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Preface

Equations and forces

Two-dimensional statistical hydrodynamics studies statistical properties of the
velocity field u(t, x) of (imaginary) two-dimensional fluid satisfying the stochas-
tic 2D Navier–Stokes equations

u̇(t, x) + 〈u,∇〉u− ν∆u+ ∇p = f(t, x), div u = 0,

u = (u1, u2), x = (x1, x2).
(0.1)

Here ν > 0 is the kinematic viscosity, u = u(t, x) is the velocity of the fluid,
p = p(t, x) is the pressure, and f is the density of an external force applied to the
fluid. The space variable x belongs to a two-dimensional domain, which in this
book is supposed to be bounded. Suitable boundary conditions are assumed. For
example, one may consider the case when the domain is a rectangle (0, a)×(0, b),
where a and b are positive numbers, and the equations are supplemented with
periodic boundary conditions; that is to say, the space variable x belongs to the
torus R2/(aZ⊕ bZ) (in the case of periodic boundary conditions we will assume
that space-meanvalues of the force f and the solution u vanish). Equations (0.1)
are stochastic in the sense that the initial condition u0 = u(0, x), or the force f ,
or both of them, are random, i.e. depend on a random parameter. So the
solutions u are random vector fields. The task is to study various characteristics
of u averaged in ensemble, or to study their properties which hold for most values
of the random parameter. In this book, we assume that the force is random and
refer the reader to [FMRT01] for a mathematical treatment of the Navier–Stokes
equations with zero (or deterministic) force and random initial data.

The Reynolds number R of a random velocity field u(t, x) is defined as

R =
〈characteristic scale for x〉 ·

(
EE(u)

)1/2

ν
,

where E(u) = 1
2

∫
|u(x)|1/2dx is the kinetic energy of the fluid and E denotes

the average in ensemble. Since the forces we consider are smooth, then the
solutions u of (0.1) are regular in x and their space-scale is of order one. So

R ∼ ν−1
(
EE(u)

)1/2
. A velocity field u is called turbulent if R ≫ 1. Turbulent

solutions for (0.1) are of prime interest.

If a motion of “physical” three-dimensional fluid is parallel to the (x1, x2)-
plane and its velocity depends only on (x1, x2), i.e. u = u(t, x1, x2) and u3 = 0,
then (u1, u2)(t, x1, x2) satisfy (0.1). Such flows are called two-dimensional . Tur-
bulent flows of real fluids never are two-dimensional (i.e., two-dimensional flows
never are observed in experiments with high Reynolds number). Still, the 2D
equations (0.1) and the 2D turbulence which they describe are now intensively
studied by mathematicians, physicists and engineers since, firstly, they appear in
physics outside the realm of classical hydrodynamics (e.g., they describe flows of
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2D films, see Figure 1), secondly, they make a model 1 for the 3D Navier–Stokes
equations and the 3D turbulence and, thirdly, the 3D statistical hydrodynam-
ics in thin domains is approximately two-dimensional; see Section 6.1 of this
book. Accordingly, two-dimensional statistical hydrodynamics is important for
meteorology to model intermediate-scale flows in atmosphere (see Figures 6.1
and 6.2).

Statistical properties of the random force f are very important. It is natural
and traditional to assume that

(a) the random field f(t, x) is smooth in x,

(b) it is stationary in t with fast decaying correlations.

If the space domain is unbounded, we should also assume that

(c) the space correlations of f decay fast.

However, (c) is not relevant for this book since we only consider flows in bounded
domains.

In mathematics, the point of view 2 that turbulence in dimensions two and
three should be described by the Navier–Stokes equations with a random force
satisfying (a)–(c) goes back to A. N. Kolmogorov; see in [VF88]. Also see
that book for some results on stochastic Navier–Stokes equations in the whole
space Rd, d = 2 or 3, with a random force satisfying (a)–(c).

