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This study employed a cluster randomized trial design to evaluate the effectiveness of 
a research-based intervention for improving the mathematics education of very young 
children. This intervention includes the Building Blocks mathematics curriculum, 
which is structured in research-based learning trajectories, and congruous professional 
development emphasizing teaching for understanding via learning trajectories and 
technology. A total of 42 schools serving low-resource communities were randomly 
selected and randomly assigned to 3 treatment groups using a randomized block design 
involving 1,375 preschoolers in 106 classrooms. Teachers implemented the interven-
tion with adequate fidelity. Pre- to posttest scores revealed that the children in the 
Building Blocks group learned more mathematics than the children in the control 
group (effect size, g = 0.72). Specific components of a measure of the quantity and 
quality of classroom mathematics environments and teaching partially mediated the 
treatment effect.
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Recent national reports highlight the importance of effective mathematics educa-
tion in preschool (National Mathematics Advisory Panel, 2008; National Research 
Council, 2009). We designed the Building Blocks preschool mathematics curric-
ulum (Clements & Sarama, 2007a) as a set of tools that would enable all young 
children to build a solid foundation for mathematics, and especially that would 
increase the mathematical knowledge of children from low-resource communities. 
This study evaluates the effectiveness of these tools when introduced to multiple 
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urban school districts on a large scale, analyzing the specific mathematics concepts 
and skills that young children learned in these classes.

The rationale for this close examination of an instantiation of a research-based 
curriculum derives from the confluence of research and educational needs in math-
ematics and early childhood. Although all citizens need broad mathematical under-
standings, U.S. students’ mathematical proficiency has been evaluated as “low,” 
especially compared to that of students of other countries (Campbell & Silver, 1999; 
Mullis et al., 2000; National Mathematics Advisory Panel, 2008; National Research 
Council, 2001a). Moreover, children from low-resource communities who are 
members of linguistic and ethnic minority groups demonstrate significantly lower 
levels of achievement than children from higher-resource, nonminority communi-
ties (Denton & West, 2002; National Research Council, 2001b; National Research 
Council, 2009; Natriello, McDill, & Pallas, 1990; Sarama & Clements, 2009). 
High-quality experiences in preschool result in greater competence in a variety of 
domains upon entry into kindergarten (Christian, Morrison, Frazier, & Massetti, 
2000; Clements & Sarama, 2008a; Magnuson, Meyers, Ruhm, & Waldfogel, 2004; 
National Research Council, 2001b; National Research Council and Institute of 
Medicine, 2000; Sarama & Clements, 2009). Further, the same high-quality expe-
riences may benefit low-income children more because they have fewer educational 
opportunities in their homes (Carneiro & Heckman, 2003; Raudenbush, 2009); 
such effects have been reported as strongest for children from low-resource commu-
nities and for children whose parents have less formal education, with benefits 
persisting into high school (Brooks-Gunn, 2003). Gains from early education 
programs, however, are not guaranteed. A large-scale evaluation of Head Start 
found limited effects on early mathematics skills for 3-year-olds, but no effects for 
4-year-olds and no evidence of impact on mathematics at the end of kindergarten 
or grade 1 (U.S. Department of Health and Human Services, Administration for 
Children and Families, 2010). Such disparate findings suggest that more research 
is needed to clarify the relationships between various preschool experiences and 
later academic achievement.

Further, there is a need to evaluate the effects of curriculum-based interventions. 
Curricula rarely are evaluated scientifically (Clements, 2007); for example, fewer 
than 2% of research studies in mathematics education have concerned the effects of 
written curricula (Senk & Thompson, 2003). This is particularly unfortunate because 
the effect sizes for curricular interventions, according to a policy statement by 
Whitehurst (2009), generally may be larger than for popular reforms such as charter 
schools, reconstituting the teacher workforce, preschool, and common standards. 
From a human capital perspective, the greatest benefit is gained from interventions 
with the youngest children (Carneiro & Heckman, 2003; Heckman, 2003; Krueger, 
2003). Whitehurst (2009) argues that only expensive early childhood programs have 
been proven effective and that “scarce resources need to be allocated to get the 
biggest bang for the buck” (p. 6). However, he does not address the integration of 
curriculum and early childhood interventions. Collectively, these analyses and policy 
statements suggest that theoretically grounded and empirically grounded curric-
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ulum-based interventions in early childhood may constitute an efficacious and 
cost-effective route to raising achievement in low-resource communities.

Such a hypothesis raises the issue of a definition of “research-based” curricula. 
The Building Blocks curriculum was developed and evaluated using the compre-
hensive Curriculum Research Framework (CRF) (Clements, 2007). Descriptions 
of the implementation of the CRF in the case of Building Blocks are included in 
two previous reports, an initial summative research study yielding effect sizes 
(Cohen’s d) between 1 and 2 (Clements & Sarama, 2007c) and a final-phase, proof-
of-concept scale-up study (Clements & Sarama, 2008a), in which the scores of the 
Building Blocks group increased significantly more than the scores of a comparison 
group that received another preschool mathematics curriculum (effect size, 0.47) 
and more than a control group (effect size, 1.07). The research reported here is a 
full-scale study of scale-up of this Building Blocks curriculum.

At the core of the CRF are empirically grounded learning trajectories (cf. Simon, 
1995). We define learning trajectories as “descriptions of children’s thinking and 
learning in a specific mathematical domain and a related, conjectured route through 
a set of instructional tasks designed to engender those mental processes or actions 
hypothesized to move children through a developmental progression of levels of 
thinking, created with the intent of supporting children’s achievement of specific 
goals in that mathematical domain” (Clements & Sarama, 2004b, p. 83). Building 
on the work of such projects as Cognitively Guided Instruction (CGI) (Carpenter, 
Franke, Jacobs, Fennema, & Empson, 1998) and thousands of research studies (see 
Clements & Sarama, 2009; Sarama & Clements, 2009), Building Blocks learning 
trajectories are not simply “educated guesses” but are based on empirically 
supported developmental progressions (more so for more heavily researched topics, 
of course). For example, children’s developmental progression for shape composi-
tion (Clements, Wilson, & Sarama, 2004; Sarama, Clements, & Vukelic, 1996) 
advances through levels of trial and error, partial use of geometric attributes, and 
mental strategies to synthesize shapes into composite shapes. The sequence of 
instructional tasks requires children to solve shape puzzles both with and without 
the computer, the structures of which correspond to the levels of this developmental 
progression (Clements & Sarama, 2007c; Sarama et al., 1996).

Thus, the teacher has a well-formed and specific set of expectations about chil-
dren’s ways of learning and a likely pace along a path that includes central, worth-
while ideas. We believe that learning trajectories are an effective way to both 
motivate and support the use of the empirically supported instructional practice of 
formative assessment (National Research Council, 2009; see also National 
Mathematics Advisory Panel, 2008, for reference to research on formative assess-
ment).

We agree that these are hypothetical learning trajectories (Simon, 1995). That is, 
the instantiation by the teacher and then by the interaction of the teacher, students, 
and activities is a determinant of the nature, quality, and effectiveness of the 
curriculum’s learning trajectories. To address criticisms of and research on the 
development and professional use of curriculum materials (e.g., Ball & Cohen, 
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1996; Davis & Krajcik, 2005; Sarama & DiBiase, 2004), the Building Blocks 
curriculum focuses not only on children’s development of mathematics but also on 
teachers’ professional development and curriculum enactment. With a common 
curriculum and knowledge of mathematical learning trajectories, we intended to 
provide teachers and children with a research-based, shared, systematic practice 
that is more effective and more amenable to scientifically based improvement than 
private, idiosyncratic practice (Raudenbush, 2009).

As stated, previous studies have supported the efficacy of the Building Blocks 
curriculum and this approach to its implementation (Clements & Sarama, 2007c, 
2008a). However, each of these evaluations involved a relatively small number of 
teachers (all of whom were volunteers) and students. The purpose of this study was 
to evaluate whether a similar implementation of the curriculum would have compa-
rable effects at a large scale and to document in detail what mathematics is learned 
in the contexts of the Building Blocks and control classrooms. The CRF posits that 
a valid scientific curriculum development program should address two basic issues, 
effect and conditions, in three domains: practice, policy, and theory (see Clements, 
2007, Table 1, p. 39). Therefore, we examine not only the intervention’s effect on 
specific learning goals but also whether any such effects are mediated by particular 
pedagogical practices and whether they are equivalent for various subpopulations, 
including subpopulations defined by different school contexts (socioeconomic 
status [SES] and percent limited English proficiency [LEP]) or child characteristics 
(e.g., gender, having an Individualized Education Plan, or IEP).

METHOD

We used a multisite cluster randomized trial (CRT) experimental design that 
enabled a test of the generalizability of the Building Blocks intervention’s impact 
over the varied settings in which it was implemented. We employed hierarchical 
linear models (HLMs) to measure the effects of the intervention on students’ math-
ematics performance and to account for possible variations of the effects among 
varied contexts.

