
Chapter 2

Mathematics of the Not-So-Solid Solid Earth

Scott D. King

Abstract As a result of climatic variations over the past 700,000 years, large ice

sheets in high-latitude regions of the Earth formed and subsequently melted, loading

and unloading the surface of the Earth. This chapter introduces the mathematical

analysis of the vertical motion of the solid Earth in response to this time-varying

surface loading. The chapter focuses on two conceptual models; the first, proposed

by Haskell [Physics, 6, 265–269 (1935)], describes the return to equilibrium of a

viscous half-space after the removal of an applied surface load; the second, proposed

by Farrell and Clark [Geophys. J. Royal Astr. Soc., 46, 647-667 (1976)], illustrates

the changes in sea level that occur when ice and water are rearranged on the surface

of the Earth. The sea level equation proposed by Farrell and Clark accounts for the

fact that sea level represents the interface between two dynamic surfaces: the sea

surface and the solid Earth, both of which are changing with time.
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2.1 Ice Ages and Glacial Isostatic Adjustment

For the past 700,000 years, the Earth’s climate has alternated between glacial and

interglacial conditions, with a periodicity on the order of 100,000 years. A concep-

tual model emphasizing the roles of orbital variations and atmospheric CO2 con-

centration is explored in Chapter ?? of this volume. During glacial periods, lower

temperatures result in the growth of large ice sheets at higher latitudes, removing

water from the ocean basins and lowering sea levels. During interglacial periods,

these large ice sheets melt, returning water stored on land to the oceans, resulting in

a relative rise in sea levels. The movement of water in both liquid and solid form be-
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tween continental land masses and ocean basins during the glacial–interglacial cycle

creates a time-varying mass load on the surface of the Earth on a time scale that is

short compared with the response time of the Earth’s surface. The mass of these

ice sheets is sufficient to deform the solid Earth, causing subsidence and then, upon

subsequent melting of the ice sheet, rebound of the surface. The response of the

solid Earth to the time-varying surface load brought about by the waxing and wan-

ing of large-scale ice sheets is called Glacial Isostatic Adjustment (GIA). Isostasy

(or isostatic) is a term used by Earth scientists to describe the Archimedean princi-

ple that any object, wholly or partially immersed in a stationary fluid, is buoyed up

by a force equal to the weight of the fluid displaced by the object.

During the last great ice age, Scandinavia and North America were covered with

thick sheets of ice up to 5 km thick (Figure 2.1.1). In northern Europe, the northward

extent of the ice sheet covered Svalbard and Franz Josef Land, and the southern

boundary passed through Germany and Poland. In North America, the ice covered

most of Canada, extending as far south as the Missouri and Ohio Rivers, and east-

ward to Manhattan. When the ice sheets melted, the surface of the Earth began to

return to its equilibrium elevation (rebound), a process that continues to the present

day [21, 22, 38, 40]. The water stored in these ice sheets lowered the sea level glob-
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Fig. 2.1.1 Ice thickness 26,500 years before present based on the ICE-6G model [33].

ally by 115–135 meters relative to present-day sea levels [23], and present-day sea

levels are at or near the maximum level in the glacial–interglacial cycle.

While water is also present both in the atmosphere and stored as groundwater

within the near surface of the Earth, the volumes of water involved in the atmo-

spheric water cycle (e.g., precipitation, evaporation, and transpiration) and stored

as groundwater do not vary significantly over the glacial/interglacial time scale.
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Changes in these water reservoirs have a much smaller effect on the solid Earth

in comparison with the changing mass load of the ice sheets.

2.1.1 Sea Level Changes

Tidal gauges were originally designed to measure the daily and monthly changes

in water level due to tides in shallow harbors. A typical tidal gauge would consist

of a mechanical float enclosed in a cylindrical well to isolate the float from wind

waves. After removing the daily and monthly tidal signals, it is possible to derive

a record of the mean sea level from these historical tidal gauge measurements; at

some locations, the records are continuous, covering several centuries. Of course,

these records are spatially limited to coastal regions, for obvious reasons. It is also

necessary to reference a tidal gauge to a local geodetic benchmark, to ensure that

the local land surface is stable and that the recorded measurement reflects a change

in sea level and not local subsidence or uplift of the land. While still used in some

locations, these early gauges have been superseded by pressure, acoustic/ultrasonic,

or radar gauges. (Here and throughout the remainder of this chapter, we use the

term “sea level” to refer to the level of a hypothetical ocean surface in the absence

of wind waves.)

Figure 2.1.2 shows a time series of annual mean sea level anomalies for Amster-

dam [42] and Stockholm [7]. (The sea level anomaly is the deviation of the actual

sea level from some reference level.) The point of this figure is to illustrate the trend

as a function of time, and this is not dependent on the specifics of the reference base-

line. In Amsterdam, the sea level increased nearly 200 millimeter during the period

1700–1925, while the sea level in Stockholm decreased almost 1000 millimeter be-

tween 1770 and 1980. While sea level observations at these locations continue to be

Fig. 2.1.2 Annual mean sea level anomalies for Amsterdam [42] and Stockholm [7]. Data obtained

from http://www.psmsl.org/data/longrecords/.

recorded, the changes in instrumentation and analysis techniques mean that match-

ing modern tide-gauge measurements with these historical records is a nontrivial

exercise. For the purpose here, these historical records are sufficient to illustrate the

longer-term trends in the sea-level observations.

http://www.psmsl.org/data/longrecords/
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The traditional approach to estimating the impact of ice sheets on the sea level

assumed that measuring the age of submerged beaches (for example, by radiocarbon

dating) in stable areas was sufficient to determine the historical changes in sea level.