We consider three classes of random forces:

Kick forces. These are random fields of the form

f(t, x) = h(x) +
∑

k∈Z

δ(t− τk)ηk(x), (0.2)

where h is a smooth deterministic function, τk = kτ with some τ > 0, and {ηk}
are independent identically distributed random vector functions, which we as-
sume to be divergence-free. For t ∈ (τk−1, τk) (i.e. between two consecu-
tive kicks) a solution u(t, x) for (0.1), (0.2) satisfies the deterministic equa-
tions (0.1)f=h, and at the time τk, when the kth kick ηk(x) comes, it has an
instant increment equal to that kick; see Subsection 2.3. The kick forces are
singular in t and are not stationary in t, but statistically periodic (the difference
between the two notions is not big if the time t is much larger than the period τ
between the kicks). An advantage of this class of random forces is that the
kicks ηk may have any statistics.

White in time forces. These are random fields of the form

f(t, x) = h(x) +
d

dt
ζ(t, x), (0.3)

1This model is not perfect since it is well known that the Navier–Stokes equations in
dimensions 2 and 3 are very different. Still, it may be the best available now. Another popular
model for the 3D Navier–Stokes system is the Burgers equation, see the review [BK07] by Bec
and Khanin. For the stochastic 1D Burgers equation, see [Bor12].

2which is not at all a unique insight on the turbulence!
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where h is as above and ζ(t) = ζ(t, ·) is a Wiener process in a space of smooth
divergence-free vector functions. Such random fields are stationary and singular
in t. A disadvantage is that they must be Gaussian; see Subsection 2.4.

Compound Poisson processes. These are kick forces (0.2) for which the peri-
ods τk − τk−1 between kicks are independent exponentially distributed random
variables.

A big technical advantage of these three classes of random forces is that the
corresponding solution u(t, x), regarded as a random process u(t, ·) =: u(t) in
a space of vector fields, are Markov processes. At the moment of writing it is
not clear how to extend the results of this book to arbitrary smooth random
forces f satisfying (a) and (b).

What is in this book?

We are concerned with basic problems and questions, interesting for physicists
and engineers working in the theory of turbulence. Accordingly Chapters 3-5
(which form the main part of this book) end with sections, where we explain
the physical relevance of the obtained results. These sections also provide brief
summaries of the corresponding chapters.

In Chapters 3 and 4, our main goal is to justify, for the 2D case, the statis-
tical properties of fluid’s velocity field u(t, x) which physicists assume in their
work. We refer the reader to the books [Bat82, Fri95, Gal02], written in a suf-
ficiently rigorous way and where the underlying assumptions are formulated in
clear manner.3 The first postulate in the physical theory of turbulence is that
statistical properties of a turbulent flow u(t, x) converge, as time goes to infin-
ity, to a statistical equilibrium independent of the initial data. Mathematically
speaking, it means that a process u(t, ·), defined by Eq. (0.1) in a space of vec-
tor fields, has a unique stationary measure, and every solution converges to this
measure in distribution. That is, the law of the random field x 7→ u(t, x) (which
is a time-dependent measure in a function space) converges, when t→ ∞, to the
measure in question. Random processes possessing this property of “short-range
memory” are said to be mixing .

In Chapter 3, we study the problem of convergence to a statistical equilib-
rium for Markov processes corresponding to equations with the three classes
of random forces as above. We prove abstract theorems which establish the
exponential mixing for certain classes of Markov processes. Next we show that
these theorems apply to Eq. (0.1) if a random force f satisfies certain mild non-
degeneracy assumptions. This establishes the convergence to a unique statistical
equilibrium and proves that it is exponentially fast.

If the viscosity ν and the force f continuously depend on a parameter in
such a way that the former stays positive and the latter stays non-degenerate,
then the stationary measure continuously depends on this parameter. For any
fixed initial data u(0) the law of a corresponding solution u(t) continuously

3Apart from a few pages at the end, the book [Bat82] is about 3D flows. But all discussions
and most of the results may be literally translated to the 2D case.
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depends on the parameter as well. In Section 4.3, we show that this continuity
is uniform in time t ≥ 0. That is, in two space dimensions the statistical
hydrodynamics is stable, no matter how big is the Reynolds number, whereas
“usual” hydrodynamics of large Reynolds numbers is unstable.

