study Eq. (24) with the fluid density as primary unknown. Hence, we
need to express the pressure p in terms of ρ. Using (26), we have explicitly

p = p(ρ) := p0 + ρ − ρ0

βρ0
. (36)

When considering (24), one clearly has in mind that ρ takes values near the reference
ρ0.However, themathematical nature of the equations does not guarantee this behavior.
Hence, a second modification is needed, now for ρ in the second and third term of
the left-hand side of (24). Disregarding gravity, we replace (24) by the modified fluid
mass balance equation

n(E)∂tρ + d(ρ)∂tE − div
(
k(E)D(ρ)K∇ρ

)
= Q, (37)
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Fig. 2 Sketch of porosity cutoff n(E), with n0 = 0.5, E∗ = −0.5, E∗ = 0.5 and δ0 = 0.125

where n(E) is given by (35) and k(E) = k(n(E)). Further, d, D : R → R are chosen
such that

d(ρ) = ρ,

D(ρ) = ρ

η f βρ0
,

⎫⎬
⎭ for |ρ − ρ0| ≤ ρ0 − ρ∗, (38)

where ρ∗ ∈ (0, ρ0) is a small constant. Outside this range we take for d and D
extensions that suit the mathematical analysis. We clarify this at a later point in this
section.

Remark 3 The composite function k(E) = k(n(E)) satisfies: k ∈ C1(R)∩ L∞(R) and
k > k(δ0) > 0, k′ > 0 in R.

The balance of forces (25) is modified by adding the regularizing term λ∗∂tE , as in
expression (5). This gives

− div
(
Ge(u) + (λ∗∂tE − p)I

)
= F, (39)

where E = div u and where λ∗ ≥ 0.
We consider system (37), (39) in the set

QT = {(x, t) : x ∈ Ω, 0 < t < T },

where T > 0 is arbitrarily chosen. To avoid technical complications, we take ∂Ω ∈ C1

throughout the rest of this paper.
As initial conditions, we have

E |t=0 = 0 and ρ|t=0 = ρ0 in Ω, (40)
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where ρ0 : Ω → (0,+∞) is taken near the reference value ρ0. Along the boundary,
we prescribe

u|∂Ω = 0, ∇ρ · ν|∂Ω = 0, for 0 < t ≤ T . (41)

where ν is the outward unit normal at ∂Ω .

2.4 Lyapunov Functional

In this section, we derive an expression for the free energy which acts as a Lyapunov
functional for system (37), (39). This generalizes the free energy introduced originally
by Biot (1962).

Let {u, ρ} be a smooth solution of Eqs. (37), (39) that satisfies conditions (40) and
(41). Further, let g : R → R be a smooth, strictly increasing and globally Lipschitz
function satisfying g(ρ0) = 0.

We first multiply equation (39) by ∂tu and integrate the result in Ω . This gives

1

2

d

dt

∫
Ω

Ge(u) : e(u) dx + λ∗
∫

Ω

(∂tE)2 dx − d

dt

∫
Ω

F · u dx

−
∫

Ω

p(ρ)∂tE dx = −
∫

Ω

∂tF · u dx . (42)

Next, we multiply (37) by g(ρ) and integrate the result in Ω . This results in

∫
Ω

n(E)g(ρ)∂tρ dx +
∫

Ω

d(ρ)g(ρ)∂tE dx −
∫

Ω

k(E)D(ρ)g′(ρ)K∇ρ · ∇ρ dx

=
∫

Ω

Qg(ρ) dx . (43)

With

G(ρ) =
∫ ρ

ρ0

g(z) dz, (44)

the first term in (43) can be written as

∫
Ω

n(E)∂tG(ρ) dx = ∂t

∫
Ω

n(E)G(ρ) dx −
∫

Ω

n′(E)G(ρ)∂tE dx . (45)

Note that G is a nonnegative, convex function with G(ρ0) = 0.
We substitute (45) back into (43). Adding the resulting expression and (42) yields

d

dt

∫
Ω

(
1

2
Ge(u) : e(u) + n(E)G(ρ) − F · u

)
dx + λ∗

∫
Ω

(∂tE)2 dx

+
∫

Ω

k(E)D(ρ)g′(ρ)K∇ρ · ∇ρ dx
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+
∫

Ω

{
d(ρ)g(ρ) − n′(E)G(ρ) − p(ρ)

}
∂tE dx =

∫
Ω

Qg(ρ) dx −
∫

Ω

∂tF · u dx .

(46)

Before considering the general nonlinear case described by this expression, we first
show its implication for the simplified linear setting where we have

n(E) = n0, d(ρ) = ρ0, k(E) = 1 and D = 1

η f β
.

Then,

∫
Ω

{
d(ρ)g(ρ) − n′(E)G(ρ) − p(ρ)

}
∂tE dx (47)

in expression (46) simplifies to

∫
Ω

{
ρ0g(ρ) − p(ρ)

}
∂tE dx . (48)

Since

∫
Ω

∂tE dx = 0,

expression (48) vanishes if g(ρ) is chosen such that

ρ0g(ρ) − p(ρ) = constant = −p0.

This gives

g(ρ) = ρ − ρ0

βρ2
0

and

G(ρ) = (ρ − ρ0)
2

2βρ2
0

.

Using these expressions in (46) yields

d

dt

∫
Ω

{1
2
Ge(u) : e(u) + n0

βρ2
0

(ρ − ρ0)
2 − F · u

}
dx + λ∗

∫
Ω

(∂tE)2 dx

+
∫

Ω

1

η f β2ρ2
0

K∇ρ · ∇ρ dx =
∫

Ω

Qg(ρ) dx −
∫

Ω

∂tF · u dx . (49)
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Hence,

L(u, ρ) =
∫

Ω

(
1

2
Ge(u) : e(u) + n0

2βρ2
0

(ρ − ρ0)
2 − F · u

)
dx (50)

acts as a Lyapunov functional for the linear form of system (37), (39). The first term
denotes the elastic energy of the skeleton, the second term the compression energy of
the fluid, and the third term the work done by the force F.

Expression (50) coincides with Biot’s original free energy expression from Biot
(1962).

Next, we return to the nonlinear case (46). As a first step, we restrict ourselves to
the physical range of the porosity. Then, integral (47) becomes

∫
Ω

{
d(ρ)g(ρ) − (1 − n0)G(ρ) − p(ρ)

}
∂tE dx . (51)

This integral vanishes if g(ρ) is chosen such that

d(ρ)g(ρ) − (1 − n0)G(ρ) − p(ρ) = −p0 (52)

Differentiating the expression yields a first-order equation for g. Thus for (51) to
vanish, g should satisfy the initial value problem

⎧⎨
⎩
d(ρ)g′(ρ) + (d ′(ρ) − (1 − n0))g = 1

ρ0β
, for ρ ∈ R;

g(ρ0) = 0.
(53)

We first consider this problem in the interval |ρ−ρ0| < ρ := ρ0−ρ∗ where d(ρ) = ρ.