The assumption was that sea level rise is a global phenomenon and that, just as

increasing the water level in a bathtub would increase the water level everywhere,

sea level rise at one point would inform the global trend. This allowed researchers

to extend the sea-level record further back in time, although with a greater degree

of uncertainty. The time series in Figure 2.1.2 present a problem for this traditional

approach. Why does the sea level appear to be rising at one location and falling at

another? The model described by Farrell and Clark [9], which we will discuss in

Section 2.3, illustrates that the distribution of ice and the shape of the surface of the

solid Earth play an important role in the analysis of sea-level change.

In any given area, the local sea level is the intersection of two dynamic surfaces:

the sea surface and the irregular solid surface, both of which are changing with time.

Globally, the sea level is not at a uniform radial distance from the center of the Earth

(or some other suitable reference frame) but varies spatially because it follows a

surface of equal gravitational potential. While water is removed and added from the

ocean basin with the growth and melting of the ice sheets, the gravitational attraction

of the ice sheets deforms the ocean surface, thus changing the gravitational potential

in the region around the sheet. Also, the change in the mass of both the ocean and

the ice sheet as water moves from one to the other creates a time-varying load that

deforms the surface of the Earth. As the surface deforms, matter within the Earth is

redistributed, the gravitational attraction changes, and the sea level responds in turn.

This is the topic that will be analyzed in detail in the remainder of the chapter.

2.1.2 Outline of the Chapter

Following is an outline of the chapter. Section 2.2 contains a review of the classi-

cal problem studied by Haskell [11, 12] of a mass load on the surface of a viscous

half-space. The analysis yields an estimate of the viscosity of the interior of the

Earth, which justifies the assumption that the effects of momentum and rotation on

the slow creeping flow in the interior of the Earth can be neglected. Haskell’s anal-

ysis predicts a uniform rise in sea level everywhere. Section 2.3 focuses on spatial

variations of the gravitational potential, following the classical work of Farrell and

Clark [9]. The analysis assumes a rigid Earth but allows for a nonuniform sea-level

rise. The subsequent Section 2.4 builds on this work by adding elastic deformations

to obtain a more realistic model of a solid Earth. Since purely elastic behavior is not

consistent with the GIA observations, some degree of viscous behavior is required.

The most common model of a viscoelastic medium is the Maxwell rheology model,

which is discussed in Section 2.5. The final section, Section 2.6, summarizes the

main points of the chapter with references to more in-depth reviews, and describes

various open problems.
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2.2 The Haskell Problem: Viscous Relaxation of the Solid Earth

It may seem extraordinary that on time scales longer than we can perceive the terra

firma upon which we go about our daily lives actually behaves like a fluid, albeit a

highly viscous fluid. Yet, the study of Earth’s tectonic plates shows that the surface

of the Earth moves with velocities on the order of tens of millimeters per year [26,

37, 44]—that is, roughly the rate at which human finger nails grow [3]. In addition

to the horizontal motions of the Earth’s surface, the surface deforms vertically as a

result of both imposed surface loads and stresses from within the Earth [4].

The first mathematical formulation of the rebound of the surface of the Earth

after the melting of an ice sheet was given by Haskell [11, 12]. Haskell calculated

the flow within a semi-infinite, incompressible, viscous half space, subject to an

initial periodic surface displacement given by

wm = wm0 cos
2πx

λ
. (2.2.1)

Here, λ is the wavelength of the initial load. The amplitude of the deformation

of the surface is assumed to be much smaller than its wavelength, wm ≪ λ . The

load-induced displacement generates a hydrostatic pressure gradient, which acts to

restore the surface of the Earth to the undeformed equilibrium state (w = 0).

The equation of mass conservation for an incompressible fluid is

∇ ·U = 0, (2.2.2)

where U is the velocity vector describing the fluid motion. The equation of momen-

tum conservation is obtained by applying Newton’s second law to the fluid motion

and using the assumption that the stress in the fluid is the sum of a pressure term

and a viscous term that is proportional to the gradient of the velocity. The resulting

equation is the Navier-Stokes equation, which describes the dynamics of fluids in

many areas of engineering and science,

ρ

[

∂U

∂ t
+U ·∇U

]

=−∇p+η∇2U. (2.2.3)

Here, ρ is the density of the fluid, p the pressure, and η the viscosity; ∂ ·
∂ t

is the

partial derivative with respect to time.

The viscosity is a measure of the resistance

of the fluid to gradual deformation by shear

stress; honey is more resistant to flow than

water, so honey has a larger viscosity than

water. In the SI system of units, viscosity is

measured in Pascal-seconds (Pa-s). The vis-

cosities of some common fluids are listed in

the adjacent table.

Fluid Density Viscosity

(kg/m3) (Pa-s)

Air 1.3 10−5

Water 1000. 10−3

Olive Oil 916. 0.1

Honey 1450. 10

Glacial Ice 800-900 1015
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While it may not be obvious that the solid interior of the Earth deforms, consider

the movement of glaciers. Glaciers are sometimes called “rivers of ice,” and they

actually flow in response to gravity acting on their own mass. The rate of glacial

motion ranges from less than a meter per year to as much as 30 meters per day when

the base of the glacier is decoupled from the underlying bedrock by soft sediments

and meltwater.

For specific problems, it is often possible to simplify the Navier–Stokes equa-

tion because one or more terms in the equation are significantly smaller than the

others. To show this, it is helpful to rewrite the equation in terms of dimensionless

variables, which are of order 1, multiplied by a dimensional scaling constant. For

example, length can be written as x = x′L, where x′ is of order 1 and L represents

the characteristic length scale of the problem. In the problem under consideration,

the length scale is the wavelength of the applied load, λ . Similarly, the depth can be

written as y = y′L, using the same length scale of the problem, L. The velocity can

be rewritten as U = U ′U0, where U0 is the characteristic velocity of the problem.

