MATHEMATICS OF PUBLIC KEY CRYPTOGRAPHY

Public key cryptography is a major interdisciplinary subject with many real-world applications, such as digital signatures. A strong background in the mathematics underlying public key cryptography is essential for a deep understanding of the subject, and this book provides exactly that for students and researchers in mathematics, computer science and electrical engineering.

Carefully written to communicate the major ideas and techniques of public key cryptography to a wide readership, this text is enlivened throughout with historical remarks and insightful perspectives on the development of the subject. Numerous examples, proofs and exercises make it suitable as a textbook for an advanced course, as well as for self-study. For more experienced researchers, it serves as a convenient reference for many important topics: the Pollard algorithms, Maurer reduction, isogenies, algebraic tori, hyperelliptic curves, lattices and many more.

STEVEN D. GALBRAITH is a leading international authority on the mathematics of public key cryptography. He is an Associate Professor in the Department of Mathematics at the University of Auckland.

Cambridge University Press 978-1-107-01392-6 - Mathematics of Public Key Cryptography Steven D. Galbraith Frontmatter <u>More information</u> Cambridge University Press 978-1-107-01392-6 - Mathematics of Public Key Cryptography Steven D. Galbraith Frontmatter <u>More information</u>

MATHEMATICS OF PUBLIC KEY CRYPTOGRAPHY

STEVEN D. GALBRAITH University of Auckland

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107013926

© S. D. Galbraith 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Galbraith, Steven D. Mathematics of public key cryptography / Steven D. Galbraith. p. cm. Includes bibliographical references and index. ISBN 978-1-107-01392-6 (hardback) 1. Coding theory. 2. Cryptography – Mathematics. I. Title. QA268.G35 2012 003'.54 – dc23 2011042606

ISBN 978-1-107-01392-6 Hardback

Additional resources for this publication at www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Prefa Ackno	ce owledgements	<i>page</i> xiii xiv
1	Introduction		1
	1.1	Public key cryptography	2
	1.2	The textbook RSA cryptosystem	2
	1.3	Formal definition of public key cryptography	4
PAI	RT I	BACKGROUND	11
2	Basic	algorithmic number theory	13
	2.1	Algorithms and complexity	13
	2.2	Integer operations	21
	2.3	Euclid's algorithm	24
	2.4	Computing Legendre and Jacobi symbols	27
	2.5	Modular arithmetic	29
	2.6	Chinese remainder theorem	31
	2.7	Linear algebra	32
	2.8	Modular exponentiation	33
	2.9	Square roots modulo p	36
	2.10	Polynomial arithmetic	38
	2.11	Arithmetic in finite fields	39
	2.12	Factoring polynomials over finite fields	40
	2.13	Hensel lifting	43
	2.14	6	43
	2.15	Computing orders of elements and primitive roots	47
	2.16	Fast evaluation of polynomials at multiple points	51
	2.17	Pseudorandom generation	53
	2.18	Summary	53
3	Hash	functions and MACs	54
	3.1	Security properties of hash functions	54
	3.2	Birthday attack	55