Then, (53) reduces to

⎧⎨
⎩

ρg′ + n0g = 1

βρ0
,

g(ρ0) = 0.
(54)

Direct integration results in

g(ρ) = 1

βn0ρ0

(
1 −

(
ρ0

ρ

)n0)
. (55)

A second integration yields (Fig. 3)

G(ρ) =
∫ ρ

ρ0

g(ξ) dξ = 1

βn0(1 − n0)ρ0

(
(1 − n0)ρ − ρ

n0
0 ρ1−n0 + n0ρ0

)
. (56)
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Fig. 3 Sketch of the free energy βG(ρ/ρ0). The linear case is in blue. The nonlinear case, see (56) and
(59) with n0 = 1/3 and ρ∗/ρ0 = 0.01, is in black

When |ρ − ρ0| > ρ, the function d(ρ) has not yet been defined. We do this by first
extending g(ρ) for |ρ − ρ0| > ρ and then by solving d(ρ) from (52): i.e.,

d(ρ) = (1 − n0)G(ρ) + p(ρ) − p0
g(ρ)

. (57)

Clearly, (55) cannot be used forρ ≤ 0. Instead,we extend (55) in a linearC1-manner
for |ρ − ρ0| > ρ. With ρ̃ = ρ0 + ρ = 2ρ0 − ρ∗, we set

g(ρ) =

⎧⎪⎪⎨
⎪⎪⎩

1

βn0ρ0

{
1 −

(
ρ0

ρ∗

)n0
+ ρ − ρ∗

ρ∗

(
ρ0

ρ∗

)n0}
for ρ < ρ∗,

1

βn0ρ0

{
1 −

(
ρ0

ρ̃

)n0
+ ρ − ρ̃

ρ̃

(
ρ0

ρ̃

)n0}
for ρ > ρ̃,

(58)

yielding

G(ρ) =

⎧⎪⎪⎨
⎪⎪⎩
G(ρ∗) + ρ − ρ∗

βn0ρ0

(
1 −

(
ρ0

ρ∗

)n0
+ ρ − ρ∗

2ρ∗

(
ρ0

ρ∗

)n0)
for ρ < ρ∗;

G(ρ̃) + ρ − ρ̃

βn0ρ0

(
1 −

(
ρ0

ρ̃

)n0
+ ρ − ρ̃

2ρ̃

(
ρ0

ρ̃

)n0)
for ρ > ρ̃.

(59)

Substituting expressions (58) and (59) in (57) yields the desired extension for d(ρ)

when |ρ − ρ0| > ρ. Thus,

d(ρ) =
{

ρ for |ρ − ρ0| ≤ ρ,

(57)with g and G given by(58)and(59) for |ρ − ρ0| > ρ.
(60)
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Hence, the triple {g(ρ),G(ρ), d(ρ)} constructed above satisfies (52). For this choice,
the integral (51) drops from expression (46). So far, we considered for the porosity
the linear approximation n(E) = n0 + (1− n0)E . To deal with the full cutoff (35), we
introduce a second modification. The starting point is (47). This integral vanishes if

d(ρ)g(ρ) − n′(E)G(ρ) = p(ρ) − p0. (61)

Keeping g as in (55), (58) and G as in (56), (59), we now modify d(ρ), calling it
D(ρ, E), such that

D(ρ, E) = n′(E)

g(ρ)
G(ρ) + p(ρ) − p0

g(ρ)
. (62)

Using (57) in this expression gives

D(ρ, E) = d(ρ) + (n′(E) − (1 − n0))
G(ρ)

g(ρ)
. (63)

Clearly, for |ρ − ρ0| < ρ and E∗ < E < E∗, this expression reduces to

D(ρ, E) = ρ.

Finally, we use in the Darcy mass flux term j from Eq. (37)

D(ρ) = 1

η f ρ0β

⎧⎨
⎩

ρ̃, for ρ ≥ ρ̃;
ρ, for ρ∗ < ρ < ρ̃;
ρ∗, for ρ ≤ ρ∗.

(64)

Thus, in the end we consider the “second” modified fluid mass balance equation

n(div u)∂tρ + D(ρ, div u) div ∂tu = div
(
k(n(div u))D(ρ)K∇ρ

)
+ Q. (65)

System (39), (65) serves as starting point of the analysis. The function D(ρ, E) in (65)
generalizes the fluid density. It is chosen so that

J (u, ρ) = 1

2

∫
Ω

Ge(u) : e(u) dx +
∫

Ω

n(div u)G(ρ) dx −
∫

Ω

F · u dx (66)

acts as a Lyapunov functional for the system. The function G : R → R satisfies
G(ρ0) = 0, G(ρ) > 0 if ρ �= ρ0 and G is strictly convex, with quadratic behavior for
large values of |ρ|. It is explicitly given by (56) and (59).
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2.5 Summary of Equations andWeak Formulation

The problem describing the nonlinear poroelastic behavior of a fluid saturated porous
medium is to find the displacement u : QT → R

m and the fluid density ρ : QT → R

satisfying
(i) the balance equations

n(E)∂tρ + D(ρ, E)∂tE = div
(
k(E)D(ρ)K∇ρ

)
+ Q, (67)

− div
(
Ge(u) + λ∗∂tEI − p(ρ)I

)
= F, (68)

in QT = (0, T ) × Ω and
(ii) the initial-boundary conditions (40)–(41).
The coefficients in Eqs. (67)–(68) were introduced in this section. Specifically,

n(E) and k(E) satisfy (35) and Remark 3,
D(ρ, E), D(ρ) and p(ρ) are given by (62), (64) and (36),
and λ∗ ≥ 0.

We recast this classical formulation in the following weak form.

Definition 1 We call a triple (u, E, ρ) ∈ L∞(0, T ; H1(Ω)m)×L∞(0, T ; H1
loc(Ω))×(

L2(0, T ; H1(Ω))∩L∞(0, T ; L2(Ω))
)
, ∂tE ∈ L2(QT )∩L∞(0, T ; H1

loc(Ω)) aweak
free energy solution if (i)

−
∫ T

0

∫
Ω

ρn(E)∂tΦ dxdt −
∫

Ω

n0ρ
0(x)Φ(x, 0) dx

+
∫ T

0

∫
Ω

∂tE
(
D(ρ, E) − ρn′(E)

)
Φ dxdt

+
∫ T

0

∫
Ω

k(E)D(ρ)K∇ρ · ∇Φ dxdt

=
∫ T

0

∫
Ω

QΦ dxdt, ∀Φ ∈ H1(QT ), Φ|t=T = 0; (69)

(ii)

E = div u;

(iii)

∫
Ω

Ge(u) : e(ξ) dx + λ∗∂t
∫

Ω

E div ξ dx −
∫

Ω

p(ρ)div ξ dx

=
∫

Ω

F · ξ dx, ∀ξ ∈ H1
0 (Ω)3 and for almost all t ∈ (0, T ]; (70)
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(iv)

E |t=0 = 0 in Ω. (71)

(v) For every t1, t2 ∈ [0, T ], t1 < t2,

∫
Ω

(
1

2
Ge(u(t2)) : e(u(t2)) + n(E(t2))G(ρ(t2)) − F(t2) · u(t2)

)
dx

+
∫ t2

t1

∫
Ω

(
λ∗(∂tE)2 + k(E)D(ρ)g′(ρ)K∇ρ · ∇ρ − Qg(ρ) + ∂tF · u

)
dxdt

≤
∫

Ω

(
1

2
Ge(u(t1)) : e(u(t1)) + n(E(t1))G(ρ(t1)) − F(t1) · u(t1)

)
dx, (72)

where g(ρ) and G(ρ) are given, respectively, by (55), (58) and (56), (59).
Here, ρ0 ∈ L2(Ω), Q ∈ C([0, T ]; L2(Ω)) and F ∈ H1(0, T ; L2(Ω)m).

In Definition 1, we explicitly incorporate energy inequality (72). When dealing with
classical solutions, Eqs. (67)–(68) imply the energy balance (see (46), (47) and (66))

∂t J (u, ρ) +
∫

Ω

λ∗(∂tE)2 dx +
∫

Ω

k(E)D(ρ)g′(ρ)K∇ρ · ∇ρ dx

=
∫

Ω

Qg(ρ) dx −
∫

Ω

∂tF · u dx . (73)

However, in the weak formulation (69)–(70) we cannot use Φ = g(ρ) and ξ = ∂tu,
due to lack of smoothness. Therefore, (v) has to be added explicitly.Hence,we consider
only those weak solutions satisfying additionally (72). Therefore, they are calledweak
free energy solutions.

In a number of steps, we prove existence of weak solutions when λ∗ > 0. We
achieve this by first considering the incremental formulation. In this approximation,
which is clearly relevant when treating the problem numerically, we obtain existence
results which hold for all λ∗ ≥ 0.