Participants and Contexts

We initially contacted 10 urban public school districts; two met the criteria of (a) 
serving ethnically diverse populations who live mainly in poverty; (b) having a 
large number of prekindergarten (pre-K) classrooms within elementary schools, 
with self-contained feeder patterns (a history of preschoolers continuing their 
education in that school); (c) willingness to ensure that each pre-K classroom would 
have two Internet-enabled computers; and (d) willingness to have schools randomly 
assigned to treatments (thus, not having a single mandated pre-K mathematics 
curriculum). All schools in which pre-K teachers had not previously been involved 
in Building Blocks research or development projects were included. Both superin-
tendents decided to adopt the Building Blocks curriculum, so 42 schools meeting 
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those criteria were involved as part of a “phased adoption” (i.e., principals and 
teachers were not volunteers, and all control schools received curricula after the 
end of data collection). Schools within each district were ordered on the basis of 
their average scores on state-based mathematics achievement tests. Using a 
randomized block procedure and a table of random numbers, we then publicly 
(supervised by two school administrators and three staff members) assigned each 
school to one of three treatment groups. The two treatment groups differed only in 
that one included a follow-through component that was to be implemented when 
the children moved to kindergarten and first grade; therefore, at the pre-K level, 

Table 1
Demographics of Children and Schools in Study

Experimental Control

Number of children (n) 927 378

Race/Ethnicity

  American Indian 17 (2%) 7 (2%)

  African American 513 (55%) 182 (48%)

  Asian/Pacific Islander 29 (3%) 19 (5%)

  Hispanic 182 (20%) 100 (27%)

  White, non-Hispanic 181 (20%) 67 (18%)

  Other 5 (<1%) 3 (1%)

Gender

  Male 452 (49%) 188 (50%)

  Female 475 (51%) 190 (50%)

IEP status

  Yes 80 (9%) 25 (7%)

  No 847 (91%) 353 (93%)

Number of schools 26 16

Average percentage free/reduced lunch 85% 85%

Average percentage LEP 13% 15%

Average number of study (pre-K) 
teachers within schools

1.71 2.13

Number of study (pre-K) classes 72 34

Average number of study (assessed) 
children per class

12.9 11.2

Notes. AA = African American, A/P = Asian/Pacific Islander, NA = Native American, H = 
Hispanic, W = White non-Hispanic (records allowed no further categorical breakdowns). 
LEP = percent Limited English Proficiency in school; SES = percent free/reduced lunch 
in school. Percentages are rounded to whole numbers for readability.
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the focus of this study, there were only two distinct groups, with 2/3 of the schools 
in the Building Blocks intervention group and 1/3 in the control group. Statistical 
power calculations suggested the inclusion of 12 children from each pre-K class-
room. To compensate for attrition, we set a maximum of 15. From the pool of all 
kindergarten-intending children (in the entry range for kindergarten—many class-
rooms had both 3-year-olds and 4-year-olds) who returned consent forms, we 
randomly selected up to 15 children (attrition resulted in the number of children 
who completed all assessments ranging from 5 to 15 per class).

Table 1 shows the diverse populations at the school level, using data from school 
records as well as parent and teacher questionnaires. Ninety-nine percent of the 
teachers were female. About 89% had at least a master’s degree. They had an 
average of 17.0 years of teaching experience (Building Blocks, 16.9; control, 17.2), 
and their average number of years with prekindergarten teaching experience was 
6.8 (Building Blocks, 6.6; control, 7.1). About 94% believed themselves to have 
the support of their principals. As a measure of morale, 79% of the teachers believed 
that “staff members in this school generally have school spirit” (Building Blocks, 
76%; control, 85%).

Curricula for Children and Teachers

Building Blocks (Clements & Sarama, 2007a) is a National Science Foundation–
funded1 mathematics curriculum designed using a comprehensive Curriculum 
Research Framework (Clements, 2007) to address numeric/quantitative and 
geometric/spatial ideas and skills. Woven throughout are mathematical subthemes, 
such as sorting and sequencing, as well as mathematical processes. General processes 
include communicating, reasoning, representing, and problem solving and the over-
arching mathematizing. Specific mathematical processes include number and shape 
composition and patterning. These were determined to be critical mathematical 
building blocks (the same body of research and expertise guided the consonant 
Curriculum Focal Points, National Council of Teachers of Mathematics, 2006).

Building Blocks’ instructional approach “is to find the mathematics in, and 
develop mathematics from, children’s experiences and interests” (Clements & 
Sarama, 2007a). Children are guided to extend and mathematize their everyday 
activities, from block building to art to songs to puzzles, through sequenced, explicit 
activities (whole group, small group, centers, including a computer center, and 
“throughout the day”). Thus, off-computer and on-computer activities are designed 
based on children’s experiences and interests, with an emphasis on supporting the 
development of mathematical activity. More detailed descriptions of Building 
Blocks appear in Clements and Sarama (2004a, 2007a, 2007c) (in addition, see  
http://UBBuildingBlocks.org).

The Building Blocks learning trajectories were designed to develop teachers’ 

1Based in part upon work supported by the National Science Foundation Research Grant ESI-
9730804, “Building Blocks—Foundations for Mathematical Thinking, Pre-Kindergarten to Grade 2: 
Research-Based Materials Development.”
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content knowledge by explicating the mathematical concepts, principles, and 
processes involved in each level and the relationships across levels and topics.  
For example, the trajectories introduce the components of geometric shapes  
(e.g., correct definition of “side”) as well as relationships between components 
(e.g., sides forming a right angle) and shape classes (e.g., a square as a subcategory 
of rectangle and justification for this based on properties). The learning trajectories 
were intended to develop teachers’ knowledge of students’ developmental progres-
sions in learning that content (moving from intuitively recognizing shapes as 
unanalyzed visual wholes, to recognizing components of shapes, to hierarchically 
classifying shape categories). They were designed to develop teachers’ knowledge 
of the instructional activities that would teach children the content and processes 
defining the level of thinking in those progressions and to inform teachers of the 
rationale for the instructional design of each (e.g., why certain length sticks are 
provided to children with the challenge to build specific shapes). The Building 
Blocks learning trajectories assist curriculum enactment with fidelity in that they 
connect the developmental progressions to the instructional tasks, providing 
multiple guidelines or sources of stability in teachers’ instantiation of the instruc-
tional activities (cf. Ball & Cohen, 1996). Finally, Building Blocks’ learning trajec-
tories are designed to motivate and support the use of formative assessment.

Professional development. Although designed to support teachers’ learning and 
implementation, the Building Blocks curriculum was not designed to be used in 
isolation from teacher training. Without training, teachers often fail to implement 
new approaches faithfully. For example, teachers may reduce the cognitive demand 
of instructional tasks after their initial introduction (Stein, Grover, & Hennigsen, 
1996). As another example, teachers need training in understanding, administering, 
and especially using data from new assessment strategies, essential strategies in the 
effective use of learning trajectories (Foorman, Santi, & Berger, 2007).

In this project, teachers participated in 8 days of professional development during 
the school day in the 1st year (a “no stress, gentle introduction” to the curriculum 
with no data collection by researchers) and 5 days in the 2nd year focused on the 
learning trajectories for each mathematical topic. Training addressed each of the 
three components of the learning trajectories. To understand the goals, teachers 
learned core mathematics concepts and procedures for each topic. For example, 
they studied the system of verbal counting based on cycling through 10 digits and 
the concept of place value (based on content similar to that presented in National 
Research Council, 2009). To understand the developmental progressions of levels 
of thinking, teachers studied multiple video segments illustrating each level and 
discussed the mental “actions on objects” that constitute the defining cognitive 
components of each level. To understand the instructional tasks, teachers studied 
the tasks, and they viewed, analyzed, and discussed video of the enactments of these 
tasks in classrooms.

Each of these professional development contexts used the software application 
Building Blocks Learning Trajectories (BBLT), which presented and connected all 
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components of the innovation. BBLT provided scalable access to the learning 
trajectories via descriptions, videos, and commentaries. The two sequential aspects 
of the learning trajectories, the developmental progressions of children’s thinking 
and connected instructional tasks, are linked to each other (see Clements & Sarama, 
2008a, p. 463, or see http://UBTRIAD.org). Discussions of BBLT classroom videos 
made explicit how such practice exemplified research-based principles.

The professional development sessions were sequenced following the Building 
Blocks curriculum. Throughout this study, teachers learned how to use the learning 
trajectories as a basis for formative assessment, a key to high-quality teaching (see 
National Mathematics Advisory Panel, 2008). Formative assessment has been 
shown to be particularly difficult for teachers to enact without substantial support 
(Foorman et al., 2007). In the professional development sessions, teachers 
discussed and practiced how to interpret children’s thinking and select appropriate 
instructional tasks for the class (e.g., compacting the curriculum if most children 
can learn it at a faster pace) and for individuals (e.g., assigning children to small 
groups or modifying activities within groups to match instructional tasks to devel-
opmental levels of individual children).

In addition, project mentors observed and provided support to teachers and 
completed implementation fidelity evaluations. Mentors participated in the same 
professional development as the teachers. Before this, they participated in an addi-
tional day of professional development, conducted by project staff, on mentoring 
and administering the Fidelity instrument. Additional meetings for mentors occurred 
throughout the year. Mentors then worked with teachers throughout the remainder 
of the project, visiting teachers in their classrooms about twice per month.

Curricula in control classrooms. Information on curricula used in control class-
rooms was gathered via (a) administrator surveys with all principals conducted 
through telephone interviews (all but one was interviewed), (b) written teacher 
questionnaires (completed by all but three teachers), (c) telephone interviews with 
about one fourth of the teachers using a protocol designed to obtain information 
on curriculum practices, (d) informal visits with all teachers (except one), and (e) 
two formal observations of each teacher’s mathematics activities (see the following 
sections on measures).

In both districts, there was a greater focus on mathematics during the study period 
than there had been in prior years, due to the introduction of new comprehensive 
programs that included mathematics, during Year 1 of the project. The first district 
implemented Where Bright Futures Begin (Bredekamp, Morrow, & Pikulski, 2006). 
The curriculum features 10 thematic segments (e.g., Animals Everywhere), each 
consisting of 3 weeks of theme-related instruction. The mathematics component 
included nine topics: geometry and spatial sense, patterns, time concepts, measure-
ment, classification and data collection, numbers and operations, problem solving, 
reasoning, and communication. Examples of number learning goals were “counts 
and builds sets of one to five objects” and “uses one-to-one correspondence to 
arrange and compare sets.” Examples of measurement goals included “compares 
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size, length, capacity, weight in natural situations” and “measures length of 
objects.” Mathematics materials included 34 mathematics concept cards, as well 
as everyday mathematical classroom objects, such as counters and cubes. 
Mathematics activities were taught primarily during small group time, although 
sometimes during whole group instruction. Length Treasure Hunt provides an 
example. Children take classroom objects from a bag, compare lengths while 
working with partners, and then identify which objects are about the same length 
and which are not, using the terms shorter than and longer than. Suggestions for 
differentiated instruction (“Challenge” or “Extra Support”) were offered, as were 
highlighted connections between mathematics and literacy, with an emphasis on 
mathematics vocabulary. The teacher manual also offered teacher support for 
instructing English Language Learners and for formative assessment of children 
(see Houghton Mifflin Harcourt, n.d.). Professional development for Where Bright 
Futures Begin was provided for teachers three times during the project’s second 
year, each time with an emphasis on literacy. Interviews and classroom observa-
tions of local-site control teachers revealed instruction on mathematics topics 
taught in the Building Blocks curriculum, including counting, recognizing number, 
comparing number, shape, comparing shape, representing shapes, measurement, 
patterning and sorting, classifying, and graphing. Teachers reported minimal 
teaching on composition of number, composition of shape, adding and subtracting, 
transformations, and probability.

