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Mathematical vs. Experimental Stress Analysis of Inhomogeneities in 
Solids 

W.H. Miiller 

Laboratorium fiir Technische Mechanik, Universitat Paderborn (FB lo), Pohlweg 47-49, 
33098 Paderborn, Germany 

Abstract. The intent of this paper is to apply the discrete Fourier transform to the computation of eigenstress and 

eigenstrain fields around heterogeneities in composite materials. To this end the discrete Fourier transform is first 

briefly reviewed and then used to solve the basic equations of linear elasticity as pertinent to eigenstrained bodies 
under external loads. The results of this procedure are then used to discuss a few typical geometries such as an hex- 

agonal two-dimensional array of thermally as well as elastically mismatched fibers in a composite matrix and a 
spherical Zirconia inclusion after a phase transformation. The resulting stress-strain fields are finally compared to 

experimental observations of eigenstress fields. The experimental techniques considered include photoelastic analy- 

ses as well as electron diffusion contrast techniques. It will be shown that the discrete Fourier transform as applied 

to eigenstress problems is capable of simulating the outcome of such experiments. 

1. INTRODUCTION 

The presence of inhomogeneities in solids very frequently generates eigenstresses and eigenstrains. A 

well known example are fiber-reinforced composite materials which generally show a thermal as well as 

an elastic mismatch between the fibres and the surrounding matrix material (e.g., Chermant and Despier- 

res [I]). Other examples are ceramic materials reinforced by Zirconia particles which, during a marten- 

sitic phase transition, may transform considerably in shape and size (e.g., Stevens [2]) and, finally, su- 

peralloys (cf. e.g., Socrate and Parks [3]). In the latter case a so-called y'-phase develops in a y-phase ma- 

trix. The lattice parameters of both phases are different and, consequently, high internal stresses and 

strains emerge in the vicinity of the coherent interface boundary. Moreover, in all examples it is possible 
to superimpose external mechanical stresses and strains on the solid. This may locally trigger the phase 

transformation and, over time, lead to morphological changes of the microstructure. 

The experimental study and determination of eigenstresses and eigenstrains around precipitates has been 

subject of many investigations. Photoelasticity has been used by Ferber [4] who prepared two-dimensio- 

nal macro-models in order to examine the stresses and strains around fiber cross-sections in cracked and 

uncracked fiber-reinforced materials. Electron diffraction contrast techniques were applied by Mader [S] 

to study in-situ the state of stress around Zirconia inclusions. 

This paper attempts to mathematically model the experimentally observed stress-strain fields by using the 

discrete Fourier transform, as originally proposed by Khachaturyan [6] and Mura [7], or by Moulinec and 

Suquet [8]. This method has recently been applied successfully by Dreyer and Olschewski [9] to the mi- 

cromechanical analysis of changes in morphology of textured solids. The method is capable of assessing 

the influence of anisotropy, thermal mismatch, ordering, lattice mismatch, particle interaction, as well as 

the resulting morphological development in a solid. In Section 2 some mathematical information on the 

discrete Fourier transform will be presented by juxtaposing it to the well-known integral Fourier trans- 

form. In Section 3 the discrete Fourier transform is used to determine the eigenstresses and eigenstrains 
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in linear elastic heterogeneous bodies under external loads. Section 4 presents a brief discussion of the 

basic equations and results obtained in photoelasticity and electron diffraction when applied to eigen- 

stressed materials. Finally, in Section 5 it will be shown how the discrete Fourier transform can be used 

to simulate such experiments on the computer. 

2. FOURIER TRANSFORMS - THEORY 

2.1 Integral Fourier Transforms 

The center point of integral Fourier Transforms is Fourier's famous integral theorem which, for the pur- 

pose of this paper, can be summarized as follows (for a proof and a more detailed discussion see Morse 

and Feshbach [lo] or Courant and Hilbert [Ill): 

Let f be a function1 of position X E  .Rd, where d=1,2,3 for one- two-, or three-dimensional problems, such 

that: 

Introducing the integral Fourier transform o f j  

it can be shown that it is equivalent to write: 

I 
- I fik) exp(-i k x)dk , where f (x) is continuous 

and: 

f (x) + (/ (x + 0) + f (X - 0)) , where f (x) is discontinuous. 

The following useful rules for Fourier transforms should be mentioned, namely 

(a) the dzflerentiation theorem: 

(b) the integration theorem: 

and 

(c) the faltung theorem: 

For example, the components of the strain or of the stress tensor. 



