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Abstract
This article proposes a reframing of the purposes of mathematics education 
for the twenty-first century that combines apparently divergent philosophical 
approaches, arguing that the consequent empowerment should as a matter of 
individual equity be available to all young people (as well as of benefit to wider 
society). It suggests that the global mathematics attainment ‘spotlight’, and the 
English policy context in particular, offer both opportunities and constraints for 
the development of such a high-quality mathematics education. The article also 
discusses the challenging implications for the curriculum, and for the nature of 
teacher expertise, particularly subject-specific expertise, that is needed. 
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Introduction
There is a global focus on mathematics attainment as a gateway to economic 
progress, with the leaders of many Western nations anxious to see improved results 
in international performance indicators such as the Programme for International 
Student Assessment (PISA) or Trends in International Mathematics and Science Study 
(TIMSS) (Baird et al., 2011). In parallel, there is a widespread refocusing of mathematics 
curricular which aims to better combine content (facts, procedures), deep conceptual 
understanding and mathematical processes – and so enable fluency, mathematical 
reasoning and mathematical problem-solving, thought to be prerequisites for 
effective mathematical functioning in the twenty-first century. This is hard, and not 
being achieved at scale (Eurydice, 2011; Spillane, 2004). These twin focuses serve 
together to create a high-stakes mathematics education environment. 

In England, one feature of this has been growing awareness of ‘curriculum 
coherence’ (Schmidt and Prawat, 2006): the alignment of curriculum, assessment, 
teacher development, resources, etc., so that contradictions are not set up and 
professionals are not subject to contradictory incentives and targets. Here I analyse, 
in particular, relationships between mathematics-related curriculum intentions (where 
by ‘curriculum’ I mean all planned school-related experiences) and the development 
of appropriate teacher expertise, where at present I restrict the argument to human 
‘teachers’.

I suggest that the global policy context offers opportunities for a reappraisal 
of the role of mathematics within the school curriculum, and of the consequent 
mathematics-specific capacity (Golding, 2017a) needed by teachers of mathematics. 
Such an evaluation builds on agreed purposes for education. Here I harness Biesta’s 
(2015b) framework to suggest that the apparently divergent approaches adopted by 
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Reiss and White (2013) and by Young and Muller (2013) have complementary lenses 
to offer – but that the implications of their combination for the curriculum, and so for 
teacher expertise, are profound and demanding. I discuss in particular the systemic 
and systematic teacher education that is needed to achieve such nuanced purposes. 
Parts of the article are mathematically technical, but the shape of the argument stands 
without engagement with those. 

What is mathematics? 
The argument depends on some shared conception of mathematics as a discipline. In 
common with many, but by no means all, mathematicians, I understand the discipline 
to be concerned with the exploration of, and connections between, patterns that often 
arise from the external world, their abstraction and their relationships as established 
through reasoning. Crisan (2017) offers an accessible exegesis of mathematics as 
a ubiquitous, culturally embedded activity: every human society we know about 
has developed a mathematical lens on the world and harnessed that lens to aid its 
flourishing. I develop these ideas further in Golding (2017b) and draw on that here. 
For an inspirational treatment from a philosophical point of view, I suggest Francis Su’s 
(2017) presidential address to the American Mathematical Society.

Mathematics is therefore part of our cultural heritage, concerned with concepts, 
but working with culturally developed tools and processes. We are by nature both 
curious and inventive, and mathematical epistemology features dualities of discovery 
and creation: its objects include both those embedded in a physical world framed by 
Tegmark (2008) as completely mathematical in its structure, and discursive constructs 
with no existence independent of humans, as described by, for example, Adler and 
Sfard (2017). It is in that sense that mathematical truth is always provisional, open-
ended and relational, situated, social and contextualized. 

How then is mathematical knowledge established? Answers to such questions 
have implications for the way in which mathematics should be learned and taught. 
Many would argue that what we have in Western society is one, or some, possible 
mathematical accounts: elsewhere, globally and historically, are further accounts. 
In Lakatos’ (1976) terms, I adopt that fallibilist, rather than absolutist, position. For 
mathematics to be a shared endeavour, there need to be shared ways of working and 
of establishing new knowledge in the field, a shared epistemology and syntax. How 
those are applied when working with novice mathematicians will also be influenced by 
one’s beliefs about how young people (and others) learn.