3 Existence of a Solution to the Incremental Problem

In this section, we study the time discretized form of (67), (68).
In doing so we use the function g = g(ρ), defined by (55) and (58) as the primary

unknown. This is allowed since g : R → R is smooth and strictly increasing. The
switch to g is done for mathematical convenience, because it allows us to obtain Lya-
punov functional estimates in a straightforward way. We start with some definitions.
Let

p(g) := p(ρ(g)) and D(g) := D(ρ(g))ρ′(g). (74)
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Further, since

G(ρ(z)) =
∫ ρ(z)

ρ0

g(ξ) dξ =
∫ z

0
ζρ′(ζ ) dζ, z ∈ R, (75)

let

G(g) :=
∫ g

0
ζρ′(ζ ) dζ

and, from (62),

D(g, E) = n′(E)

g
G(g) + p(g) − p0

g
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(76)

Note that the first term in D(g, E) is bounded with respect to E and grows linearly in
g for large |g|. The second (pressure) term is bounded with respect to g since

p(g) − p0 = p(ρ(g)) − p0 = ρ(g) − ρ0

βρ0
.

Using these definitions in (67) and (68), we find in terms of g

n(E)∂tρ(g) + D(g, E)∂tE = div
(
k(E)D(g)K∇g

)
+ Q, (77)

− div
(
Ge(u) + λ∗∂tEI − p(g)I

)
= F, (78)

in QT .
Next, we turn to the time discretized form of Eqs. (77) and (78).
Let τ ∈ (0, 1) denote the time discretization step and N ∈ N a large integer such that
Nτ = T . At each discrete time t j = jτ , with j = 0, 1, . . . , N , we set

F j (x) = F(x, jτ), Q j (x) = Q(x, jτ), x ∈ Ω.

Let u j−1 and g j−1 denote, respectively, the displacement and transformed density at
t j−1 for some j ∈ {1, 2, . . . , N }: i.e.,

u j−1(x) = u(x, t j−1), g j−1(x) = g(x, t j−1), x ∈ Ω.

Then, u and g at time t j are obtained as solutions of the incremental problem (writing
U = u j−1, Ξ = g j−1 and V = H1

0 (Ω)m × H1(Ω)):
Problem (PD): Given (U, Ξ) ∈ V , find (u, g) ∈ V such that

∫
Ω

n(div U)

τ
(ρ(g) − ρ(Ξ))ψ dx +

∫
Ω

Dτ (g, div u, div U) div
u − U

τ
ψ dx

+
∫

Ω

k(div u)D(g)K∇g · ∇ψ dx =
∫

Ω

Q jψ dx, ∀ψ ∈ H1(Ω); (79)
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∫
Ω

Ge(u) : e(ξ) dx + λ∗

τ

∫
Ω

div (u − U) div ξ dx −
∫

Ω

p(g)div ξ dx

=
∫

Ω

F j · ξ dx, ∀ξ ∈ H1
0 (Ω)m . (80)

The coefficient Dτ in Eq. (79) is given by

Dτ (g, div u, div U) = n( div u) − n( div U)

div u − div U
G(g)

g
+ p(g) − p0

g
. (81)

This expression results from D(g, E) in (76), when the derivative n′(E) is replaced

by the finite difference
n( div u) − n( div U)

div u − div U
. The specific choice of (81) appears

convenient in the estimates concerning the time-discrete Lyapunov functional.
Using the weak topology of the space H1

0 (Ω)m × H1(Ω), serious difficulties arise
with the coefficients n, Dτ and k depending on div u. To remedy this, we introduce
a mollifier Υε, where ε is a small positive parameter (see, e.g., Roubiček 2005, page
203), and replace div u in the nonlinearities by the convolution div u�Υε = u�∇Υε.
Using this substitution one can treat nonlinear coefficients containing div u as lower
order terms in the equations. This allows us to use the theory of pseudo-monotone
operators.
Applying this convolution, the regularized form of Problem (PD) reads:
Problem (PD)ε: Given (U, Ξ) ∈ V , find (uε, gε) ∈ V such that, with Eε = uε�∇Υε,

∫
Ω

n(div U)

τ
(ρ(gε) − ρ(Ξ))ψ dx +

∫
Ω

(
n(Eε) − n(div U)

τgε

G(gε) + p(gε) − p0
τgε

)

div (uε − U)ψ dx

+
∫

Ω

k(Eε)D(gε)K∇gε · ∇ψ dx =
∫

Ω

Q jψ dx, ∀ψ ∈ H1(Ω), (82)
∫

Ω

Ge(uε) : e(ξ) dx + λ∗

τ

∫
Ω

div (uε − U) div ξ dx −
∫

Ω

p(gε)div ξ dx

=
∫

Ω

F j · ξ dx, ∀ξ ∈ H1
0 (Ω)m . (83)

Note that the denominator τgε in (82) originates from the time step τ in the discretiza-
tion and the term g in the denominator of (76). We have the following existence result

Proposition 2 Let ε > 0 be a small positive constant. Under the assumptions of
Definition 1, Problem (PD)ε admits at least one solution (uε, gε) ∈ V .

Proof We start by introducing a nonlinear operator A, defined on V and with values
in its dual V ′. It results from adding (82) and (83). We write the resulting relation,
with (u, g) ∈ V , as

A(u, g) = b, (84)
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where

〈A(u, g), (ξ, ψ)〉 := 1

τ

∫
Ω

Ge(u) : e(ξ) dx + λ∗

τ 2

∫
Ω

div (u − U) div ξ dx

−
∫

Ω

p(g)

τ
div ξ dx +

∫
Ω

k(u�∇Υε)D(g)K∇g · ∇ψ dx

+
∫

Ω

n(div U)

τ
(ρ(g) − ρ(Ξ))ψ dx

+
∫

Ω

(
n(u�∇Υε) − n(div U)

τg
G(g) + p(g) − p0

τg

)
div (u − U)ψ dx, ∀(ξ, ψ) ∈ V .

(85)

and

〈b, (ξ, ψ)〉 :=
∫

Ω

F j · ξ dx +
∫

Ω

Q jψ dx, ∀(ξ, ψ) ∈ V . (86)

The idea is to show that A is a perturbed monotone operator: i.e., A is monotone in
its principal part containing derivatives of u and g. To be precise, we show that A
is pseudo-monotone and coercive. This allows to apply Brézis’ theorem to (84) (see
Chapter 2 in monographs Lions 1969; Roubiček 2005 or Chapters 26 and 27 in Zeidler
(1990)) to conclude existence for Problem (PD)ε.

For the comfort of the reader, we recall that an operator A : V → V ′ is pseudo-
monotone if and only if A is bounded and

{ur , gr }⇀{u, g} weakly in V ,

lim sup
r→+∞

〈A(ur , gr ), (ur , gr ) − (u, g)〉 ≤ 0,

}
⇒

∀(v, h) ∈ V ,

〈A(u, g), (u, g) − (v, h)〉 ≤
lim inf
r→+∞〈A(ur , gr ), (ur , gr ) − (v, h)〉,

(87)

The boundedness of A is immediate. To show (87), we follow Chapter 2 from
Roubiček (2005) orChapter 17 fromSchweizer (2018) and rewriteA in a formhaving a
principal part containing partial derivatives ofu (in e(u) and divu) and∇g, and a lower
order part containing u and g. Specifically, we introduce the operatorB : V ×V → V ′
by

〈B(
(w, �), (u, g)

)
, (ξ, ψ)〉 = 1

τ

∫
Ω

Ge(u) : e(ξ) dx + λ∗

τ 2

∫
Ω

div (u − U) div ξ dx

−
∫

Ω

p(�)

τ
div ξ dx +

∫
Ω

(
n(w�∇Υε) − n(div U)

τ�
G(�) + p(�) − p0

τ�

)
div (u − U)ψ dx

+
∫

Ω

n(div U)

τ
(ρ(�) − ρ(Ξ))ψ dx +

∫
Ω

k(w�∇Υε)D(�)K∇g · ∇ψ dx, ∀(ξ, ψ) ∈ V .