Here, the velocity of Earth’s tectonic plates serves as a reasonable estimate of the

characteristic velocity, U0 = 0.01 m/yr, or U0 ≈ 3.16× 10−9 m/s. (Even though the

second is the unit of time in the SI system, geoscientists think of plate velocities

in millimeters per year. There are approximately π × 107 seconds in a year.) The

characteristic time can now be defined in terms of L and U0, t = t ′L/U0. A logical

choice for pressure scaling is p = p′ηU0/L, which results in units of Pascals, the SI

unit of pressure.

Substituting the above relationships into Eq. (2.2.3), we obtain the Navier–Stokes

equation in dimensionless form,

Re

[

∂U ′

∂ t ′
+U ′ ·∇′U ′

]

=−∇′p′+(∇′)2U ′, (2.2.4)

where the scaling constants and properties of the fluid have been grouped into a

single term, the Reynolds number,

Re =
ρU0L

η
. (2.2.5)

The units in the Reynolds number cancel, so Re is a dimensionless quantity—one

of several that arise in the study of fluid mechanics. It is also noteworthy that the

primed equation (2.2.4) is dimensionless. This is useful for a variety of reasons; for

example, if the physical properties of different problems result in the same Reynolds

number, their solutions will be identical. Hence, if the characteristic length is in-

creased by a factor of 10, the dimensionless solution will be the same if the viscosity

is also increased by a factor of 10. The dimensional solution can be recovered by

multiplying the dimensionless solution by the scaling constants.

While nothing has been said yet about the viscosity of the interior of the Earth,

it is not hard to imagine that it is large, at least as large as the viscosity of glacial

ice; hence, the Reynolds number will be very small, and the terms on the right-

hand side of the Navier-Stokes equation can be ignored. This assumption will be
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checked after the final solution has been obtained. Following the same procedure,

it is easy to show that the terms representing the effects of the Earth’s rotation are

similar in magnitude to the momentum terms on the left-hand side of the Navier–

Stokes equation. Thus, if our analysis shows that momentum can be ignored, so can

rotation.

Consider a two-dimensional domain in a vertical plane. Choose a Cartesian co-

ordinate system in the plane, with horizontal coordinate x and vertical coordinate y,

with y increasing downwards. The surface of the Earth is represented by a function

y = w(x). Let u and v denote the x and y components, respectively, of the velocity

vector U .

The components of Eq. (2.2.4) in the x and y direection are

−∂ p

∂x
+η

(

∂ 2u

∂x2
+

∂ 2u

∂y2

)

= 0, (2.2.6)

−∂ p

∂y
+η

(

∂ 2v

∂x2
+

∂ 2v

∂y2

)

= 0. (2.2.7)

This set of equations can be solved using the stream-function formulation [2]; a

step-by-step solution can be found, for example, in [14]. In two dimensions, the

stream function, ψ(x,y, t), is a scalar whose partial derivatives are related to the

components of the velocity,

u =
∂ψ

∂y
, v =−∂ψ

∂x
. (2.2.8)

Note that, by construction, U = (u,v) satisfies the equation of mass conserva-

tion (2.2.2).

Because the initial displacement of the surface varies in x with a functional form

cos(2πx/λ ), the stream function will vary with a functional form sin(2πx/λ ). By

taking the derivative of Eq. (2.2.6) with respect to y and the derivative of Eq. (2.2.7)

with respect to x and subtracting the two resulting equations, we eliminates the

pressure. Then, upon substitution of the expressions (2.2.8) we obtain a single bi-

harmonic equation for the scalar ψ . Separating ψ into a function that varies only

in x (i.e., sin(2πx/λ )) and a function that varies only in Y (y), we find that the stream

function must have the form

ψ = sin

(

2πx

λ

)

[

(A+By)e−2πy/λ +(C+Dy)e2πy/λ
]

, (2.2.9)

where A, B, C, and D are constants, to be determined by the boundary conditions.

The constants C and D must be zero because the components of the velocity field

must remain finite as the depth of the half space (y) goes to infinity. Differentiat-

ing ψ , the components of velocity are
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u = sin

(

2πx

λ

)[

2π

λ
(A+By)−B

]

e−2πy/λ , (2.2.10)

v = cos

(

2πx

λ

)

2π

λ
(A+By)e−2πy/λ . (2.2.11)

The shear tractions exerted on the solid Earth by the atmosphere are negligible,

so the horizontal velocity of the flow in the solid Earth is zero at the deformed

surface—that is, at y = w(x). Since the displacements of the solid Earth (at most

hundreds of meters) are small compared to the size of a typical ice sheet (a thousand

kilometers or more), we may assume that w ≪ λ and apply the boundary conditions

at the equilibrium surface—that is, at y = 0—instead. Johnson and Fletcher [14]

show how to apply the boundary conditions to the deformed surface when w is not

small; their solution reduces to the one presented here in the case of small deforma-

tions. Setting u = 0 at y = 0 yields B = 2πA/λ .

To find A, the hydrostatic pressure resulting from the topography (−ρgw, where

g is the acceleration due to gravity) is set equal to the normal stress generated by the

flow at the surface (p−2µ ∂v
∂y
), where ρ is the density of the mantle),

−ρgw = p−2µ
∂v

∂y
. (2.2.12)

The pressure at y = 0 can be found by substituting Eqs. (2.2.10) and (2.2.11) into

Eq. (2.2.6) and integrating,

p|y=0 = 2µA

(

2π

λ

)2

cos

(

2πx

λ

)

. (2.2.13)

Because ∂v
∂y
|y=0 = 0, Eq. (2.2.12) reduces to

w =−2µA

ρg

(

2π

λ

)2

cos

(

2πx

λ

)

. (2.2.14)