So what relationship should any mathematics experienced in classrooms have 
to the mathematics studied in universities or that used outside academia? In Golding 
(2017b), which is intended to be accessible to the non-specialist, I argue that school 
mathematics can, and should, be a near-authentic sub-discipline of mathematics – and 
that, for example, academic mathematics and the mathematics of the mature user of the 
discipline comprise further, overlapping sub-disciplines. One implication of this view is 
that, with such an understanding, school students are indeed novice mathematicians 
and that one aim of school mathematics is to further draw them into a mathematics 
subculture. For Bernstein (2000) too, the school subject is a recontextualization of the 
parent discipline, with organizing epistemic coherence stemming from that discipline, 
even if for a different purpose. But that too begs questions of its operationalization. 
Note that already, above, we have alternative, or perhaps complementary, lenses on 
mathematics as discovered or invented. This dualism is reflected in perspectives on 
the purposes of education as student-centred, coming to understand and harness the 
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(natural and social) world, with ‘learning’ equivalent to ‘comprehension’, or as world-
centred, disrupting and decentring the student. Both could be argued to support 
human flourishing. I therefore turn next to a consideration of the purpose of education, 
and the implications of that for mathematics.

The purpose of education and the role of mathematics 
within that 
I argue that the purpose of socially sanctioned (and funded) school education is to 
nurture young people’s range of constructive potential and induct them into the culture 
of their society, so that they mature into fulfilled and well-rounded adults who are able 
to contribute to and constructively critique society. Education exposes young people to 
that which is not easily accessible elsewhere, inducting them into social ways of being. 
In so doing, it supports Reiss and White’s (2013) ‘aims-based’ curriculum which argues 
for a central curriculum design principle of the achievement of human (individual and 
societal) flourishing. The notion of human ‘flourishing’ is not uncontested, but here I 
adopt a neo-Aristotelian view of eudaimonia consistent with Reiss and White’s and for 
which meaning and purpose are prerequisites. However, such a purpose should also 
introduce young people, inter alia, to Young and Muller’s (2013) ‘powerful knowledge’ 
by particular social means. There is in principle no fundamental contradiction here, 
although I shall show there are tensions inherent in achieving both.

Young and Muller (2013) argue that the school curriculum, whatever else it 
does, should endow young people with disciplinary ‘powerful knowledge’ – and that 
historically, they have been short-changed by the rationing of the school curriculum 
to that which preserves social hierarchies and limits individual potential. ‘Powerful 
knowledge’ here is used as a ‘master discourse’ (Ball, 2008): an organizing language 
that offers a framing principle for actions and values, presented as an unexceptionable 
good and so often serving to preclude dissent. Young and Muller (2013) develop an 
argument for the inclusion of a range of discipline-embedded knowledge, offering 
access to aspects of human flourishing. However, they do not offer effective criteria 
for deciding which disciplinary knowledge is to be considered ‘powerful’. For 
mathematics, I suggest genuine powerful knowledge centres on deep and robust 
conceptual understanding and familiarity with mathematically valued ways of working, 
as in the argument below focused on times table knowledge. Here, the ‘value’ stems 
from the discipline, as developed for twenty-first-century cultures. To harness those 
concepts, young people of course also need to develop a repertoire of facts, skills 
and processes that they can use as tools. At the end of their article Young and Muller, 
I suggest, overplay their argument and refer to ‘powerful knowledge’ as not only a 
necessary, but as a sufficient basis for curriculum design (2013: 247). 

I propose that Biesta’s (2015b) framework of three domains of educational 
purpose (and function) allows a reconciliation of Young and Muller’s (2013) position 
with that of Reiss and White (2013).  Biesta argues that one of the purposes of 
education is qualification, understood either in a narrow sense (becoming qualified to 
perform a certain task or job) or in a much wider sense, such that young people are well 
prepared to thrive in modern, complex societies. Education is also about socialization, 
initiating children and young people into existing traditions, cultures, ways of doing 
and ways of being. That socialization also happens unconsciously through teachers’ 
and students’ enculturated ways of being (thus also contributing to the reproduction 
of material and social inequalities). Any educational activity, further, impacts on the 
qualities of the person: Biesta frames this as subjectification, as it concerns processes 
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of being and becoming a flourishing human subject. Importantly, both Biesta’s (2015b) 
and Young and Muller’s (2013) uses of ‘flourishing’ are consistent with that of Reiss and 
White (2013). These are three qualitatively different domains with regard to which we 
need to state and justify what we seek our students to achieve. A ‘good’ education 
requires attention to all three; although they are not always easily separable, they are 
sometimes in tension. 