2.2 Discrete Fourier Transforms2 

Consider a finite region Ld in a space of dimension d=1,2, or 3 which is subdivided in Nd equidistant 

cells of length 2 n l N .  Now define a discrete series {fa} for each of the discrete positions x ( a )  = 27~ / N a 

where a = (a, ,..., a,) and a ,  = (a, + 1 ,...,a, + N), i = 1, ... , d  , such that fa+, = fa, r E zd (periodicity 

condition). Finally define the discrete Fourier transform for this series: 

Then Fourier's theorem for a discrete periodic series can be written as follows: 

As in the case of integral Fourier transforms a few useful rules can be established, such as 

(a) the shifting theorem: 

(b) the summation theorem: 

N+al N+ad N-1 N-I A - 

C... Cfaga =C...CfSgs 
al=l+o1 ad=l+ad sI=O sd=O 

and 

(c) the faltung theorem: 

The shifting theorem can be used to compute the discrete Fourier transform of differential quotients of a 

function f whose values coincide with those of the series {fa} in the points x ( a )  : 

* In this section we follow the nomenclature used by Dreyer and Olschewski [8]. 
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3. FOURIER TRANSFORMS - APPLICATION TO EIGENSTRAIN PROBLEMS 

3.1 Formulation of the problem3 

The use of integral Fourier transform as well as Fourier series in elasticity problems has been demon- 
strated successfully by Mura [7]. Additional applications of the discrete Fourier transform can be found 
in the book by Khacharturyan [6] and, more recently, in the work by Moulinc and Suquet [8] or Dreyer 

and Olschewski [9]. Consider a heterogeneous body under the influence of external forces, fio , 

i = 1,. .. , d . The heterogeneities are characterized by a stiffness matrix, c,~, ( x )  , and by a misfit, E; ( x )  , 

where both sets of fields are functions of position, x. The stresses, o,, and the total strains, E ~ ,  are 

linked to each other by Hooke's law: 

where the total strain can be expressed by the spatial derivative of the displacement vector, ui , as follows: 

If, in particular, cubic symmetry of the body is assumed the following relation holds: 

where 6,. denotes the Kronecker symbol and SW, is equal to one if all of its components are the same and 

zero otherwise. The symbols h, p, and p' refer to the three elastic constants of cubic materials. 

Moreover, the body is assumed to be in mechanical equilibrium, i.e., for its interior: 

and on its surface: 

o..N. = fiO 
Y J 

In order to determine the stresses the analysis will be carried out in two steps: First, the elastically homo- 

geneous case will be considered, i.e., CUkj is a constant. The elastically inhomogeneous case will be 

treated in a second step by means of the equivalence method developed by Mura and Eshelby 171. 

3.2 The elastically homogeneous body 

The stresses in a homogeneous body under external loads and eigenstrains can be determined by super- 

position of the following two cases, representing external loading by tension or compression, f iO ,  and 

pure eigenstrains, E: , respectively: 

EO:  f: + 0, E: = 0 and 8;: f: = 0, E ;  f 0 . (3.2.1) 

For example, in the case of plane strain the following result is obtained for the first problem by solving 
eqns (3.1.4-5) in connection with eqns (3.1.1,3): 

In this section we follow the nomenclature employed by Dreyer and Olschewski [8]. 



from which the resulting stresses can easily be computed using eqn (3.1.1). 

In order to solve the eigenstrain problem the discrete Fourier transform of eqn (2.2.1) is applied to eqns 

(3.1.1,2,4) in connection with eqns (2.2.6-8) to yield: 

Introducing: 

the last equation can be solved as follows: 

The new symbols used in this equation can be computed by straightforward matrix inversion after the 

stiffness matrix has been specified. For example, for a cubic material (see eqn (3.1.3)) the first compo- 

nent of Ni, reads for the three-dimensional case: 

Consequently, the eigenstrains, E;, of eqn (3.2.1) can be computed as follows: 

3.3 The elastically inhomogeneous body 

Following the equivalent inclusion method as outlined in Mura [7], Chapter 4, the total strain, E,, in a 

heterogeneous body with a spatially varying stiffness matrix under external load can be approximated 

using the following iteration scheme (also see Dreyer and Olschewski [9]): 

where "+" and " -" refer to properties of the matrix and the heterogeneity, respectively, and S denotes an 

order parameter with the following property: 

S = {  1, i f x ~ R -  
0, i f x ~ ~ + '  

and: 

(O) H - 
E m - ( ) .  
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4. EXPERIMENTAL ANALYSIS OF EIGENSTRAIN PROBLEMS 

4.1 Photoelasticity 

Photoelasticity has been used by Ferber [4] to visualize the eigenstresses and eigenstrains around fibers in 
thermally mismatched fiber-reinforced materials. To this end, two-dimensional models were made and 
analyzed in a polariscope. Figure 1 shows typical isochromates in a circular matrix (diameter = 150 rnm) 
made of Araldite F (Young's modulus E = 2583 MPa, Poisson's ratio v = 0.4, thermal expansion coeffi- 

cient a=37.5.1o6 11K) which contains six pellets made of steel (E = 210000 MPa, v = 0.3, 

a = 12.10" 11 K ). The specimen was subjected to cooling in a temperature chamber from +60°C down 

to -7.5"C. Figure 2 shows the experimentally observed stresses along the x-axis of the specimen (see in- 
set). 