The key step is to substitute Eq. (2.2.11) (with B = 2πA/λ ) into Eq. (2.2.14) and

recognize that the vertical velocity at the surface is the derivative of the displacement

with time, v = dw/dt (at y = w). Once again, because the displacements are small

compared with the size of a typical ice sheet, we apply this condition at y = 0,

v|y=0 =
dw

dt

∣

∣

∣

∣

y=0

= A
2π

λ
cos

(

2πx

λ

)

=−w
λgρ

4πµ
. (2.2.15)

Upon integration, we obtain the expression for w,

w(t) = wm0 exp

(

−λgρ

4πµ
t

)

. (2.2.16)
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Hence, the surface of the Earth decays to an equilibrium position as the “fluid”

mantle flows from regions of elevated topography to regions of low topography. The

grouping of constants
4πµ
λgρ

has units of time and is the characteristic time scale of

the Glacial Isostatic Adjustment (GIA)—that is, the time it takes the topography to

decay by 1/e. Using reasonable values for the density of the solid Earth, ρ = 3,300

kg m−3, the acceleration due to gravity, g = 10 m s−2, and the spatial scale of the ice

sheet, λ = 1,000 km, matching the time scale of GIA from the tide-gauge and beach

data requires the viscosity of the mantle to be on the order of η ∼ 1021 Pa-s. This

is sometimes referred to as the Haskell value of mantle viscosity and is an average

or effective value, as it assumes that the Earth is a homogeneous fluid. Using the

same values of ρand λ , taking u = 0.01 m yr−1 and the Haskell value of viscosity,

η = 1021 Pa s, we obtain a Reynolds number on the order of 10−21, which justifies

the initial assumption that the inertial terms in the Navier-Stokes equation can be

ignored.

While the Haskell problem is simplified, the characteristic time of GIA,
4πµ
λgρ

, is

approximately 12,000 years. The last glacial maximum (i.e., the time when the ice

sheets were at their largest spatial extent) occurred approximately 26,500 years ago

and the North American and European ice sheets began to retreat about 20,000 years

ago. The characteristic time predicts that vertical rebound of the Earth’s surface

should still be continuing—a prediction that has been validated with high-precision

GPS observations [13, 21, 22, 27, 29, 38, 40]. Other independent geophysical con-

straints on mantle viscosity are broadly consistent with the Haskell result [16]. Un-

til recently, observations of vertical uplift were measured almost exclusively along

coast lines via sea- and lake-level changes, requiring climatic, hydrographic, and

tectonic corrections, and horizontal motions could not be accurately observed at all.

This state of affairs changed with the development of high-precision GPS.

2.3 Gravitational Potential: The Spatial Variability of Sea Level

One might assume that estimating the change in sea level is as simple as estimating

the mass of ice sheets at their maximum extent, converting this mass to an equiva-

lent volume of water, and adding that volume of water to the ocean. This approach

predicts that sea level should have risen by an equal amount everywhere, which is

inconsistent with the observations [22, 34], as shown, for example, in the time-series

of Figure 2.1.2. Two effects are missing: First, there is a gravitational attraction be-

tween the ocean and ice sheets, and second, both the ocean and the ice sheets deform

the Earth’s surface. Sea level is the intersection of these two dynamic surfaces (the

sea surface and the solid Earth surface), both of which are changing with time.

To illustrate the role of gravitational attraction on sea level, consider the simpli-

fied problem of a rigid sphere that is initially covered by a thin ocean of uniform

depth. This problem is discussed in Farrell and Clark [9], and the text below fol-

lows their derivation. We will simplify the problem further by assuming that the

ocean has zero density, yet is at the same time in gravitational equilibrium (which
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assumes that the ocean has a nonzero density). While these assumptions are clearly

inconsistent, they allow for an analytic solution of the problem.

For a spherically symmetric Earth, where r is the distance between the observer

and the Earth’s center of mass, the gravitational potential is

V (r) =
GME

r
, (2.3.1)

where G is Newton’s gravitational constant and ME is the total mass of the Earth

(which includes the solid Earth and the ocean). Equation (2.3.1) is valid for r ≥ a,

where a is the radius of the Earth. A direct result of the spherical symmetry of the

problem is that the sea level of this uniform-depth ocean will be equal to a every-

where, because the gravitational potential at the surface, V (a), is a constant. Now

suppose that an ice sheet of mass MI is extracted from the surface at r = a and placed

at a single point on the Earth’s surface. Let θ measure the angular distance between

the point mass (ice sheet) and an observer. Then the new gravitational potential field

is

V I(r,θ) =
G(ME −MI)

r
+

GMI√
r2 +a2 −2ar cosθ

. (2.3.2)

The superscript I denotes the combined potential of the Earth plus ice sheet. Note

that ME −MI , and therefore the first term in Eq. (2.3.2), is still spherically symmet-

ric; however, V I(a,θ) is a function of θ and therefore r = a is no longer the sea

level because V I(a,θ) is not constant. Defining a new surface at r = a+ ε , where

V I(a+ ε,θ) =V I(a) and assuming that MI ≪ ME , it follows that ε ≪ a and a first-

order Taylor expansion can be used to approximate V I(a+ ε,θ),

V I(a+ ε,θ) =V I(a,θ)+ ε
∂V I(a,θ)

∂ r
. (2.3.3)

It is sufficiently accurate to use the approximation
∂V R(a,θ)

∂ r
= −g, where g is the

acceleration due to gravity at the Earth’s surface. Rearranging Eq. (2.3.3) and sub-

stituting g = GM
a2 , we obtain

ε(θ) =
MIa

ME

(

1

2sin(θ/2)
−1

)

. (2.3.4)

At this point, the analysis has yet to account for the volume of water that has been

lost from the ocean; therefore, V I(a+ ε(θ),θ) is constant but is not the sea level.