Biesta (2015b) points to common, quite narrow definitions of ‘learning’ and 
of the ‘effectiveness’ of some of the enactments currently adopted, which lead to 
a distortion of these three core purposes. Within those he argues that, in addition 
to a technical judgement about the effectiveness of our actions and arrangements, 
there is a need for judgement (phronesis) about the educational desirability of our 
actions and arrangements, implicitly, for both individual and society (ibid.: 10). Good 
teachers therefore not only need appropriate knowledge and skills, and induction into 
an appropriate professional culture, but also educational virtuosity, that is, embodied 
educational wisdom: the ability to make wise educational judgements about what 
is to be done, about what is educationally desirable within that socially sanctioned 
framework. 

So what potential tensions are inherent in an attempt to go beyond a simplistic, 
and binary, view of students as either subject or object to accommodate support for 
both ‘powerful knowledge’ and ’individual and social flourishing’? I have pointed to 
an aspiration that young people should be inducted both into society and culture 
(mathematical and wider) to enable their full participation, and be allowed to develop 
their own meaning-making and values so as to be equipped to constructively critique 
those cultures. I would want them to develop autonomy as individuals and embryonic 
mathematicians, as well as agency as citizens and users of mathematics. In curriculum 
terms, this requires design for learning as well as direct teaching with wisdom that 
leads into a shared world and shared knowledge. However, the balance needed to 
achieve this requires the exercise of a deep phronesis – systemically and on the part of 
individual teachers – that is both sensitive to, and often constrained by, characteristics 
of the students as individuals and groups, and the prevailing (mathematical and wider) 
context and culture. In short, there are no easy routes to achieving such aspirations.

In Biesta’s (2015b) terms, many English stakeholders are currently perceived to 
value mathematics education for (narrow) primarily utilitarian qualification purposes. 
While offering access to techno-scientific literacies and so a gateway to economic 
prosperity for individuals and society, as mathematics pervades a wide spectrum of 
our lives, it has the potential to empower much more widely (Smith, 2017). For these 
ends, but also for wider ‘qualification’, there is a growing awareness that young people 
should have a broad mathematics education that equips them less directly, but more 
potently: skills of mathematical problem posing and solving, and a critical appreciation 
of the use of mathematical approaches in society (leading to social empowerment 
through mathematics). Recent curriculum changes in England, as elsewhere, pay at 
least some nominal attention to this. Such changes support experiencing mathematics 
not only as discovered and transmitted, but also as invented – although in many cases 
curriculum coherence still has to be achieved. 

I have already pointed to mathematics as part of our cultural heritage; also, 
given its fundamental role in twenty-first-century economies, it is a matter of both 
social justice and equity that all young people should be able to access a mathematics 
education that supports strong mathematical participation and progression. As part 
of their socialization then, young people should, at an appropriate level, understand 
the nature of mathematical activity – the syntax and epistemology of the discipline, 
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the valued ways of working in the mathematics subculture, their surprises, frustrations 
and joys – if they are to fully participate in twenty-first-century culture and society. 
Culturally, I would argue, in common with Ernest (2000: 12):

Learners should gain a qualitative or intuitive understanding of some 
of the big ideas of mathematics such as pattern, symmetry, structure, 
proof, paradox, recursion, randomness, chaos, infinity. Mathematics 
contains many of the deepest, most powerful and exciting ideas created 
by humankind. These extend our thinking and imaging power, as well as 
providing the scientific equivalent of poetry, offering noble, aesthetic, and 
even spiritual experiences.

Implications for curriculum
What sort of curriculum is implicit in such approaches? Biesta (2015b) points to a 
current equating of ‘learning’ with meaning-making that is rather limiting, although 
Ofsted (2012) shows that in mathematics classrooms in England even this is not being 
achieved. In the long term, though, students cannot come to use mathematical facts 
and skills with integrity if they have no known meaning for them. As discussed above, 
meaning and purpose are necessary, if not sufficient, for human flourishing. So deep 
conceptual understanding is of value in mathematics education, and overuse of a 
master discourse such as ‘powerful knowledge’ can occlude the relative and differential 
powers of different sorts of knowledge within a discipline.

