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Public key cryptography is a major interdisciplinary subject with many real-world appli-
cations, such as digital signatures. A strong background in the mathematics underlying
public key cryptography is essential for a deep understanding of the subject, and this book
provides exactly that for students and researchers in mathematics, computer science and
electrical engineering.

Carefully written to communicate the major ideas and techniques of public key cryp-
tography to a wide readership, this text is enlivened throughout with historical remarks and
insightful perspectives on the development of the subject. Numerous examples, proofs and
exercises make it suitable as a textbook for an advanced course, as well as for self-study.
For more experienced researchers, it serves as a convenient reference for many important
topics: the Pollard algorithms, Maurer reduction, isogenies, algebraic tori, hyperelliptic
curves, lattices and many more.

steven d. galbraith is a leading international authority on the mathematics of public
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Preface

The book has grown from lecture notes of a Master’s level course in mathematics, for
students who have already attended a cryptography course along the lines of Stinson’s or
Smart’s books. The book is therefore suitable as a teaching tool or for self-study. However,
it is not expected that the book will be read linearly. Indeed, we discourage anyone to start
reading with either Part I, Part II or Part III. The best place to start, for an understanding
of mathematical cryptography, is probably Part V (replacing all references to “algebraic
group G” by F∗

p). For an introduction to RSA and Rabin one could start reading at Part VI
and ignore most references to the earlier parts.

Exercises are distributed throughout the book so that the reader performing self-study
can do them at precisely the right point in their learning. Readers may find exercises denoted
by � somewhat more difficult than the others, but it would be dangerous to assume that
everyone’s experience of the exercises will be the same.

Despite our best efforts, it is inevitable that the book will contain errors and mis-
leading statements. Errata will be listed on the author’s webpage for the book at
www.math.auckland.ac.nz/∼sgal018/crypto-book/crypto-book.html. Readers are encour-
aged to bring any errors to the attention of the author.

I would like to thank Royal Holloway, University of London and the University of
Auckland, each of which in turn was my employer for a substantial time while I was
writing the book. I also thank the EPSRC, who supported my research with an advanced
fellowship for the first few years of writing the book.

The book is dedicated to Siouxsie and Eve, both of whom tolerated my obsession with
writing for the last four years.

Steven Galbraith
Auckland
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