To account for the reduced ocean volume, recall that if a+ ε(θ) is an equipotential

surface, then for any constant c≪ a, a+ε(θ)+c= a+ε2(θ) is also an equipotential

surface. The trick is to choose a value of c so as to conserve the total mass of the

system. Farrell and Clark suggest that the result thus obtained is an accurate estimate

of sea level.

To calculate c, note that the volume between the surfaces a and a+ ε integrated

over the sphere is zero, so in order to conserve mass, it must be the case that
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∫ π

0
2πρwca2 sinθ dθ +MI = 0, (2.3.5)

where ρw is the density of sea water. Solving Eq. (2.3.5) for c and using ME =
(4/3)πa3ρE , where ρE is the mean density of the Earth, we obtain

ε2(θ) =
MIa

ME

(

1

2sin(θ/2)
−1− ρE

3ρw

)

. (2.3.6)

The first two terms on the right-hand side represent the distortion of sea level due

to the gravitational attraction of the ice; the third term is the uniform fall in sea

level due to the removal of a volume of water equivalent to the ice mass MI from

the oceans. Figure 2.3.1 shows the change in sea level (normalized by the predicted

uniform sea-level drop) due to the removal of an amount of water equivalent to MI

as a function of the angular distance from the ice mass.

−2
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10
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0 20 40 60 80 100 120 140 160 180
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Fig. 2.3.1 The normalized change in sea level as a function of distance from the ice mass for a

rigid Earth, including the effect of the gravitational attraction of the ice sheet.

At a point 60◦ from the ice mass, the predicted sea-level drop is the same as

predicted from the uniform sea-level decrease. Beyond 60◦, the sea-level drop is

greater than the uniform prediction, while within 20◦ of the ice load the sea level

actually rises due to the gravitational attraction of the ice acting on the ocean. This

result provides a qualitative explanation for the historical sea-level trends observed

at Amsterdam and Stockholm shown in Figure 2.1.2: Stockholm is closer to the

center of the Fennoscandian ice sheet than Amsterdam. However, a word of caution

is appropriate here, because the assumptions made in this section may limit the

applicability of the results. Nonetheless, it is instructive as an illustration of the role

of the gravitational attraction of the ice sheet on sea level.

The problem described here considers the shoreline to be spatially fixed with time

as the sea level rises and falls during a glacial cycle. Or to help the reader visualize,

it is equivalent to assuming that the edges of the ocean basins are characterized

by steep cliffs that prevent the water from moving either landward or oceanward.
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More accurate and complex shoreline calculations are described and compared in

Mitrovica and Milne [24].

2.3.1 Extending the Solution to an Irregular Ice Distribution

To extend the point-mass problem to any arbitrary volume of ice, Eq. (2.3.6) is

convolved with a function that represents the variation in ice thickness, I(θ ′,φ ′).
The change in sea level, S(θ ,φ), due to a change in ice mass is given by the integral

S(θ ,φ) =
∫∫

ice

[

a

ME

(

1

2sin(α/2)
−1− ρE

3ρw

)]

ρI I(θ ′,φ ′)asin(θ ′)dθ ′ dφ ′,

(2.3.7)

where α is the arc length between a point (θ ,φ ) on the ocean and the location (θ ′,φ ′)
of the ice. The term in brackets, which is identical to (2.3.6) with unit ice mass (MI),

is the Green’s function for this problem.

To account for the gravitational attraction of the mass of the ocean on sea level,

one can similarly convolve the Green’s function with sea level. An iterative solution

strategy for this problem is discussed in Farrell and Clark [9].

2.4 Deformation of the Solid Earth: The Elastic Earth

While the analysis in Section 2.3 is instructive and provides a possible qualitative

explanation for the trends observed in the sea-level curves shown in Figure 2.1.2,

the results of Section 2.3 are inconsistent with the Haskell problem in Section 2.2

because the Earth was assumed to be rigid. In this section we will outline how the

sea-level equation, Eq. (2.3.7), can be extended to include the deformation of the

solid Earth. First, it is necessary to briefly review the possible ways in which the

solid Earth might deform.

When placed under a load, the surface of the Earth exhibits both elastic and

viscous behavior. A material is said to behave elastically when it deforms instanta-

neously in response to an applied force and returns to its original state immediately

after the force is removed. A spring is often used as the classic example of elas-

tic behavior. On the other hand, a viscous material undergoes transient, permanent

deformation when a force is applied. Honey is often used as the classic example

of a viscous fluid. A material that behaves both elastically and viscously is called

a viscoelastic material. A viscoelastic material will experience both instantaneous

and transient deformation upon the application of a force. When the original force

is removed, the transient deformation is reversed; however, unlike the elastic mate-

rial, the viscoelastic material does not return to it’s initial state and some permanent

deformation is retained. The child’s toy Silly-Putty is often used as an example of

a viscoelastic material. When Silly-Putty is dropped, it bounces like a rubber ball,
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exhibiting elastic behavior in response to the short-timescale force of the Silly-Putty

and accelerating due to the force of gravity as it falls, until it is stopped by the im-

movable floor. If a similar force is applied over a longer time period, the Silly-Putty

yields and stretches into a long thin strand, much like taffy.

The Earth also exhibits this dual deformation behavior depending on the time

scale of the forcing function. Over the time period of several million years, Earth’s

surface deforms viscously when subjected to an applied load such as the mass of a

volcano or the volume of water in the ocean basin [8]. This is the mode of deforma-

tion that Haskell assumed to be appropriate in the problem described in Section 2.2.

On a time scale of seconds to hours, the Earth behaves elastically in response to seis-

mic waves. Since the time scale of the growth and decay of ice sheets is on the order

of 100,000 years, elastic deformation cannot be ignored [22, 45]. The derivation

of the elastic response of an incompressible spherically symmetric Earth is given

in [1, 5, 9]. Here, we focus on how the sea-level equation (2.3.7) can be modified to

account for the deformation of the Earth.