The second district had begun, on a staggered basis, the implementation of a 
new comprehensive curriculum, Opening the World of Learning (OWL) 
(Schickedanz & Dickinson, 2005), which was designed for full-day implementa-
tion, with components added to language and literacy, including mathematics, 
science, social studies, art, and physical, social, and emotional development. 
Some distal-site control teachers used this curriculum. OWL mathematics activ-
ities were presented as small group activities, such as Watch Me Count (children 
watch and then duplicate a teachers’ counting of a small number of objects, then 
of sets with larger numbers of objects). Components included suggested vocab-
ulary, with procedures provided for extra support as well as extension activities. 
Topics included number concepts, number words, one-to-one correspondence, 
cardinality, basic computation, geometry, and measurement; domains consisted 
of number sense, numeration, spatial sense, measurement, geometry, and patterns 
(Schickedanz & Dickinson, 2005). Approximately six professional development 
sessions on OWL were provided between fall 2005 and spring 2007. Five of the 
10 control teachers (not using OWL) reported adapting mathematics activities 
from the kindergarten curriculum Investigations in Number, Data, and Space 
(Economopoulos, Murray, Eston, & Kliman! 2008); one mentioned combining 
the kindergarten-level Investigations with some mathematics from OWL; three 
mentioned combining Investigations with DLM Early Childhood Express 
(Schiller, Clements, Sarama, & Lara-Alecio, 2003), whose mathematics compo-
nent was an earlier version of the Building Blocks curriculum. (Project leaders 
were aware of this contamination threat, but not the extent of DLM infusion, 
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which is addressed in a subsequent section.) Control teachers reported teaching 
counting, number recognition, comparing and composing number, and addition 
and subtraction. They also taught shape identification, shape comparison, shape 
composition, measurement, patterning, and sorting. They reported teaching the 
following topics with less emphasis: transformations, probability, and reasoning/
problem solving.

Measures

Children’s mathematical knowledge. The Research-based Elementary Math 
Assessment (REMA) (see also Clements, Sarama, & Liu, 2008; Sarama & 
Clements, 2011) measures core mathematical abilities of preschool children using 
an individual interview format, with standardized protocol and scoring procedures. 
Abilities are assessed according to theoretically based and empirically based devel-
opmental progressions that underlie the Building Blocks project’s learning trajec-
tories. Developmental progressions in number include verbal counting, object 
counting, subitizing, number comparison, number sequencing, connection of 
numerals to quantities, number composition and decomposition, adding and 
subtracting, and place value. These domains help distinguish between children who 
have not constructed true number concepts and those who have. Geometry progres-
sions include shape recognition, shape composition and decomposition, congru-
ence, construction of shapes, and spatial imagery, as well as geometric measure-
ment and patterning. The REMA defines mathematical competence as a latent trait 
in item response theory (IRT), yielding a score that locates children on a common 
ability scale with a consistent, justifiable metric (Wright & Stone, 1979). All items 
are ordered by Rasch item difficulty; children stop the assessment after four 
consecutive errors. Explicit protocols and procedures exist for administration, 
videotaping, coding, and scoring and for staff training on all aspects. Each item is 
coded by two trained coders for accuracy and, when relevant, for solution strategy. 
Any discrepancies were resolved via consultation with the senior researchers. 
Continuous coder calibration militated against drift. Previous analysis of the assess-
ment data showed that its reliability ranged from 0.75 to 0.94 on the subtests and 
0.93 to 0.94 on the total test scores (see Clements et al., 2008, for full details on 
content and concurrent validity); on the present population, the reliability was 0.92. 
For the present study, inferential statistics were performed on Rasch scores 
computed for the total instrument. The sum of raw scores was computed for items 
within each mathematical topic for descriptive purposes.

Teachers’ classroom practices (e.g., implementation fidelity), knowledge, and 
beliefs. Three instruments provided data on teachers’ knowledge, beliefs, and prac-
tice, an essential measure given the need to consider instruction as the proximal 
cause of student learning (Raudenbush, 2008). The teacher questionnaire measured 
teacher’s self-reported knowledge, beliefs, and practices pertaining to early child-
hood mathematics, including sections on demographics, education and experience, 
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mathematics goals, children’s learning, and teaching practices.
Two related observational instruments described and measured teachers’ class-

room practices. Our observational instruments were designed to assess the “deep 
change” that “goes beyond surface structures or procedures (such as changes in 
materials, classroom organization, or the addition of specific activities) to alter 
teachers’ beliefs, norms of social interaction, and pedagogical principles as enacted 
in the curriculum” (Coburn, 2003, p. 4). The instruments, Fidelity of Implementation 
(Fidelity) and Classroom Observation of Early Mathematics Environment and 
Teaching (COEMET) were created based on a body of research about the charac-
teristics and teaching strategies of effective teachers of early childhood mathematics 
(e.g., Clarke & Clarke, 2004; Clements & Sarama, 2007b; Fraivillig, Murphy, & 
Fuson, 1999; Galván Carlan, 2000; Horizon Research, Inc., 2001; Teaching 
Strategies, Inc., 2001). Each item is connected to one or more of these studies; thus, 
there is intended overlap between the instruments, with each specialized for its 
purpose. An example of a Likert item shared by both instruments in the section 
titled Mathematical Focus, with response possibilities from strongly disagree to 
strongly agree, is: “The teacher began by engaging and focusing children’s math-
ematical thinking (i.e., directed children’s attention to, or invited them to consider, 
a mathematical question, problem, or idea).” Also shared by both instruments in 
the section Organization, Teaching Approaches, and Interactions are items with the 
subheadings Expectations, Eliciting Children’s Solution Methods, Supporting 
Children’s Conceptual Understanding, and so forth. Thus, although the Fidelity 
instrument includes additional items measuring compliance, both it and COEMET 
were designed to document more deeply how mathematics is taught and what 
happens in each classroom. Evidence of their validity can be found in earlier studies 
(Clements & Sarama, 2008a; Sarama, Clements, Starkey, Klein, & Wakeley, 2008); 
for example, the COEMET correlated significantly with child gain scores (r = .50) 
(Clements & Sarama, 2008a).

The Fidelity instrument contains 52 items and responses to most are on 5-point 
Likert scales. An example of an item unique to the Fidelity measure in the 
Organization, Teaching Approaches, and Interactions section is, “The teacher 
conducted the activity as written in the curriculum or made positive adaptations to 
it (not changes that violated the spirit of the core mathematical activity).” Thus, the 
Fidelity instrument includes sections for each component of the implemented 
curriculum, such as a specific small-group activity. Only activities prescribed in 
the implemented curriculum are evaluated, and ratings are made in reference to the 
printed curriculum. To observe an activity from each component of each curric-
ulum, visits were approximately 1 hour in duration. Interrater reliability, computed 
via simultaneous classroom visits by pairs of observers (10% of all observations, 
with pair memberships rotated) averaged 91% in previous research (Clements & 
Sarama, 2008a) and 95% in the present study. High reliability was reported in 
previous research (  = .90; Clements & Sarama, 2008a).

The COEMET measures the quality of the mathematics environment and 
activities with a half-day observation and can be used with different curricula. Thus, 
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it allows for experimental–control group contrasts. There are 28 items, all but 4 of 
which have similar 5-point Likert scales. An example of one of the three items in 
a section unique to this measure, Classroom Culture (subsection: Personal 
Attributes of the Teacher), is “The teacher appeared to be knowledgeable and 
confident about mathematics (i.e., demonstrated accurate knowledge of mathemat-
ical ideas and procedures, demonstrated knowledge of connections between, or 
sequences of, mathematical ideas).” Assessors spend no less than 1 half-day in the 
classroom, for example, from before the children arrived until the end of the half-
day or until lunch (about half were conducted after lunch to the end of the school 
day, if that was the period during which mathematics was taught). All mathematics 
activities are observed and evaluated, without reference to any printed curriculum 
(i.e., assessors are not told what curriculum is present, are not familiar with the 
mathematics curricula involved, and thus are intended to be naïve as to treatment 
group). As shown in Table 2, the COEMET has three main sections: Classroom 
Culture, Specific Math Activity(ies) (SMAs), and Other Classroom Elements (e.g., 
number of computers on which children are working). We also compute a total 
score, consisting of the sum of the Likert items from the Classroom Culture and 
SMAs sections. Reliability in the present study was computed for the total instru-
ment (  = .95) as well as for Classroom Culture (  = .74) and SMAs (  = .90). 
Assessors complete the Classroom Culture and some classroom elements sections 
once to reflect their entire observation. They complete an SMA form for each 
observed mathematics activity, defined as one conducted intentionally by the 
teacher involving several interactions with one or more children, or conducted 
intentionally to develop mathematics knowledge (this would not include, for 
instance, a single, informal statement about number or shape).

Interrater reliability for the COEMET, computed via simultaneous classroom 
visits by pairs of observers (10% of all observations, with pair memberships 
rotated) averaged 0.88 in previous research (Clements & Sarama, 2008a) and 0.80 
in the present study; 99% of the disagreements were the same polarity (i.e., if one 
was agree, the other was strongly agree) in both. Cronbach’s alpha (interitem corre-
lations) for the two instruments ranged from 0.95 to 0.97 in previous research 
(Clements & Sarama, 2008a; Sarama, Clements, Starkey, Klein, & Wakeley, 2008) 
and 0.95 in the present study.