vi		Contents	
	3.3	Message authentication codes	56
	3.4	Constructions of hash functions	56
	3.5	Number-theoretic hash functions	57
	3.6	Full domain hash	57
	3.7	Random oracle model	58
PAI	RT II	ALGEBRAIC GROUPS	59
4	Preli	iminary remarks on algebraic groups	61
	4.1	Informal definition of an algebraic group	61
	4.2	Examples of algebraic groups	62
	4.3	Algebraic group quotients	63
	4.4	Algebraic groups over rings	64
5	Vari	eties	66
	5.1	Affine algebraic sets	66
	5.2	Projective algebraic sets	69
	5.3	Irreducibility	74
	5.4	Function fields	76
	5.5	Rational maps and morphisms	79
	5.6	Dimension	83
	5.7	Weil restriction of scalars	84
6	Tori	, LUC and XTR	86
	6.4	Cyclotomic subgroups of finite fields	07
	6.1	- J	86
	6.1 6.2	Algebraic tori	80 88
		• • • •	
	6.2	Algebraic tori	88
	6.2 6.3	Algebraic tori The group $G_{q,2}$	88 89
	6.2 6.3 6.4	Algebraic tori The group $G_{q,2}$ The group $G_{q,6}$	88 89 94
7	 6.2 6.3 6.4 6.5 6.6 	Algebraic tori The group $G_{q,2}$ The group $G_{q,6}$ Further remarks	88 89 94 99
7	 6.2 6.3 6.4 6.5 6.6 	Algebraic tori The group $G_{q,2}$ The group $G_{q,6}$ Further remarks Algebraic tori over rings	88 89 94 99 99
7	 6.2 6.3 6.4 6.5 6.6 Curr 	Algebraic tori The group $G_{q,2}$ The group $G_{q,6}$ Further remarks Algebraic tori over rings ves and divisor class groups	88 89 94 99 99 101
7	 6.2 6.3 6.4 6.5 6.6 Curr 7.1 	Algebraic tori The group $G_{q,2}$ The group $G_{q,6}$ Further remarks Algebraic tori over rings ves and divisor class groups Non-singular varieties	88 89 94 99 99 99 101 101
7	 6.2 6.3 6.4 6.5 6.6 Curr 7.1 7.2 	Algebraic tori The group $G_{q,2}$ The group $G_{q,6}$ Further remarks Algebraic tori over rings ves and divisor class groups Non-singular varieties Weierstrass equations	88 89 94 99 99 99 101 101 105
7	 6.2 6.3 6.4 6.5 6.6 Current 7.1 7.2 7.3 	Algebraic tori The group $G_{q,2}$ The group $G_{q,6}$ Further remarks Algebraic tori over rings ves and divisor class groups Non-singular varieties Weierstrass equations Uniformisers on curves	88 89 94 99 99 101 101 105 106
7	 6.2 6.3 6.4 6.5 6.6 Curr 7.1 7.2 7.3 7.4 7.5 7.6 	Algebraic tori The group $G_{q,2}$ The group $G_{q,6}$ Further remarks Algebraic tori over rings ves and divisor class groups Non-singular varieties Weierstrass equations Uniformisers on curves Valuation at a point on a curve Valuations and points on curves Divisors	88 89 94 99 99 101 101 105 106 108
7	 6.2 6.3 6.4 6.5 6.6 Current 7.1 7.2 7.3 7.4 7.5 	Algebraic tori The group $G_{q,2}$ The group $G_{q,6}$ Further remarks Algebraic tori over rings ves and divisor class groups Non-singular varieties Weierstrass equations Uniformisers on curves Valuation at a point on a curve Valuations and points on curves	88 89 94 99 99 101 101 105 106 108 110
7	 6.2 6.3 6.4 6.5 6.6 Curr 7.1 7.2 7.3 7.4 7.5 7.6 	Algebraic tori The group $G_{q,2}$ The group $G_{q,6}$ Further remarks Algebraic tori over rings ves and divisor class groups Non-singular varieties Weierstrass equations Uniformisers on curves Valuation at a point on a curve Valuations and points on curves Divisors Principal divisors Divisor class group	88 89 94 99 99 99 101 101 105 106 108 110 111
7	 6.2 6.3 6.4 6.5 6.6 Curr 7.1 7.2 7.3 7.4 7.5 7.6 7.7 	Algebraic tori The group $G_{q,2}$ The group $G_{q,6}$ Further remarks Algebraic tori over rings ves and divisor class groups Non-singular varieties Weierstrass equations Uniformisers on curves Valuation at a point on a curve Valuations and points on curves Divisors Principal divisors	 88 89 94 99 99 101 105 106 108 110 111 112
7	 6.2 6.3 6.4 6.5 6.6 Curr 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 	Algebraic tori The group $G_{q,2}$ The group $G_{q,6}$ Further remarks Algebraic tori over rings ves and divisor class groups Non-singular varieties Weierstrass equations Uniformisers on curves Valuation at a point on a curve Valuations and points on curves Divisors Principal divisors Divisor class group	88 89 94 99 99 101 101 105 106 108 110 111 112 114
	 6.2 6.3 6.4 6.5 6.6 Curr 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 	Algebraic tori The group $G_{q,2}$ The group $G_{q,6}$ Further remarks Algebraic tori over rings ves and divisor class groups Non-singular varieties Weierstrass equations Uniformisers on curves Valuation at a point on a curve Valuations and points on curves Divisors Principal divisors Divisor class group Elliptic curves	 88 89 94 99 99 101 105 106 108 110 111 112 114 116

