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Abstract Mathematical and computational modeling is rapidly becoming an
essential research technique complementing traditional experimental biological meth-
ods. However, lack of standard modeling methods, difficulties of translating biological
phenomena into mathematical language, and differences in biological and mathemati-
cal mentalities continue to hinder the scientific progress. Here we focus on one area—
cell motility—characterized by an unusually high modeling activity, largely due to
a vast amount of quantitative, biophysical data, ‘modular’ character of motility, and
pioneering vision of the area’s experimental leaders. In this review, after brief introduc-
tion to biology of cell movements, we discuss quantitative models of actin dynamics,
protrusion, adhesion, contraction, and cell shape and movement that made an impact
on the process of biological discovery. We also comment on modeling approaches and
open questions.

Keywords Cell motility · Actin · Cell mechanics · Protrusion · Contraction ·
Adhesion

Mathematics Subject Classification (2000) 92-xx

1 Introduction

Cell motility has occupied minds of thousands of scientists ever since 1675 when
van Leeuwenhoek discovered ‘pleasing and nimble’ motions of the tiny creatures in
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rainwater that put forth little ‘horns’, extended and contracted [23]. Three centuries
of research did not diminish the significance of this discovery: these extensions and
contractions constitute main steps of the cell crawling [1, Fig. 1A]: first, the cell pushes
out the front, then it assembles tight adhesions to the surface at the leading edge and
weakens such adhesions at the rear, and finally the cell develops contractions that
pull up the weakly adherent rear toward the strongly adherent front, completing the
motility cycle. This process is an important part of wound healing, morphogenesis
and cancer, among many other biological and medical phenomena [13,36], but it is
the elegance of the seemingly simple, yet underlined by layers of complexity, motile
cycle that inspired thousands research papers in the last four decades.

The devil, of course, is in the details, and it is these increasingly meticulous and
numerical molecular details [13] of the motile machinery of the cell that occupied
biologists’ minds. Here, we will discuss the role, methods and impact of mathemati-
cal modeling of cell motility that started roughly 25 years ago and continues to grow.
The modeling emerged from the need to understand actin treadmill, which is at the
heart of the cell movement [88, Fig. 1A].

Actin is a globular protein that polymerizes into a linear two-stranded right-handed
double helix twisting around itself every 37 nm. Each monomer (G-actin) is ∼5.4 nm
in size, so that assembly of a monomer imparts a 2.7-nm axial rise to the filament
(F-actin). Both strands of the helix have the same polarity, so the two ends of the
filament are structurally different, termed barbed and pointed ends. The barbed end
assembles and disassembles monomers two orders of magnitude faster than the pointed
end. In the absence of nucleotide hydrolysis, the critical concentration of G-actin—
when the rates of polymerization and depolymerization balance—is the same at both
ends. At this concentration, the average length and position of a filament do not
change. However, actin monomers bind ATP, and the filaments they polymerize into
become dynamically asymmetric: the barbed end is ATP-capped; ATP inside the fil-
ament is hydrolyzed, and the phosphate group released, so there is ADP-actin, with
a tendency to disassemble, at the filament’s pointed end. As a result of this asym-
metry, the effective affinity for new monomers at the barbed end is high and the
critical concentration is low, ∼0.2 µM. On the pointed end, the monomer affinity is
low so that the corresponding critical concentration is higher, ∼0.7 µM. The conse-
quence of this asymmetry is the non-equilibrium process of treadmilling: net depo-
lymerization from the pointed end balanced by net polymerization onto the barbed
end without changing its average length. In the cytoplasm, the monomers release
ADP and bind ATP and recycle by diffusion. If such filament adheres to the sur-
face and is enveloped by the plasma membrane, within which ADP-ATP re-charge is
taking place, then the actin treadmill can serve as the basic cell motility mechanism
(Fig. 1a).

First modeling efforts [46,79,118] were directed at quantifying this actin treadmill
and using thermodynamics to understand the nature and magnitude of the polymer-
ization force. These early works introduced fundamental ideas that are still used in
developing increasingly complex models. Another crucial step in quantifying motil-
ity was the measurement of the rates of actin polymerization and disassembly [86]
that provided parameter values for the previously conceptual models. The modelers
realized very early that cell motility is the process that involves a combination of
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chemical kinetics, transport and physical forces and movements of a polymer network
interacting with a vast number of other proteins, and so the problem can be formu-
lated and treated mathematically by combining models of continuum mechanics and
biochemical kinetics [34,80,123].

Here, we review the modern state of the field of mathematical and computational
cell motility. Despite it being specialized, it is already so vast that we had to limit
ourselves to relatively few examples, the choice of which is no doubt skewed by the
author’s tastes. Readers who would like wider and more balanced picture will have
to read other reviews, from early ones [25,67,105] to more recent [18,59,88,93],
as well as textbooks [13,47,89]. We start with introduction into the relatively well
understood lamellipodial motility and review modeling of three main processes—
protrusion, contraction and adhesion. We then discuss integrative models of whole
motile cells, and after a survey of related models of cell polarization and other
motile systems, conclude with discussion of open questions and modeling meth-
odology. For the benefit of the reader who might be interested in getting involved
into cell motility modeling, we use the bold question sign (?) to mark the open
questions.

ATP

ADP

Protrusion

Retraction

A

B

Actin filament          Arp2/3 complex         Capping protein      ADF/cofilin Myosin

Fig. 1 Schematic cell motility cycle; a side view, b top view
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2 Dendritic-nucleation hypothesis and network contraction model

Actin treadmill described above illustrates the principle of locomotion but does not
explain how thousands of actin filaments self-organize into motile networks. This
self-organization was unraveled by a number of studies that culminated in dendritic-
nucleation model [74] and myosin-powered network contraction model [107] that
together explained lamellipodial motility. Not all cells use lamellipodia as motile
appendages, but many do, and it is the best understood motile system that attracted
most of the modeling effort. In this review, we focus on this mode of locomotion and
discuss two other types in the last section. Reader interested in amoeboid mode of
locomotion would have to look up the reviews [36,37,45] and references therein.

Lamellipod, the motile engine of the cell, is its front, advancing part. It is a flat leaf-
like extension filled with a dense rectangular actin network [104] It is only a few tenths
of a micron thick but is tens of microns long and wide (Fig. 1a, b). The cell body, con-
taining the cell nucleus and other organelles, appears to be a mechanically passive
structure pulled forward by the lamellipodial action. According to the dendritic-
nucleation hypothesis, nascent actin filaments branch from the sides of existing fila-
ments in an angularly precise way, so that there is ∼ 70◦ angle between the ‘mother’
and ‘daughter’ filaments, and all leading edge filaments’ barbed ends are oriented
forward at roughly ±35◦ to the direction of protrusion (Fig. 1b). The growing barbed
ends at the front elongate ∼0.1 µm/sec and push out the leading edge membrane, but
are capped within seconds, so individual filaments grow only to 0.1–1 µm. As the
filaments adhere to the surface, they lag behind the leading after capping edge being
replaced at the front by the next generation of filaments, so the growing barbed ends
abut the extreme leading edge of the lamellipod while the disassembling pointed ends
dominate far from the leading edge.