Procedures

The 1st year was a pilot/training year, because our previous experience (Clements 
& Sarama, 2008a; Sarama et al., 2008) and others’ research suggested that teachers 
often need at least 1 year of experience before completely and effectively imple-
menting a curriculum (Berends, Kirby, Naftel, & McKelvey, 2001; Cobb, McClain, 
de Silva, & Dean, 2003; Weiss, 2002). Assessors who would conduct child assess-
ments were recruited and trained for 4 days during Year 1, including reading the 
REMA, practicing administration, and sending videos of the latter sessions to the 
University at Buffalo for evaluation and feedback (only those trainees meeting the 



C
lem

ents, Saram
a, Spitler, Lange, and W

olfe
139

Table 2
Means and Standard Deviations of Classroom Observation Measures by Treatment Group   

Min Max Experimental Control Total

 n M (SD) n M (SD) N M (SD)

Fidelity of 
Implementation

Total score –22 64.50 67 37.4 
(15.16)

COEMET

Classroom Culture 
subscore

18.5 41.5 72 36 (3.9) 34 31 (4.7) 106 34 (4.7)

SMA subscore 46.0 87.9 72 72 (4.7) 34 68 (6.8) 106 71 (5.8)

Other Classroom 
Elements

Total number of SMAs 
(M)

1.5 14 72 7 (2.3) 34 5 (1.7) 106 6 (2.3)

Time on task 8.2 92.5 72 33 (15.5) 34 27 (12.3) 106 31

(min/day)  (14.7)

Number of computers 
working for children 

0.0 6.0 72 3 (1.2) 34 1 (1.3) 106 2 (1.3)
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criteria of two consecutive errorless administrations were certified). REMA asses-
sors were also naïve to children’s (i.e., the school’s) assignment to treatment.

All mentors and teachers from Building Blocks schools participated in profes-
sional development after teachers completed the teacher questionnaire, which were 
the only data collected in Year 1. All mentors and teachers from Building Blocks 
schools participated in the course. Teachers were encouraged to engage their chil-
dren in all curriculum components immediately after the first professional develop-
ment session. In the context of the course, teachers continued to learn about 
learning trajectories, using the BBLT (Figure 1) and to engage in discussions of 
these and correlated text from the Building Blocks curriculum.

In Year 2, complete data collection was implemented. We administered the 
REMA as a pretest and posttest to all eligible pre-K children. Mentors collected 
fidelity data in all Building Blocks classrooms twice to assess the degree to which 
teachers implemented the letter and spirit of the Building Blocks curriculum. 
COEMET observers were trained in late summer. Procedures were similar to those 
for the Fidelity instrument, but observers were naïve to the school’s assignment to 
treatment. COEMET data were collected once in late fall and once in early spring 
in all classrooms.

Teachers were asked to engage their children in all curriculum components after 
pretesting was completed for their classes. Throughout that year’s professional 
development sessions, teachers continued to study the learning trajectories, 
including discussions of how they conducted various curricular activities the 
previous year. As part of this work, teachers brought case studies of particular situ-
ations that occurred in their classrooms to the group to facilitate these discussions; 
thus, this work included elements of lesson study (for a brief overview of lesson 
study see Lewis, Perry, & Murata, 2006).

Data Analysis Plan

Questions were answered with hierarchical linear modeling (HLM; Raudenbush, 
Bryk, Cheong, & Congdon, 2000). We computed a two-level HLM, with Level 1 
being child and Level 2 being school, to compare pretest-adjusted posttest math-
ematics achievement between the Building Blocks and control groups.

RESULTS

The results are organized into six categories: (a) compatibility of the treatment 
groups after random assignment of schools; classroom observations, including (b) 
observations of the fidelity of implementation of the Building Blocks curriculum 
and (c) observations—using the COEMET—of the quality and quantity of math-
ematics instruction in all classrooms (this section includes a discussion of the issue 
of spillover of the intervention into control classrooms); (d) effect of the interven-
tion on the total mathematics achievement score, including a discussion of moder-
ators of that effect; (e) mediational effects of components of the mathematics 
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environment (COEMET) on the total achievement score; and (f) effects of the 
intervention on individual topics and items.

Compatibility of Groups

The randomized block assignment procedure was reasonably effective in 
producing equivalent groups (see Table 1). The proportion of SES is close to iden-
tical for the two treatment groups. Also important, achievement scores are within 
about a point of each other on pretest REMA. At the time of the posttest, there was 
only 5% (n = 70) attrition of children included in the study (18 from control and 
52 from Building Blocks). Most of these participants moved out of state. Analyses 
revealed no significant difference in mean pretest achievement between children 
who left and children who remained (F(2) = 2.09, p = .148; g < .01). The final 
sample consisted of 1,305 (927 in Building Blocks, 378 in control) children with 
complete data on both pretest and posttest.

Classroom Observations: Fidelity

Teachers implemented the Building Blocks curriculum with adequate fidelity 
(see Table 2). That is, on the 5-point Likert scale items, with 2 as strongly disagree 
and +2 as strongly agree, the mode was 1 in both fall and spring, and the mean was 
0.77 in fall and 0.86 in spring. Less than 15% of teachers had an average below 
0.50 (about 6% were negative). This result is similar to that observed in previous 
research with the same instrument and curriculum. For example, the mean in one 
study was 3.0, equal to Agree in a smaller-scale study using a Likert scale with 
responses ranging from 1 to 4 (Clements & Sarama, 2008a). (Considering the slight 
difference between the two results, note that any inclusion of the “neutral” option 
[0] probably results in means closer to 0.)

Classroom Observations: Quality and Quantity of Mathematics in All Classrooms

The COEMET. Table 2 summarizes data from the COEMET’s three main 
sections, Classroom Culture, Specific Math Activity(ies) (SMA), and Other 
Classroom Elements. We used the average of the two time points as our primary 
scores for analyses because (a) data from the beginning of pre-K year did not 
constitute a pretreatment measure given that training occurred also in the previous 
year, so averaging was warranted, and (b) the most complete data were available 
for these two sets; therefore, we decided that the averaging of these two observa-
tions presented the most complete and accurate picture of classroom practice.

ANOVAs revealed Building Blocks classes had higher scores than the control 
classes on the Classroom Culture subscale (g = 1.23, p < .001), SMA subscale (g 
= 0.78, p = .005), total number of mathematics activities observed in SMAs (g = 
1.02, p < .001), and the number of computers turned on and working for students 
to use (g = 0.90, p < 001).

The substantial difference in the number of mathematics activities observed in 
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SMAs raised the issue of whether this variable was a proxy for total time allocated 
to mathematics activities. To differentiate and compare these variables, we calcu-
lated a new variable that was operationalized as the total number of minutes chil-
dren experienced mathematics during the visit. The mean time on task was 27.15 
(SD = 12.34) minutes for control, and 32.51 (SD = 15.45) minutes for Building 
Blocks, which was not significantly different (t = 1.70, p = .10).

Spillover into control classrooms. Even with a limited number of observations, 
data revealed that a small number of control teachers became familiar with specific 
Building Blocks activities before or during data collection. Teachers in the first 
district who had been part of previous Building Blocks curriculum research projects 
were excited about the curriculum and held summer training sessions for other 
pre-K teachers who were interested, including control teachers. These control 
teachers implemented at least some of the Building Blocks activities, and used some 
of the Building Blocks materials and activities (e.g., those involving the counting 
wand were observed).

Similarly, most of the control teachers in the second district had been exposed to 
the experimental curriculum. After in-service sessions conducted by the developers 
a few years before this project, this district had embraced the DLM curriculum, in 
that teacher in-service sessions followed these early presentations as teachers 
shared these activities with each other. As a result, 6 of the 10 control teachers had 
access to DLM activities. One teacher learned about some of the DLM activities 
through her school’s mathematics coach. One control teacher had a copy of the 
DLM curriculum open on her desk during a classroom visit by an assessor. Another 
teacher in the same school mentioned that because her school had been randomly 
selected as a control school, school administrators had purchased Building Blocks 
materials for her classroom. Two other teachers, in a different school, were using 
copies of the DLM activities, according to their principal. At least three teachers 
combined Investigations activities with DLM activities. Such evidence of spillover 
indicates that our empirical analyses of the effectiveness of the intervention, the 
achieved relative strength (Hulleman & Cordray, 2009), will be attenuated and thus 
will constitute an underestimate of the actual intervention effect.

Children’s Mathematics Knowledge: Total Score

Based on the significant differences in classroom-level variables, we compared 
intraclass correlations (ICCs) for two- vs. three-level HLM models. The ICCs for 
a three-level unconditional model were Level-2 p = .0319 and Level-3 p = .19. To 
increase the precision of these estimates, the pre-K pretest was included as a 
covariate at the child, classroom, and school levels (Hedges & Hedberg, 2007). The 
ICCs for this three-level HLM with covariates were Level-2 p = .054; Level-3 p = 
.225. Low ICCs for the classroom level suggest relatively small between-classroom 
variations unique beyond the variance at the school level. Because this study 
randomly assigned schools rather than teachers, much of the between-class varia-



Clements, Sarama, Spitler, Lange, and Wolfe 143

tions is subsumed within the school level. Further, across research groups, 26 
schools had only 1 to 2 teacher participants. For these reasons, the impact of treat-
ment group on child achievement was investigated through a two-level HLM model 
in which classroom data were aggregated to the school level. The ICCs for the 
two-level HLM were intercepts only: Level-2 p = .208, Level-1 2 = 0.439; with 
pretest covariates at the child and school level: Level-2 p = .253; Level-1 2 = 0.286.

Analysis of total test. Table 3 presents the means and standard deviations for the 
REMA’s Rasch T-score for all children for whom full data were collected for both 
pretest and posttest. A two-level HLM, with child at level 1, school at level 2, and 
treatment group entered at Level 2, showed no significant difference in pretest 
REMA scores between the control and Building Blocks groups (  = -.011, SE = 
.11, df = 40, p < .29). A second two-level HLM model was constructed including 
all relevant moderators and pretest aggregates. The full-model equation for the 
participant level follows.

Yij = 0ij  + 1ij (REMAPRE) + 2ij (Male) + 3ij (Male * Treatment) + 4ij (AA)  
+ 5ij (AA * Treatment) + 6ij (WHI) + 7ij (WHI * Treatment) + 8ij (HIS)  
+ 9ij (HIS * Treatment) + 10ij (IEP) + 11ij (IEP * Treatmen  + eij ,

where Yij is the REMA posttest of child i in school j, 0ij is the initial status of child 
i in school j;  1ij is the slope of the REMA pretest (REMAPRE) for child i in school 
j; 2ij is the main effect for the dummy code male or not (male); 3ij is the interac-
tion of Male and treatment group; 4ij is the main effect of African American or 
not (AA); 5ij is the interaction of African American and treatment group; 6ij is the 
main effect for the dummy code White or not (WHI); 7ij is the interaction of the 
dummy code for White and treatment group; 8ij is the main effect for the dummy 
code Hispanic or not (HIS); 9ij is the interaction of the dummy code for Hispanic 
and treatment group (HIS*Treatment); 10ij is the main effect for the dummy code 
has individualized education plan or not (IEP); 11ij is the interaction of IEP and 
treatment group; and eij is the residual (Level-1 random effect). The school-level 
model (Level 2) follows.