		Contents	vii
	8.3	Maps on divisor classes	126
	8.4	Riemann–Roch spaces	129
	8.5	Derivations and differentials	130
	8.6	Genus zero curves	136
	8.7	Riemann-Roch theorem and Hurwitz genus formula	137
9	Ellipt	ic curves	138
	9.1	Group law	138
	9.2	Morphisms between elliptic curves	140
	9.3	Isomorphisms of elliptic curves	142
	9.4	Automorphisms	143
	9.5	Twists	144
	9.6	Isogenies	146
	9.7	The invariant differential	153
	9.8	Multiplication by <i>n</i> and division polynomials	155
	9.9	Endomorphism structure	156
	9.10	Frobenius map	158
	9.11	Supersingular elliptic curves	164
	9.12	Alternative models for elliptic curves	168
	9.13	Statistical properties of elliptic curves over finite fields	175
	9.14	Elliptic curves over rings	177
10	Нуре	relliptic curves	178
	10.1	Non-singular models for hyperelliptic curves	179
	10.2	Isomorphisms, automorphisms and twists	186
	10.3	Effective affine divisors on hyperelliptic curves	188
	10.4	Addition in the divisor class group	196
	10.5	Jacobians, Abelian varieties and isogenies	204
	10.6	Elements of order <i>n</i>	206
	10.7	Hyperelliptic curves over finite fields	206
	10.8	Supersingular curves	209
DAI		EVRONENTIATION FACTORING AND DISCRETE	
	RT III	EXPONENTIATION, FACTORING AND DISCRETE	010
LU	GARI	I HMS	213
11		algorithms for algebraic groups	215
	11.1	Efficient exponentiation using signed exponents	215
	11.2	Multi-exponentiation	219
	11.3	Efficient exponentiation in specific algebraic groups	221
	11.4	Sampling from algebraic groups	231
	11.5	Determining group structure and computing generators for elliptic	225
	11.4	curves	235
	11.6	Testing subgroup membership	236

viii	Contents		
12	Prim	ality testing and integer factorisation using algebraic groups	238
	12.1	Primality testing	238
	12.2	Generating random primes	240
	12.3	The $p-1$ factoring method	242
	12.4	Elliptic curve method	244
	12.5	Pollard–Strassen method	245
13	Basic	discrete logarithm algorithms	246
	13.1	Exhaustive search	247
	13.2	The Pohlig–Hellman method	247
	13.3	Baby-step-giant-step (BSGS) method	250
	13.4	Lower bound on complexity of generic algorithms for the DLP	253
	13.5	Generalised discrete logarithm problems	256
		Low Hamming weight DLP	258
	13.7	Low Hamming weight product exponents	260
14	Facto	ring and discrete logarithms using pseudorandom walks	262
	14.1	Birthday paradox	262
	14.2	The Pollard rho method	264
	14.3	Distributed Pollard rho	273
	14.4	Speeding up the rho algorithm using equivalence classes	276
	14.5	The kangaroo method	280
	14.6	Distributed kangaroo algorithm	287
	14.7	The Gaudry–Schost algorithm	292
	14.8	Parallel collision search in other contexts	296
	14.9	Pollard rho factoring method	297
15	Facto	ring and discrete logarithms in subexponential time	301
	15.1	Smooth integers	301
	15.2	Factoring using random squares	303
	15.3	Elliptic curve method revisited	310
	15.4	The number field sieve	312
	15.5	Index calculus in finite fields	313
	15.6	Discrete logarithms on hyperelliptic curves	324
	15.7	Weil descent	328
	15.8	Discrete logarithms on elliptic curves over extension fields	329
	15.9	Further results	332
PAI	RT IV	LATTICES	335
16	Latti	ces	337
	16.1	Basic notions on lattices	338
	16.2	The Hermite and Minkowski bounds	343
	16.3	Computational problems in lattices	345