Thousands of myosin molecules are distributed throughout the cell. These mole-
cules are motor proteins that use ATP hydrolysis energy to glide toward actin barbed
ends, and if stalled, develop a pN-range force sliding a filament with its pointed end
forward (Fig. 5). This sliding action is the key to muscle contraction, however, in
the lamellipod, there is no crystalline telescopic arrangement of actin-myosin sar-
comeres designed for macroscopic contractions. The branching adhesive network of
short filaments constitutes a relatively rigid gel (the network is further reinforced by
crosslinking proteins), which myosin motors are unable to perturb. However, actin
network disassembles throughout the lamellipod and weakens mechanically toward
the rear (Fig. 1b). At the same time, in the coordinate system of the moving cell, myo-
sin molecules attached to the F-actin network are effectively ‘swept’ to the rear and
concentrate there. This allows dense myosin clusters at the cell rear to generate con-
tractile stresses and to collapse the largely isotropic lamellipodial actin network into
a bipolar actin-myosin bundle at the very rear of the lamellipod (Fig. 1b). Subsequent
muscle-like sliding contraction of the bundle pulls lamellipodial actin filaments into
the bundle, advancing the rear boundary of the lamellipod forward. At the same time,
adhesion complexes assembled at the front ‘age’ and largely disassemble at the rear,
allowing the myosin-powered contraction to pull the bulk of the cell forward.

A big part of the dendritic-nucleation model is a beautiful molecular machinery
of the lamellipodial treadmill: first, active GTPases and phosphoinositides activate
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WASP/Scar proteins, which in turn activate Arp2/3 protein complexes nucleating
nascent actin filaments at the side of the existent filaments. Proteins of the ADF/cofi-
lin family accelerate F-actin disassembly across the lamellipod. G-actin produced in
the process of the disassembly is sequestered by ADF/cofilin, but then rapid exchange
with two other important actin binding proteins, profilin and thymosin, ensues, as
well as ADP-ATP exchange. Actin-thymosin complexes cannot polymerize and are
maintained by the cell as a ‘backup’ pool, while actin-profilin complexes are able to
assemble onto the uncapped barbed ends. G-actin is delivered from the depolymeriza-
tion sites to the leading edge by diffusion. The important point of the model is that the
lamellipodial network advances by array treadmilling, rather than by treadmilling of
individual filaments: barbed ends of a few filaments grow at the leading edge, while
their pointed ends are stable; other filaments have both ends capped; yet others have
the barbed ends capped and the pointed ends depolymerizing.

This combined dendritic-nucleation and network contraction hypotheses presented
an unusually complete qualitative scheme begging for physical and mathematical scru-
tiny. Another unusual feature of this model was availability of many parameter values
such as reaction rates, concentrations, diffusion coefficients, etc. [2], largely due to the
leadership of T. Pollard who tirelessly promoted quantitative and modeling approaches
in cell biology for decades. These hypotheses pose a number of questions that required
combined modeling/experimental approaches. These are:

– What is the nature of the force pushing out the cell front?
– How is the G-actin concentration high enough for rapid locomotion maintained?
– Is diffusion fast enough to recycle G-actin, Arp2/3 and other essential proteins?
– What is the necessary contraction force to pull up the rear, how is its direction and

distribution regulated?
– What is the molecular dynamics underlining graded adhesion? What are the

mechanical properties of the adhesions?
– What determines the cell shape and size?
– How is the lamellipodial polarity maintained and how does the cell choose direction

in which to crawl?
– What are mechanical properties of the actin-myosin network and how are these

properties regulated?

In what follows, we review the modeling efforts accompanying experimental studies
to answer these questions.

3 Protrusion

Protrusion is the best researched and understood of all locomotion steps. Especially,
force of protrusion was modeled vigorously following pioneering ideas of T. Hill.
Modeling protrusion was recently reviewed; the reader is referred to [73] for more
detail. ‘Polymerization Brownian ratchet’ model [85] accounts for the force generated
by polymerization when the polymers are rigid. According to this model, an object in
front of the filament diffuses away from the tip, creating a gap sufficient for monomers
to intercalate and assemble onto the tip, thereby inhibiting the object from diffusing
backward (Fig. 2). Even when a resisting load force is applied to the object, Brownian
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motion can still create a sufficient gap, and so the object’s diffusion is biased forward.
If the polymer is not rigid, its own thermal undulations can create a gap between its
tip and the load [71]. If the gap is large enough and persists long enough, a monomer
can intercalate into the gap and bind onto the tip of the growing actin filament. This
increases the filament’s length so that when the tip contacts the load the polymer is
bent and the resulting elastic force pushes on the load. In general, both filament and
load (cell membrane) are fluctuating, and the combined effect can be sufficient to
allow intercalation of monomers and consequent force generation.

These ‘ratchet’ models used differential-difference equations of the following type
(Fig. 2):

∂p

∂t
= D

∂2 p

∂x2 + D f

kB T

∂p

∂x

+
{

konap(x + δ)− koff p(x), x < δ

kona[p(x + δ)− p(x)] + koff [p(x − δ)− p(x)], x > δ
(1)

where p (x, t) is the probability density function for the gap of width x, D is the effec-
tive diffusion coefficient, f is the load force opposing polymerization, kB T ≈ 4 pN· nm
is the thermal energy, δ is the half-monomer size, koff ≈ 1/ sec is the monomer dis-
assembly rate, kon ≈ 10/ (µM sec) is the assembly rate, a ∼ 10 µM is the G-actin
concentration. In this equation, the first term describes effective thermal diffusion of
the bending filament and membrane in front of it, the second one is responsible for
the force (membrane resistance)-generated drift closing the gap, while the difference
terms account for the ‘jumps’ of the gap size after the assembly/disassembly acts.
Characteristic parameter values δ ≈ 3 nm, D ∼ 105 nm2/ sec are such that the ther-
mal diffusion is much faster than the relatively slow actin kinetics (D/δ2 ∼ 104 sec �

Fig. 2 Polymerization ratchet
model: rapid thermal
undulations of both filament and
membrane are ratcheted by the
intercalation of actin monomers
into the gap between the barbed
end and membrane. Notations
are explained in the text
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kona ∼ 100/ sec), so singular perturbation theory allows finding the quasi-steady gap
probability distribution p ∼ exp [− f δ/kB T ], and then to derive the force–velocity
relation:

V ≈ δ (kona exp [− f δ/kB T ] − koff) (2)

where V is the net filament growth rate. One important conclusion from this relation
is the estimate of the force that stalls the filament growth: if V = 0, then

fstall ≈ (kB T/δ) · ln [kona/koff ] (3)

This formula predicts that one filament can generate force in the pN range: kB T/δ ∼
1pN, while the logarithmic factor ∼ 5 is insensitive to exact parameter values. Exper-
imental measurements [35,50], indeed, report the pN range forces. However, one has
to be cautious in claiming that these measurements support the ratchet theories: Kovar
and Pollard [50] used filaments with protein formin at the growing barbed end that
alters the polymerization process, while Footer et al. [35] used a filament bundle, in
which the details of the force distribution among dynamic filaments is still unclear.

These theories made two other simple predictions: to grow against membrane resis-
tance, the filaments should be neither too short (filaments shorter than ∼70 nm are too
rigid to bend enough), nor too long (filaments longer than 500 nm are too soft, so the
load would simply buckle them). Also, the optimal growth of the filaments is achieved
when they subtend the leading edge at an angle: filaments parallel to the leading edge
obviously can grow fast, albeit without causing protrusion, while those normal to the
leading edge are effectively too rigid to bend enough. These two predictions were
instrumental for formulating the dendritic-nucleation model, when the experimen-
talists realized that the capping limits filaments’ lengths to tenths of a micron, and
Arp2/3-mediated branching keeps the filaments at ±35◦ to the direction of protrusion.
Recently, ratchet models underwent further development when it was suggested, fol-
lowing earlier theoretical work [39], that some of actin filaments are attached to the
surface they push [71]. The ‘tethered ratchet’ model explains the mechanism in this
case by assuming that the filaments attach to the surface transiently, dissociating fast
and growing freely until getting capped and losing contact with the surface altogether.
During this process, the attached filaments are in tension generating effective resis-
tance and friction, while the dissociated filaments are in compression, and generate
the pushing force.