(88)

We observe that B(
(u, g), (u, g)

) = A(u, g). The introduction of B is useful because
it reflects themonotonicity of the principal part ofA(u, g). This is a direct consequence

123



44 Page 22 of 41 Journal of Nonlinear Science (2023) 33 :44

of

〈B(
(w, �), (u1, g1)

) − B(
(w, �), (u2, g2)

)
, (u1, g1) − (u2, g2)〉 ≥ 0, (89)

with equality if and only if u1 = u2 and g1 = g2. Inequality (89) is checked by a short
computation in (88).

To show (87) we consider a sequence {ur , gr } ⊂ V such that

(ur , gr )⇀(u, g) weakly in V and lim sup
r→+∞

〈A(ur , gr ), (ur , gr ) − (u, g)〉 ≤ 0.

(90)

As in Roubiček (2005) we set (uδ, gδ) = (1 − δ)(u, g) + δ(v, h), where δ ∈ [0, 1]
and (v, h) ∈ V . Using the monotonicity from (89), we obtain

δ〈A(ur , gr ), (u, g) − (v, h)〉 ≥ −〈A(ur , gr ), (ur , gr ) − (u, g)〉
+〈B(

(ur , gr ), (uδ, gδ)
)
, (ur , gr ) − (u, g)〉 + δ〈B(

(ur , gr ), (uδ, gδ)
)
,

(u, g) − (v, h)〉. (91)

The sequence (ur , gr ) is bounded in V and there exists a subsequence which strongly
converges in L5(Ω)m and (a.e.) in Ω , to (u, g). Hence, it suffices to pass to the limit
along this subsequence. In (91), the terms containing the operator B are fixed with
respect to the gradients. Hence,

lim
r→+∞〈B(

(ur , gr ), (uδ, gδ)
)
, (ur , gr ) − (u, g)〉 = 0, (92)

and

lim
r→+∞〈B(

(ur , gr ), (v, h)
)
, (ξ, ψ)〉 = 〈B(

(u, g), (v, h)
)
, (ξ, ψ)〉, (93)

for any (ξ, ψ) ∈ V . With these results, we are in a position to pass to the limit
r → +∞ in inequality (91). It yields

δ lim inf
r→+∞〈A(ur , gr ), (u, g) − (v, h)〉 ≥ − lim sup

r→+∞
〈A(ur , gr ), (ur , gr ) − (u, g)〉

+δ〈B(
(u, g), (uδ, gδ)

)
, (u, g) − (v, h)〉. (94)

By the pseudo-monotonicity hypothesis (90), inequality (94) implies

lim inf
r→+∞〈A(ur , gr ), (u, g) − (v, h)〉 ≥ 〈B(

(u, g), (u, g)
)
, (u, g) − (v, h)〉

= 〈A(u, g), (u, g) − (v, h)〉, ∀(v, h) ∈ V . (95)

We use this inequality to conclude

lim inf
r→+∞〈A(ur , gr ), (ur , gr ) − (v, h)〉
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≥ lim inf
r→+∞〈A(ur , gr ), (ur , gr ) − (u, g)〉
+ lim inf

r→+∞〈A(ur , gr ), (u, g) − (v, h)〉
= lim inf

r→+∞ 〈B(
(ur , gr ), (u, g)

)
, (ur , gr ) − (u, g)〉︸ ︷︷ ︸

=0 by (92)

+ lim inf
r→+∞ 〈B(

(ur , gr ), (ur , gr )
) − B(

(ur , gr ), (u, g)
)
, (ur , gr ) − (u, g)〉︸ ︷︷ ︸

≥0 by (89)

+ lim inf
r→+∞〈A(ur , gr ), (u, g) − (v, h)〉 ≥ lim inf

r→+∞〈A(ur , gr ), (u, g) − (v, h)〉
≥ 〈A(u, g), (u, g) − (v, h)〉, ∀{v, h} ∈ V .

This completes the proof of the pseudo-monotonicity.
It remains to prove coercivity. We evaluate directly the term

〈A(u, g), (u − U, g)〉.

Taking ξ = u − U and ψ = g in (85), the cross terms involving the product p(g)
div (u − U) cancel and the term p0 div (u − U)/τ drops out after integration. What
remains is

〈A(u, g), (u − U, g)〉
= 1

τ

∫
Ω

Ge(u) : e(u − U) dx + λ∗

τ 2

∫
Ω

div (u − U)2 dx

+
∫

Ω

n(div U)

τ
(ρ(g) − ρ(Ξ))g dx

+
∫

Ω

n(u�∇Υε) − n(div U)

τ
G(g) dx +

∫
Ω

Kk(u�∇Υε)D(g)|∇g|2 dx .
(96)

The third and fourth terms in the right-hand side need special attention.
Since ρ = ρ(g) is aC1 monotonically increasing function, we have the elementary

inequality

x(ρ(x) − ρ(y)) ≥
∫ x

y
ζρ′(ζ ) dζ, ∀x, y ∈ R. (97)

Using this inequality and the expression for G (see (76)) in these terms gives

n(div U)(ρ(g) − ρ(Ξ))g + (n(u�∇Υε) − n(div U))

∫ g

0
ζρ′(ζ ) dζ

≥ n(u�∇Υε)

∫ g

0
ζρ′(ζ ) dζ − n(div U)

∫ Ξ

0
ζρ′(ζ ) dζ. (98)
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Applying Korn’s inequality, see Theorem 1.33 from Roubiček (2005), and inserting
inequality (98) into equality (96) yields

〈A(u, g), (u − U, g)〉 ≥ C1

τ
||u||2

H1
0 (Ω)m

+ C2||∇g||2L2(Ω)m

−C3

τ
+ C4

τ

∫
Ω

(

∫ g

0
ζρ′(ζ ) dζ ) dx

︸ ︷︷ ︸
≈Cg2 for large |g|

, (99)

where Ci , i = 1, . . . , 4 are positive constants. This proves the coercivity.
Having established pseudo-monotonicity and coercivity of the operator A, we are

in position to apply Brézis’ theorem. This concludes the assertion of the proposition.
��

Theorem 1 Problem (PD) admits at least one solution (u, g) ∈ V .

Proof For each ε > 0, let (uε, gε) be a solution of Problem (PDε) as obtained in
Proposition 2. From the coercivity part of the proof of Proposition 2 and Eq. (84), it
follows that

||uε||H1
0 (Ω)m + ||gε||H1(Ω) ≤ C, (100)

whereC is independent of ε. Estimate (100) yieldsweak compactness in H1. However,
this is not enough to prove that uε�∇Υε converges strongly in L2 and (a.e.) on Ω as
ε → 0. The remedy is to consider the momentum Eq. (83), which gives us improved
regularity through the elasticity term. Since p(gε) is bounded in H1(Ω), uniformly
with respect to ε, we conclude that

||uε||H2(Ω)m ≤ C, (101)

where C does not depend on ε. Using estimates (100)–(101), there is a subsequence
(uε, gε), denoted by the same subscript, and a pair (u, g) ∈ (H1

0 (Ω)m ∩ H2(Ω)m) ×
H1(Ω) such that

uε → u strongly in H1
0 (Ω)m, (102)

div uε → div u strongly in L2(Ω) and (a.e) on Ω, (103)

gε⇀g weakly in H1(Ω), (104)

gε → g strongly in L2(Ω) and (a.e) on Ω, (105)

as ε → 0. The convergence properties allow to pass to the limit in system (82)–
(83). Hence, the pair (u, g) satisfies the equations of Problem (PD), which proves the
theorem. ��

To complete the study of the incremental problem, we need to estimate the behavior
of solutions after at least O(1/τ) times steps. Here, we use the discrete version of
Lyapunov functional (66).
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In Problem (PD), where the discrete time step τ enters as parameter, one find
after one step (u1, g1) from the initial values (div u, ρ)|t=0 = (0, ρ0). The idea is to
repeat this procedure for an arbitrary number of steps. If M ∈ N, M ≤ N = T /τ ,
then (uM , gM ) denotes the time discretized approximation of the original quasi-static
equation, at t = tM = Mτ .

