Mathematics for Neuroscientists

Fabrizio Gabbiani and Steven J Cox

Chapter 27.

Exercise 2. We compute

$$
\begin{aligned}
E(j+1)-E(j) & =-\left(\mathbf{s}^{j}\right)^{T} \mathbf{W} \mathbf{s}^{j+1}+\left(\mathbf{s}^{j-1}\right)^{T} \mathbf{W} \mathbf{s}^{j}+\mathbf{b}^{T}\left(\mathbf{s}^{j+1}-\mathbf{s}^{j-1}\right) \\
& =-\left(\mathbf{s}^{j+1}\right)^{T} \mathbf{W}^{T} \mathbf{s}^{j}+\left(\mathbf{s}^{j-1}\right)^{T} \mathbf{W} \mathbf{s}^{j}+\mathbf{b}^{T}\left(\mathbf{s}^{j+1}-\mathbf{s}^{j-1}\right) \\
& =-\left(\mathbf{s}^{j+1}-\mathbf{s}^{j-1}\right)^{T}\left(\mathbf{W} \mathbf{s}^{j}-\mathbf{b}\right)
\end{aligned}
$$

as claimed. Now, if $\mathbf{s}^{j+1} \neq \mathbf{s}^{j-1}$ then $s_{i}^{j+1}=-s_{i}^{j-1}$ for some i. There are only two possibilities. If $s_{i}^{j+1}=1$ then $\left(\mathbf{W s}^{j}\right)_{i}>b_{i}$ and so

$$
\left(\mathbf{s}^{j+1}-\mathbf{s}^{j-1}\right)_{i}\left(\mathbf{W} \mathbf{s}^{j}\right)_{i}=2\left(\mathbf{W} \mathbf{s}^{j}-\mathbf{b}\right)_{i}>0
$$

while if $s_{i}^{j+1}=-1$ then $\left(\mathbf{W s}^{j}\right)_{i}<b_{i}$ and so, again,

$$
\left(\mathbf{s}^{j+1}-\mathbf{s}^{j-1}\right)_{i}\left(\mathbf{W} \mathbf{s}^{j}\right)_{i}=-2\left(\mathbf{W} \mathbf{s}^{j}-\mathbf{b}\right)_{i}>0
$$

Summing over i we find that if $\mathbf{s}^{j+1} \neq \mathbf{s}^{j-1}$ then $\Delta E<0$. Hence, if there exists a period greater than 2, i.e., if $\mathbf{s}^{j-1}=\mathbf{s}^{j+1+k} \neq \mathbf{s}^{j+1}$ for some $k>0$ then $E(j)=E(j+2+k)$, is contradiction of $E(j+2+k)<E(j)$.

Exercise 3. If we integrate Eq. (27.2) on a small interval, say $(P-\varepsilon, P+\varepsilon)$, about the first input spike we find

$$
\begin{equation*}
\tau_{E}\left(g_{E, 1}(P+\varepsilon)-g_{E, 1}(P-\varepsilon)\right)=-\int_{P-\varepsilon}^{P+\varepsilon} g_{E, 1}(t) d t+w_{i n p} \tag{1}
\end{equation*}
$$

Prior to the first spike we expect $g_{E, 1}$ to remain at its initial value and so $\left.g_{E, 1}(P-\varepsilon)\right)=0$ regardless of ε. Now, as $\varepsilon \rightarrow 0$ in Eq. (1) the integral vanishes and we arrive at $\tau_{E} g_{E, 1}\left(P^{+}\right)=w_{i n p}$ as claimed. This provides the initial data for $g_{E, 1}$ from $t=P$ up to (but not including) $t=2 P$. In that interval $g_{E, 1}$ obeys $\tau_{E} g_{E, 1}^{\prime}(t)=-g_{E, 1}(t)$ and so, proceeding as in $\S 3.1$ we find

$$
\begin{equation*}
g_{E, 1}(t)=\exp \left((P-t) / \tau_{E}\right) w_{i n p} / \tau_{E} \quad P \leq t<2 P \tag{2}
\end{equation*}
$$

and so $g_{E, 1}\left(2 P^{-}\right)=\exp \left(-P / \tau_{E}\right) w_{i n p} / \tau_{E}$. If we next integrate Eq. (27.2) across $t=2 P$ we find $\tau_{E}\left(g_{E, 1}\left(2 P^{+}\right)-\right.$ $\left.g_{E, 1}(2 P-)\right)=w_{i n p}$, and so conclude that $g_{E, 1}\left(2 P^{+}\right)=g_{E, 1}(2 P-)+w_{i n p} / \tau_{E}=\left(1+\exp \left(-P / \tau_{E}\right)\right) w_{i n p} / \tau_{E}$ as claimed. Arguing as above we find

$$
\begin{align*}
g_{E, 1}(t) & =g_{E, 1}\left(2 P^{+}\right) \exp \left((2 P-t) / \tau_{E}\right) \tag{3}\\
& =\exp \left((P-t) / \tau_{E}\right)\left(1+\exp \left(P / \tau_{E}\right)\right) w_{i n p} / \tau_{E}, \quad 2 P \leq t<3 P
\end{align*}
$$

as claimed. Upon comparing Eqs. (2) and (3) we deduce that

$$
\begin{equation*}
g_{E, 1}(t)=\exp \left((P-t) / \tau_{E}\right)\left(w_{i n p} / \tau_{E}\right) \sum_{m=0}^{n-2} \exp \left(P / \tau_{E}\right)^{m}, \quad(n-1) P \leq t<n P \tag{4}
\end{equation*}
$$