Further, overemphasis on a reductive ‘learnification’ (Biesta, 2015b) can 
compromise the plurality on which a dialogic education supporting socialization, 
depends. I give two such examples. First, rote knowledge of times tables facts is 
necessary for efficient mathematical functioning – but times table knowledge is much 
more powerful if it is recognized as applicable in a range of (external and mathematical) 
situations, representative of a process that has an associated inverse process, and so 
on. Secondly, acquaintance with the use of Roman numerals gives (conceptual) access 
to mathematical aspects of a culture pervasive (among the powerful) in Western 
civilizations until quite recently, but of greater power is grasping the limitations of that 
number system in relation to others based on place value, since those offer access to an 
appreciation of the potency of a concise and precise language for mathematics. There 
are other routes to such knowledge, but one point for my subsequent argument is that 
a discipline-informed judgement is needed to discern and harness such distinctions. 

I would argue, then, that for Biesta’s (2015b) ‘subjectification’ to be achieved 
within a mathematics domain, students should come to recognize mathematics 
both as a tool with which to engage with the world and as a source of personal and 
social enrichment, cultural heritage and wonder. Further, they need the positive 
affective resources to harness that education confidently (self-efficacy in relation to an 
appropriate degree of mathematical functioning, resilience, collaborative and learning 
dispositions, etc.). It follows that Young and Muller’s (2013) ‘powerful knowledge’ in 
terms of mathematics, if it is to be more than a slogan, must transcend facts and 
procedural skills to include knowledge of valued ways of harnessing imagination and 
creativity to deductive reasoning, pattern-making, analysis and synthesis. It can often 
spring from the modelling of situations in the external world and might be applied to 
solve problems in those contexts, but also includes the mathematically internal study 
of the implications of models and mathematical structures. To the extent that such 
knowledge is held socially and contextually, the means of accomplishing this need 
must include the social. 



Mathematics education in the spotlight 465

London Review of Education 16 (3) 2018

Young people should therefore not be restricted to learning about concepts and 
facts, skills and processes, although they need all those. They need also to understand 
that the discipline of mathematics itself is the authority. The messiness and debate 
and choices of the discipline are often hidden unnecessarily. Further, it is not just the 
content of the curriculum that is important: if they are to function confidently and 
effectively mathematically, young people need to experience, in sustained ways, valued 
mathematical ways of working – and this is part of Biesta’s (2015b) ‘subjectification’. 

Cuoco et al. (1996) frame such ways of working as ‘mathematical habits of mind’, 
saying mathematicians are ‘pattern sniffers, experimenters, describers, tinkerers, 
inventors, visualisers, conjecturers, guessers’. For a classroom, Burton (2004) quotes 
a poster translating this as ‘have imaginative ideas, ask questions, make mistakes 
and use them to learn new things, are organised and systematic, describe, explain 
and discuss their work, look for patterns and connections, and keep going when it is 
difficult’. Details vary across the mathematics literature, but the point is that authentic 
mathematical activity undertaken by genuine mathematics novices is a far cry from that 
seen in many English classrooms (Ofsted, 2012), where in too many cases, supported 
by predictable and routine assessments, the teacher (or the textbook) is seen as the 
source of mathematical authority and the students’ job is to reproduce demonstrated 
approaches to solving standard exercises. 

School mathematics education, then, should aim to support increasing 
participation in the human endeavour of mathematics in an authentic relationship with 
the discipline (though necessarily restricted by the institutional constraints of schooling). 
As such, it has contributions to make – for every young person – to each of Biesta’s 
(2015b) purposes of ‘qualification’, ‘socialization’ and ‘subjectification’. However, 
teachers of mathematics also have a moral purpose that is wider than induction into 
the discipline: they are also the teacher of the whole young person and, for Reiss 
and White (2013), have responsibility for enabling their wider flourishing, as well as 
developing their capacity to support the flourishing of others. I shall show below that 
the implications of this for teacher education are challenging: the teacher too needs to 
develop appropriate professional qualification, socialization and subjectification. 

