Mathematics for Computer Graphics

Dr Hammadi Nait-Charif

Senior Lecturer
Bournemouth University
United Kingdom

hncharif@bournemouth.ac.uk
http://nccastaff.bmth.ac.uk/hncharif/MathsCGs/maths.html

Recommended Reading

- John Vince 2005. Mathematics for Computer Graphics SpringerÂVerlag London
- Comninos, P. 2005. Mathematical and Computer Programming Techniques for Computer Graphics (Hardcover). Springer.
- Harris J.W. and Stocker H. 1998 Handbook of Mathematics and Computational Science. Springer.

Recommended Reading

- John Vince 2005. Mathematics for Computer Graphics SpringerÂVerlag London
- Comninos, P. 2005. Mathematical and Computer Programming Techniques for Computer Graphics (Hardcover). Springer.
- Harris J.W. and Stocker H. 1998 Handbook of Mathematics and Computational Science. Springer.
- Lipschutz, S. 1982. Schaum's Outline of Essential Computer Mathematics (Paperback).'s Outline Series.

Syllabus

- Algebra
- Number Theory
- Boolean Algebra
- Circuit Diagrams
- Thrigonometry
- Vectors
- Matrices
- Analytic Geometry
- 2D Transformations
- Set Theory

Algebra

- One fundamental concept of algebra is the idea of giving a name to an unknown quantity.
- Rene Descartes (1596-1650) formalized the idea of using letters from the beginning of the alphabet (a, b, c, etc.) to represent arbitrary numbers, and letters at the end of the alphabet ($p, q, r, s, t, \ldots x, y, z$) to identify variables representing quantities such as pressure (p), temperature (t), and coordinates (x, y, z).

Algebra

- With the aid of the arithmetic operators we can develop expressions that describe the behavior of a specific computation.
- For example $a x+b y-d=0$ represents a straight line.
- The variables x and y are the coordinates of any point on the line and the values of a, b, d determine the position and orientation of the line.
- There is an implied multiplication between $a x$ and $b y$ which would be expressed as $a * x$ and $b * y$ using a programming language.
- The $=$ sign permits the line equation to be expressed as a self-evident statement
- Such a statement implies that the expressions on the left-hand and right-hand sides of the $=$ sign are equal or balanced.

Algebraic Expressions

- Algebraic expressions also contain a wide variety of other notation, such as
$\sqrt{x} \quad$ square root of x;
$x^{n} \quad x$ to the power on n
$\sin \alpha \quad$ sine of α
- For example $a x+b y-d=0$ represents a straight line.
- Parentheses are used to isolate part of an expression in order to select a sub-expression that is manipulated in a particular way. For example, the parentheses in $c(a+b)+d$ ensure that the variables a and b are added together before being multiplied by c and finally added to d.

Algebraic Laws

- There are three basic laws for manipulating algebraic expressions:
- associative
- commutative
- distributive
- In the following descriptions, the term binary operation represents the arithmetic operations,+- or \times, which are always associated with a pair of numbers or variables.

Associative Law

- The associative law in algebra states that when three or more elements are linked together through a binary operation, the result is independent of how each pair of elements is grouped.
- Addition:

$$
a+(b+c)=(a+b)+c \quad 5+(2+7)=(5+2)+7
$$

- Multiplication:
$a \times(b \times c)=(a \times b) \times c$
$5 \times(2 \times 7)=(5 \times 2) \times 7$
- Subtration is not associative:
$a-(b-c) \neq(a-b)-c$

$$
9-(7-3) \neq(9-7)-3
$$

- What about the division, is it associative?

Commutative Law

- The commutative law in algebra states that when two elements are linked through some binary operation, the result is independent of the order of the elements.
- Addition:
$a+b=b+a$
$(2+7)=(7+2)$
- Multiplication:
$a \times b=b \times a$
$5 \times 9=9 \times 5$
- Subtraction is not commutative:
$a--b-\neq-b-a \quad 15-6 \neq 6-15$
- What about the division, is it commutative?

Distributive Law

- The distributive law in algebra describes an operation which when performed on a combination of elements is the same as performing the operation on the individual elements.
- Multiplication over addition holds:
$a \times(b+c)=(a \times b)+(a \times c) \quad 5 \times(2+7)=(5 \times 2)+5 \times 7$
- Multiplication over subtraction holds:
$a \times(b-c)=(a \times b)-(a \times c) \quad 5 \times(7-4)=(5 \times 7)-5 \times 4$
- Addition over multiip;ication does not hold:

$$
a+(b \times c) \neq(a+b) \times(a+c) \quad 5+(8 \times 2) \neq(5+8) \times(5+2)
$$

Powers(1)

- Indices (or powers, or exponents) are very useful in mathematics. Indices are a convenient way of writing multiplications that have many repeated terms.
- Example 7^{3} means multiply 7 by itself 3 times

$$
7^{3}=7 \times 7 \times 7 \quad x^{n}=\underbrace{x \times x \times \ldots \times x}_{\mathrm{n} \text { times }}
$$

- Example 6^{-4} means multiply $\frac{1}{6}$ by itself 4 times
$6^{-3}=\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \quad x^{-n}=\underbrace{\frac{1}{x} \times \frac{1}{x} \times \ldots \times \frac{1}{x}}_{\mathrm{n} \text { times }}$

Powers(2)

- Any number a, $a \neq 0$ raised to the power of 1 is a $a^{1}=a$
- Any number a, $a \neq 0$ raised to the power of -1 is $\frac{1}{a}$ $a^{-1}=\frac{1}{a}$
- Multiplying numbers with the same Base: $x^{m} \times x^{n}=x^{m+n}$
- Dividing numbers with the same Base: $\frac{x^{m}}{x^{n}}=x^{m-n}$

Powers(2)

- Raising a power expression to a power:
$a^{m n}=a^{m \times n}=a^{m n}$
- Raising a power expression to a negative power:
$a^{-m}=\frac{1}{a^{m}}$
- Raising a product to a power: $(a \times b)^{m}=a^{m} \times b^{m}$
- Raising a fraction to a power: $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
- The is no formula for adding variables raised to power: $a^{m}+b^{n}$

Powers(3)

- Square root is equivalent to raising a number to power $\frac{1}{2}$ $\sqrt{x}=x^{\frac{1}{2}} \quad \sqrt{49}=49^{\frac{1}{2}}=7$
- Cubic root:

$$
\sqrt[3]{x}=x^{\frac{1}{3}} \quad \sqrt[3]{216}=216^{\frac{1}{3}}=6
$$

- n -root is equivalent to raising a number to power $\frac{1}{n}$ $\sqrt[n]{a}=a^{\frac{1}{n}}$
- Proot properties
- $\sqrt[n]{a \times b}=a^{\frac{1}{n}} \times b^{\frac{1}{n}}$
- $\sqrt[n]{a+b} \neq a^{\frac{1}{n}}+b^{\frac{1}{n}}$