0j = 0j  + 1j (School Aggregate pretest) + 2j (Treatment)  
+ 3j (SES) + 4j (SES * Treatment) + 5j (LEP)  
+ 6j (LEP * Treatment) + j ,

where 0j is the mean achievement in school j; 0j is the intercept associated with 
Level-1 predictors; 1j is the slope associated with the REMA pretest aggregated 
to school j; 2j is the main effect for the dummy coded Treatment group in school 
j; 3j is the main effect for SES for school j; 4j is the interaction of SES and 
Treatment group in school j; 5j is the main effect for the proportion students with 
LEP in school j; 6j is the interaction of LEP and Treatment group (LEP * 
Treatment) in school j; and j is the Level-2 random effect. All variables were 
centered on the grand mean except for REMA pretest scores, which were centered 



144 Mathematics Learned by Young Children

Table 3
Means and Standard Deviations for the Early Mathematics Assessment (Rasch and  
Classical Scores)

   Max Experimental Control

Pre
n = 927

Post
n = 927

Pre
n = 378

Post
n = 378

Rasch (total test) 
score Mean 18.54 51.36 19.63 44.01

SD 11.86 17.25 11.52 17.89

Number Total 9.47 29.71 10.26 25.53

SD 8.64 12.72 8.27 13.20
Object Counting
and Strategies 62 Total 3.61 11.29 3.83 9.57

SD 3.63 4.91 3.50 5.05

Verbal Counting 8 Total 1.57 4.50 1.85 4.10

SD 1.88 1.91 1.95 1.87
Comparing and 
Sequencing 33 Total 2.98 10.22 3.21 8.67

SD 3.01 4.75 2.85 4.99
Number
Recognition and
Subitizing 4 Total 1.26 2.60 1.35 2.35

SD 0.98 1.03 0.99 1.07
Composition of 
Number 14 Total 0.02 0.35 0.01 0.26

SD 0.18 0.78 0.14 0.67

Arithmetic 125 Total 0.03 0.75 0.01 0.58

SD 0.56 2.35 0.10 2.51

Geometry Total 7.25 14.34 7.65 12.39

SD 3.87 3.69 3.68 3.71
Shape 
Identification 22.1 Total 5.01 9.44 5.31 8.08

SD 2.92 2.00 2.68 2.22

Composing Shape 6 Total 0.06 0.73 0.08 0.44

SD 0.25 0.76 0.29 0.67
Representing 
Shape 4 Total 0.09 0.90 0.11 0.67

SD 0.35 0.80 0.41 0.78

Comparing Shape 7 Total 2.04 2.93 2.11 2.94

SD 1.20 1.48 1.20 1.46
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on the group mean for their level. All interactions were computed on mean-centered 
transformations of the variables involved. Effect sizes were computed for signifi-
cant main effects by dividing the individual predictor beta coefficient by the pooled 
posttest standard deviation.

Table 4 presents the results of this analysis. We found a significant main effect 
for the comparison of the Building Blocks group to the comparison group. The 
Building Blocks group significantly outperformed the comparison group (p < .001), 
with an effect size (g) of 0.72. Effect sizes for children’s posttest scores, controlling 
for pretest scores, were 1.15 for the control group and 1.92 for the Building Blocks 
group (using the formula from Lipsey & Wilson, 2001, p. 49).

To examine possible moderators of the treatment effect, Table 4 also presents the 
interactions between the intervention groups and several Level-2 predictors. School 
SES (percent of free/reduced lunch) was not a significant predictor of mathematics 
achievement (p = .19), nor was there a significant interaction between the school 
SES and treatment group (p = .27). Similarly, school LEP also was not a significant 
predictor of mathematics achievement (p = .08), nor was there a significant interac-
tion between school LEP and treatment group (p = .60).

We also examined possible interactions between treatment group and child-level 
moderators on child mathematics performance. There were no significant interactions 
between treatment and the Level-1 variables of gender (p = .10) or IEP status (child 
has an individualized education plan; p = .37). Similarly, there was no significant 
interaction between treatment and child race/ethnicity except one: African American 
vs. other groups (p = .015). In the control group, African American children averaged 
lower gains on posttest REMA than other children; in Building Blocks classrooms, 
African American children averaged higher gains than other children.

Table 4 also displays the results of our final model. The final model consists of 
only those predictors and interactions that were found to be significant in the full 
model. The final model for the child level follows.

Yij = 0ij + 1ij (REMAPRE) + 2ij (AA) + 3ij (AA * Treatment) + eij ,

Table 3 (continued)

   Max Experimental Control

Pre
n = 927

Post
n = 927

Pre
n = 378

Post
n = 378

Transformations 
(turns) 3 Total 0.04 0.34 0.04 0.28

SD 0.20 0.48 0.20 0.45

Patterning 7 Total 0.65 2.63 0.66 2.23

SD 0.95 1.41 0.94 1.44

Measurement 23 Total 1.18 4.67 1.07 3.85

SD 0.96 2.48 0.93 2.34
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HLM Final Fixed Effects Model Outcomes and Variance Components for REMA Mathematics Posttest Scores, With Pretest Scores as 
Covariates at Both Levels

Unconditional model
Coeff SE df p

Intercept (w/cov) –1.291*** 0.051 40 0.000+

Random
effect

SE df p

Level 1 0.286 0.535
Level 2 0.097 0.312 40 0.000+

Conditional models
Full model Final model

Coeff SE df p Coeff SE df p

Intercept –1.311*** 0.038 35 0.000+ –1.313*** 0.032 39 0.000+

Level 1 (Child)
Pretest

Covariate 0.462 0.018 1287 0.000+ 0.466** 0.018 1299 0.000+

Gender –0.051 0.030 1287 0.095

African American –0.164* 0.069 1287 0.019 –.203*** 0.037 1299 0.000+

White 0.055 0.076 1287 0.469

Hispanic –0.003 0.073 1287 0.972
IEP status –0.047 0.051 1287 0.365

Level 2 (School)

Pretest

Covariate 0.4602*** 0.123 35 0.000+ 0.564** 0.095 39 0.000+

SES -0.004 0.002 35 0.190
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LEP 0.004 0.002 35 0.077

Treatment group 0.4969*** 0.068 35 0.000+ 0.511*** 0.067 39 0.000+

Interactions
Gender ! 
Treatment group 0.007 0.065 1287 0.912
African 
American ! 
Treatment group 0.353* 0.144 1287 0.015 0.231** 0.078 1299 0.004
Hispanic ! 
Treatment group 0.076 0.154 1287 0.621
White ! 
Treatment group 0.180 0.159 1287 0.260
IEP status ! 
Treatment group 0.004 0.111 1287 0.974
SES ! 
Treatment group –0.005 0.005 35 0.255
LEP ! 
Treatment group  0.002 0.004 35 0.595

Variance components
Random 

effect SD df p 2 Random 
effect SD df p 2

Level 1 0.281 0.530 0.282 0.529

Level 2 0.026 0.170 35 0.00 136.4 0.031 0.175 39 0.00 154.5

Table 4 (continued)
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where the coefficients are defined similarly to those in the full model by their 
parenthetical descriptors. The final model for the school level follows.

0j = 0j + 1j (School Aggregate pretest) + 2j (Treatment) + j

Estimates for the impacts of variables within the final model are displayed in 
Table 4. Finally, the random effect intercept reveals significant unexplained vari-
ance. A following section discusses the mediational hypotheses, which we tested 
to determine whether this variance can be partially explained as a function of 
differences in observations of the quality and quantity of mathematics teaching and 
environment.

Tests of Mediation

In addition to examining the impact of Building Blocks on the REMA child post-
test outcomes, we investigated the mediational role of instructional processes. 
Recall that Building Blocks and control teachers differed significantly on five 
components of mathematics instruction: number of computers, number of SMAs, 
the classroom culture score, sum of mean SMA scores, and total time on math. The 
mediational hypothesis is that these components are influenced by the Building 
Blocks curriculum, and they, in turn, cause changes in the outcome variable. A 
standard regression analysis was conducted utilizing specifications and conventions 
for subscripts (m) and (y) to reference the mediator and outcome, respectively 
(Pituch, Stapleton, & Kang, 2006). The equation for this impact is

Mj = 00(m) + aXj + u0j,

where Mj and Xj represent the school-level mediator and treatment and a represents 
the impact of the treatment on the mediator. The intercept and residual for the equa-
tion are estimated as 00(m) and u0j(m) respectively. To estimate the impact of each 
mediator on the outcome of child achievement, a two-level hierarchical model was 
constructed as

Yij = 0j(y) + rij(y),

where Yij is the child outcome at posttest, 0j(y) is the intercept and rij(y) is the 
residual for the equation. The school-level equation for the impact of each mediator 
on the outcome is

0j(y) = 00(y) +c Xj + bMj + u0j(y),

where the effect of the mediator on the outcome, b, is estimated controlling for the 
effect of treatment, and c  is the direct effect of treatment on the outcome control-
ling for the mediator. The indirect effect is represented by the cross product (ab) of 
the a and b unstandardized regression coefficients (Preacher & Hayes, 2008). These 
estimates are displayed in Table 5.

We utilized the empirical M-test to establish 95% confidence intervals for the ab 
product, submitting the unstandardized regression coefficients a and b and their 
standard errors to the PRODCLIN program to determine the significance of indirect 
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effects. The empirical M-test corrects for the potentially nonnormal distribution of 
the ab product, determining significance of a confidence interval based on a critical 
z ratio determined across multiple data simulations (MacKinnon, Lockwood, & 
Williams, 2004). This test has been found to demonstrate low Type 1 error rates, 
aiding in our effort to identify only relevant mediators (MacKinnon et al., 2004), 
and it has more power than other approaches to detect smaller effects (Pituch et al., 
2006). In addition, we also submitted the unstandardized regression coefficients 
and standard errors to the interactive Monte Carlo Method for Assessing Mediation 
(MCMAM) (Selig & Preacher, 2010) for which a normal sampling distribution of 
the estimates a and b is simulated multiple times. The 95% confidence intervals 
within this test of mediation reflect the average 2.5 and 97.5 percentile values across 
a simulated distribution of 20,000. For both tests, confidence intervals not including 
zero indicate that the indirect effect of treatment through the intervening variable 
on child outcome is significant.

