Mathematics for Physics

A Guided Tour for Graduate Students

An engagingly written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics.

The first half of the book focuses on the traditional mathematical methods of physics: differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables.

The authors' exposition avoids excess rigour whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.

MICHAEL STONE is a Professor in the Department of Physics at the University of Illinois at Urbana-Champaign. He has worked on quantum field theory, superconductivity, the quantum Hall effect and quantum computing.

PAUL GOLDBART is a Professor in the Department of Physics at the University of Illinois at Urbana-Champaign, where he directs the Institute for Condensed Matter Theory. His research ranges widely over the field of condensed matter physics, including soft matter, disordered systems, nanoscience and superconductivity.

MATHEMATICS FOR PHYSICS

A Guided Tour for Graduate Students

MICHAEL STONE University of Illinois at Urbana-Champaign

and

PAUL GOLDBART University of Illinois at Urbana-Champaign

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

> Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521854030

© M. Stone and P. Goldbart 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-85403-0 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To the memory of Mike's mother, Aileen Stone: $9 \times 9 = 81$.

To Paul's mother and father, Carole and Colin Goldbart.

Contents

Preface	
Acknowledgments	xiii
1 Calculus of variations	1
1.1 What is it good for?	1
1.2 Functionals	1
1.3 Lagrangian mechanics	10
1.4 Variable endpoints	27
1.5 Lagrange multipliers	32
1.6 Maximum or minimum?	36
1.7 Further exercises and problems	38
2 Function spaces	50
2.1 Motivation	50
2.2 Norms and inner products	51
2.3 Linear operators and distributions	66
2.4 Further exercises and problems	76
3 Linear ordinary differential equations	86
3.1 Existence and uniqueness of solutions	86
3.2 Normal form	93
3.3 Inhomogeneous equations	94
3.4 Singular points	97
3.5 Further exercises and problems	98
4 Linear differential operators	101
4.1 Formal vs. concrete operators	101
4.2 The adjoint operator	104
4.3 Completeness of eigenfunctions	117
4.4 Further exercises and problems	132
5 Green functions	140
5.1 Inhomogeneous linear equations	140
5.2 Constructing Green functions	141

vii

viii	Contents	
5.4 5.5 5.6	Applications of Lagrange's identity Eigenfunction expansions Analytic properties of Green functions Locality and the Gelfand–Dikii equation Further exercises and problems	150 153 155 165 167
	Partial differential equations Classification of PDEs	174 174
	Cauchy data	174
	Wave equation	181
	Heat equation	196
	Potential theory	201
	Further exercises and problems	224
0.0		221
7 T	`he mathematics of real waves	231
7.1	Dispersive waves	231
7.2	Making waves	242
7.3	Nonlinear waves	246
7.4	Solitons	255
7.5	Further exercises and problems	260
0 0	notial functions	264
	pecial functions Curvilinear coordinates	264 264
	Spherical harmonics	204
	Bessel functions	270
	Singular endpoints	278
	Further exercises and problems	305
0.5	Turther excretises and problems	305
9 I	ntegral equations	311
	Illustrations	311
9.2	Classification of integral equations	312
9.3	Integral transforms	313
9.4	Separable kernels	321
9.5	Singular integral equations	323
9.6	Wiener–Hopf equations I	327
9.7	Some functional analysis	332
9.8	Series solutions	338
9.9	Further exercises and problems	342
10	Vectors and tensors	347
	Covariant and contravariant vectors	347
	2 Tensors	350
	3 Cartesian tensors	362
	Further exercises and problems	372
- •••		

CAMBRIDGE

376
376
381
389
395
403
409
414
414
417
422
424
440
449
449
450
455
469
473
477
483
496
498
498
505
517
525
530
530
535
555
572
576
576
577
591
591 606