The normalized intensity I ,  I I, of the isochromates can be computed from (cf., Ferber [4], pp. 40-41): 

*e 1: Isochromates of a composite model, Ferber [4] 

4.2 Electron diffraction contrast Figure 2: Distribution of stresses in the'specimen of Fig. 1, [4] 

Mader [5] used dynamic dark field electron transmission microscopy to visualize the in-situ stress-strain 
behavior around thermally mismatched tetragonal Zirconia inclusions of nearly spherical shape in an 

Alumina matrix. Figure 3 shows a typical result from his work. It should be pointed out that the charac- 
teristic contrast fringes around the inclusions do not directly represent the stresses nor the strains in the 

vicinity of the mismatched inclusion. Rather they are linked to a part of the strain tensor, e.g., u , , ~ ,  in a 

somewhat "integral" manner. For example, in the case of a centrally located inclusion in a thick specimen 
the intensity of the contrast fringes can be computed from: 



1 
1, = - 2 (* c0s(2er) + cosh(2zq)) (4.2.1) 

and 
112 

= j + g ~ ~ x , )  df , 4 = o i ~ ( l  + (~~lg/u~,~,,)l~ df .(4.2.2) 

where t denotes the thickness of the specimen, o, are the so-called extinc- 

tion numbers, 6, is the extinction distance, and 14 is the length of the dif- 

fraction vector. 

Here it may suffice to say that by means of the electron diffraction contrast 
method the three-dimensional aspects of the eigenstress fields around het- 
erogeneities are emphasized. 

Figure 3: Dynamic dark-field TEM, Mader 15'' 

5. RESULTS 

5.1 Two-dimensional simulations 

Figure 4 presents the numerical simulation for the isochromates of the specimen shown in Figure 1. The 
results are based on the discrete Fourier transform when applied to a grid of size 256x256 pixels. The 
elastic constants of the inclusions and of the matrix were assumed to be equal and the misfit to be iso- 

tropic: E; = 0.00249 6" . 

Figure 4: Simulation of isochromates Figure 5: Stress distribution all 

Figure 5 presents the spatial distribution of the stress component, o,, , in form of a density plot and Fig- 

ure 6 shows the distribution of stresses, o,, and 02, , along the horizontal line x shown in Figure 2 (in 

units of MPa). The qualitative resemblance to the experimental results is remarkable. However, there is 
a major quantitative discrepancy between the experimental and numerical data. This is mainly due to the 
fact that the difference in elastic constants between the Araldite matrix and the steel pellets has been ig- 
nored completely. 
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HORIZONTAL 

Figure 6: Distribution of stresses along the horizontal line x of Figure 2. 

It should be noted that the difference of the elastic constants of Araldite and steel is extremely large (see 
the data in the previous section). Therefore it is not sufficient to apply eqn (3.3.1) which is only a first 
order approximation for the total strain with regards to the difference in elastic mismatch. As an altcrna- 
tive one may turn to higher order approximations which, in fact, follow from the solution of an integral 
equation for the strains by means of the Neumann iteration scheme (cf., Mura [7] or Dreyer and 

0.008 Olschewski [9]). Such higher order ap- 
proximations are analyzed in Figure 7 
which shows the maximum of the numeri- 

0.m cally predicted strain component, E,, , for a 

single (= small) elastically and thermally 
mismatched cylinder. These values can be 

E,, 0.064 compared with an analytical solution (see, 

e.g., Miiller and Schmauder 1121). It turns 
out that the Neumann iteration leads to 

0.002 convergence provided the elastic mismatch 
is not too large, as it is unfortunately the 
case for the specimen shown in Figure 2. 

o To improve the convergence behavior of 
0 5 10 15 20 

number of iterations the presented method is left to future re- 
search. 

Figure 7: Convergence of strain for various stiffness ratios 

Figure 8: Discrete I:ourier solution of the "Star of David" and the "Pentagonal Star" problem (Mura et al. 1131) 



The use of the discrete Fourier technique in the case of inclusions of complicated shape is demonstrated 
in the sequence shown in Figure 8 which presents the "Star of David" and the "Pentagonal Star" prob- 

lems recently analyzed by Mura et al. 1131. The uniformity of the elastic field, E , ,  , in the interior of a 

single (= small) star is clearly visible. 

5.2 Three-dimensional simulations 

As a first test toward the simulation of TEM experiments, such as the one shown in Figure 3, the strain 

fields E,, and E,, in the equatorial plane of a spherical isotropic inclusion were computed nun~erically. 

In this case an analytical solution is known (Mura 171) and can be used for comparison. The grid used for 

discretization consisted of 128x128~128 pixels and the numerical result is shown in Figure 9. It is in 
good agreement with the analytical formula. Furthermore note that the viewgraph for E , ,  bears already a 

certain ressemblance to the dark field image shown in Figure 3. This is not surprising since for a sphere 
in an infinite body the following relation holds: 

the latter being the quantity respomible for the electron diffraction contrast (cf., eqn (4.2.2)). 

Figure 9: Discrete Fourier image for a spherical Zirconia inclusion 

6. CONCLUSIONS AND 01JTLOOK 

It  was shown how discrete Fourier transforms can be used to solve eigenstress problems in heterogeneous 
linear elastic materials. Numerical results were compared to experimental stress and strain data and, in 
particular, it was shown how discrete Fourier transforms can be used to model photoelastic and TEM cx- 
periments. So far the application of discrete Fourier transforms allows to compute the stress/strain behav- 

ior of moderately elastically mismatched materials. Further research is underway to cover the case of 
strong elastic mismatch. 
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