Expertise for teaching mathematics
It is an attractive argument that the education of a young person (or, more typically, group 
of perhaps 3+ young people) is too important to be left to the discretion of individual 
teachers. But there is a balance to be found, and Biesta (2015a) convincingly calls for a 
collective, but non-identical, practice. I suggest that a high-level articulation of shared 
purposes for education in terms of qualification, socialization and subjectification, 
and consequent decisions about educational curriculum structures, are the province 
of government, though drawing substantially on culturally embedded phronesis. 
Medium-level curriculum decisions should, given the stated purposes of education, 
lie with education and disciplinary, including pedagogic, community experts. The role 
of a knowledgeable and (widely) effective professional teacher then is to enact those 
with phronesis (practical wisdom) in a particular context, for the educational benefit 
of students, fulfilling the range of purposes of education in a balanced way that will 
change as time and context change. Such a position is not currently fully supported 
in English policy, though it is in some other developed jurisdictions. I demonstrate 
below that large parts of the related detail are dependent on context-specific and 
professional subject-related knowledge, both of which reside in the expertise of 
teachers rather than government.
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Addressing this, and complementary to Biesta’s (2015b) reclamation of education 
from ‘learnification’, Fenstermacher (1986: 39–40) says teaching includes:

instructing the learner on the procedures and demands of the studenting 
role, selecting the material to be learned, adapting that material so that it 
is appropriate to the level of the learner, constructing the most appropriate 
opportunities for the learner to gain access to the content ..., monitoring 
and appraising the student’s progress, and serving the learner as one of 
the primary sources of knowledge and skill. 

Here we come to one of the biggest challenges associated with trying to establish 
principled approaches to mathematics education. Teaching in order to build up powerful 
knowledge, given the range of these roles and more, is hard. It is clear that enacting 
much of the above requires discipline-specific knowledge. Minimally, this includes 
knowledge of the culture-specific school sub-discipline at an appropriate level; of the 
disciplinary language, organization, approaches and ways of establishing knowledge; 
its epistemology and syntax; shared values and ways of working. Teachers have to 
understand its recontextualization for the classroom and the ways of re-presenting 
mathematics so as to make it accessible to young people. They have to know the 
ways in which students interact with mathematics, the potential barriers to that and 
the systemic disciplinary expectations as communicated in curriculum documents and 
assessments. Teachers’ knowing, of doing and of being all have discipline-specific 
elements if they are to make the potential of this school mathematics available for 
learning. As described above, that is not the sum of the demands on teachers of 
mathematics, of course, for they are not just teachers of mathematics, but of whole 
young people. Each of these roles entails judgement (phronesis) in its enactment: 
good teaching is inherently situated and context-dependent. 

So what subject-specific knowledge do teachers of mathematics need? In 
a mathematics classroom, authority derives from at least the parent discipline, 
knowledge of the subject for teaching and the teacher’s pedagogical knowledge, 
including their subject-specific pedagogical knowledge. That knowledge, held at a 
deep level, is needed for ‘curriculum-making’ (Lambert and Biddulph, 2015), that is, 
the transformation and synthesis of the written intended curriculum into a coherent 
and meaningful classroom-enacted whole in ways that are consistent with the values of 
the professional community and its standards of integrity and wise judgement. 

What is the nature of the requisite discipline-specific knowledge? Ball et al. 
(2008) show that teacher effectiveness appears to have no simple relationship with, for 
example, the number of discipline-related college courses they have taken, although 
there is clearly a need for a confidence and deep grasp of mathematics beyond the 
level they currently teach at. Ma (1999), though, demonstrates the need for teachers 
to have a ‘profound understanding of elementary mathematics’. It is knowledge 
which differs from that of a numerate layman, or professional user of the discipline, 
but also differs profoundly from that of an academic mathematician. Further, we have 
seen above that it includes a discipline-specific appreciation of the purpose and 
role of mathematics education in contributing to the qualification, socialization and 
subjectification of the student.  

For example, a primary schoolteacher whose children have a reasonable grasp 
of whole numbers then has to teach that three-quarters is part of a whole (and which 
whole). It is also three lots of a quarter of one or more identical wholes, three identical 
wholes shared equally among four, an operator (as in three-quarters of a pile of 
Smarties), a number in its own right, with its own position on a number line, a ratio, 
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an equivalence class of fractions, and so on. All these concepts have to be planned 
for, introduced and worked with at appropriate times, with a range of appropriate 
representations, in culturally and contextually appropriate ways, and young people 
supported in making connections between these different conceptualizations, until, in 
the long term, they compress that understanding into a single, but multifaceted, idea 
of ‘three-quarters’ that they can use as a tool within and beyond mathematics. (For the 
academic mathematician, in contrast, ‘three-quarters’ is one of the ‘rationals’ defined 
from whole numbers in an abstract, algebraic way: the related two sub-disciplines 
require different knowledge.) Further, the same primary schoolteacher in the melee 
of the classroom moment, has to comprehend, evaluate and decide how to deal with 
pupils’ alternative understandings as they develop, responding in ways that build not 
only that student but others’ mathematical ways of participating meaningfully in society, 
their socialization into mathematics and wider cultures, and the wider subjectification 
of the student. That is no small task, even for a mathematics specialist, but primary 
schoolteachers in England typically teach across the curriculum: the consequent 
holistic knowledge of each young person is highly valued culturally (Alexander, 2010), 
but it might also be argued to contribute to that subjectification. 