Only three indirect effects (from treatment group through a mediator to child 
outcome) were significant: number of computers on and working for children  
(a1b1 = 0.11), number of SMAs (a2b2 = 0.16), and classroom culture (a3b3 = 0.15). 
The sum of mean SMAs (a4b4 = 0.12) and the total time on math (a5b5 = 0.06) 
demonstrated little impact on the relationship between treatment group and child 
outcome. Confidence intervals around the ab product were similar across both the 
Empirical M-test and the MCMAM.

Children’s Mathematics Knowledge: Learning by Topic

Table 3 also presents the means and standard deviations of children’s pretest and 
posttest scores on the REMA using classical scoring. Differences between treat-
ment groups were checked with simple effect sizes (Cohen’s d) for each subtest, 
but the nature of these data (gain scores not analyzed with inferential statistics) 
requires strict caveats regarding their interpretation. They are useful in describing 
what mathematical topics the intervention was relatively successful in developing 
and thus suggest future issues for research and development. Results suggest that 
the learning gains made by the Building Blocks group relative to the control group 
on number were, in descending order, items involving object counting and counting 
strategies, verbal counting, comparing number and sequencing, recognition of 
number and subitizing, composition of number, and arithmetic word problems.

To present a more detailed picture of children’s’ learning of these mathematical 
topics, we briefly describe the characteristics of items on which children in the 
Building Blocks group substantially outperformed the control children and those 
with smaller relative gains. For object counting and counting strategies, their rela-
tive gains were largest on simple object (set) counting and especially production 
(“give me six . . .”) tasks. They also made similar relative gains on counting larger 
sets (e.g., 15), cardinality tasks (“I covered the [15] pennies you counted. How 
many are there under the cover?”), and error recognition tasks. Children in the 
Building Blocks group were more likely to understand a countable unit (e.g., “How 
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95% confidence intervals

PRODCLIN MCMAM

COEMET 
component

Point
estimate Lower Upper Lower Upper

Classroom Culture subscore 0.1537* 0.0140 0.3226 0.0101 0.3269

SMA subscore 0.1211 –0.0172 0.2846 –0.1818 0.2877

Other Classroom Elements

   Total number of SMAs (M) 0.1566* 0.0347 0.3133 0.0327 0.3175

   Time on task (min/day) 0.0599 –0.0043 0.1609 –.0007 0.1680

   Number of computers
   working for children 0.1145* 0.0195 0.2473 0.0163 0.2503

Table 5
Mediation of the Effect of Treatment Group on Child Posttest REMA Outcome Scores, Controlling for Pretest Through 
COEMET Components
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many whole pencils?” shown a picture of some whole and some broken pencils), 
but differences were small. The verbal counting items showed large relative gains 
on the following items: forward counting, counting backward from 10, and counting 
forward from numbers other than 1.

On comparing number and sequencing, relative gains in favor of the Building 
Blocks group were largest on comparing numbers presented verbally (e.g., “Which 
is biggest, 5 or 6 or 4?”) and moderate on comparing small sets (less than 5) and 
on ordering numerals and sets. On both types of problems, the Building Blocks 
group increased their use of counting and mental strategies (e.g., the mental number 
line) more than the control group. The items showing the largest relative gains in 
favor of the Building Blocks group were matching numerals to sets (1–5), admin-
istered within this subtest, but actually a combination of reading and mathematics 
competencies.

The Building Blocks group gained more than the control group on recognition 
of number and subitizing (Table 3). The greatest gains were on recognizing sets of 
moderate size (e.g., 4 and 7) with a positive, but smaller, relative gain on sets of 2 
and 10.

The greatest relative learning gains made by the Building Blocks group in the 
remaining subtests were, in descending order, on identifying shapes and their 
components (these having the most consistent relative gains of any subtests), 
composition of shape, representing shape, measurement, patterning, and comparing 
shapes. Regarding specific items on the shape subtest, the greatest relative gains 
were on shape identification, identification of sides of shapes, and, to a lesser 
degree, identification of angles. For squares, students in the Building Blocks group 
were more accurate on all figures, making the strongest relative gains on avoiding 
the selection of rhombi without 90° angles as well as selecting exemplars and 
avoiding distractors that shared some characteristics of squares (i.e., regularity and 
right angles). Results for triangles, rectangles, and rhombi were similar, with the 
greatest gains on nonprototypical variants (e.g., obtuse triangles with no horizontal 
side) and on avoidance of distractors with a visual resemblance to prototypical 
members of each class.

Two other shape items asked about the components of shapes. The Building 
Blocks group made large relative gains on both side and angle identification.

The Building Blocks group showed large relative gains on the outline puzzle item 
assessing shape composition. Children in the Building Blocks group increased 
more on selecting shapes confidently and accurately rotating shapes into correct 
orientation before placing them on the paper. They also made substantial gains on 
representing shape, such as accurately constructing shapes with sticks.

Relative gains were higher for the Building Blocks group on all seven items on 
patterning but were largest on finishing a pattern with an ABB core and next largest 
on replacing a missing element in a pattern with an AB core. They also gained more 
in the ability to abstract the core unit from a pattern.
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DISCUSSION

We evaluated the Building Blocks intervention’s impact in multiple schools in 
two urban school districts, analyzing the specific mathematics concepts and skills 
that young children learned. We discuss the results in six categories. First we 
address the preintervention compatibility of the treatment groups. Second, we 
examine what classroom observations revealed about teachers’ fidelity of imple-
mentation of the curriculum. Given the large number of schools and teachers, did 
teachers’ enactment achieve the same fidelity as measured in previous, smaller, 
studies? Third, we examine observations of instruction in both Building Blocks and 
control classrooms to assess the impact of the intervention on the quality and 
quantity of mathematics and to address possible spillover of the intervention into 
control classrooms. Fourth, we discuss the effect of the intervention on total math-
ematics achievement scores, including moderators. Fifth, we analyze components 
of the mathematics environment that mediated the intervention’s impact on chil-
dren’s learning. Sixth, we explore topics that were differentially affected by the two 
treatment conditions.

First, analyses revealed that the randomized block assignment was effective in 
producing equivalent groups. Second, most teachers implemented the curriculum 
with acceptable fidelity. The modal category for mentor-rated Likert items was 
agree. That is, most teachers implemented all aspects of the Building Blocks 
curriculum. This result is similar to that observed in previous research with the 
same instrument and curriculum (Clements & Sarama, 2008a). This provides 
evidence that interventions in preschool mathematics education, such as this one, 
can be successfully implemented on a large scale.

Third, the Building Blocks intervention enabled teachers to develop richer class-
room environments for mathematics than those of the control classrooms as 
measured by the COEMET. The Building Blocks classes scored significantly higher 
than the control classes on four components of this measure: the classroom culture 
subscore, the specific math activities (SMA) subscore, the number of SMAs, and 
the number of computers on and working for students to use. These findings 
substantiate the fidelity of the experimental teachers’ implementation of the 
Building Blocks intervention and provide evidence that distinguishes these practices 
from those of the control classrooms. As the name indicates, the classroom culture 
subscore assesses teachers’ general approach to mathematics education indicated 
by “environment and interaction” variables, such as responsiveness to children and 
use of “teachable moments” (capitalizing on spontaneous situations that would 
benefit from mathematization), as well as “personal attributes of the teacher” vari-
ables, including appearing knowledgeable and confident about mathematics and 
showing enjoyment in, curiosity about, and enthusiasm for teaching mathematics. 
These variables suggest that the Building Blocks intervention successfully altered 
teachers’ beliefs and dispositions beyond specific curriculum practices. Such prac-
tices were also positively affected, given that teachers used the computer component 
of the Building Blocks curriculum and engaged their children in a greater number 
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of explicit, targeted mathematics activities. The higher scores for the SMA subscale 
suggest that the specific mathematics activities that teachers in Building Blocks 
classrooms conducted were higher quality than those in the control classrooms.

Given the significant difference in the number of SMAs and the widely docu-
mented importance of time on task (e.g., Bodovski & Farkas, 2007), the question 
arose whether the number of SMAs was simply a proxy for total time allocated to 
mathematics activities. To test that hypothesis, we compared the two variables. The 
total number of minutes during which children were experiencing mathematics was 
not significantly different in the two treatment groups, nor was this variable 
significantly related to gain in mathematics knowledge (and it did not mediate the 
impact of treatment group on children’s posttest knowledge of mathematics). Thus, 
evidence suggests that, at least for children similar to those in this study, the number 
of distinct mathematics activities in which they engage is more important than total 
time on task in supporting their learning of mathematics (cf. Sylva, Melhuish, 
Sammons, Siraj-Blatchford, & Taggart, 2005, who similarly found that frequency 
of number activities correlated with achievement, although time on task was not 
measured in that study). There are several possible explanations for this finding. 
For example, it may be that developmental constraints, such as limits on attention, 
result in diminishing returns in longer activities. A more cogent explanation may 
be that children learn more from a variety of activities emphasizing the same level 
of thinking; that is, they may learn concepts more readily from generalizing math-
ematics structures from different problem situations that require the same mathe-
matical concepts and processes (e.g., mental actions-on-objects) for their solution. 
Further, such multiple situations may create a greater number of cognitive paths 
for retrieval of these concepts and processes. A caveat is that both the findings and 
hypothesizing are post hoc and should be tested in future research.

Compared to previous studies (Clements & Sarama, 2007c, 2008a; Klein, 
Starkey, Clements, Sarama, & Iyer, 2008; Sarama et al., 2008), the counterfactual 
condition was not the “practice-as-usual” control condition involving no published 
mathematics curriculum and little district-wide emphasis on mathematics. Both 
districts had placed new emphasis on pre-K mathematics and adopted new literacy 
curricula that included specific mathematics components. In addition, the Building 
Blocks intervention itself, especially the 1st year’s “gentle introduction,” generated 
considerable spillover of early mathematics pedagogical practices into control 
classrooms.

Fourth, despite this spillover, children in the Building Blocks group outperformed 
those in the control group on the total mathematics test score, with an effect size 
of 0.72. This substantial effect is less than the effect reported for small-scale 
research (Clements & Sarama, 2007c), and in between those reported in a 
moderate-size study comparing the Building Blocks group to a comparison group 
that received a different preschool mathematics curriculum (effect size, 0.47) and 
to a business-as-usual control group (effect size, 1.07).