We recognize this sum as a finite geometric series and find

$$
\sum_{m=0}^{n-2} \exp \left(P / \tau_{E}\right)^{m}=\frac{1-\exp \left((n-1) P / \tau_{E}\right)}{1-\exp \left(P / \tau_{E}\right)}
$$

On inserting this back into Eq. (4) we arrive at the desired Eq. (27.41).

Exercise 8. If we define $V(\theta) \equiv W(\theta) \star f(\theta)-U(\theta)$ then the convolution theorem and linearity yield $\hat{V}_{n}=\hat{W}_{n} \hat{f}_{n}-\hat{U}_{n}$. This, together with Parseval's equality yields

$$
\begin{equation*}
E(W)=\sum_{n=-\infty}^{\infty}\left|\hat{V}_{n}\right|^{2}+\lambda\left|\hat{W}_{n}\right|^{2}=\sum_{n=-\infty}^{\infty}\left|\hat{W}_{n} \hat{f}_{n}-\hat{U}_{n}\right|^{2}+\lambda\left|\hat{W}_{n}\right|^{2}, \tag{5}
\end{equation*}
$$

as claimed. Now, for n fixed, we choose \hat{W}_{n} as the minimizer of

$$
E_{n}(W) \equiv\left|W \hat{f}_{n}-\hat{U}_{n}\right|^{2}+\lambda|W|^{2}
$$

We write $W=a+i b$ and expand the squared magnitudes and find

$$
E_{n}(W)=E_{n}(a, b)=\left(\left|\hat{f}_{n}\right|^{2}+\lambda\right)\left(a^{2}+b^{2}\right)-(a+i b) \hat{U}_{n}^{*} \hat{f}_{n}-(a-i b) \hat{U}_{n} \hat{f}_{n}^{*}
$$

It remains to determine its critical point. We compute

$$
\partial_{a} E_{n}=2 a\left(\left|\hat{f}_{n}\right|^{2}+\lambda\right)-\left(\hat{U}_{n}^{*} \hat{f}_{n}+\hat{U}_{n} \hat{f}_{n}^{*}\right) \quad \text { and } \quad \partial_{b} E_{n}=2 b\left(\left|\hat{f}_{n}\right|^{2}+\lambda\right)-i\left(\hat{U}_{n}^{*} \hat{f}_{n}-\hat{U}_{n} \hat{f}_{n}^{*}\right)
$$

These vanish when

$$
a=\frac{\hat{U}_{n}^{*} \hat{f}_{n}+\hat{U}_{n} \hat{f}_{n}^{*}}{2\left(\left|\hat{f}_{n}\right|^{2}+\lambda\right)}=\frac{\Re\left(\hat{f}_{n}^{*} \hat{U}_{n}\right)}{\left|\hat{f}_{n}\right|^{2}+\lambda} \quad \text { and } \quad b=\frac{\hat{U}_{n}^{*} \hat{f}_{n}-\hat{U}_{n} \hat{f}_{n}^{*}}{2\left(\left|\hat{f}_{n}\right|^{2}+\lambda\right)}=\frac{\Im\left(\hat{f}_{n}^{*} \hat{U}_{n}\right)}{\left|\hat{f}_{n}\right|^{2}+\lambda}
$$

On combining these as $W=a+i b$ we recover Eq. (27.33).
Exercise 10. (i) We proceed from the definition

$$
\hat{f}_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-i n x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(-x) \mathrm{e}^{-i n x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{i n x} d x=\hat{f}_{-n}
$$

(ii) We note that $U(-\theta)=\sigma^{-1}(f(-\theta))=\sigma^{-1}(f(\theta))=U(\theta)$.
(iii) The result follows from $\hat{f}_{n}^{*}=\hat{f}_{-n}$.
(iv) We compute

$$
\begin{aligned}
W^{\prime}(\theta) & =\lim _{h \rightarrow 0} \frac{W(\theta+h)-W(\theta)}{h} \\
& =\lim _{h \rightarrow 0} \frac{W(-\theta-h)-W(-\theta)}{h} \\
& =-\lim _{h \rightarrow 0} \frac{W(-\theta-h)-W(-\theta)}{-h}=-W^{\prime}(-\theta) .
\end{aligned}
$$