The solution of the elastic deformation problem requires solving the linear mo-

mentum equation (similar to the Navier–Stokes equation for viscous flow) for the

displacement (instead of the velocity as in the viscous flow problem), coupled with

the solution of a Poisson equation for the gravitational potential of a spherically

symmetric body with material properties that are functions only of the radius, sub-

ject to a disk-shaped surface boundary load. The elastic deformation of a spherical

body subject to a disc point load can be represented in terms of three Love numbers,

hl ,kl , and ll , which depend only upon the radius, r, and the degree of the spherical

harmonic, l [20].

A short digression here is necessary to introduce spherical harmonics. Spherical

harmonics are often used to represent functions on a sphere. They play the same

role on a sphere as sines and cosines on a line; as such they appear frequently in

geophysical problems. With the proper normalization, spherical harmonics can be

written in terms of Legendra polynomials, Plm(cosθ), multiplied by cosines and

sines in the azimuth φ ,

Ylm(θ ,φ) = Plm(cosθ)(C cosmφ +S sinmφ), (2.4.1)

where l is the spherical harmonic degree and m is the spherical harmonic order. The

spherical harmonic functions form a set of basis functions on a sphere, so they can

be used to represent any function on a sphere with an infinite set of coefficients,

with many similarities between spherical harmonics and Fourier series analysis in

terms of solution techniques. For example, if the topography of a planet is given by

topo(θ ,φ), then

topo(θ ,φ) =
inf

∑
l=0

l

∑
m=−l

TlmYlm(θ ,φ), (2.4.2)

where the coefficients Tlm are independent of θ and φ . The spherical harmonic func-

tions, normalized so that their integral over the sphere is one, for degrees 1 through 4

are plotted in Figure 2.4.1. Spherical harmonics of order zero (m = 0) are only func-
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Fig. 2.4.1 Plots of normalized spherical harmonics for degree and orders 1 through 4.

tions of latitude; they are often called zonal harmonics. Spherical harmonics with

equal degree and order (l = m) are only functions of longitude; they are often called

sectoral harmonics, because their pattern resembles the sections of an orange. The

other harmonics are simply called mixed harmonics.

Two practical rules of thumb, which are useful when thinking about spherical

harmonics: Plm(cosθ) has (l−m) zero crossings between the North and South pole,

while cos(mφ) has 2m zero crossings between 0 ≤ φ ≤ 2π . Thus, when thinking

about scaling properties represented in spherical harmonics on the surface of the

Earth (6,371 km), 2π·6,371
l−m

≈ 40,000
l−m

km, and for longitude, 2π·6,371
m

≈ 40,000
m

km.

Returning to the elastic response of a spherical body subject to a disc point load,

we note that each set of boundary conditions defines a distinct Green’s function

and, thus, a different triplet of Love numbers. While the determination of the Love

numbers is beyond the scope of this chapter (see [1, 5, 9, 20] for details), the Love

numbers have a straight forward interpretation. If Vl is a single term in the spherical

harmonic expansion of the gravitational potential V with a perturbation of degree l,

then klVl is the gravitational potential due to the elastic deformation within the Earth.

In the spherically symmetric elastic deformation problem, the solution is comprised

of only the zonal spherical harmonics (m = 0). Thus, the perturbation in the gravi-

tational potential of degree l on the surface is the sum of the perturbation due to the
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applied mass, Vl , and the perturbation due to the new arrangement of matter within

the Earth, klVl . The quantity hlVl/g is the radial displacement of the solid surface

away from the reference spherical surface, r = a. When hlVl/g is positive, the ra-

dius of the Earth’s solid surface after the deformation is greater than the original

radius a, and when hlVl/g is negative, the radius the Earth’s solid surface after the

deformation is smaller than the original radius a. The Love number ll , is related to

tangential displacements and is not relevant to the vertical load problem.

To apply the Love numbers to the sea-level equation, starting with equation

(2.3.2), the gravitational potential is expanded in terms of Legendre polynomials,

V (r,θ) =
ag

ME

∞

∑
l=0

(a

r

)l+1

Pl(cosθ), (2.4.3)

where the Pl is the Legendre polynomial of order l. At the surface (r = a), the infinite

series has the finite sum,

∞

∑
l=0

Pl(cosθ) =
1

2sin(θ/2)
, (2.4.4)

which implies the equivalence of Eqs. (2.3.2) and (2.4.3). While Eq. (2.4.4) is at

first not obvious, it follows from the Legendra polynomial generating function,

∞

∑
l=0

xlPl(µ) =
1

(1−2µx+ x2)1/2
, (2.4.5)

with x = 1, µ = cosθ , and the trigonometric identity sin(θ/2) =
√

(1− cosθ)/2.

For each spherical harmonic degree l, (1+ kl)Vl is the perturbation potential on

the spherical surface r = a and hlVl/g is the displacement of the solid boundary with

respect to the reference surface, r = a. It follows that the perturbed gravitational po-

tential on the displaced boundary of the solid Earth is V E
l = (1+kl +hl)Vl , because

−g(hlVl/g) is the change in the gravitational potential that occurs when moving

from the reference surface (r = a) to the newly deformed boundary. The Green’s

function for the elastic problem can therefore be represented by

V E
l =

ag

ME

∞

∑
l=0

(1+ kl +hl)Pl(cosθ), (2.4.6)

and the solution for the sea level proceeds following the approach described for the

rigid Earth in Section 2.3 [9].

2.5 Deformation of the Solid Earth: The Maxwell Rheology

While Section 2.4 illustrates the solution to the sea-level equation for a purely elas-

tic Earth, elastic deformation is not consistent with the GIA observations. When
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the deforming force is removed, an elastic material instantaneously returns to the

equilibrium state; therefore, the elastic deformation model predicts that the Earth’s

surface would have returned to the equilibrium state as the ice sheets melted and to-

day no deformation due to GIA should be expected. Hence, some degree of viscous

behavior is required to explain the GIA observations.