Teaching for mathematics at any level therefore requires a great breadth and 
depth of subject-related knowledge – and much more – if it is to be effective. One 
widely used theorization of necessary mathematics-specific knowledge is Ball et al.’s 
(2008) ‘egg’, which builds on Shulman’s (1987) generic typology of teacher knowledge. 
This divides the subject-specific knowledge needed into subject knowledge 
and subject pedagogic knowledge. The former encompasses not only what the 
mathematically competent adult commonly needs, but also deep knowledge of its 
different conceptualizations, where those might be encountered and the relationship 
between them (as in the example of ‘knowing’ three-quarters above) as well as the 
links between each idea to others within or beyond mathematics. Pedagogically, 
the teacher also needs to know, inter alia, where those different conceptualizations 
sit within the curriculum; the progressions to and from those (as structured by the 
discipline); how concepts might meaningfully and constructively be re-presented to 
students and in what contexts; how students, and particularly the students in this 
class, might typically understand them in ‘different’ ways, as well as students’ affective 
needs in relation to mathematics; how to elicit  related developing understanding and 
harness that constructively, and how to support a grasp of the related mathematically 
valued connections both within and beyond mathematics. 

An alternative, higher-level theorization analysing disciplinary knowledge that is 
exposed in classrooms comes from Rowland et al. (2005). From classroom observations, 
they show that in teaching mathematics, teachers draw on mathematical ‘Foundation’ 
knowledge of mathematics, students in relation to mathematics, curriculum, etc.; on 
‘Transformation’ knowledge which is the transformation of mathematics into a form 
that allows students to access its underlying motivations, structures and warrants; 
on ‘Connection’ knowledge within and beyond mathematics, of the authentic use of 
mathematical thinking and of utilitarian applications; and on ‘Contingency’ knowledge 
of how to field both questions and a variety of responses from students, some of 
which will be based on challenging and non-standard conceptualizations of emerging 
ideas – and in mathematically constructive ways. Again, what is seen to be necessary 
is a rich and deeply connected discipline-embedded network that can be drawn on 
with phronesis to further the range of purposes of education. Although in both cases 
the categories have ‘fuzzy’ boundaries when operationalized, they serve to point us 
to complex aspects of teachers’ subject-specific knowledge that are critical to good 
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teaching as well as being highly situated and contextualized. These conceptualizations 
therefore have implications for both initial teacher training and teachers’ continuing 
development, but they only acquire their full meaning and import when they are 
applied in relation to the underlying valued purposes of education. 

The development of mathematics teacher expertise 
In Golding (2015), I argue that such expertise needs specialized development, 
including in initial and early career teacher education. Teacherly knowledge has a 
dual nature, comprising both theoretical and practical aspects. Not only do teachers 
of mathematics have to understand, for example, the multifaceted nature of three-
quarters, but they have to be able to operationalize education for a specific group of 
children who bring particular mathematical and whole selves to the classroom, and 
who will respond differentially to particular personal and mathematical approaches, 
and mathematical explanations and embodiments. Education for such complexity 
requires expertise in teacher development in each of the theoretical (mathematics 
education, teacher education, child psychology, etc.) and classroom domains – and the 
development of practical wisdom. Schools do not typically house experts in teacher 
theoretical education, but they do house experts in classroom teaching for their own 
context. Very often, then, effective initial teacher education can be achieved through 
strong partnerships between university education departments and schools, and 
models of teacherly phronesis might be found in either. The former, typically staffed 
by experienced teachers further resourced to develop expertise in teacher education, 
can also provide time and knowledgeable support for developing deep, informed 
reflection, building of goal-related dispositions and knowledge of the evidence base 
and the opening up of possibilities that are often not available in schools, which, by their 
nature, are focused on the education of young people. From the earlier discussion, it 
is clear that for all teachers of mathematics, substantial parts of this early development 
need to be subject-specific. 