Х	Contents	
17.2	Complex integration: Cauchy and Stokes	616
	Applications	624
17.4	Applications of Cauchy's theorem	630
17.5	Meromorphic functions and the winding number	644
17.6	Analytic functions and topology	647
17.7	Further exercises and problems	661
18 A	Applications of complex variables	666
18.1	Contour integration technology	666
18.2	The Schwarz reflection principle	676
18.3	Partial-fraction and product expansions	687
18.4	Wiener–Hopf equations II	692
18.5	Further exercises and problems	701
19 5	Special functions and complex variables	706
19.1	The Gamma function	706
19.2	Linear differential equations	711
19.3	Solving ODEs via contour integrals	718
	Asymptotic expansions	725
19.5	Elliptic functions	735
19.6	Further exercises and problems	741
A Li	inear algebra review	744
A.1	Vector space	744
A.2	Linear maps	746
A.3	Inner-product spaces	749
A.4	Sums and differences of vector spaces	754
A.5	Inhomogeneous linear equations	757
A.6	Determinants	759
A.7	Diagonalization and canonical forms	766
	ourier series and integrals	779
	Fourier series	779
	Fourier integral transforms	783
	Convolution	786
B.4 ′	The Poisson summation formula	792
Refe	erences	797
Inde	x	799

Preface

This book is based on a two-semester sequence of courses taught to incoming graduate students at the University of Illinois at Urbana-Champaign, primarily physics students but also some from other branches of the physical sciences. The courses aim to introduce students to some of the mathematical methods and concepts that they will find useful in their research. We have sought to enliven the material by integrating the mathematics with its applications. We therefore provide illustrative examples and problems drawn from physics. Some of these illustrations are classical but many are small parts of contemporary research papers. In the text and at the end of each chapter we provide a collection of exercises and problems suitable for homework assignments. The former are straightforward applications of material presented in the text; the latter are intended to be interesting, and take rather more thought and time.

We devote the first, and longest, part (Chapters 1–9, and the first semester in the classroom) to traditional mathematical methods. We explore the analogy between linear operators acting on function spaces and matrices acting on finite-dimensional spaces, and use the operator language to provide a unified framework for working with ordinary differential equations, partial differential equations and integral equations. The mathematical prerequisites are a sound grasp of undergraduate calculus (including the vector calculus needed for electricity and magnetism courses), elementary linear algebra and competence at complex arithmetic. Fourier sums and integrals, as well as basic ordinary differential equation theory, receive a quick review, but it would help if the reader had some prior experience to build on. Contour integration is not required for this part of the book.

The second part (Chapters 10–14) focuses on modern differential geometry and topology, with an eye to its application to physics. The tools of calculus on manifolds, especially the exterior calculus, are introduced, and used to investigate classical mechanics, electromagnetism and non-abelian gauge fields. The language of homology and cohomology is introduced and is used to investigate the influence of the global topology of a manifold on the fields that live in it and on the solutions of differential equations that constrain these fields.

Chapters 15 and 16 introduce the theory of group representations and their applications to quantum mechanics. Both finite groups and Lie groups are explored.

The last part (Chapters 17–19) explores the theory of complex variables and its applications. Although much of the material is standard, we make use of the exterior

xii

Preface

calculus, and discuss rather more of the topological aspects of analytic functions than is customary.

A cursory reading of the Contents of the book will show that there is more material here than can be comfortably covered in two semesters. When using the book as the basis for lectures in the classroom, we have found it useful to tailor the presented material to the interests of our students.

Acknowledgments

A great many people have encouraged us along the way:

- Our teachers at the University of Cambridge, the University of California-Los Angeles, and Imperial College London.
- Our students your questions and enthusiasm have helped shape our understanding and our exposition.
- Our colleagues faculty and staff at the University of Illinois at Urbana-Champaign how fortunate we are to have a community so rich in both accomplishment and collegiality.
- Our friends and family: Kyre and Steve and Ginna; and Jenny, Ollie and Greta we hope to be more attentive now that this book is done.
- Our editor Simon Capelin at Cambridge University Press your patience is appreciated.
- The staff of the US National Science Foundation and the US Department of Energy, who have supported our research over the years.

Our sincere thanks to you all.