One alternative model of protrusion proposes that all filaments are attached to the
surface: all pushing barbed ends are clamped to an end-tracking protein (peculiar
stepping motor coupling protrusion to ATP hydrolysis) associated with the surface
[29]. This model would be able to explain forces larger and a variety of force-velocity
relations wider than those predicted by the ratchet models. Another influential model
draws attention to elastic shear stress developed by recoil of the actin meshwork gen-
erated by growth and pushing force at the boundary [39]. This model was developed
for geometry different from that of the lamellipod, and it is based on clever scaling
estimates. Derivation and mathematical and numerical analysis of a meso-scale model
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of viscoelastic (see below) growing actin network with microscopic force generators
at the boundary (?) is an urgent and potentially very rewarding task.

An important aspect of the protrusion process is the self-organization of the
dendritic actin network. Its angular organization was modeled in a very elegant paper
[62]. The authors assumed that the rate of capping, c (φ), depends on angle φ between
the growing filament and direction of protrusion (Fig. 3a) because filaments more nor-
mal to the leading edge bend away from it less and are more protected from capping
by some molecular complexes at the leading edge. Furthermore, as discussed above,
if a ‘mother’ filament growing at angle φ′ sprouts a ‘daughter’ filament, then the latter
grows on average at either angle φ = φ′ + ψ , or φ = φ′ − ψ , where ψ = 70◦.
Introducing the angle-dependent rate of branching K (θ) with a peak at ψ = 70◦, the
integral equation describing the filament angular distribution n (φ, t) was derived:

∂n

∂t
(φ, t) = −c (φ) n (φ, t)+

π∫
−π

(
K (φ′ + ψ − φ)

+K (φ′ − ψ − φ)
)

n
(
φ′, t

)
dφ′ (4)

Solution of this equation revealed two peaks at ±35◦ (also confirmed experimen-
tally) important for effective protrusion, as predicted by the ratchet models. Arp2/3
mediated branching imposes a 70◦ angle between the peaks, obviously, but this does
not explain the symmetric±35◦ orientation of the filaments relative to the leading edge.
The model explains this symmetry mathematically demonstrating that the angularly
symmetric mother-daughter filament pairs ‘survive’, while the asymmetric (relative
to the leading edge) pairs do not (Fig. 3a). At the same time, this model provides a

A B xδ

yδ

Capping protein       Arp2/3 complex

x

F

Fig. 3 a Angular organization of the lamellipodial actin array: top ‘Mother and daughter’ filaments grow at
70◦ relative to each other because of Arp2/3 geometry. Barbed ends growing at approximately 35◦ relative
to the protrusion direction are close to the cell membrane and protected from capping. If the mother filament
is almost normal to the membrane, then the daughter filament is almost normal to the protrusion direction,
lags behind, is capped rapidly, and does not branch out next generation filaments. These processes cause
angular symmetry of the actin array. b Spatial (lateral) organization of the lamellipodial actin array. Top
advancement of the leading edge (δy) causes the lateral flow of the growing barbed ends (δx). Together
with two other processes (capping and Arp2/3-mediated branching), these lead to the inverted parabolic
distribution of the F-actin density along the leading edge (bottom)
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plausible explanation for the actin polarization: barbed ends growing away from the
leading edge get capped fast, while those growing forward do not.

Actin filaments self-organize not only in angular space, but also in physical space
[53]: filament density along the leading edge looks like an inverted parabola (Fig. 3b),
with density high at the center and low at the sides. A simple explanation of this
phenomenon [53] is the balance of capping, branching and lateral flow [104]. The
latter is effective sliding of the barbed ends laterally along the advancing leading edge
(Fig. 3b). These three processes are described by respective terms in the equation for
the filament spatial distribution n (x, t):

∂n±

∂t
(x, t) = −cn± + b

(
n∓) ∓ ∂n±

∂x
(5)

Here index ± corresponds to right-/left-oriented filaments. Solution of this equa-
tion predicts the data very well [53]. A very promising open modeling project is to
derive a combined spatial-angular model (using integro-PDEs) of the leading edge
actin dynamics (?) without some of severe simplifications that were used earlier.

All models described above rely on solving differential equations for determinis-
tic continuous densities. This classical method of applied mathematics can go only
that far in cell biology, where systems often consist of thousands of molecules and
so are not microscopic, but they are not macroscopic either: fluctuations of chemical
or physical quantities in the cell are comparable in magnitude to the average values
of these quantities. Therefore, the discrete nature of the molecular components can-
not be neglected, so computational methods taking into account stochastic effects,
albeit missing some of the insight and mathematical elegance, must be used. Such
Monte Carlo-like methods are usually simulations of agent-based models, in which
each molecule is represented explicitly and interactions between them obey simple
rules. Excellent recent example of such approach, pioneered in [16], is the recent stud-
ies [99,100] that simulated the lamellipodial dendritic network growing against resis-
tive elastic membrane. This model confirmed many predictions of models described
above without simplifications necessary to use continuous math tools.

Recently, all protrusion models are facing challenges from advanced biophysical
experiments measuring the force-velocity relations for growing actin networks. The
results [35,84,91] are not easy to interpret in terms of the simple models (with some
notable exceptions when results are explained by calculations published in the same
paper [63]), and often with other experiments, most likely because the existing models
are not advanced enough and do not take into account properly the force-dependent
network self-organization. One notable, albeit limited, exception is the autocatalytic
branching theory [17] that assumes that the rate of the filament branching is propor-
tional to the density of the existent leading edge filaments. An unexpected conclusion
of this theory is that the protrusion rate does not depend on the load: effectively,
greater load force causes faster branching, and therefore greater actin density, so the
load per filament remains constant leaving the growth rate unchanged. A very impor-
tant open problem is to develop a comprehensive model of coupled actin network
self-organization and force generation (?) that would explain fascinating history-
dependent effects [84].
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Besides the force generation, other important factor of protrusion is the rate of
recycling of G-actin to the leading edge where it assembles onto the growing barbed
ends. Note that Eq. (2) for the actin growth rate shows that the protrusion rate is
limited not only by the membrane resistance, f, but also by the G-actin concentration
at the front, a. Note also that the rate of the single actin filament treadmill is equal to
koffδ ∼ 3 nm/ sec, which is two orders of magnitude less than the observed protru-
sion rate of rapid cells. The answer to this paradox was suggested by the pioneering
funneling model [15], which suggested that in the steadily treadmilling lamellipodial
array, the barbed-end capping produces a shortage of the number of growing barbed
ends, which is N ∼ 100 times less than that of the shortening pointed ends (Fig. 4).
This keeps the supply of monomers plentiful, and accelerates growth of any barbed
ends that are temporarily uncapped to ∼ Nkoffδ ∼ 0.3 µm/ sec, as observed. Another
issue, however, is that the G-actin disassembling away from the leading edge has
to diffuse to the front, and also go through the chain of nucleotide- and accessory
protein-exchanging reactions. Respective diffusion–reaction equations were solved in
[69,72,95], and it was shown that diffusion is fast enough to move actin monomers
across the lamellipod. These models also made an interesting, supported indirectly but
still unconfirmed directly, prediction that the number of the leading barbed ends has
to be fine-tuned for faster protrusion: too few filaments are too weak to push, while
too many deplete the G-actin pool.

Fig. 4 Funneling effect: a relatively small number of the uncapped filaments grow mostly at the leading
edge. There are many more disassembling pointed ends across the lamellipod. The monomer flux from
many pointed ends is funneled to the relatively few barbed ends
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Besides diffusion, convective D’Arcy flow of the cytoplasm that can be caused by
myosin-driven pressure gradients [20,95] can also transport G-actin. This flow direc-
tion and magnitude would drastically depend on cell membrane permeability to water,
which is unknown. Thorough model of the porous flow of cytoplasm in the lamellipod
is suggested in [21], yet further work in the direction of developing and testing 3D
models is needed (?).