		Contents	ix
17	Latti	ce basis reduction	347
	17.1	Lattice basis reduction in two dimensions	347
	17.2	LLL-reduced lattice bases	352
	17.3	The Gram–Schmidt algorithm	356
	17.4	The LLL algorithm	358
	17.5	Complexity of LLL	362
	17.6	Variants of the LLL algorithm	365
18	Algo	rithms for the closest and shortest vector problems	366
	18.1	Babai's nearest plane method	366
	18.2	Babai's rounding technique	371
	18.3	The embedding technique	373
	18.4	Enumerating all short vectors	375
	18.5	Korkine–Zolotarev bases	379
19	Copp	ersmith's method and related applications	380
	19.1	Coppersmith's method for modular univariate polynomials	380
	19.2	Multivariate modular polynomial equations	387
	19.3	Bivariate integer polynomials	387
	19.4	Some applications of Coppersmith's method	390
	19.5	Simultaneous Diophantine approximation	397
	19.6	Approximate integer greatest common divisors	398
	19.7	Learning with errors	400
	19.8	Further applications of lattice reduction	402
PA	RT V	CRYPTOGRAPHY RELATED TO DISCRETE LOGARITHMS	403
20	The l	Diffie–Hellman problem and cryptographic applications	405
	20.1	The discrete logarithm assumption	405
	20.2	Key exchange	405
	20.3	Textbook Elgamal encryption	408
	20.4	Security of textbook Elgamal encryption	410
	20.5	Security of Diffie–Hellman key exchange	414
	20.6	Efficiency considerations for discrete logarithm cryptography	416
21	The l	Diffie–Hellman problem	418
	21.1	Variants of the Diffie-Hellman problem	418
	21.2	Lower bound on the complexity of CDH for generic	
		algorithms	422
	21.3	Random self-reducibility and self-correction of CDH	423
	21.4	The den Boer and Maurer reductions	426
	21.5	Algorithms for static Diffie–Hellman	435
	21.6	Hard bits of discrete logarithms	439
	21.7	Bit security of Diffie–Hellman	443

х	Contents			
22	Digit	al signatures based on discrete logarithms	452	
	22.1	Schnorr signatures	452	
	22.2	Other public key signature schemes	459	
		Lattice attacks on signatures	466	
		Other signature functionalities	467	
23	Publi	c key encryption based on discrete logarithms	469	
20	23.1	CCA secure Elgamal encryption	469	
	23.2	Cramer–Shoup encryption	474	
	23.3	Other encryption functionalities	478	
	RT VI		40.2	
FAG	CTOR	ISATION	483	
24	The l	RSA and Rabin cryptosystems	485	
	24.1	The textbook RSA cryptosystem	485	
	24.2	The textbook Rabin cryptosystem	491	
	24.3	Homomorphic encryption	498	
	24.4	Algebraic attacks on textbook RSA and Rabin	499	
	24.5	Attacks on RSA parameters	504	
	24.6	Digital signatures based on RSA and Rabin	507	
	24.7	Public key encryption based on RSA and Rabin	511	
PA	RT VI	ADVANCED TOPICS IN ELLIPTIC AND		
		LLIPTIC CURVES	513	
25	Tanan	rice of alling the annual	515	
25		nies of elliptic curves	515	
	25.1	Isogenies and kernels	515 523	
	25.2 25.3	Isogenies from <i>j</i> -invariants	525 529	
	25.5 25.4	Isogeny graphs of elliptic curves over finite fields The structure of the ordinary isogeny graph	535	
	25.4 25.5	Constructing isogenies between elliptic curves	535 540	
	25.5 25.6	Relating the discrete logarithm problem on isogenous curves	543	
• -				
26		ngs on elliptic curves	545	
	26.1	Weil reciprocity	545	
	26.2	The Weil pairing	546	
	26.3	The Tate–Lichtenbaum pairing	548	
	26.4	Reduction of ECDLP to finite fields	557	
	26.5	Computational problems	559	
	26.6	Pairing-friendly elliptic curves	561	
App		A Background mathematics	564	
	A.1	Basic notation	564	
	A.2	Groups	564	