The corresponding Lyapunov functional at t = tM reads

J M =
∫

Ω

(
1

2
Ge(uM ) : e(uM ) − FM · uM + n(div uM )G(gM )

)
dx . (106)

It satisfies

Theorem 2 For each M ∈ N, M ≤ N = T /τ, we have

J M + τ

M∑
j=1

∫
Ω

(
λ∗

(
div (u j − u j−1)

τ

)2

+F j − F j−1

τ
· u j−1 + k(div u j )D(g j )K∇g j · ∇g j − Q j g j

)
dx ≤ J 0.

(107)

Here,

J 0 = n0

∫
Ω

G(g0) dx, g0 = g(ρ0).

Proof At time t = t j , with j = 1, . . . , N , the equations in Problem (PD) read

∫
Ω

Ge(u j ) : e(ξ) dx + λ∗

τ

∫
Ω

div (u j − u j−1) div ξ dx −
∫

Ω

p(g j )div ξ dx

=
∫

Ω

F j · ξ dx, ∀ξ ∈ H1
0 (Ω)m, (108)

∫
Ω

(
n(div u j−1)

τ
(ρ(g j ) − ρ(g j−1)) + n(div u j ) − n(div u j−1)

τg j
G(g j )

)
ψ dx

+
∫

Ω

p(g j ) − p0
τg j

div (u j − u j−1)ψ dx +
∫

Ω

k(div u j )D(g j )K∇g j · ∇ψ dx

=
∫

Ω

Q jψ dx, ∀ψ ∈ H1(Ω).

(109)

Note that in Eq. (109) we have used explicitly the form of Dτ from (81). Next, we
take ξ = (u j − u j−1)/τ in (108) and ψ = g j in (109). The resulting two equalities
are added and summed up with respect to j up from j = 1 to j = M . Using the
observations

(i) cross terms containing pressure cancel;
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(ii)

M∑
j=1

Ge(u j ) : e(u j − u j−1) ≥ 1

2

(Ge(uM ) : e(uM ) − Ge(u0) : e(u0));

(iii)

M∑
j=1

(
n(div u j−1)g j (ρ(g j ) − ρ(g j−1)) + (n(div u j ) − n(div u j−1))G(g j )

)

≥ n(div uM )G(gM ) − n(div u0)G(g0),

where (97) is used;
(iv)

M∑
j=1

F j · (u j − u j−1) = FM · uM − F0 · u0 −
M−1∑
j=0

(F j+1 − F j ) · u j ,

one finds inequality (107). The reduced expression for J 0 results from u|t=0 = 0.

��
Having established existence for the discrete Problem (PD) in Theorem 1 and a

Lyapunov estimate in Theorem 2, we are now in a position to obtain estimates that are
uniform in the time step τ .

Proposition 3 There exists a constant C > 0 such that

||uM ||2H1(Ω)m
+ ||gM ||2L2(Ω)

≤ C, (110)

and

τ

M∑
j=1

∫
Ω

(
λ∗

(
div (u j − u j−1)

τ

)2

+ |∇g j |2
)
dx ≤ C, (111)

for all M and τ such that 1 ≤ M ≤ N = T /τ , with τ sufficiently small.

Proof Combining expression (106) for J M and inequality (107) yields for any 1 ≤
M ≤ N

1

2

∫
Ω

Ge(uM ) : e(uM ) dx +
∫

Ω

n(div uM )G(gM ) dx

≤
∫

Ω

FM · uM dx + J 0 + τ

M∑
j=1

Q j g j dx
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+τ

M∑
j=1

∫
Ω

F j − F j−1

τ
· u j−1 dx ≤ δ

2
||uM ||2L2(Ω)m

+ 1

2δ
||FM ||2L2(Ω)m

+ J 0

+τ

2

M∑
j=1

||g j ||2L2(Ω)
+ τ

2

M∑
j=1

||u j−1||2L2(Ω)m

+τ

2

M∑
j=1

||Q j ||2L2(Ω)
+ τ

2

M∑
j=1

||F
j − F j−1

τ
||2L2(Ω)m

.

By the assumptions on Q and F, the last two terms are uniformly bounded with respect
to τ and M . We estimate the left-hand side from below by applying Korn’s inequality
to the first term and the quadratic growth of G to the second term. Then for δ and τ

sufficiently small, we obtain for the combination

U j = ||u j ||2H1(Ω)m
+ ||g j ||2L2(Ω)

, j = 0, . . . , M,

the inequality

UM ≤ C1 + C2τ

M−1∑
j=0

U j ,

where C1 and C2 do not dependent on τ and M . Next, we apply the discrete Gronwall
inequality1, see footnote, to find

UM ≤ C1e
C2(M−1)τ < C1e

C2T for all 1 ≤ M ≤ N .

The second estimate follows directly from Theorem 2. ��
However, to pass to the limit τ → 0 in the nonlinearities, one needs more information
on the behavior of the ratios { div (u j − u j−1)/τ } and {(g j − g j−1)/τ }. In fact, we
must establish relative compactness of the sequences {div u j } and {g j }.

We start with a local H1-estimate for E j = div u j .

Lemma 1 Let ϕ ∈ C∞
0 (Ω) and τ > 0 sufficiently small. Then, there exists a constant

C = C(ϕ) such that

τ

N∑
j=1

||ϕE j ||2H1(Ω)
+ λ∗

2μ + λ
max

1≤M≤N
||ϕEM ||2H1(Ω)

≤ C . (112)

Proof Let

L j = (2μ + λ)E j − p(g j ) + λ∗ div (u j − u j−1)

τ
, j = 1, . . . M . (113)

1 Discrete version of Gronwall’s lemma: Let {Un} and {wn} be nonnegative sequences satisfying Un ≤
A + ∑M−1

j=0 U jw j . Then for all n, Un ≤ A exp{∑M−1
j=0 w j }.
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Inequality (110) implies

τ

M∑
j=1

(
||u j ||2H1(Ω)m

+ ||g j ||2L2(Ω)

)
≤ τMC ≤ TC .

Combined with (111) this gives for L j

τ

M∑
j=1

||L j ||2L2(Ω)
≤ C . (114)

As in the counterexample for negative porosity, we take the divergence of the time-
discrete momentum equation. This yields

− ΔL j = div F j in Ω. (115)

In general, however, there are no boundary conditions for L j available. Here, we
must rely on local estimates to obtain (112). Let us first write the equation for ϕL j ∈
H2(Ω) ∩ H1

0 (Ω):

Δ(ϕL j ) = −ϕdiv F j + 2∇ϕ · ∇L j + L jΔϕ.

Its weak form reads

∫
Ω

∇(ϕL j )∇ζ dx =
∫

Ω

div F jϕζ dx +
∫

Ω

L j (2∇ϕ · ∇ζ

+ζΔϕ) dx, ∀ζ ∈ H1
0 (Ω). (116)

Taking ζ = ϕL j results in

∫
Ω

|∇(ϕL j )|2 dx = −
∫

Ω

F j · ∇(ϕL j )ϕ dx −
∫

Ω

F j · ∇ϕϕL j dx

+
∫

Ω

(L j )2ϕΔϕ dx −
∫

Ω

2L j∇ϕ · ∇(ϕL j ) dx .

With C = C(ϕ) denoting a generic constant depending on ϕ, we have

||ϕL j ||2H1(Ω)
≤ C

(||F j ||2L2(Ω)
+ ||L j ||2L2(Ω)

)
, (117)

for 1 ≤ j ≤ M ≤ N . Combining this inequality with (114) gives

τ

M∑
j=1

||ϕL j ||2H1(Ω)
≤ C(τ

M∑
j=1

||F j ||2L2(Ω)m
+ 1) ≤ C . (118)
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Next, we multiply expression (113) by τϕ and write it as

τ(2μ + λ)ϕE j + λ∗ϕ(E j − E j−1) = τ L jϕ + τ p(g j )ϕ ∈ H1(Ω).