Analyses indicated only a single significant moderator of the treatment effect. 
At the school level, neither socioeconomic status of the school (percent of free/
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reduced lunch) nor limited English proficiency predicted children’s mathematical 
achievement. Moreover, neither socioeconomic status of the school nor degree of 
limited English proficiency significantly interacted with treatment group. Thus, 
there was no evidence that the Building Blocks curriculum was differentially effec-
tive in classes serving low- or mixed-income families (with the caveat that the 
variance of this variable was small) or with schools that have a higher or lower 
percentage of children with limited English proficiency. At the child level, neither 
gender nor IEP status predicted mathematics achievement, nor was either a signif-
icant moderator of the treatment effect. In sum, there was no evidence that the 
Building Blocks intervention was differentially effective for girls and boys or for 
children with or without IEPs. There was evidence that the intervention was differ-
entially effective for only a single ethnic/racial comparison: African American 
children learned less than other children in the same control classrooms and African 
American children learned more than other children in the same Building Blocks 
classrooms. It may be that the Building Blocks intervention is particularly effective 
in ameliorating the negative effects of low expectations for African American 
children’s learning of mathematics (see National Mathematics Advisory Panel, 
2008).

Fifth, three scores derived from the COEMET instrument, a measure of the 
quality and quantity of classroom mathematics, mediated the effect of Building 
Blocks. The total number of computers turned on and working for children, the 
classroom culture component, and the total number of mathematics activities 
partially, but significantly, mediated the impact of treatment group on outcome. 
This suggests that these processes support the growth of mathematics learning in 
children similar to those in this study. The measured mediation was similar to, but 
less than, the mediational impact found in previous research using the same instru-
ment (Clements & Sarama, 2008a). The finding involving number of computers 
suggests that increased computer usage, presumably of mathematics software, 
could lead to improvements in mathematics scores, consistent with research 
(Clements & Sarama, 2008b). The impact of classroom culture on mathematics 
scores is consistent with the literature supporting the connection between academic 
performance and general features of the classroom, including signs of mathematical 
activity and teachers who are knowledgeable and enthusiastic about mathematics 
and who interact with and respond to children frequently (Clarke & Clarke, 2004; 
Clements & Sarama, 2007b). Finally, the mediational impact of the total number 
of classroom mathematics activities—but not time on task—is an important distinc-
tion, as previously discussed. The importance of these factors, however, should 
continue to be examined across more time points and utilizing more robust media-
tion methodologies. More specifically, although this analysis investigated the 
indirect effect of each mediator separately, it is likely that these component 
processes interact in the creation of an environment more conducive to the learning 
of mathematics. An area of important future investigation will be to further test the 
unique and shared contributions of these processes into the kindergarten year.

Sixth, scores of children in the Building Blocks group increased more than those 
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of the control children on all subtests and almost all individual test items (with the 
caveat that these are only suggestive descriptive statistics of gain scores). However, 
these relative gains were not similar across mathematical topics. In the domain of 
number, relative learning gains made by the Building Blocks group were, in 
decreasing order, on items involving object counting and counting strategies, verbal 
counting, comparing number and sequencing, recognition of number and subi-
tizing, composition of number, and arithmetic word problems.

In previous research (Clements & Sarama, 2008a), children in Building Blocks 
classes made consistent relative gains on most verbal counting items (a subtrajec-
tory within the superordinate counting trajectory, with tasks including forward 
counting, counting backward from 10, and counting forward from numbers other 
than 1), simple object (set) counting, and production tasks. The children in this 
study who used Building Blocks showed consistent relative gains in these areas as 
well, albeit larger for production than for counting small set tasks. Other tasks that 
showed the same pattern of results involved more sophisticated counting skills, 
including counting larger sets, cardinality tasks, error recognition tasks, and 
counting strategy tasks. Although the Building Blocks curriculum was the same as 
that used in previous research, the professional development sessions and tools 
(e.g., the BBLT application, see Fig. 1) included more examples of such higher 
level thinking, gleaned from the previous research projects, which may have helped 
teachers conduct instructional activities developing those skills.

On comparing number and sequencing, relative gains in favor of the Building 
Blocks group were largest on comparing numbers presented verbally and moderate 
on comparing small sets (less than five elements) and on ordering numerals and 
sets. These results are consistent with previous research (Clements & Sarama, 
2008a), although the large relative gains on comparing numbers verbally indicate 
that children in the present study were more successful in developing a “mental 
number line,” another relatively sophisticated strategy emphasized more in the 
present study’s professional development. Similarly, gains on subitizing were more 
pronounced on larger sets.

Turning to other topics, relative learning gains made by the Building Blocks 
group were, in decreasing order, items involving identifying shapes and their 
components, composition of shape, representing shape, geometric measurement, 
patterning, and comparing shapes. Identifying shapes and their components showed 
the most substantial and consistent relative gains of any subtest. The largest gains 
were on items in which children identified or counted the sides and angles of poly-
gons. The Building Blocks group also made substantial gains on representing 
shape; for example, ensuring that its “rectangle” had all right angles. Building 
Blocks activities in which children discuss, analyze, build, and draw shapes appear 
to be particularly effective in developing these competencies (especially, perhaps, 
relative to a counterfactual curriculum with limited time dedicated to geometric 
and spatial thinking) (Clements & Sarama, 2007c, 2008a).

Analyses of children’s specific choices on shape identification tasks similarly 
indicate that the Building Blocks intervention was particularly effective in helping 
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children attend to attributes of shapes, including the number of sides and properties 
such as equal side length and angle size (e.g., right angles), basing their decisions 
on these criteria more than on surface-level visual similarity to a prototype. (An 
exception was a lack of differences between the groups on distractors that were 
figures that were not closed, indicating a weakness in the enacted curriculum.) 
Again, Building Blocks activities that emphasize children’s justifications for their 
shape naming and constructions (e.g., “Why is this a rectangle?” “How do you 
know?”) appear to be effective in orienting children to begin to think of shapes in 
terms of their geometric attributes.

In the rectangle identification task, all groups decreased in their selection of 
squares as examples of rectangles, supporting the notion of a U-shaped develop-
mental pattern in which children’s performances initially decrease as they gain 
(incomplete) knowledge about properties, which only later is completed and 
consolidated (with visual recognition competencies), enabling error-free perfor-
mance (Clements, Swaminathan, Hannibal, & Sarama, 1999). Despite attention to 
this in professional development, the Building Blocks group, compared to the 
control group, did not select squares more often as members of the class of rect-
angles or the class of rhombi. Because children in a small number of classes were 
successful in learning these relationships, we posit that teacher awareness of these 
relationships was generally inadequate in lieu of specific curriculum tasks.

The Building Blocks group showed large relative gains composing geometric 
shapes (consistent with Clements & Sarama, 2008a). Children in the Building 
Blocks group moved away from trial-and-error strategies and used mental imagery 
and planning as they had in previous studies (e.g., Clements & Sarama, 2007c). 
This indicates that more children in the Building Blocks group were developing 
the Shape Composer level of thinking, in which they can build, maintain, and 
manipulate shapes mentally (Clements et al., 2004).

Shape comparison items showed little gain from any group. Future research 
should investigate whether (a) such competencies are important at this level and 
deserve more instructional attention and, if so, (b) what type of instructional task 
is effective.

The Building Blocks group gained more on geometric measurement items than 
the control group, but differences were small. Again, if future research determines 
that more growth is important to young children’s learning, more emphasis on 
measurement and possibly more effective instructional tasks may be warranted.

The Building Blocks group showed large relative gains on patterning. The 
curriculum emphasizes that the core unit of a pattern and the repetition of this core 
are the defining attributes of linear sequential patterns. These ideas were effectively 
appropriated and used by these young children.

In summary, results are generally consistent with previous research, with one 
additional generalization. The topics on which children in the Building Blocks 
group made the largest gains relative to the control group, such as shape, shape 
composition, counting, and comparing number, were those in which research 
supported the construction of accurate, elaborated learning trajectories at the level 
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of the children’s mathematical development (i.e., compared to comparing shape, 
Clements & Sarama, 2009; Sarama & Clements, 2009). Future research should 
examine the specific role that the learning trajectories play to ascertain, among the 
many issues, whether higher quality learning trajectories account for differential 
gains in learning, or other factors are more important.

IMPLICATIONS

Children, especially those from low-resource communities, need more mathe-
matics education in preschool (Bodovski & Farkas, 2007; Clements & Sarama, 
2009; Sarama & Clements, 2009). Evidence from both educational (National 
Research Council, 2009; Paris, Morrison, & Miller, 2006) and economic (Carneiro 
& Heckman, 2003) research suggests that early education is the most important 
period in which to invest resources. The present study provides additional empirical 
support for the hypothesis that the Building Blocks curriculum, as implemented 
here, helps teachers provide more and better mathematics for their preschoolers.

Further, spillover and compensatory effects, such as those documented in the 
present study, may reduce measured differences between control and treatment 
groups (Baker, 2007), indicating that the treatment effects as determined in this 
study may constitute an underestimate of that benefit, even in large-scale imple-
mentations.

A specific policy implication derives from the finding that teacher quality affects 
children’s learning more in low-SES than in high-SES schools, with larger effects 
on mathematics than reading achievement (Nye, Konstantopoulos, & Hedges, 
2004). Thus, curricular-based interventions such the Building Blocks mathematics 
intervention may be especially useful in low-SES schools such as those in this study 
(cf. Preschool Curriculum Evaluation Research Consortium, 2008). (All schools 
in this study served a large majority of low-SES children, so the lack of interaction 
between treatment group and percentage of low-SES children was expected. Results 
do support the hypothesis that the Building Blocks intervention was effective for 
all groups of children in these schools.) This intervention focuses substantial effort 
on working with teachers to develop their understanding and effective use of all the 
tools of the curriculum. 