Another piece of the actin recycling puzzle has to do with coupling ATP hydro-
lysis with the actin treadmill. Recent theories of such coupling in a single filament
[9,111,106] modeled interactions of each individual monomer as they exchange on and
off the ends and undergo ATPase reactions By analyzing nucleotide profiles within the
filament, Bindschadler et al. [9] predicted that a combination of enhancing phosphate
release, increasing the off rate of ADP-bound subunits at pointed ends, and optimal
level of capping and are necessary to accelerate the treadmilling to rates observed in
vivo. Extension of such model from the filament treadmill to the actin array treadmill
(?) is necessary.

Finally, let us mention that in some cells, the lamellipodial leading edge is inter-
spersed with filopodia—bundles of actin filaments that are packed tightly together and
protrude forward. Recent evidence points out that the lamellipodial filaments can bend
together and ‘zipper’ into such parallel bundles [114]. Some preliminary modeling of
both emergence and maintenance of filopodia is done [6,43,72,99], but comprehensive
model of this phenomenon (?) is lacking. Such model can assist answering interesting
question whether filopodia are ‘guiding’ devices probing space ahead of the lamel-
lipod, or mechanical devices ‘penetrating’ the environment and serving as a robust
scaffold for the lamellipodial protrusion.

4 Contraction

It is not completely clear what is the physical mechanism that pulls forward the cell
body after the leading edge of the cell advances. In fact, the nature of dynamic mechan-
ical attachment between the nucleus and organelles and actin network in the motile cell
is still unknown. It is not completely out of question that no contraction is necessary
at all—in principle, it is possible that the actin array treadmill inside an inextensible
bag of plasma membrane is the minimal system for locomotion. Significant evidence,
however, points at the actin-myosin contraction as the dominant mechanism for con-
traction of the cytoskeleton and forward translocation of the cell.

The qualitative myosin-powered network contraction model [107] is one of few
studies describing respective mechanism in molecular detail, yet many mechanistic
details remain murky. One of the fascinating open questions is how does contraction
take place in a relatively disordered actin cytoskeleton: A pair of free actin filaments
would be effectively pulled by motor heads of a myosin cluster into the configura-
tion, in which the barbed ends of the filaments end up co-localized, while the lengths
of the filaments extend outward (Fig. 5), so compaction of the filaments cannot be
achieved. It is easy to imagine scenario, in which actin binding proteins exist that
preferentially associate with the barbed ends and are able to bind to more than one
end. Then, ‘mini-sarcomeres’, as in muscle, would appear, and interaction of those
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Fig. 5 Microscopic actin-myosin contraction. Top motor heads of bi-polar myosin cluster try to glide
toward respective barbed end, and as a result pull the filaments in the direction of their pointed ends until
the barbed ends are co-localized. In the end, the radius of gyration of the filament pair is usually greater
than it was in the beginning, so contraction is not achieved. Bottom if the barbed ends are crosslinked by a
binding protein, then two interacting filament pairs glide until all barbed ends are co-localized, so myosin
contracts actin

with each other mediated by myosin could lead to contraction (Fig. 5). The problem
is that such binding proteins were not observed. Relevant questions were investigated
mathematically with significant elegance in 1D in [51] where the assumptions of
pair-wise actin filament interactions and additive character of myosin sliding force
were made and integro-differential equations amenable to perturbation analysis and
numerical solutions were derived.

Usual modeling approach to contraction in continuous models is to assume that
there is an isotropic contractile stress (negative pressure) in the cytoskeleton propor-
tional to the myosin density that has to be added to passive stresses [4,42,54]. Some
discussion of possible anisotropic theory, which, if biologically important, would be
of great mathematical interest, can be found in [52]. The magnitude of the contractile
stress can be estimated from the cell size and measurements of the total traction force,
presumably myosin-generated, exerted by the cell on the substrate, ∼104–105 pN, that
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compares well with the total number (∼104–105) of myosin molecules, each able to
generate a few pN of force [33,78].

Finding the myosin contractile stress is, in fact, easier part of the problem. Harder
task is to model another aspect of contraction—mechanical properties of the actin-
myosin meshwork that determine the rates and character of its deformations in
response to the myosin-generated stress. A good introduction into relevant mechanical
behavior of the cytoskeleton can be found in [47]. A great deal of experiments and
modeling is done on elasticity of in vitro actin gels. Respective modeling involves
formulation and minimization of a free energy functional and requires very deli-
cate estimates and knowledge of statistical physics. There were very few numerical
studies; one of the most interesting and clear ones is [44]. Rheology of the cyto-
skeleton (?) is ripe for mathematical examination. Note, that length distribution of
actin filaments, which is regulated in the cell by a host of accessory proteins, is an
important factor for mechanics. The length distribution was modeled mathematically
in [32].

Physical estimates posited that the mechanical properties of such gel have a complex
nature determined, in different regimes, by either enthalpic (bending of the filaments),
or entropic (thermal undulations of the filaments) effects. These physical theories
estimated the magnitude of Young modulus, E (main characteristic of the actin gel
elasticity), of the order of

E ∼ kB T · lαp/ζ
β (6)

where α ∼ 2, β ∼ 5. In this formula, kB T ≈ 4 pN · nm is the thermal energy,
l p ∼ 10 µm is the so called persistence length of actin filament, and ζ ∼ 0.1 µm is
the mesh size in the actin gel [61] so E ∼ 104 pN/µm2. Elasticity of the keratocyte
lamellipod of this order was actually measured using atomic force microscopy [55];
however, this estimate is very sensitive to the concentration and stiffness of actin fil-
aments, so that a few fold fluctuations of these parameters could lead to orders of
magnitude variance in mechanical properties. Recently, a number of high profile com-
bined experimental and theoretical papers were published [22,38,68] that examined
effects of crosslinking and myosin contractions on the actin network elasticity. Very
complex nonlinear response of the elastic moduli to deformations were discovered
including either softening or hardening regimes. Incorporation of corresponding con-
stitutive relations into the continuous mechanical models of the motile cells (?) is an
interesting mathematical problem. Interesting novel theory of dynamics of ‘active’
actin gel is suggested in [115]

Finally, let us mention that the actin network exhibit viscous, as well as elastic
behavior [49]. Respective viscoelastic properties that can be approximated by a com-
bination of Maxwell and Kelvin–Voight models are very complex, nonlinear, and
sensitive to gel parameters. Engineering ‘spring-and-dashpot’ modeling and continu-
ous models of the viscoelastic actin cytoskeleton can be gleaned from [65] to [42,54],
respectively. Numerical analysis approaches to modeling the cytoskeleton rheology,
such as immersed boundary method [11], and reactive interpenetrating viscous flows
[4] are a powerful start for future predictive models.
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5 Adhesion

Adhesion is perhaps the hottest subfield of the cell motility these days, with tens of
biological papers published on this topic every month. Mathematical biologists who
would be well advised to get in on the ground floor should start with reviews [8,117].
The property of adhesion crucial for cell locomotion is being strong at the leading
edge and weak at the trailing edge—without it, contraction and protrusion would just
uselessly recycle cytoskeleton without forward translocation of the cell. This graded
adhesion is achieved as a result of a very complex and incompletely understood dynam-
ics of many molecules: first, integrins—transmembrane proteins that are key ingre-
dients of adhesion molecular machinery—associate with the substrate at the leading
edge, then a vast host of proteins—talin, vinculin, paxillin, FAK, alpha-actinin—to
name but a few, form adhesion complexes ultimately connecting actin network with
the substrate (Fig. 6). Some molecules in these complexes are signaling, other play
mechanical roles. Altogether, they probably constitute a Velcro-like mesh of weak
and transient links that are both malleable and resilient. The cell assembles tens of
different types of adhesions in response to various environments [122]; it is possible
that the reason for the great variety of proteins making up the adhesion complexes is
the need to diversify the adhesion type.