Taking the H1-inner product of this expression with ϕE j gives

(2μ + λ)τ ||ϕE j ||2H1(Ω)
+ λ∗(ϕ(E j − E j−1), ϕE j )H1(Ω)

= τ(ϕ(L j + p(g j )), ϕE j )H1(Ω)

or

(2μ + λ)
τ

2
||ϕE j ||2H1(Ω)

+ λ∗(ϕ(E j − E j−1), ϕE j )H1(Ω)

≤ τ

2(2μ + λ)
||ϕ(L j + p(g j ))||2H1(Ω)

. (119)

Using the identity

M∑
j=1

a j (a j − a j−1) = (aM )2

2
− (a0)2

2
+ 1

2

M∑
j=1

(a j − a j−1)2,

when summing up (119) gives

τ

M∑
j=1

||ϕE j ||2H1(Ω)
+ λ∗

2μ + λ
||ϕEM ||2H1(Ω)

≤ + τ

(2μ + λ)2

M∑
j=1

||ϕ(L j + p(g j ))||2H1(Ω)
.

Combining this inequality with (111) and (118), results in the estimate of the lemma.
��

We conclude this section with an estimate for (ρ(g j )−ρ(g j−1))/τ . However, since
in Eqs. (67) or (69) the (discrete) time derivative is multiplied by n(E), we look for an
estimate for

N j = n(E j )ρ(g j ). (120)

With the results of Proposition 3 and Lemma 1, the space-time compactness ofN will
imply the same property of g.

We summarize our findings in the next proposition

Proposition 4 For given τ > 0 and j = 1, . . . , N, let (uτ (t j ), gτ (t j )) ∈ V denote a
solution of Problem (PD). Then, we have

max
1≤ j≤N

(||uτ (t j )||H1(Ω)m + ||gτ (t j )||L2(Ω)

) ≤ C, (121)
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τ

N∑
j=1

∫
Ω

(
λ∗

(
div (uτ (t j ) − uτ (t j−1))

τ

)2

+ |∇gτ (t j )|2
)
dx ≤ C, (122)

τ

N∑
j=1

||ϕ div uτ (t j )||2H1(Ω)
+ λ∗ max

1≤ j≤N
||ϕ div uτ (t j )||2H1(Ω)

≤ C(ϕ), (123)

τ

N∑
j=1

(||N j − N j−1

τ
||2H−2(Ω)

+ ||ϕN j ||2H1(Ω)

) ≤ C(ϕ), (124)

where

N j = n(div uτ (t j ))ρ(gτ (t j ))

and where ϕ ∈ C∞
0 (Ω).

Proof We only need to prove estimate (124). Rewriting Eq. (79), we have

∫
Ω

N j − N j−1

τ
ψ dx =

∫
Ω

n(E j−1)(ρ(g j ) − ρ(g j−1))

τ
ψ dx

+
∫

Ω

(n(E j ) − n(E j−1))ρ(g j )

τ
ψdx

=
∫

Ω

n(E j ) − n(E j−1)

τ

(
ρ(g j ) − G(g j )

)
ψdx

−
∫

Ω

(E j − E j−1)(p(g j ) − p0)

τg j
ψ dx

+
∫

Ω

Q jψ dx −
∫

Ω

k(E j )D(g j )K∇g j∇ψ dx, for ψ ∈ H2
0 (Ω).

Recalling that for m ≤ 3, H2(Ω) ⊂ L∞(Ω), we have

||N
j − N j−1

τ
||2H−2(Ω)

≤ C
(
|| (E

j − E j−1)

τ
||2L2(Ω)

||g j ||2L2(Ω)
+ ||Q j ||2L2(Ω)

+ ||∇g j ||2L2(Ω)m

)

and the full estimate reads

τ

N∑
j=1

||N
j − N j−1

τ
||2H−2(Ω)

≤ C
(

max
1≤ j≤N

||g j ||2L2(Ω)
τ

N∑
j=1

||E
j − E j−1)

τ
||2L2(Ω)

+ 1 + τ

N∑
j=1

||∇g j ||2L2(Ω)m

)
≤ C

(125)
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The local estimate for the space derivatives is given by

τ

N∑
j=1

||∇(ϕN j )||2L3/2(Ω)

≤ C
(
( max
1≤ j≤N

||∇(ϕE j )||2L2(Ω)
)τ

N∑
j=1

||g j ||2L6(Ω)
+ C + τ

N∑
j=1

||∇g j ||2L2(Ω)m

)
≤ C .

(126)

This results in estimate (124). ��

4 Existence for Continuous Time Problemwith �∗ > 0

In Proposition 4, where the time step τ enters as a parameter, one finds
{(uτ (t j ), gτ (t j ))} j=1,...,N from the “initial value” div u(0) = 0 and g(0) = g0. Here
N = O(1/τ) and g0 = g(ρ0). This procedure yields a time discretized approximation
of the original quasi-static equations.

In this section, we investigate the limit τ ↘ 0. Here a crucial role is played by the
parameter λ∗, which is needed to control the behavior in time of E = div u.

Using the discrete solution (uτ (t j ), gτ (t j )), we construct two approximations that
hold for all 0 ≤ t ≤ T . The first is the piecewise constant approximation

(uτ (t), gτ (t)) = (uτ (t j ), gτ (t j )) for jτ ≤ t < ( j + 1)τ. (127)

The second is the Rothe interpolant, which is the piecewise linear time-continuous
approximation

(ũτ (t), g̃τ (t)) = (
j + 1 − t

τ

)
(uτ (t j ), gτ (t j )) + ( t

τ
− j

)
(uτ (t j+1), gτ (t j+1)),

for jτ ≤ t ≤ ( j + 1)τ. (128)

In (127) and (128), the index j runs from j = 0 to j = N − 1.
Applying Proposition 4 yields for both approximations, with � ∈ {−,∼ },

max
0≤t≤T

(||u�
τ (t)||2H1(Ω)m

+ ||g�
τ (t)||2L2(Ω)

)
dt ≤ C, (129)

∫ T

0

∫
Ω

|∇g�
τ (t)|2 dxdt ≤ C, (130)

∫ T

0
||ϕ E�

τ (t)||2H1(Ω)
dt ≤ C, (131)

λ∗ max
0≤t≤T

||ϕE�
τ (t)||2H1(Ω)

≤ C, (132)

∫ T

0
||ϕN �

τ (t)||2W 1,3/2(Ω)

) ≤ C, (133)

123



44 Page 32 of 41 Journal of Nonlinear Science (2023) 33 :44

whereE�
τ =divu�

τ ,N τ = n(Eτ )ρ(gτ ) and Ñτ (t) = ( j+1−t/τ)N j+(t/τ− j)N j+1.
Further, we have

∂tÑτ = N j+1 − N j

τ
and ∂t Ẽτ = E j+1 − E j

τ
,

for t j ≤ t ≤ t j+1 and j = 0, . . . , N − 1.

Hence, by (122)

∫ T

0

∫
Ω

λ∗|∂t Ẽτ (t)|2 dxdt ≤ C (134)

and

∫ T

0
||∂tÑτ (t)||2H−2(Ω)

dt ≤ C . (135)

In what follows, we rely heavily on the material and theory collected in Roubiček
(2005, Chapters 7 and 8). Since the piecewise constant approximation (uτ (t), gτ (t))
is discontinuous in time, its time derivative is only a measure. To deal with this, we
introduce the spaceM(0, T ; L2(Ω)) of regular Borel measures in [0, T ] with values
in L2(Ω), which is the dual space ofC([0, T ]; L2(Ω)). With δ(t j ) denoting the Dirac
measure concentrated in t j , we have

||∂tEτ ||M(0,T ;L2(Ω)) = ||
N∑
j=1

(E j − E j−1)δ(t j )||M(0,T ;L2(Ω))

= τ

N∑
j=1

||E
j − E j−1

τ
||L2(Ω) = ||∂t Ẽτ ||L1(0,T ;L2(Ω))

≤ √
T ||∂t Ẽτ ||L2(0,T ;L2(Ω)) ≤ C . (136)

Analogously

||∂tN τ ||M(0,T ;H−2(Ω)) ≤ C, (137)

where M(0, T ; H−2(Ω)) is the dual space of C([0, T ]; H2
0 (Ω)).