	Contents	xi
A.3	Rings	565
A.4	Modules	565
A.5	Polynomials	566
A.6	Field extensions	567
A.7	Galois theory	569
A.8	Finite fields	570
A.9	Ideals	571
A.10	Vector spaces and linear algebra	572
A.11	Hermite normal form	575
A.12	Orders in quadratic fields	575
A.13	Binary strings	576
A.14	Probability and combinatorics	576
References		579
Author index		603
Subject index		608

Cambridge University Press 978-1-107-01392-6 - Mathematics of Public Key Cryptography Steven D. Galbraith Frontmatter <u>More information</u>

Preface

The book has grown from lecture notes of a Master's level course in mathematics, for students who have already attended a cryptography course along the lines of Stinson's or Smart's books. The book is therefore suitable as a teaching tool or for self-study. However, it is not expected that the book will be read linearly. Indeed, we discourage anyone to start reading with either Part I, Part II or Part III. The best place to start, for an understanding of mathematical cryptography, is probably Part V (replacing all references to "algebraic group *G*" by \mathbb{F}_p^*). For an introduction to RSA and Rabin one could start reading at Part VI and ignore most references to the earlier parts.

Exercises are distributed throughout the book so that the reader performing self-study can do them at precisely the right point in their learning. Readers may find exercises denoted by \bigstar somewhat more difficult than the others, but it would be dangerous to assume that everyone's experience of the exercises will be the same.

Despite our best efforts, it is inevitable that the book will contain errors and misleading statements. Errata will be listed on the author's webpage for the book at www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html. Readers are encouraged to bring any errors to the attention of the author.

I would like to thank Royal Holloway, University of London and the University of Auckland, each of which in turn was my employer for a substantial time while I was writing the book. I also thank the EPSRC, who supported my research with an advanced fellowship for the first few years of writing the book.

The book is dedicated to Siouxsie and Eve, both of whom tolerated my obsession with writing for the last four years.

Steven Galbraith Auckland

xiii

Acknowledgements

The book grew out of my lecture notes from the Master's course "Public key cryptography" at Royal Holloway. I thank the students who took that course for asking questions and doing their homework in unexpected ways.

The staff at Cambridge University Press have been very helpful during the preparation of this book.

I also thank the following people for answering my questions, pointing out errors in drafts of the book, helping with LaTeX, examples, proofs, exercises, etc: José de Jesús Angel Angel, Olivier Bernard, Nicolas Bonifas, Nils Bruin, Ilya Chevyrev, Bart Coppens, Alex Dent, Claus Diem, Marion Duporté, Andreas Enge, Victor Flynn, David Freeman, Pierrick Gaudry, Takuya Hayashi, Nadia Heninger, Florian Hess, Mark Holmes, Everett Howe, David Jao, Jonathan Katz, Eike Kiltz, Kitae Kim, David Kohel, Cong Ling, Alexander May, Esmaeil Mehrabi, Ciaran Mullan, Mats Näslund, Francisco Monteiro, James McKee, James Nelson, Samuel Neves, Phong Nguyen, TaeHun Oh, Chris Peikert, Michael Phillips, John Pollard, Francesco Pretto, Oded Regev, Christophe Ritzenthaler, Karl Rubin, Raminder Ruprai, Takakazu Satoh, Leanne Scheepers, Davide Schipani, Michael Schneider, Peter Schwabe, Reza Sepahi, Victor Shoup, Igor Shparlinski, Andrew Shallue, Francesco Sica, Alice Silverberg, Benjamin Smith, Martijn Stam, Damien Stehlé, Anton Stolbunov, Drew Sutherland, Garry Tee, Emmanuel Thomé, Frederik Vercauteren, Timothy Vogel, Anastasia Zaytseva, Chang-An Zhao, Paul Zimmermann.

Any remaining errors and omissions are the author's responsibility.