How the graded adhesion is maintained in the moving cell is incompletely under-
stood. This maintenance has something to do with rapid hierarchical assembly of
integrin, talin, vinculin and other adhesion molecules at the leading edge and slow
subsequent ‘aging’ of the adhesion complexes [57]. Because of the cell translocation,
this dynamics lead to weakening of the adhesions by the time the cell rear ‘catches
up’ with them (Fig. 6). Spatial gradients of regulatory molecules in the cell, such as
calpain [82]), are other important factors.

Thermodynamics and kinetics models of the adhesion complexes’ assembly and
turnover started long time ago [27,82,116]. The most important achievement of these
models was theoretical discovery confirmed by experiment that the cell speed has
a biphasic dependence on the adhesion strength [30,81]: when the adhesion is too
strong, the cell cannot retract its rear, when it is too weak, the front is pulled back
by contraction negating the protrusion. A poignant modeling problem is unraveling

Integrin                   Talin                Vinculin                  Alpha-actinin

Fig. 6 Adhesion dynamics: adhesions assemble rapidly and hierarchically at the leading edge to ensure
firm adhesion at the front, and then slowly ‘age’—disassemble—so toward the rear the adhesion strength
diminishes. Only few essential adhesion molecules are shown; the order and rate of assembly/disassembly
are not to be taken literally
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signaling-dependent adhesion assembly on the molecular level. One notable nascent
modeling effort is [19].

One of the most fascinating properties of adhesion is its complex response to force:
in many circumstances, adhesion assembles and becomes stronger with increasing
force [7]. Three conceptual qualitative models of this phenomenon are discussed in [8];
quantitative physical models of some aspects of this phenomenon, including depen-
dence of the adhesion dynamics on softness of the substratum can be gleaned from
[76,101]. Pioneering thermodynamics model of the force-dependent adhesion growth
[102] is based on the idea that application of the pulling force results in stretching of
the adhesion aggregate, consequent accumulation of elastic stresses within the aggre-
gate, and the assumption that insertion of new proteins into the aggregate results in
stress relaxation.

Finally, this mechanosensitivity of the adhesion complexes can be the reason for
the interesting self-organization of adhesions and actin-myosin stress fibers: adhesions
inside the cell are pulled into all directions by the myosin contraction, so correspond-
ing forces cancel and such adhesions remain weak. Meanwhile, adhesions at the cell
boundary are pulled only inward and grow under the influence of the contractile force.
Integro-differential mathematical model of this phenomenon [77] predicts interesting
observed effect: adhesions concentrates along curvier parts of the cell boundary.

6 Cell shape

One of the fundamental questions in cell biology is how to connect the microscopic,
subcellular cytoskeleton dynamics with geometry of the whole cell, in other words,
how to predict the cell shape from the knowledge about the protrusion, contraction and
adhesion. Mathematically, this question can be formulated in terms of usually very
difficult free boundary problem: the cell is defined as a time dependent domain 
(t)
(in 3D, or, if approximations are made, in 2D or even in 1D). Evolution of its boundary,
∂
 (t), is governed by protrusion-retraction boundary conditions that are in turn deter-
mined by essential densities defined by dynamic equations on
(t). Formulating such
self-consistent problem is difficult; even harder is to solve it numerically. Developing
respective software and methodology (?) is one of the most worthy and potentially
rewarding sub-area of cell motility modeling, because any reasonable experimental
effort in this direction will need quantitative backing. One has to be careful with mov-
ing from lower to higher dimensional models, as some physical mechanisms do not
work the same way in 1D, 2D and 3D and can give rise to different behaviors.

The simplest relevant mathematical problem is determining the 1D front-to-rear
cell length, ignoring the lateral and ventral-dorsal cell dimensions. Computational
approach to this problem is modeling the cell as a 1D chain of springs (contrac-
tile actin-myosin units) connecting nodes (material points of actin cytoskeleton) [30,
Fig. 7]). The nodes, in turn, link with the substrate through dashpots (adhesion com-
plexes). At the front and rear of the cell there are two possibilities—either advance
the leading node and pull up the rear node preserving their identity, or to mimic actin
polymerization at the front and depolymerization at the rear by adding nascent nodes
at the front and deleting nodes at the rear, respectively (Fig. 7).
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x
f (t)r (t)

Fig. 7 ‘Spring-and-dashpot’ 1D motility model

Continuous approach to the same problem can be considered as a limit of the
previous problem, in which the distance between the nodes tend to zero, and all other
variables and parameters are scaled accordingly. A few recent models [42,54,70]
have the following generic structure. Equation for the displacements u (x, t) of the
cytoskeletal material points with origin at x and at time t has the form:

β
∂u

∂t
= ∂σ

∂x
(7)

whereβ (x, t) is the adhesion viscous drag, andσ (x, t) is the stress in the cytoskeleton.
This stress in purely elastic model has the form:

σ (x, t) = E (x, t)
∂u

∂x
+ C(x, t) (8)

where E is the Young modulus of the actin meshwork, and C is the contractile stress. In
viscoelastic models, the term of the formµ ∂2u

∂t∂x , or other similar one (µ is effective vis-
cosity of F-actin), is added to the stress. These mechanical equations are complemented
by appropriate boundary conditions, equations for F-actin, myosin and adhesion trans-
port. Usually, these equations (for appropriate density ρ) have reaction-drift-diffusion
character:

∂ρ

∂t
= D

∂2ρ

∂x2 − ∂

∂x

(
∂u

∂t
ρ

)
+ S(ρ) (9)

with appropriate boundary conditions. Finally, algebraic constitutive relations are for-
mulated, for example, the contractile stress is assumed to be proportional to the myo-
sin density, etc. Most importantly, these equations are solved on the moving segment
[r (t) , f (t)], where r and f, coordinates of the rear and front, respectively, are gov-
erned by the boundary conditions determining the protrusion and retraction rates, P
and R, as functions of stress, distance, actin and myosin densities, etc.:

dr

dt
= R (σ, f − r, a,m, . . .) ,

d f

dt
= P (σ, f − r, a,m, . . .) (10)
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Analytical or numerical solutions of system (7–10) aim at finding asymptotically
stable stationary cell length ( f − r) and distributions of the stress, cytoskeleton drift
and essential densities. Mathematically, for the steadily crawling cell, a solution in the
form of the traveling pulse has to be found. This is usually done ad hoc, but the first
rigorous study [24] demonstrated that such problem can be solved up to high math-
ematical standards. A very promising untouched problem is to investigate transient
movements of the cell (?) using this 1D approach.

Ignoring the lateral dimensions of the cell is, of course, a gross simplification, so
a 2D model would be much more satisfying. Most attention was paid to modeling
characteristic fan-like shape of the lamellipod of the motile keratocyte. In this case, a
2D model is completely adequate, as the dorsal–ventral thickness of the lamellipod is
minuscule. The first important achievement in this direction was the so-called graded
radial extension model that shed light on kinematic principles underlying cell shape
[56]. This model, supported by the authors’ experiment, suggested that cell boundary
extension/retraction is locally normal to the boundary, and that the corresponding local
rate of extension/retraction is graded, decreasing from the center to the sides of the
cell (Fig. 8). This principle results in a remarkably simple geometric formula:

Vn (x) = Vn (0) cos θ (x) (11)

where θ (x) is the orientation of the normal to the leading edge at position x, Vn (x) is
the normal rate of protrusion at this position, and Vn (0) is the normal rate of protru-
sion at the cell center. The function Vn (x) can be calculated as a function of relevant
cytoskeletal stresses and densities on the cell boundary based on modeling assump-
tions, and then the profile of the leading edge (and, similarly, of the rear edge) can be
calculated by solving simple geometric equations.

