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Chapter 27.

Exercise 2. We compute

E(j+1)— E(j) = —(s)TWsi T + (7 71)TWs? + b (s/T! —s771)
— —(Sj+1)TWTSj + (Sj_l)TWSj + bT(Sj+1 _ Sj—l)
= (s’ — s HT(Ws/ — b)

as claimed. Now, if s7+! # 871 then s/t" = —s/~" for some i. There are only two possibilities. If 577" =1 then
(Ws’); > b; and so
(7 —s771);(Ws?); = 2(Ws? —b); >0,

J+1 _

while if 77 = —1 then (Ws?); < b; and so, again,

(s7t —s771);(Ws?); = —2(Ws? —b); > 0.

Summing over i we find that if s7t! # s/=! then AE < 0. Hence, if there exists a period greater than 2, i.e., if
sI71 = giH1+k oL g+ for some k > 0 then E(j) = E(j + 2 + k), is contradiction of E(j + 2 + k) < E(j).

Exercise 3. If we integrate Eq. (27.2) on a small interval, say (P — e, P 4 €), about the first input spike we find

P+e

oloa(P+9) = gpa(P=2) == [ gpa(t)dt + iy 1)

Prior to the first spike we expect gg 1 to remain at its initial value and so gg 1(P — €)) = 0 regardless of . Now,
as ¢ — 0 in Eq. (1) the integral vanishes and we arrive at TEgEyl(P"’) = W;nyp as claimed. This provides the initial
data for gg 1 from t = P up to (but not including) ¢t = 2P. In that interval gz 1 obeys Trgp (t) = —gr,1(t) and so,
proceeding as in §3.1 we find

gEJ(t) = exp((P — t)/TE)’wmp/TE P<t<?2P (2)

and so gg,1(2P7) = exp(—P/TE)Winp/Te. If we next integrate Eq. (27.2) across t = 2P we find 75(g9p1(2P1) —
9E1(2P—)) = Winp, and so conclude that gg 1(2P") = gg,1(2P—) 4+ Winp/Te = (1+exp(—P/7E))Winp /TE as claimed.
Arguing as above we find

ge1(t) = gp1(2PT)exp((2P — t)/7E)

3
=exp((P —t)/78)(1 + exp(P/TE))Winp/TE, 2P <t <3P ®)
as claimed. Upon comparing Egs. (2) and (3) we deduce that
n—2
95.1(t) = exp((P — 1) /7)(winp 75) 3 xp(P/7E)™,  (n— )P <t < nP. (4)
m=0

We recognize this sum as a finite geometric series and find

2 w1 —exp((n—1)P/75)
mz::o SPPITE)" = T exp(Plrp)

On inserting this back into Eq. (4) we arrive at the desired Eq. (27.41).
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Exercise 8. If we define V (6) = W ()% f(6)—U (6) then the convolution theorem and linearity yield V,, = W, fr,—

This, together with Parseval’s equality yields
BOW) = 30 R NWR= 30 Wdu - O + A
as claimed. Now, for n fixed, we choose W, as the minimizer of
En(W) = W fr, — Un |2+ N\ W2
We write W = a + ib and expand the squared magnitudes and find
En(W) = Ey(a,b) = (|ful* + N (a® + 1) — (a+ib)U}; fu — (a — ib) U, f;.
It remains to determine its critical point. We compute
0uBn = 20| ful* + X) = (U fu + Unfy) and 8By = 26(|ful® +X) = (U1 fu = Unfy).

These vanish when

g Uabn+Unfy R3O0 o Uifa=Unfi _ S(f20n)

21/ +A) Sl + A 212 +A) falP+A

On combining these as W = a + ib we recover Eq. (27.33).

Exercise 10. (i) We proceed from the definition

. 1 ™ ) 1 ™ ) 1 g ) .
fn= e (x)e™"" dx = o /77r fl=x)e " dx = o Lﬂ f(@)e"dax = f_,.
(ii) We note that U(—0) = o= 1(f(=0)) = o~ 1(f(0)) = U(0).

(iii) The result follows from f* = f_,,.

(iv) We compute

W) = s h
. W(—=6—-h)—W(-0)
= lim
h—0 h
_ W(=0—-h)-W(=6)
= fm —h =-Wi=0)

U,

(5)