The mixing has a number of important consequences, well-known in physics,
but taken there for granted. Namely, consider any observable quantity F (u),
such as the first or second component of the velocity field u = (u1, u2), or the
energy E = 1

2

∫
|u|2dx, or the enstrophy 1

2

∫
(curlu)2dx. Then F (t) = F (u(t, ·))

is an ergodic process. That is, its time average converges to the ensemble average
with respect to the stationary measure. We show that the difference between the
two mean values (in time and in ensemble) decays as T−γ , where γ < 1/2 and
T is the time of averaging; see Section 4.1.1. Next, if the ensemble average for
an observable F (u) vanishes, then the process F (t) satisfies the Central Limit
Theorem: the law of the random variable

1√
T

∫ T

0

F (t) dt

converges, as T → ∞, to a normal distribution N(0, σ). For non-trivial ob-
servables F , the dispersion σ is strictly positive. In particular, for large T the

random variables T−1/2
∫ T

0
uj(t, x)dt, j = 1, 2, are almost Gaussian. Physicists

say that on large time scales a turbulent velocity field is Gaussian. These and
some other related results are proved in Chapter 4.

In Chapter 5 we study velocity fields u(t, x), corresponding to solutions of
(0.1) with a force (0.2) or (0.3) where h = 0, when the viscosity ν is small
and the Reynolds number is large. There we only discuss stationary measures
and stationary in time solutions uν (i.e., solutions uν(t, x) such that the law
D(uν(t)) for each t equals the stationary measure). First we observe that for a
limit of order one to exist as ν → 0, the force f should be proportional to

√
ν;

see Section 5.2.4. So the equations reed as

u̇(t, x) + 〈u,∇〉u− ν∆u+ ∇p =
√
ν f(t, x), div u = 0,

where f is the force (0.2) or (0.3) with h ≡ 0. This is in sharp contrast with
the 3D theory, where it is believed that a limit of order one exists for the
original scaling (0.1), without the additional factor

√
ν in the right-hand side.4

In that chapter we restrict ourselves to the case when the space domain is the
square torus T2 = R2/2πZ2. The results remain true for the non-square tori
R2/(aZ⊕ bZ), but the argument does not apply to the equations in a bounded
domain with the Dirichlet boundary condition.

Denote by µν the unique stationary measure. We show that the set of
measures {µν , 0 < ν ≤ 1} is tight (i.e., relatively compact) and that any limit
point µ0 = limνj→0 µνj

is a non-trivial invariant measure for the Euler system

u̇(t, x) + 〈u,∇〉u+ ∇p = 0, div u = 0.

4Note that for the small-viscosity Burgers equation the right scaling of the force also is
trivial, i.e. without any additional factor; see [BK07, Bor12].
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It is supported by the set of divergence-free vector fields from the Sobolev
space H2 of order two. This result well agrees with the popular belief that
the Euler equation is “responsible” for the 2D turbulence. We do not know if
a limiting measure µ0 is unique, i.e. if µ0 = limν→0 µν . But we know that the
measures µν satisfy, uniformly in ν > 0, infinitely many algebraical relations,
called the balance relations. These relations depend only on two scalar char-
acteristics of the force f . This indicates some universality features of the 2D
turbulence. Such universality is another physical belief. In Section 5.1.3, we use
the balance relations to prove that for any t and x the random variables uν(t, x)
and curluν(t, x) have finite exponential moments uniformly in ν ≥ 0. In Sec-
tion 5.2, we study further properties of the limiting measures µ0. In particu-
lar, we establish that any µ0 has no atoms and that its support is an infinite-
dimensional set.

Results of Chapter 5 make a foundation of mathematical theory of the space-
periodic 2D turbulence. In Section 5.3, we discuss relation of these results with
the existing heuristic theory of 2D turbulence, originated by Batchelor and
Kraichnan.

The difference between the 2D turbulence and the real physical 3D turbu-
lence is very big. In Chapter 6, we discuss a few rigorous results on the 3D tur-
bulence, related to the 2D theory presented in the preceding sections. Namely,
in Section 6.1 we discuss (without proof) the convergence of statistical char-
acteristics of a flow in a thin 3D layer, corresponding to the 3D Navier-Stokes
system with a random kick-force, to those of a 2D flow in the limiting 2D surface.
In difference with similar deterministic results, the convergence holds uniformly
in time. So a class of anisotropic 3D turbulent flows may be approximated by
2D flows like those which we consider in our book. Section 6.2 contains an
exposition of results due to Da Prato–Debussche–Odasso and Flandoli–Romito,
showing that weak solutions of the stochastic 3D Navier-Stokes system per-
turbed by a white in time random force (which a priori are non-unique) may be
arranged to a Markov process. This process is mixing if the force is rough as a
function of the space variable. Finally, in Section 6.3, we evoke the methods of
control theory to study further properties of stationary measures for Eq. (0.1),
(0.3).