This model did not explain what are the subcellular dynamic mechanisms under-
lying the proper graded extension/retraction rates. Attractive hypothesis is that at the
leading edge the protrusion rate is graded because of the graded F-actin density: greater
number of actin filaments at the center pushes the membrane faster at the center [53].
Myosin in the steadily crawling cell is ‘swept’ to the rear of the cell (see explanation
in the Sect. 7), where it contracts, pulling the rear and the sides of the cell inward
(Fig. 8). Mathematically, the effective protrusion/retraction rate at the cell boundary
is the vector sum of the actin polymerization rate and myosin powered rate of F-actin
centripetal flow [108, Fig. 8]. These data and qualitative explanations were incorpo-
rated into the 2D models of the leading edge [53] and of the whole lamellipod [95]
shapes. Notable other efforts include the model of the keratocyte shape that includes
spatial distributions of the actin-regulatory proteins [64], the ‘dendritic actin network
enveloped by elastic membrane’ keratocyte shape model [98], and the spring-and-
dashpot 2D model of the nematode sperm lamellipod ([12]; discussed more below).
All these quantitative models are based on severe simplifications, and much work is
needed to model the cell shape adequately.

Part of the question about the lamellipodial shape is the question about what lim-
its its area. There is a great number of theoretical possibilities—limiting total area
of plasma membrane, limiting number of important molecular complexes, such as
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Fig. 8 Graded radial extension model and actin growth/myosin contraction mechanism. Sum of
polymerization and centripetal actin flow (dashed arrows) result in the vector, projection of which at the
direction locally normal to the cell boundary (illustrated at the left front) gives the resulting local extension
rate, Vn (x). The steady shape of the leading edge is defined by the relation Vn (x) = Vn (0) cos θ (x).
Similar relations are applicable at the rear edge. In the framework of the moving cell, myosin is swept to
the rear, contracts visco-elastic actin network and generates centripetal actin flow that is weak at the front
and strong at the sides and rear. This allows myosin to pull up the rear, restrain the sides and let the leading
edge protrude

Arp2/3, balance of differentially size-dependent protrusion and contraction rates,
balance between adhesion and membrane mechanical energies, to name but a few.
Data to select one of the answers is lacking.

Some general principles governing the keratocyte shape-graded protrusion/retrac-
tion determining the shape, and the balance of actin polymerization and myosin pow-
ered retraction underlining the graded protrusion/retraction—are very likely applicable
to other cells. However, specific physics, biology and biochemistry vary, so different
cells would have to be approached differently. Also, the roles of the cell membrane
recycling and mechanics and of the adhesion dynamics in determining the cell shape
remain unclear. ‘Top-down’ mathematical models that do not presume detailed bio-
physical mechanisms, but instead use quantifiable rules of the cell boundary protrusion
and retraction, can complement ‘bottom-up’ models in exploring the principles of cell
migration. For example, Satulovsky et al. [97] modeled the cell as a shape machine
regulated by a circuit of local stimulation—global inhibition. By varying parameters,
this model mimicked the shapes of motile Dictyostelium, keratocyte, neuron, and
fibroblast cells with shocking faithfulness.

7 Synchronizing the steps, polarizing and choosing direction

We discussed the cell motility based on the actin treadmill implying persistent front-
back asymmetry. Natural related questions are: How is symmetry of a stationary cell
broken? How is the asymmetry of the motile cell maintained? How does the cell choose
the direction of locomotion?

The remarkable experiment [112] with lamellipodial fragments not containing
nucleus or any organelles (but containing actin, myosin, ATP and all accessory proteins

123



Mathematics of cell motility 123

in the cytoplasm) is perhaps the minimal system allowing addressing the first two
questions. When excised from the whole cell, the fragments spread into discoid shapes
and remain stably non-motile (Fig. 9). Microscopy shows that myosin is distributed
almost evenly throughout the disc, and that there is a very slow centripetal F-actin
flow caused by ineffective myosin contraction. When water is blown at the side of the
fragment, the fragment is deformed by the hydrodynamic load. If the flow is weak,
and the deformation is not great, the fragment remains stationary and recovers its
discoid shape (Fig. 9). However, if the flow is faster and is sustained for tens of sec-
onds, the fragment deforms to an almost half-disc shape, and then, even if the flow
stops, its symmetry is broken—the crescent-shaped fragment evolves, so that almost
all myosin concentrates along the rear edge, actin growth takes place along the leading
edge, and the fragment crawls steadily for hours, much like the whole keratocyte cell.
On a rare occasion, when the motile fragment encounters an obstacle, it stalls and
resumes the discoid non-motile shape. This duality in fragments’ behavior is similar
to that of the whole cell with one important distinction: stationary cells become motile
spontaneously, which is likely to involve complex RhoGTPase-dependent regulatory
pathways.

The following qualitative scenario suggests purely mechanical explanation for the
symmetry break and polarization maintenance [112]: in the symmetric state, F-actin
growth, stalled by the high membrane tension, is very slow at the edges. Myosin mol-
ecules turn over (dissociate from F-actin, diffuse and re-associate with F-actin) and
spread across the whole fragment. Thinly spread myosin generates weak contraction
causing the centripetal F-actin flow to be slow and ineffective in biasing the myosin
distribution. When the fragment is pushed from the side, actin network at this side
collapses into a bi-polar bundle, while myosin concentrates near this side creating con-
ditions for actin-myosin contraction relieving tension in the whole fragment. F-actin
starts to polymerize rapidly against the small tension along unperturbed boundary, so
the fragment starts to move as a whole away from the deformed side. In the framework
of the now motile fragment, myosin is swept to the rear, and the mechanical actin-
myosin treadmill becomes stable. Additional adhesion dynamics could be important
for this scenario that still awaits mathematical modeling.

Another possible mechanism is suggested by the ‘competition for resources’ model:
if we start with two oppositely oriented F-actin arrays of equal density (the symmet-
ric state), then it is possible that these two arrays ‘compete’ for a common pool of

Fig. 9 Fragment motility. Lamellipodial fragment excised from the whole cell assumes stationary discoid
shape. Weak transient mechanical perturbation by fluid flow does not break the fragment symmetry. Strong
persistent perturbation causes symmetry break and consequent locomotion of crescent-like fragment
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‘resources’ diffusing in the cytoplasm, i.e. G-actin or Arp2/3, or other protein com-
plexes responsible for the F-actin branching. If, as a result of a fluctuation, more than
half of these resources attach to filaments from one array, then more than half daugh-
ter filaments that grow in the same direction as the mother filaments would belong to
that array. In the next generation of filaments, the greater number of filaments from
the randomly ‘winning’ array would get the proportional share of the resources, and
sprout yet greater number of filaments. It is well known from mathematical ecology
models [31] that such ‘competition for resources’ may cause ‘win-loose’ dynamics
such that denser actin array ‘consumes’ more resources and grows further depleting
‘loosing’ array supplies and eventually taking over remaining the only stable polarized
treadmill. For dendritic actin array, a 1D computational model of this scenario was
developed in [96].