While there are several possible models for viscoelastic materials, the Maxwell

rheology model is the one that is predominantly used in GIA studies. In the context

of Maxwell rheology, the sea-level equation becomes time dependent.

Figure 2.5.1 shows a simple representation of a Maxwell solid as a purely viscous

damper connected in series with a purely elastic spring. Under an applied axial

Fig. 2.5.1 The Maxwell rheology model, a linear spring and viscous dashpot in series.

stress, the total stress, σTotal, and the total strain, εTotal, are defined as follows:

σTotal = σD = σS, (2.5.1)

εTotal = εD + εS. (2.5.2)

The subscript D refers to the damper (viscous deformation), the subscript S to the

spring (elastic deformation). Taking the derivative of strain with respect to time, we

obtain
dεTotal

dt
=

dεD

dt
+

dεS

dt
=

σ

η
+

1

E

dσ

dt
, (2.5.3)

where E is the elastic modulus and η the viscosity.

Calculating sea-level changes on a viscoelastic Earth requires a Green’s function

for the perturbation to the gravitational potential, which depends on both the dis-

tance from a point mass and the time that has elapsed since the mass was applied

to the Earth’s surface. The Green’s function contains all the necessary information

relating to the rheological structure of the Earth. Green’s functions for a range of

Maxwell Earth models were determined by Peltier [32], who used the correspon-

dence principle in conjunction with classical elastodynamics.

2.6 Discussion

While there has been significant progress in understanding the response of the solid

Earth and sea level due to changes in the distribution of ice and water over the
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surface of the Earth, challenges remain. A comprehensive overview of the processes

that affect sea level can be found in a recent article by Cazenave and Nerem [6].

Other factors that could affect sea-level changes can be grouped into four broad

categories: 1) changes in the volume of the ocean basin as the result of a change

in the topography of the ocean floor; 2) changes in the shape of the gravitational

potential; 3) local subsidence or uplift of the land-sea interface; and 4) changes in

the total volume of water in the ocean basin. We briefly discuss some details of each

category.

Changes in the volume of the ocean basin. A change in the volume of the

ocean basin will occur when tectonic plates reorganize or when there is a change in

the velocity of an oceanic plate. This is because the ocean-floor topography, which

geoscientists call bathymetry, is controlled by the conductive cooling of the oceanic

plates [30]. A half-space that cools due to conduction has a square-root of time func-

tional form. Parsons and Sclater [30] show that ocean bathymetry should increase

with the square root of age of the ocean flow, where the new crust that forms at a

mid-ocean ridge defines time zero. If the ocean plate moves away from a mid-ocean

ridge faster, then the bathymetry will be shallower at a fixed distance from the ridge.

If the ocean plate moves slower, then the bathymetry will be deeper at the same dis-

tance. Thus, if the velocity of an oceanic plate increases, the volume of the ocean

will decrease (over time) and sea level will increase (all other factors being equal),

while if the velocity of an oceanic plate decreases, the volume of the ocean will

increase and sea level will fall. This change in shape of the sea floor changes on a

time scale of millions to tens of millions of years, significantly longer than the time

scale of GIA, and does not impact current estimates of sea level.

Changes in the shape of the gravitational potential. A change in the shape

of the gravitational potential is controlled by the time scale of the redistribution of

mass. The distribution of ice/water on the surface of the Earth (Section 2.3) is al-

ready included in the GIA analysis. On the other hand, the erosion of rock by ice

sheets, which generates material that is then incorporated into the ice and subse-

quently deposited as the ice melts, is not accounted for in current GIA models. Ice

sheets transport eroded material away from the center of glaciation to the conti-

nental shelf edge, where it is deposited in a series of fans. Nygård et al. [28] esti-

mate that 32,000 km3 of sediment have been deposited on the North Sea Fan off the

west coast of Norway over the last 450 Myr. This time span is significantly longer

than the glacial–interglacial cycle, so the accumulation of sediment from a single

glacial–interglacial cycle is probably significantly less. Even so, the total mass of

sediment is small compared to the estimate of 5× 106 km3 of ice that was loaded

onto (and then removed from) the Fennoscandian platform in a period of roughly

100,000 years [18]. The effects of other changes such as anthropogenic groundwater

pumping or climate-related processes have been shown to be small compared with

the GIA signal [35, 19].

Local subsidence or uplift of the land-sea interface. Local subsidence and

uplift of the land surface that are not due to GIA are monitored by carefully tying the

tide-gauge measurements into a global geodetic reference frame. In this regard, the
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development of high-precision GPS measurements has significantly reduced one of

the major sources of uncertainty in the GIA observations. In addition, because GPS

can measure uplift and horizontal motions over land, this has significantly expanded

the range of GIA observations [13, 21, 22, 27, 29, 38, 40].

Changes in the total volume of water in the ocean basin. One of the effects of

anthropogenic climate change is that the large ice sheets over Greenland and Antarc-

tic are melting at increasingly faster rates. The resulting changes in sea level have

been shown to possess a unique pattern indicating where the most active melting is

currently taking place [25, 41]. This melting will change the volume of water in the

ocean basin and will change the shape of the gravitational potential because of the

redistribution of the ice/water, following the same logic as described in Section 2.3.

In principle, this can be modeled with the same analysis used to study the longer-

time scale processes associated with the melting of glacial–interglacial ice sheets.

The challenge is unraveling the ongoing effect of GIA from the last glacial cycle

with the present–day changes in ice/water due to current melting of the Greenland

and Antarctic ice sheets.