The discourse surrounding further teacher development in recent years, and 
globally, has been one of ‘teacher deficit’. There is substantial evidence that in schools 
in England at present there is indeed a lack of appropriate mathematics knowledge 
for teaching that significantly limits the quality of mathematics learning available (e.g. 
Ofsted, 2012), however worthy the intentions of the curriculum. However, there is some 
evidence that, given appropriate subject-specific and generic foundations (the precise 
nature and extent of which are yet to be established), together with sufficient time, 
goal-related dispositions and appropriate access to expertise (some of which might be 
peer-collaborative), experienced teachers are often able to develop in new directions 
and depths in semi-autonomous ways (e.g. Chan et al., 2018; Golding et al., 2018).  

Yet none of this is sufficient to ensure the development of teachers’ practical 
wisdom or phronesis, which needs all of the above and more. As Biesta (2015a) argues, 
competences are necessary, but not sufficient, for good teaching, which depends 
on the effective harnessing of those competences for agreed valued domains of 
educational purposes.  I argue, consistent with Biesta (2015a), that true phronesis 
can only be developed with experience, together with professional example and 
sustained, informed reflection. Again, there is a clear but different role apparent for 
early contextualized experiences in school settings supported by deep reflection at 
the university. Both of these, ideally, would be underpinned by experienced, effective 
teachers able to model the exercise of professional phronesis. Where a system has, for 
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whatever reason, limited capacity to model the range of such ‘professional virtue’, the 
challenges of developing effective (mathematics) education are of course exacerbated.

How does the policy context in England impinge on 
possibilities for mathematics education?
In a high-stakes policy environment, it is difficult for policymakers, end-users and those 
involved in mathematics education alike to step back and reflect in depth about what 
it is we are trying to achieve in mathematics education. It is not easy to expose the 
variety of aims and purposes assumed by different policy ‘players’ (Ball et al., 2011), 
so that those are held up to scrutiny and the possibilities for workable, shared values 
debated. I would argue that reasonable performance on widely valued international 
attainment measures should be expected from a wealthy nation, but questions 
should be asked about whether such measures together reflect the range of socially 
valued mathematics education (and other) outcomes. TIMSS measures performance 
on curriculum-close mathematics questions, whereas PISA assesses the solving of 
rather more contextualized tasks. Yet political responses rarely seem to be based on 
the nature of what is measured (Baird et al., 2011). I would suggest that even good 
performance on both of these, which taken together arguably support mathematically 
‘powerful knowledge’, is not sufficient for either personal or societal flourishing. 

Further, in England, teachers of mathematics, from Early Years upwards, are 
dealing with rapid and frequent curriculum changes. They are also working in high-
stakes assessment environments whose focus, for mathematics at least, has recently 
been broadened but which still, by its nature, privileges short-term performance. One 
argument in favour of the high value given to academic disciplinary functioning (Gibb, 
2017) is that it enables all young people to access the knowledge that, in a more liberal 
education environment, would be available only to the privileged. But a consequence 
of rapid and aspirational change is that teachers have very little time or energy available 
for deep reflection on, or considered preparation or development of, their teaching. 
It is not yet obvious that the combination is of net benefit to young people – though 
recent changes have yet to bed down. 

It is clear, then, that if we want to achieve an authentically mathematically 
well-equipped population, so that both individuals and society flourish, we certainly 
need the supply and development of sufficient mathematically knowledgeable and 
pedagogically effective teachers, able to develop an enacted curriculum in discipline-
knowledgeable ways and exert professional judgement that builds up a balanced 
(wider) qualification, socialization and subjectification for their context. There are both 
opportunities and constraints associated with this. 

Mathematics education is currently valued by a range of stakeholders, including 
policymakers. There is therefore a (relatively) good level of financial investment 
available, and an in-principle will to develop teacher education in ways that support 
that. There is also an opportunity to move away from a ‘deficit’ model of teachers’ 
continuing education and build on the undoubted potential of well-prepared teachers 
to drive their own (both subject-specific and generic) development, learning from 
their teaching (e.g. Chan et al., 2018) and from opportunities to work collaboratively 
with expert others, supported by bespoke time and moderate funding (e.g. Golding 
et al., 2018). 

On the other hand, while a high-stakes accountability regime and valuing of 
international performance measures of mathematical functioning and more can 
support mathematical education development, accompanying national assessments 
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that do not fully support curriculum intentions serve to undermine any such broad 
and balanced curriculum provision (Neumann et al., 2016). The long-standing lack of 
subject-specific expertise among teachers (Ofsted, 2012), coupled with recruitment 
and retention challenges (National Audit Office, 2016) can threaten the contextual, 
reflexive, profoundly phronesis-dependent and iterative elements of the work of good 
teaching. 