These two mechanical/transport scenarios are probably a small part of the whole
picture, because extensive studies implicate complex and redundant spatial–temporal
feedbacks between multiple signaling pathways and cytoskeleton in most of the motile
cells [5,113], so it is likely that spatial-temporal biochemical signaling participates in
initiation and maintenance of the cell treadmill. Mathematically, this more complete
situation was modeled recently in [26,64], where reactions and diffusion of Rho GTP-
ases and their interactions with actin/Arp2/3 system were considered. It was found that
interactions of small G-proteins Cdc42, Rac and Rho are responsible for the polarity
switch, and that maintenance and robustness of polarity was due to the rapid diffusion
of the inactive forms of the small G-proteins in the cytoplasm. These papers are a good
start for next generations of models.

Above, we discussed the self-polarization of the cells in the random direction. Most
of the cells, however, polarize and move in response to an extracellular cue. This pro-
cess attracted a lot of modeling recently, and we direct the reader to another review
[28] for references to the original models. Most of these models are guided by exper-
iments suggesting that the chemotactic response of the eukaryotic cells is based on
signaling reaction-diffusion processes and respective well studied PDEs. One type of
models explored Turing type mechanism [66,75] based on chemical reactions of local
fast excitation, local slow inhibition and global slow inhibition triggered by a che-
moattractant gradient. The most popular ‘local excitation-global inhibition’ (LEGI)
model proposed that directional sensing depends on a balance between a rapid, local
excitation and a slower global inhibition processes [58]. Receptor (on the cell surface
reacting with the spatially varying chemoattractant) occupancy controls the steady-
state levels of each process, and the difference between the two regulates the response.
As inhibition is assumed to depend on average receptor occupancy, its steady-state
level is less than that of local excitation at the front of the cell. At the back, the situ-
ation is reversed. In the third type of models [94], the cell responds temporally to the
‘first hit’: a second messenger, generated by local activation of the membrane, diffuses
rapidly (faster than the chemoattractant) through the interior of the cell, suppresses
the activation of the back of the cell, and converts the temporal gradient into an initial
cellular asymmetry. All these models are so far conceptual, rather than detailed, but
rapidly evolving experimental techniques continue to provide necessary data, so the
task of developing predictive models will soon be realistic.
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8 Two other motile systems

Quite a number of other motile systems provide fascinating data and food for modeling.
Here, we mention only two examples. Many intracellular pathogens are propelled by
the polymerization of actin filaments serving as simplified model systems for eukary-
otic cell motility: a purely protrusive system without adhesion, contraction, and cell
membrane. In particular, Listeria propels itself by assembling the host cell actin into a
comet-like tail of cross-linked filaments, with their polymerizing barbed ends oriented
toward the bacterial surface [14, Fig. 10]. Only one protein on the surface of Listeria,
ActA, is required for motility. In addition to actin, ActA and ATP, only a handful
of proteins in cytoplasmic extracts are essential for bacterial propulsion, including
Arp2/3, capping proteins and the depolymerizing factor, ADF/cofilin [60].

Listeria propulsion attracted a great deal of modeling; one of the earliest notable
efforts was the elastic propulsion model [39] suggesting that the curved rear surface
of the cell is not merely pushed by growing filaments, but rather ‘squeezed’ for-
ward by an elastic stress. This model treats the actin network as an isotropic elastic
continuum not considering explicitly the microscopic mechanism of the force gener-
ation at the surface. The squeezing stress develops when the growth of actin at the
surface pushes the actin gel outward stretching it and generating tangential tension
balanced by radial compression at the surface (Fig. 10). Existence of this squeezing
stress was experimentally observed (see [83] for review).

One of the latest ‘state-of-art’ modeling studies is the ‘nano-propulsion’ model
[3]—the first in silico reconstruction of Listeria’s movement. In this model, the fil-
aments propel the virtual bacterium by the tethered ratchet mechanism, but also the
realistic geometry and actin network architecture are simulated stochastically. The
model also takes into account the reaction–diffusion process of actin recycling and
hydrolysis. The simulations result in a vivid and realistic mimicking of the Listeria’s
propulsion. A great open problem is combining macroscopic elastic propulsion model
and microscopic force generation model at the surface into a mesoscopic theory (?)
for Listeria.

Other phenomena attracting modeling efforts are: (i) Listeria appears to rotate about
its long axis as it moves, indicating that, in addition to developing an axial thrust, the
actin tail generates a net torque about the bacterial long axis [103]. (ii) Symmetry
breaking [83]: a ‘cloud’ of actin growing around beads or flexible vesicles loses its
symmetry, the actin comet develops, and the bead’s motility ensues. The ratchet mod-
els could explain this phenomenon as cooperative stochastic acts of filament growth
at one side and actin/crosslinks disassembly at the other side [110]. Elastic models are
more successful in describing the sequence of events for large beads: growth of actin
at the bead’s surface pushes the outer actin layer outward stretching it and generating
growing tangential stress. When critical tangential stress is reached, a crack at the gel
outer surface develops and propagates to the bead’s surface [109]. Most of relevant
modeling is based on non-rigorous estimates; consistent mathematical theories (?) are
pending.

Another example is crawling of the nematode Ascaris suum, the locomotion machin-
ery of which is dramatically simplified [11]. Instead of actin, movement is powered
by a cytoskeleton built from filaments of major sperm protein (MSP). MSP monomers
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Fig. 10 Listeria motility. Radial growth and resulting deformations of the actin comet-like tail generate
elastic ‘squeezing’ stress propelling the cell forward. Inset dendritic actin array at the rear surface of the
cell

associate into symmetrical dimers that polymerize into helical filaments. Hydropho-
bic and electrostatic interfaces allow these filaments to bundle together, forming thick
rope-like fibers that extend from the front to the rear of the lamellipod. The sperm main-
tain a pH gradient that decreases from the front to the rear of the cell and probably
has an important regulatory function. In the more alkaline environment at the leading
edge, MSP assembles into filaments. A few models [12,48,70] suggest that these fil-
aments then bundle together into fibers, which forces flexible filaments to assume an
end-to-end distance that is longer than it would be in solution, and drive finger-like
protrusions from the cell surface (Fig. 10). These bundles are stiffer than, and con-
tain the stored elastic energy of, their constituent filaments. In the acidic cytoplasm at
the rear, the fibers lose their adhesion to the substratum, unbundle, and disassemble
releasing stored elastic energy and contracting.

Serious mathematical work on this system is just starting, pioneered by a rigor-
ous treatment [24]. One important aspect of the Ascaris motility, and probably of
actin-based locomotion, almost untouched theoretically with the notable exception of
[119], stems from the fact that both actin and MSP are highly charged. Because of
the counterions to the fixed charges, the filaments of a cross-linked polyelectrolyte
cytoskeletal networks are always in a state of elastic tension. Transient changes in
mechanical properties of the network are accompanied by changes in local osmotic
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pressure that could be very significant. Relevant physical models are very difficult,
yet mathematically beautiful, and beg for accurate mathematical work.

9 Challenges, questions, directions

Three corner stones of cell biology—biochemistry, microscopy, and genetics—have
been recently complemented by experimental biophysical and theoretical modeling
methods. There are two important roles of mathematical modeling in biology. The
first one is a part of the reductionist approach [87]: after the molecular inventory is
complete, and concentrations and rates are measured, both biochemical in vitro and
mathematical in silico reconstitutions serve as quantitative test for hypotheses about
working of biological modules. The second role is to provide a framework for the next
step—synthetic, systems approach—understanding how these modules work together.