Two significant areas of uncertainty in the analysis of GIA observations are the

distribution of ice at the last glacial maximum [33] and the rheology of the man-

tle [16]. Mantle rheology impacts not only the response of the surface to imposed

surface loads such as ice and water, but also controls the motion of the tectonic

plates [10] and regulates the heat flow from within the Earth by controlling the vigor

of convection within the solid Earth [36]. While the viscosity of minerals that make

up the mantle is strongly dependent on temperature and pressure and could vary with

grain size and strain rate, depending on the deformation mechanism [16], many GIA

studies focus on depth-dependent viscosity profiles. While viscosity models other

than depth-dependent models have been considered [31, 39, 43, 45], the primary

control on vertical surface motion is from depth-dependent rheology, which is by

far the rheology that has been given the most attention. Lateral variations in rheol-

ogy are likely to be most prevalent at the boundary between continents and oceans

[15, 17], which is where the sea-level observations are made.

The ongoing deformation of the solid Earth and the associated change in sea

level in response to the glacial cycle are challenging interdisciplinary problems with

a strong historical connection to the mathematical community. Advancing our un-

derstanding would benefit from new data assimilation and modeling strategies, im-

provements in viscoelastic modeling, a better understanding of mantle rheology, and

a more complete understanding of present-day changes in ice load.
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28. Nygård, A., Sejrup, H.P., Haflidason, H., Bryn, P.: The glacial North Sea fan, southern Nor-

wegian Margin: Architecture and evolution from the upper continental slope to the deep-sea

basin. Marine and Petroleum Geology 22(71–84) (2005)

29. Park, K.D., Nerem, R.S., Davis, J.L., Schenewerk, M.S., Milne, G.A., Mitrovica, J.X.: Investi-

gation of glacial isostatic adjustment in the northeast US using GPS measurements. Geophys.

Res. Lett. 29, 1509–1512 (2002)

30. Parsons, B., Sclater, J.G.: An analysis of the variation of ocean floor bathymetry and heat flow

with age. J. Geophys. Res. 82, 803–827 (1977)

31. Paulson, A., Zhong, S., Wahr, J.: Modelling post-glacial rebound with lateral viscosity varia-

tions. Geophys. J. Int. 163, 357–371 (2005)

32. Peltier, W.: Impulse response of a Maxwell Earth. Rev. Geophys. 12, 649–669 (1974)

33. Peltier, W., Argus, D., Drummond, R.: Space geodesy constrains ice-age terminal deglaciation:

The global ICE-6G C (VM5a) model. J. Geophys. Res. 120, 450–487 (2015)

34. Peltier, W., Tushingham, A.M.: Influence of glacial isostatic-adjustment on tide-gauge mea-

surements of secular sea-level change. J. Geophys. Res. 96, 6779—-67,960 (1991)

35. Ramillien, G., Bouhours, S., Lombard, A., Cazenave, A., Flechtner, F., Schmidt, R.: Land

water storage contribution to sea level from GRACE geoid data over 2003–2006. Global

Planet. Change 60, 381—-392 (2008)

36. Schubert, G., Turcotte, D.L., Olson, P.: Mantle Convection in the Earth and Planets. Cam-

bridge University Press (2001)

37. Sella, G.F., Dixon, T.H., Mao, A.: REVEL: A model for recent plate velocities from space

geodesy. J. Geophys. Res. 107 (2002). doi:10.1029/2000JB000033

38. Sella, G.F., Stein, S., Dixon, T.H., Craymer, M., James, T.S., Mazzotti, S., Dokka, R.K.: Ob-

servation of glacial isostatic adjustment in “stable” North America with GPS. Geophys. Res.

Lett. 34(L02306) (2007). doi:10.1029/2006GL027081

39. Spada, G., Antonioli, A., Cianetti, S., Giunchi, C.: Glacial isostatic adjustment and relative

sea-level changes: the role of lithospheric and upper mantle heterogeneities in a 3-d spherical

earth. Geophys. J. Int. 165, 692–702 (2006)

40. Tamisiea, M.E., Mitrovica, J.X., Davis, J.L.: GRACE gravity data constrain ancient ice ge-

ometries and continental dynamics over Laurentia. Science 5826, 881–883 (2007)

41. Tamisiea, M.E., Mitrovica, J.X., Milne, G.A., Davis, J.L.: Global geoid and sea level changes

due to present-day ice mass fluctuations. J. Geophys. Res. 106, 30,849–30,863 (2001)

42. van Veen, J.: Bestaat er een geologische bodemdaling te Amsterdam sedert 1700? Tijdschrift

Koninklijk Nederlandsch Aardrijkskundig Genootschap 2: LXII (1945)

43. Wang, H., Wu, P.: Effects of lateral variations in lithospheric thickness and mantle viscosity on

glacially-induced surface motion on a spherical, self-gravitating Maxwell Earth. Earth Planet.

Sci. Lett. 244, 576–589 (2006)

44. Wilson, J.T.: Did the Atlantic close and then reopen? Nature 211, 676–681 (1966)

45. Wu, P.: Mode coupling in a viscoelastic self-gravitating spherical earth induced by axisym-

metric loads and lateral viscosity variations. Earth Planet. Sci. Lett. 197, 1–10 (2002)

https://doi.org/10.1029/2000JB000033
https://doi.org/10.1029/2006GL027081

	Mathematics of the Not-So-Solid Solid Earth
	Scott D. King
	Ice Ages and Glacial Isostatic Adjustment
	Sea Level Changes
	Outline of the Chapter

	The Haskell Problem: Viscous Relaxation of the Solid Earth
	Gravitational Potential: The Spatial Variability of Sea Level
	Extending the Solution to an Irregular Ice Distribution

	Deformation of the Solid Earth: The Elastic Earth
	Deformation of the Solid Earth: The Maxwell Rheology
	Discussion
	References