The results provide empirical support for the effectiveness of mathematical 
learning trajectories as a base for both curriculum and teacher training that engen-
ders shared, systematic practice. It also argues, in contrast to those who champion 
an individual teacher’s idiosyncratic interpretation and implementation of curric-
ulum, that such systematic practice is more effective and amenable to scientifically 
based improvement than private, idiosyncratic practice (Raudenbush, 2009). This 
is not to say that teachers could or should implement curricula in routinized ways 
and certainly not that they should deliver “scripted” curriculum with little or no 
interpretation. Indeed, such an approach would stand in contraposition to the use 
of hypothetical learning trajectories in the service of formative assessment. Instead, 
we propound the following three related points. First, although teachers do interpret 
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curriculum and must be sufficiently knowledgeable and competent to implement 
it in their classroom context, focusing on the shared scientific base and common 
goals, such as developmental progressions and instructional tasks in learning 
trajectories, is a more effective and efficient way to improve education for children 
as opposed to focusing primarily on teachers’ autonomously inventing individual 
curricula (Raudenbush, 2009). Second, as an additional educational CRT with 
positive results, this study provides evidence against the precept voiced by some 
curriculum developers and researchers that experimental studies are inappropriate 
because different schools and teachers implement curricula in ways so varied that 
no pattern of results can be found. Third, such scientifically grounded shared prac-
tice is, somewhat paradoxically, more likely to generate creative contributions. This 
is so because they will constitute modifications of effective practice that is already 
shared, and thus understood, and more easily adopted, and that in turn will be acces-
sible to discussion and further scientific investigation.

In other words, one can agree with William James that “a science only lays down 
lines within which the rules of the art must fall, laws which the follower of the art 
must not transgress; but what particular thing he shall positively do within those 
lines is left exclusively to his own genius . . . many diverse methods of teaching 
may equally well agree with psychological laws” (James, 1892/1958, p. 24) and 
yet emphasize that (a) the science of learning and instruction continues to lay down 
increasingly specific and useful guidelines and (b) teachers and developers who 
work explicitly within those guidelines and describe the relation between their 
creative acts and those guidelines will contribute more than those who do not to 
the present and future practice of education. Idiosyncratic “creativity” that does 
not build on extant science and learning and instruction is less likely to serve either 
the profession or the classroom’s students.

Addressing similar issues, some researchers have claimed that fidelity to a 
curriculum contributes to the deprofessionalization of teachers (McClain, Zhao, 
Visnovska, & Bowen, 2009). Although we agree that a textbook should be a tool, 
and children’s thinking at the core of teachers’ practice, our research indicates that 
such claims are often built upon false dichotomies. Does the published material or 
the teacher “design the curriculum”? Rather than one or the other, both play critical 
roles. Most teachers, especially those in early childhood, have limited time and 
knowledge of mathematics and mathematics education research (Sarama, 2002; 
Sarama & DiBiase, 2004) required to plan, research, and write truly research-based 
curricula (as defined in Clements, 2007). However, to enact such a curriculum, they 
need to understand the mathematics (Ball, Thames, & Phelps, 2008), children’s 
thinking about and learning of that mathematics, and how to design instructional 
experiences for children at different levels of thinking (Clements & Sarama, 2009; 
Sarama & Clements, 2009). That is why curricula with a core of scientifically based 
learning trajectories provide research guidelines within which teachers can be 
effective professionals. As argued previously, such guidelines are the mark of a 
profession. Medical doctors are professionals, not “deprofessionalized,” when they 
follow guidelines of scientific knowledge (cf. Raudenbush, 2009). The existence 
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of claims of “deprofessionalization” may stem from several causes. Some institu-
tions do implement fidelity checks that demand mainly compliance to scripts in 
textbooks, which we believe is a misapplication of the scope and use of scientific 
knowledge. In other cases, criticism of fidelity may emerge from teachers’ impres-
sions that their previous practice is being eliminated and replaced (rather than built 
upon and improved). Inferring that one’s life work is perceived by others to be 
“faulty” may lead to a dichotomization in which the “fidelity police” are seen as 
suggesting developmentally inappropriate instruction, so that one can continue 
comfortably to believe that one has always been engaged in the best professional 
practice.

Of course, teachers’ expertise varies widely, and many have sufficient knowledge 
of the science and art of teaching to design curriculum. However, in successful, 
professional settings such as Japan’s lesson study, it is a wider community that 
contributes over a long period of time to modify a single lesson (Lewis et al., 2006; 
Sowder, 2007). How many teachers can reach such heights, alone, day after day?

In summary, this study adds to a growing number of evaluations suggesting that 
learning trajectories are useful pedagogical, as well as theoretical, constructs 
(Baroody, Cibulskis, Lai, & Li, 2004; Clements & Sarama, 2004c, 2008a; Fuson, 
Carroll, & Drueck, 2000; National Research Council, 2009; Sarama & Clements, 
2009; Simon, 1995; Smith, Wiser, Anderson, & Krajcik, 2006). We designed 
Building Blocks’ learning trajectories based on analyses of how curriculum mate-
rials might serve professional development and professional practice (e.g., Ball & 
Cohen, 1996; see also the subsequently published Davis & Krajcik, 2005). Both 
curriculum and practice, that is, implementation, are important, as any curriculum’s 
trajectories are of necessity hypothetical learning trajectories (Simon, 1995), and 
results of this and previous studies (Clements & Sarama, 2008a) substantiate that 
teachers’ instantiations significantly affect the quality and effectiveness of the 
intervention. The Building Blocks learning trajectories involve a mathematical goal, 
developmental progressions, and instructional activities (Clements & Sarama, 
2007a, 2009; Sarama & Clements, 2009). They are designed to develop teachers’ 
knowledge and pedagogical use of (a) content, by explicating mathematical 
concepts, principles, and processes required to achieve the mathematical goal; (b) 
developmental progressions in learning that content, thus encouraging interpreta-
tion of children’s behaviors and resulting formative assessment (cf. Foorman et al., 
2007), as well as a longitudinal view toward the achievement of the goal; and (c) 
instructional activities, designed to teach children the content and processes (e.g., 
mental actions-on-objects) necessary to realize each level of thinking in those 
progressions (this knowledge includes the rationale for the instructional design of 
each; e.g., why certain length sticks are provided to children with the challenge to 
build specific shapes). This triad of competencies restrains “lethal mutations” 
(Brown & Campione, 1996) of instructional activities while encouraging produc-
tive adaptations (note that discussing examples of each is one professional develop-
ment activity).

A caveat is that the roles of each component of the intervention in supporting 
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students’ learning, such as the multiple parts of the pre-K curriculum (Clements & 
Sarama, 2007a) and the professional development sessions, including the Building 
Blocks Learning Trajectories (BBLT) Internet application as a separate entity, 
cannot be independently determined. These remain questions for future research. 
Similarly, we cannot disentangle the contribution of teachers’ knowledge and use 
of the various aspects of learning trajectories. For example, which of the following 
makes a measurable contribution: greater knowledge of mathematics per se (under-
standing the goal), knowledge of children’s level of thinking, knowledge of instruc-
tional tasks, or connections between levels and tasks? Effective formative assess-
ment requires additional knowledge and skill, including knowledge of assessment 
strategies and how to interpret assessment results and how to use these interpreta-
tions to plan instruction for individual or (dynamically constituted) small groups. 
This study does substantiate the conclusions of previous research that considerable 
professional development may be necessary to achieve a high-quality implementa-
tion of that curriculum. We provided approximately 75 hours of out-of-class teacher 
training as well as hours of mentoring in the classroom, which is substantially more 
than offered to most teachers, only 6% of whom participate in mathematics profes-
sional development for more than 24 hours over 1 year (Borman et al., 2007). A 
total of 50 to 70 hours of professional development is consistent with previous 
research documenting what is necessary to achieve measurable effectiveness (Yoon, 
Duncan, Lee, Scarloss, & Shapley, 2007).

Educational environments that focus on conceptual understanding and encourage 
students to develop, discuss, and use strategies for solving challenging problems 
appear to have similar outcomes. Students learning in those environments do as 
well on tests of basic number and computational skills and outperform conventional 
curricula on assessments of thinking, reasoning, problem solving and conceptual 
understanding (e.g., Boaler & Staples, 2008; Senk & Thompson, 2003; Tarr et al., 
2008). Results of this study extend this finding to preschool curricula, given that 
children in the Building Blocks group appeared to perform as well or better than 
children in the control group on straightforward items in number and performed 
substantially better on the most demanding items.

To realize such benefits, it may be necessary to provide support that addresses 
instruction directly, as did this study’s intervention. That is, research suggests that 
the more proximally linked resources are to classroom instruction, the more likely 
they are to affect student achievement (National Mathematics Advisory Panel, 
2008; Raudenbush, 2009). A large meta-analysis identified domain-specific 
learning activities as having the strongest impact on cognitive outcomes (Seidel & 
Shavelson, 2007). The Building Blocks intervention addressed specific mathe-
matics and pedagogy for children in the teachers’ classrooms. The Building Blocks 
learning trajectories constituted the core of both the specific curriculum the 
teachers taught and the professional development in which teachers engaged. In 
this way, all the resources addressed teachers’ specific educational problems and 
solutions. Such targeted professional development positively affects student 
learning, compared to years of experience or general teacher education, which 
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explained only a small amount of variance in teacher effects (less than 5% and near 
0 for early mathematics, Nye et al., 2004).

The results also provide additional support for our Curriculum Research 
Framework (CRF) (Clements, 2007). Previous studies documented the develop-
ment of the basic structures and learning trajectories and formative evaluation 
phases (Clements & Sarama, 2004a; Sarama, 2004). Later studies provided summa-
tive evaluations (Clements & Sarama, 2007c, 2008a); however, these studies 
involved a moderate number of volunteer teachers located in proximity to the 
researchers. The present study provides a large-scale, multisite summative evalua-
tion with nonvolunteers, completing the tenth and final phase of the CRF and thus 
providing evidence with direct policy implications. A caveat is that evaluations by 
developers have been found to have an average effect size of 0.16 greater than those 
conducted by nondevelopers (Borman, 2007). Borman points out that this may 
reveal biases, either of the developers or of nondevelopers with a grudge against 
innovations; however, it is just as likely that the professional development and 
implementations are superior in the former case. Regardless, our CRF (Clements, 
2007) requires that evaluations be confirmed by researchers unrelated to the devel-
opers of the curriculum (as noted by Darling-Hammond & Snyder, 1992), with 
attention given to issues of adoption and diffusion of the curriculum (Fishman, 
Marx, Blumenfeld, Krajcik, & Soloway, 2004; Rogers, 2003; Zaritsky, Kelly, 
Flowers, Rogers, & O’Neill, 2003). Such evaluations are needed.
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