For the convergence of the time-continuous approximation (128), we use estimates
(129)–(135) and the well-known weak and weak∗ compactness theorems. The result
is that there exists a quadruple {ũ, g̃, Ẽ, Ñ } such that along a subsequence τ ↘ 0 we
have

ũτ → ũ weak∗ in L∞(0, T ; H1
0 (Ω)m), (138)

g̃τ⇀g̃ weakly in L2(0, T ; H1(Ω)), (139)

Ẽτ⇀Ẽ weakly in L2(0, T ; H1(ω)), (140)
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∂t Ẽτ⇀∂t Ẽ weakly in L2(0, T ; L2(Ω)), (141)

Ñτ⇀Ñ weakly in L2(0, T ;W 1,3/2(ω)), (142)

∂tÑτ⇀∂tÑ weakly in L2(0, T ; H−2(Ω)). (143)

Concerning the convergence of (uτ , gτ ), we use estimates (129)–(133), now combined
with (136)–(137). Moreover, applying (Roubiček 2005, Corollary 7.9), we use that
the spaces

W 1,2,M(0, T ; H1(ω), L2(ω)) = {z ∈ L2(0, T ; H1(ω)) | dz
dt

∈ M(0, T ; L2(ω))}

and W 1,2,M(0, T ;W 1,3/2(ω), H−2(ω)) are compactly embedded in
L2(0, T ; L2(ω)), for any smooth bounded subset ω of Ω . The result is that there
exists (u, g, , E,N ) such that along a subsequence τ ↘ 0 one has the same conver-
gence as in (138)–(140) and (142). The convergence in (141) and (143) is now replaced
by weak−∗ convergence inM(0, T ; L2(Ω)) for ∂tEτ and inM(0, T ; H−2(Ω)) for
∂tN τ .

Furthermore, the estimates allow us to conclude

Eτ → E strongly in L2((0, T ) × ω) and (a.e) on (0, T ) × ω, (144)

N τ → N strongly in L2((0, T ) × ω) and (a.e) on (0, T ) × ω. (145)

As a consequence,

ρ(gτ ) = N τ

n(Eτ )
→ N

n(E)
(146)

and

gτ = ρ−1( N τ

n(Eτ )

) → ρ−1( N
n(E)

) = g. (147)

strongly in L2((0, T ) × ω) and a.e. on (0, T ) × ω. This in turn implies

{
ρ(gτ ) → ρ(g) strongly in L2((0, T ) × ω) and (a.e) on (0, T ) × ω;
D(gτ ) → D(g) strongly in L2((0, T ) × ω) and (a.e) on (0, T ) × ω.

(148)

Inherited from Eτ= div uτ , the convergence properties imply

E = div u a.e. in (0, T ) × Ω. (149)
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As in (Roubiček 2005, pages 224–226), one shows that ũ = u and g̃ = g. Then, (149)
implies that E = Ẽ . Alternatively, this follows from estimate (134) which gives

∫ T

0
||Eτ (t) − Ẽτ (t)||2L2(Ω)

dt = τ 3

2

N−1∑
j=1

||E j − E j+1||2L2(Ω)

= Cτ 2||∂t Ẽτ ||2L2(0,T ;L2(Ω))
= Cτ 2. (150)

Similarly,

∫ T

0
||N τ (t) − Ñτ (t)||2H−2(Ω)

dt = Cτ 2, (151)

which yields N = Ñ .
From this point on, we denote the limit, as τ ↘ 0, by the quadruple (u, g, E,N ),

where

E = div u and N = n(E)ρ(g).

We are now in a position to prove the main existence result for a weak solution of the
time-continuous case.

Theorem 3 Let λ∗ > 0. Then, there exists at least one weak free energy solution
(u, E, ρ) satisfying Definition 1.

Proof In the proof, we use approximations (127) and (128), and their convergence
properties.

Let τ > 0, sufficiently small, and let t ∈ (τ, T ). Then, t j ≤ t < t j+1 for some
j ∈ {1, . . . , N − 1} and uτ (t) = u j and gτ (t) = g j .
We first consider the momentum balance Eq. (80).

The starting point is Problem (PD). Using Eq. (108), we have for any ξ ∈ H1
0 (Ω)m

∫
Ω

Ge(uτ ) : e(ξ) dx =
∫

Ω

Ge(u j ) : e(ξ) dx

= −λ∗

τ

∫
Ω

(E j − E j−1) div ξ dx +
∫

Ω

p(g j )div ξ dx +
∫

Ω

F j · ξ dx

= −λ∗
∫

Ω

∂t Ẽτ (t − τ) div ξ dx +
∫

Ω

p(gτ )div ξ dx +
∫

Ω

Fτ · ξ dx . (152)

Here, we introduced

Fτ (t) = F(t j ) = F j for t j ≤ t < t j+1 and j = 0, . . . , N − 1.

Multiplying Eq. (152) by α ∈ C∞
0 (0, T ) and integrating the result over (τ, T ), yields

∫ T

τ

{
∫

Ω

Ge(uτ ) : e(ξ) dx}α(t) dt + λ∗
∫ T

τ

{
∫

Ω

∂t Ẽτ (t − τ) div ξ dx}α(t) dt
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+
∫ T

τ

{
∫

Ω

p(gτ )div ξ dx}α(t) dt =
∫ T

τ

{
∫

Ω

Fτ · ξ dx}α(t) dt . (153)

Next, we send τ ↘ 0 along the appropriate subsequence to have convergence of the
terms containing u, E and F. What remains is the pressure term. We recall that p(g)
is the composite function (p ◦ ρ)(g), where p(ρ) is given by (36)and ρ(g) is defined
through (53) and (55). Since gτ → g strongly in L2((0, T ) × ω), see (147), we have
similarly

p(gτ ) = (p ◦ ρ)(gτ ) → (p ◦ ρ)(g) = (p ◦ ρ)(g) = p(g)

strongly in L2((0, T ) × ω) and a.e. in (0, T ) × ω.

This concludes the first part of the proof.

Next, we tackle the mass balance Eq. (69).
We first put Eq. (77) in the form

∂tN − ∂t n(E)ρ(g) + D(g, E)∂tE − div
(
k(E)D(g)K∇g

)
= Q

and apply the discretization of Problem (PD). Similarly to (153) this gives for any
ψ ∈ C∞

0 (Ω) and α ∈ C∞[0, T ]
∫ T

τ

∫
Ω

(
∂tÑτ (t − τ) − ∂t ν̃τ (t − τ)

(
ρ(gτ ) − G(gτ )

gτ

) + ∂t Ẽτ (t − τ)
p(gτ ) − p0

gτ

)

ψ(x)α(t) dxdt +∫ T

τ

∫
Ω

k(Eτ )D(gτ )K∇gτ · ∇ψ(x)α(t) dxdt =
∫ T

τ

∫
Ω

Qτψ(x)α(t) dxdt,

(154)

where

ν̃τ (t) =
(
j + 1 − t

τ

)
n(E j ) +

(
t

τ
− j

)
n(E j+1),

and

Qτ (t) = Q(t j ) = Q j

for jτ ≤ t < ( j + 1)τ. (155)

The boundedness of n′ implies

||∂t ν̃τ ||L2((0,T )×Ω) ≤ C (156)

and inherited from (131)

||ν̃τ ||L2(0,T ;H1(ω) ≤ C . (157)
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Hence,

∂t ν̃τ⇀∂t n(E) weakly in L2((0, T ) × Ω) (158)

and

ν̃τ → n(E) strongly in L2((0, T ) × ω) and a.e. in (0, T ) × ω. (159)

We are now in position to pass to the limit τ ↘ 0 in (154) and obtain

∫ T

0
〈∂t (n(E)ρ(g)), ψ〉H−2(Ω),H2

0 (Ω)α(t) dt

−
∫ T

0

∫
Ω

(
∂t n(E)

(
ρ(g) − G(g)

g

) + ∂tE p(g) − p0
g

)
ψ(x)α(t) dxdt

+
∫ T

0

∫
Ω

k(E)D(g)K∇g · ∇ψ(x)α(t) dxdt =
∫ T

0

∫
Ω

Qψ(x)α(t) dxdt,(160)

or

∂t

(
n(E)ρ(g)

)
− ∂t n(E)ρ(g) + D(ρ, E)∂tE − div

(
k(E)D(g)K∇g

)

= Q in D′((0, T ) × Ω), (161)

It remains to check the initial and boundary conditions and the energy inequality (72).
First, we notice that (140)–(141) imply

Ẽτ⇀E weakly in W 1,2,2(0, T ; H1(ω), L2(ω)), (162)

where W 1,2,2(0, T ; H1(ω), L2(ω))={z ∈ L2(0, T ; H1(ω))|∂t z ∈ L2(0, T ; L2(ω))}.
In this space, the trace in timeE → E(0) is aweakly continuousmap fromW 1,2,2(0, T ;
H1(ω), L2(ω)) to L2(ω). Hence,

Ẽτ (0)⇀E(0) weakly in L2(ω), (163)

where E(0) = div u0 = 0.
Next, using (142), (143) and (145), we conclude that

Ñτ (0)⇀N (0) weakly in H−2(ω), (164)

which justifies the initial condition for N . Since N = n(E)ρ(g), we have
simultaneously the initial conditions for the density ρ and for g.