Significant success of reductionist modeling of motility modules, such as protru-
sion, adhesion, contraction, and polarity does not mean that the effort in this direction
can relax. Quite the contrary—with rare exceptions, the existent models are concep-
tual, rather than detailed and predictive. Four things are to be done: (1) New conceptual
models have to be suggested, but only if they are essentially different from the existent
ones, and if there is compelling qualitative data supporting such models. (2) Much
more importantly, conceptual models have to be made detailed and predictive by quan-
tifying actual biochemical pathways and physical mechanisms suggested by data and
inferring values of model parameters from these data. (3) There are usually a number
of alternative explanations for the same phenomenon. When enough data is available,
it becomes possible to limit the number of possible explanations using modeling, and
ultimately end up with the only true one. The caveat here is that very often in biology
redundant mechanisms work in the same cells to make the cell behavior more robust
and resilient. (4) Most of the models have ‘theoretical physics’ level of rigorousness;
neither modelers deeply involved with experiment, nor, needless to say, experimental-
ists, are interested in actually proving mathematical results of the model. Meanwhile,
rigorous mathematical proofs, fallen out of favor in the past decade, sometime bear
unexpected fruit overlooked by hasty ‘front-line’ modelers, besides being intellec-
tually satisfying and beautiful. Therefore, traditional mathematical biologists by no
means should shy away from cell motility, but rather be on the lookout for interesting
mathematical structures.

As far as systems-level modeling is concerned, in cell motility it is in its infancy.
However, valuable lessons can already be learned from other areas where systems
approaches are used. One of these lessons is that it will be important to bridge
micro- and macro-scales, so the problems will become multi-scale [92]. Two related
methodological problems that will arise are: some software for numerical analysis of
multi-scale models already exists, but normally it requires formidable computer power
and consumes a lot of time. However, models in cell biology are short-lived and mal-
leable, and for them to be useful, one computer simulation cannot be longer than
minutes, in order to scan parameter space, compare results to data, change the model
many times and screen again. Another problem is that intuition fails to deal with com-
plex multi-scale models, so errors cannot be easily captured, and results interpreted.
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The only suggestion we have is always to combine small-scale ‘caricature’ models
with detailed large-scale ones; then, going back-and-forth between different levels
both build intuition and ensures correctness.

We hope that both mathematically oriented and biologically inspired modelers will
be inspired by this article to try their hand in cell motility, because there is a number
of both mathematical problems and biological questions in the area that require urgent
attention. Many interesting mathematical projects do not require following hundreds
of papers and memorizing tens of pathways. These projects, to name but a few, are:
developing easy to use numerical methods for (i) solving PDE systems (both reac-
tion-drift-diffusion, and continuum mechanics equations) on free boundary domains,
(ii) simulating stochastic models of multiple molecules engaged in both chemical
and mechanical interactions; (iii) developing adequate theory of the actin-myosin
active gel.

Biologically motivated modeling is very rewarding: a natural high of recognizing
that your model helped to understand reality is incomparable. There are a number of
practical matters that a beginner has to keep in mind when starting on this path. Such
work is a long haul–it takes years of reading biological papers, hanging around labs
and talking to experimentalists to know a biological subfield intimately enough to be
able to formulate right questions and answer them in a way interesting for biologists.
One has to be prepared for short life of models and for not being afraid to make spe-
cific testable predictions, some of which will be proven wrong. The most crucial is
the right choice of the biological questions. So, what are some of these questions in
cell motility field that require modeling, in addition to the ones already discussed?

One of the most poignant and important questions: why is the lamellipod flat (?)
Why do actin filaments not grow upward from the surface ‘puffing the lamellipod up’?
Some models argued that myosin based contraction, or, in general, mechanical effects
are responsible. Another possibility is that for some reason actin filaments can grow
only in a close contact with adhesion complexes at the surface. Yet another option
is some peculiar property of the dorsal membrane inhibiting actin polymerization.
Similar more general question is: what regulates the height of more three-dimensional
protrusions of cells like leukocytes or neutrophils?

Dendritic actin array in the lamellipod has a very peculiar geometry revealed by
electron microscopy studies: there is relatively irregular ‘brushwork’ of short actin fil-
aments near the leading edge, and more smooth and regular, nearly rectangular lattice
of longer filaments farther behind the front. What are the dynamics underlining this
structure (?)

There are many experimental indications that the leading edge of the motile cells
is structurally and biochemically very special: WASP/Scar proteins responsible for
activating Arp2/3 complexes are there, as well as adhesion assembly, specific mem-
brane structure, etc. What makes and maintains this distinction (?) One attractive
possibility is a positive feedback loop: if there is an elevated concentration of adhe-
sion/polymerization-enhancing complexes at the boundary, then filaments’ growing
barbed ends would follow this boundary’s extension; barbed-end-directed molecu-
lar motors of myosin family could transport more protein complexes to the barbed
ends, in turn maintaining high growing end concentration, etc. Another possible loop
is: polymerizing barbed ends push and curve the leading edge membrane; hypothetic

123



Mathematics of cell motility 129

membrane proteins have a curved shape making it preferential for them to concentrate
in the curved part of the membrane; these proteins may be polymerization-enhancing.
No doubt, both of these explanations are too simplistic.

Each of the protrusion models described above is supported by a number of obser-
vations, and contradicts some other observations. Multiple explanations of this state of
affairs are possible, including especially redundancy of simultaneously acting protru-
sion mechanisms, and interactions of the protrusive system with membrane mechanics
[6,41] and adhesion dynamics [10]. Comprehensive model of redundant protrusion
mechanisms (?) interacting with other subcellular systems is one of the most urgent
challenges in cell motility. There are other physical mechanisms, such as gel swelling
[45] and osmotic pressure [20], that also have to be considered.

Recently, the dendritic-nucleation hypothesis of the lamellipodial motility met a
very serious challenge, when quantitative experiments [90] hinted at existence of two
lamellipodial networks—frontal lamellipodial actin array and ‘lamellar’ meshwork
at the rear, which is thicker, has more chaotic actin geometry, and turns over dif-
ferently. Theoretical explanation of this duality, which seems to be general (?), is
pending. Similarly, protrusion–adhesion–contraction cycles are more complex than
what we described for the simple shaped steadily crawling cells [40]. Detailed models
of such realistic cycles (?), going much farther than first schematic attempts [120], are
needed.

The role of the cell membrane, other than few phenomena discussed earlier, remains
largely unexplored. Pathways of its recycling from the rear to the front during loco-
motion (endocytosis at the rear and exocytosis at the front, or simple flow of lipids
in the plane of the membrane are possible, as well as more complex processes) are
not elucidated. How rapidly the plasma membrane area can change is unclear; if this
change is slow, whether or not total membrane area is a limiting factor (?) for the cell
size is not clear either. Modeling could be a great help in addressing these questions.

Last, but not least, is the problem of modeling three-dimensional cell motility.
Essentially 2D lamellipodial motility attracted much attention in the past decades
because it was convenient for using experimental methods. However, in most biolog-
ical and medical situations, the cells move not on the flat surfaces, but rather through
3D extra-cellular matrices. One of the most important recently discussed phenomena
is cancer cells’ ability to exhibit both 2D and 3D motility depending on the environ-
ment, as well as a switch between them [36]. Scarce data are available about 3D cell
crawling through the extra-cellular matrices, but it is already clear that character of the
3D protrusions is very different from that in 3D. Also, adhesion and active remodeling
of the environment play much greater roles in 3D. Modeling of the 3D cell motility
barely started [121]: this is perhaps the most promising avenue (?) for future model-
ers. Needless to say, mathematical and numerical challenges in this direction will be
formidable.

Answering these questions will require suggesting physical-chemical mechanisms
for modules of motility, and adding layers of complexity of spatial–temporal regula-
tion, as well as analyzing systems-level features of sensitivity, robustness and redun-
dancy of the motile networks. Ultimately, the modeling will be complete when not
only relatively simple qualitative diagrams, like dendritic-nucleation model, but also
comprehensive mechanochemical ‘interactomes’ involving tens of essential molecular
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players (see the mind-boggling figures in [122] and [113]), are quantified and
simulated. So, to go back to the title of this article, do we have cell motility’s number?
Not quite yet, but we are getting there …
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