In parallel, English teacher education, both initial and continuing, is currently in a 
state of flux, with fragmented and increasingly generic provision, often led by schools 
and sometimes with no input from higher education. So, despite a range of threats to 
the health of a subject perceived to be important, the development of mathematics 
knowledge for teaching is being marginalized. The arguments above make it clear 
that such a situation undermines both the attainment of an effective mathematics 
education and the viability of a balanced, phronesis-rich education that is balanced 
across purposes. 

Moving to a point where we have a consensus about the needs of initial and 
continuing teacher development, though, assumes attainment of a shared view of the 
kind of teaching that is needed in schools. Those sustained conversations between 
professionals, policymakers and stakeholders about what we value in education, why 
and how that might be achieved are important. It would be naive to suggest that 
previous teacher education systems were ideal: they operated in a national context with 
less competition for mathematics expertise and with fewer pressures of performativity 
on teacher educators.  

We now know, though, far more than we used to about how young people 
learn mathematics, and what teachers need to be able to support that. We need to 
capitalize on that knowledge in a coherent and long-term way and to recognize the 
need for a theorization of discipline-specific expertise in both subject and subject 
pedagogical arenas. And because in England we patently do not yet have a shared 
vision for education, let alone mathematics education, the present challenges offer 
every incentive to develop those in the interests of achieving individuals and societies 
that are genuinely flourishing. 

Emerging English – and global – mathematics curricula for students aged 5 
to 18 do, to a large extent, embody widely held values of mathematics education 
communities. As we acquire evidence of what is working well and why, we should 
find ways to support the evolution of those curricula and the surrounding system 
(assessment, CPD, resources, etc.) into a coherent whole, which values education 
for individual and societal flourishing without sacrificing the sorts of knowledge that 
keep open the doors to social equity. A variety of initial teacher education models and 
moves to mixed models of teacher development challenge our assumptions about 
how teachers learn, when and how. That is healthy – provided it is also regularly and 
effectively evaluated, and changes are made in response to that evaluation, so that we 
do not persist in perpetuating mediocrity wherever it occurs.

Conclusions
This article suggests that the global mathematics attainment spotlight offers both 
opportunities and constraints for the development of high-quality mathematics 
education – and for the debate about what that comprises.  I use Biesta’s (2015b) 
framework for the purposes of education to argue that mathematics has a role to play 
in contributing to both Reiss and White’s (2013) ‘education for human flourishing’ and 
Young and Muller’s (2013) ‘powerful knowledge’, although achieving a wise balance is 
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demanding, not only for policymakers but also for individual teachers. For mathematics, 
though, I critique Young and Muller’s use of the term ‘powerful knowledge’, which 
minimally takes the form of deep conceptual understanding. For any one concept, 
this is complemented by a range of known facts and established skills that enable its 
effective harnessing for a variety of socially valued and individually enriching purposes. 
However, it remains the case that different mathematics conceptual areas remain 
differentially ‘powerful’. The details of the appropriate range and scope of conceptual 
access should remain contextually and socially determined, with due regard for the 
global nature of the economy and society in which twenty-first-century young people 
will live. The consequent mathematical – and wider – empowerment should be 
available to all young people as a matter of equity and social justice (as well as benefit 
to wider society).  

Such a mathematics education, though, only represents part of the responsibility 
of the teacher of mathematics, who should also look to the development and 
flourishing of the whole young person, exercised with appropriate phronesis.  I discuss 
the consequent nature of mathematics teacher expertise, and particularly subject-
specific expertise, that is needed to facilitate such education, arguing that the initial 
development of that expertise to a well-evidenced threshold level should be supported 
by centres of teacher education expertise which, because of the dual theoretical and 
practical nature of that education, will often comprise partnerships of universities with 
schools and colleges. Beyond that initial threshold, I argue that teachers are often best 
served by the opportunity to build on that initial expertise, with sufficient space and 
time for deep and collegially informed reflection, supported as appropriate by peer or 
external expertise, and so moving away from a model of a deficit in teacher capacity. 
I suggest the current ‘high stakes’ policy context in England and elsewhere offers an 
opportunity to prioritize a theorization of subject-specific teacher expertise that would 
be situated in the professional rather than the policy domain, and to fund both a 
focused recapacitation of the mathematics education teaching force and a movement 
towards such a professional model of further learning.
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