We still miss the flux boundary condition for the mass balance equation (67). The
starting point is again Eq. (154), now with ψ ∈ H1(Ω) and α(T ) = 0. Since

∫ T

τ

∫
Ω

∂tÑτ (x, t − τ)ψ(x)α(t) dxdt = −
∫ T

τ

∫
Ω

Ñτ (x, t − τ)ψ(x)
d

dt
α(t) dxdt
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−
∫

Ω

Ñτ (x, 0)ψ(x)α(τ) dx → −
∫ T

0

∫
Ω

Ñ (x, t)ψ(x)
d

dt
α(t) dxdt

−α(0)
∫

Ω

n(0)ρ0(x)ψ(x) dx

and since the strong convergence (144)–(145), together with the weak convergence
(140) and (142), implies the same forΩ , we may pass to the limit τ ↘ 0 and conclude
that

−
∫ T

0

∫
Ω

ρ(g)n(E)∂tΦ(x, t) dxdt −
∫

Ω

n(0)ρ0(x)Φ(x, 0) dx

+
∫ T

0

∫
Ω

∂tE
(
D(ρ(g), E)

−ρ(g)n′(E)

)
Φ(x, t) dxdt +

∫ T

0

∫
Ω

k(E)D(g)K∇g · ∇xΦ(x, t) dxdt

=
∫ T

0

∫
Ω

QΦ(x, t) dxdt, ∀Φ ∈ H1(Ω × (0, T )), with Φ|t=T = 0.

To show inequality (72), we follow again (Roubiček 2005, pp. 223–226). Starting
point is inequality (107), which we write for any K ∈ N, K ≤ N − 1, and for any
time step τ as

J K+1 − J K + τ

∫
Ω

{
λ∗

(EK+1 − EK

τ

)2

+ k(EK+1)D(gK+1)K∇gK+1 · ∇gK+1

+ FK+1 − FK

τ
· uK − QK+1gK+1

}
dx ≤ 0.

(165)

With the notation from (127) and (128), we rewrite inequality (165):

d

dt
J̃τ (t) +

∫
Ω

{
λ∗(∂t Ẽτ (t)

)2 + k
(Eτ (t + τ)

)D(
ḡτ (t + τ)

)
K∇ ḡτ (t + τ) · ∇ ḡτ (t + τ)

+ ∂t F̃τ (t) · u(t) − Qτ (t + τ)ḡτ (t + τ)
}
dx ≤ 0,

for K τ ≤ t ≤ (K + 1)τ and 0 ≤ K ≤ N − 1.
Integrating this inequality from t = t1 to t = t2, with 0 ≤ t1 ≤ t2 ≤ T , using

the convergence results from (138)–(145) and the weak lower semi-continuity of the
gradient ∇ ḡτ in L2(QT ), yields the desired result. ��

5 Discussion and Conclusion

In this paper, we study a model that describes the quasi-static mechanical behavior
of a fluid saturated porous medium. In it simplest (linear) form, it is described by
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Eqs. (1)–(4), where (1) results from the fluid phase mass balance in the case that the
fluid is incompressible.

We follow Rutqvist et al. (2001) and Lewis and Schrefler (1998) and propose a fluid
mass balance that is based on the mixture theory of Bedford and Drumheller (1978)
and Bedford and Drumheller (1983). This yields Eq. (6) and the resulting nonlinear
system is given by (2)–(4) and (6). Note that the time derivative of the fluid density ρ

appears in (6), since the fluid is assumed weakly compressible, see expression (10).
Models where the fluid density is constant (see Bociu et al. 2016; Cao et al. 2013)
do not contain this source term. Moreover, the porosity n and the deformation of the
medium are related through (8). An expression for this relation is derived from the
solid phase mass balance. It is given by (19) or, when the deformation is small, by
approximation (21).

It is shown bymeans of a counterexample that the porositymay admit non-physical,
i.e., negative, values. This is made precise in Proposition 1. To obtain a well-posed
mathematical problem, the porosity is modified according to cutoff (35). This cutoff
is chosen such that it reduces to the correct expression in the physical range. Outside
this range, it remains positive. Likewise, a cutoff for the density is introduced through
expressions (60) and (64).

The momentum balance Eq. (2)–(4) is modified as well. Following Murad and
Cushman (1996), we add the term

λ∗div ∂tu (λ∗ ≥ 0) (166)

to the expression for the total stress. This results in expression (5).Murad andCushman
give a thermodynamically based derivation of the equation in which (166) appears as
the difference between the fluid and solid pressures. Having λ∗ > 0, (166) acts as a
time regularization of the volumetric stress for our quasi-static problem.

An important role in the analysis of the equations is played by the free energy of
the system. This free energy acts as a Lyapunov functional. It is given by (66), which
generalizes Biot’s original expression developed for the linear case (Biot 1962). In the
case that the deformation and fluid density are in the physical range, the free energy
simplifies to, see also (56),

J (u, ρ) =
∫

Ω

(
1

2
Ge(u) : e(u) − F · u

+ n(div u)

β0n0(1 − n0)ρ0

(
(1 − n0)ρ − ρ

n0
0 ρ1−n0 + n0ρ0

))
dx . (167)

We introduce a weak formulation and prove existence of a solution in a number of
steps. Discretizing in time, we first consider the incremental equations. Using Brézis’
fundamental theorem for pseudo-monotone operators, see for instance Lions (1969)
and Roubiček (2005), we obtain existence for the corresponding incremental problem.
The result holds for any λ∗ ≥ 0. Moreover, using the free energy, estimates that are
global in time are derived. These (stability) estimates are crucial when considering
the time-continuous, quasi-static, formulation for which we prove existence at the
expense of having λ∗ > 0. The free energy implies global stability of the solution.
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The quasi-static case with λ∗ = 0 fails to have the time estimate from inequality (111).
Therefore, we are not able to extend the results to the quasi-static case. Furthermore,
the convergence results are based on compactness arguments. Hence, also uniqueness
remains an open problem. Clearly, we have existence (globally in time) for the time-
discrete quasi-static case, which is relevant for numerical purposes.

We note that only in the proof of the local H1(Ω)− estimates for div u, we use the
fact that theGassmann tensor has the specific formofHooke’s law (4). In the incremen-
tal problemwe could have replacedG by a general rank-4, symmetric, positive-definite
Gassmann tensor.

Some particular cases of system (24)–(25) were studied before. An interesting
example is the consolidation with an irrotational composite flow rate, when the system
reduces to a scalar pseudo-parabolic PDE. For details see Holland and Showalter
(2018).

We notice also that themodel studied in this paperwas extensively used by Schrefler
et al., see Schrefler et al. (1990) and Lewis and Schrefler (1998) and references therein.
It is broadly accepted in the computational poromechanics community. A review of
different numericalmethods and software is given inRutqvist et al. (2001) andMinkoff
et al. (2003).
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