Other equations

The abstract theorems from Chapters 3 and 4 and the methods developed there
to study solutions of Eq. (0.1) apply to many other stochastic equations. For
instance, one can consider the stochastic complex Ginzburg–Landau equation
with a conservative nonlinearity,

u̇+ i∆u− i|u|2mu = ∆u− u+ f(t, x), (0.4)

where x ∈ Td, d ≤ 3. If d = 1 or 2, then m ≥ 0, while if d = 3, then one can
take, say, m ∈ [0, 1]. Such equations describe the optical turbulence. If f is a
bounded kick force, then direct analogues of the theorems in Chapters 3 and 4
remain true for (0.4) with the same proof.
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Figure 1: The onset of 2D turbulence. Pictures 1–4 represent down-motion of a
soap film, punctured by a comb at the top. The Reynolds number is increasing
from a picture to picture. This is a 2D turbulent motion described by the 2D
Navier–Stokes system (0.1).

However, if the force f is white in time, then the methods of Chapters 3
and 4 apply only to Eq. (0.4) with m = 1 if d = 1 and m < 1 if d ≥ 2 (while the
equation defines a good Markov process for any m as above). That is, for some
deep reason, the arguments developed to treat the stochastic Navier–Stokes
equations (0.1) with white in time forces apply only to PDE’s with conservative
nonlinearities of degree ≤ 3;5 see Section 3.5.5.

Readers of this book

The book is aimed at mathematicians and physicists with some background
in PDE and in stochastic. Standard university courses on these subjects are
sufficient since the book is provided with preliminaries on function spaces (Sec-
tion 1.1), on the 2D Navier–Stokes equations (Chapter 2) and on stochastics
(Sections 1.2 and 1.3). There a reader will find all needed non-standard results.
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year 2004/05. He thanks the Forschungsinstitut at ETH for the hospitality and
for help in preparation the lecture notes.

5But the method applies to Eq. (0.4) with m > 1 if we add in the right-hand side a strong

nonlinear damping −|u|2m
′

u, m′ ≥ m.



Chapter 1

Preliminaries

1.1 Function spaces

1.1.1 Functions of the space variables

Let Q be a domain in Rd (i.e., a connected open subset of Rd) or the torus
Td = Rd/2πZd. We shall say that a domain Q is Lipschitz if its boundary ∂Q is
locally Lipschitz1. We shall need Lebesgue and Sobolev spaces on Q and some
embedding and interpolation theorems.

Lebesgue spaces

We denote by Lp(Q;Rn), 1 ≤ p ≤ ∞, the usual Lebesgue space of vector-valued
functions and abbreviate Lp(Q;R) = Lp(Q). We write 〈·, ·〉 for the L2 scalar
product and | · |p for the standard norm in Lp(Q;Rn).

Sobolev spaces

We denote by C∞
0 (Q;Rn) the space of infinitely smooth functions ϕ : Q → Rn

with compact support. Let u and v be two locally integrable scalar functions
on Q and let α = (α1, . . . , αd) be a multi-index. We say that v is the αth weak
partial derivative of u if

∫

Q

uDαϕdx = (−1)|α|
∫

Q

vϕ dx for all ϕ ∈ C∞
0 (Q;R),

where |α| := α1+· · ·+αd and Dα = ∂α1
1 · · · ∂αd

d . In this case, we write Dαu = v.

Let m ≥ 0 be an integer. The space Hm(Q,Rn) consists of all locally
integrable functions u : Q → Rn such that the derivative Dαu exists in the
weak sense for each multi-index α with |α| ≤ m and belongs to L2(Q;Rn). We

1This means that ∂Q can be represented locally as the graph of a Lipschitz function.

1
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write Hm(Q;R) = Hm(Q) and define the norm in Hm(Q;Rn) as

‖u‖m :=

( ∑

|α|≤m

|Dαu|22
)1/2

.

In the case Q = Td, it is easy to define Hm(Td;Rn) for all m ∈ R. To this end,
let us expand a function u ∈ L2(Td,Rn) into a Fourier series:

u(x) =
∑

s∈Zd

use
isx.

Define the following norm, which is equivalent to ‖ · ‖m for non-negative inte-
gers m:

‖u‖m =

( ∑

s∈Zd

(
1 + |s|2

)m|us|2
)1/2

. (1.1)

The space Hm(Td;Rn) is defined as the closure of C∞(Td,Rn) with respect to
the norm ‖ · ‖m. It is easy to see that if m ≥ 0 is an integer, then the two
definitions of Hm(Td;Rn) give the same function space. The following result is
a simple consequence of the definition of ‖ · ‖m.

Lemma 1.1.1. For any m ∈ R and any multi-index α, the linear map Dα

is continuous from Hm(Td;Rn) to Hm−|α|(Td;Rn). Accordingly, the Laplace
operator ∆ : Hm(Td;Rn) → Hm−2(Td;Rn) is continuous. Similar assertions
are true for any open domain Q ⊂ Rd and any integer m ≥ 0.

Now let u ∈ Hm(Td;Rn) be a function with zero mean value, that is,

〈u〉 := (2π)−d

∫

Td

u(x) dx = 0 , (1.2)

where the integral is understood in the sense of the theory of distributions if
m < 0. In this case, the first Fourier coefficient of u is zero, u0 = 0, and
therefore the norm

‖u‖m =

(∑

s 6=0

|s|2m|us|2
)1/2

is equivalent to (1.1) on the space

Ḣm(Td;Rn) = {u ∈ Hm(Td;Rn) : 〈u〉 = 0} .

In particular, ‖u‖21 = |∇u|2 is a norm on Ḣ1(Td;Rn).
Finally, let us define the Sobolev space Hm(Q;Rn) in a bounded Lipschitz

domain Q ⊂ Rd for an arbitrary m ≥ 0. Namely, without loss of generality, we
can assume that Q ⊂ Td. We shall say that a function u ∈ L2(Q,Rn) belongs
to Hm(Q;Rn) if there is a function ũ ∈ Hm(Td;Rn) whose restriction to Q
coincides with u. In this case, we define ‖u‖m as the infimum of ‖ũ‖m over all
possible extensions ũ ∈ Hm(Td;Rn) for u.
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Property 1.1.2. Sobolev Embeddings. Let Q be either a Lipschitz domain
in Rd or the torus Td.

1. If m ≤ d
2 and 2 ≤ q ≤ 2d

d−2m , q <∞, then

Hm(Q;Rn) ⊂ Lq(Q;Rn) . (1.3)

2. If m ≥ d
2 + α with 0 < α < 1, then

Hm(Q;Rn) ⊂ Cα
b (Q;Rn) , (1.4)

where Cα
b (Q) denotes the space of functions that are bounded and Hölder

continuous with the exponent α. In particular, if m > d
2 , then Hm(Q;Rn)

is continuously embedded into the space Cb(Q;Rn) of bounded continuous
functions.

3. If Q is bounded, then we have the compact embedding

Hm1(Q;Rn) ⋐ Hm2(Q;Rn) for m1 > m2. (1.5)

It follows that embeddings (1.3) and (1.4) are compact for q < 2d
d−2m and

m > d
2 + α, respectively.

Property 1.1.3. Duality. The spaces Hm(Td;Rn) and H−m(Td;Rn) are dual
with respect to the L2-scalar product 〈·, ·〉. That is,

‖u‖m = sup
v

|〈u, v〉| for any u ∈ C∞(Td;Rn) , (1.6)

where the supremum is taken over all v ∈ C∞(Td;Rn) such that ‖v‖−m ≤ 1.
Relation (1.6) implies that the scalar product in L2 extends to a continuous
bilinear map from Hm(Td;Rn) ×H−m(Td;Rn) to R.

Property 1.1.4. Interpolation inequality. Let Q ⊂ Rd be a Lipschitz domain,
let a < b be non-negative integers, and let 0 ≤ θ ≤ 1 be a constant. Then

‖u‖θa+(1−θ)b ≤ ‖u‖θa‖u‖1−θ
b for any u ∈ Hb(Q;Rn). (1.7)

In the case of the torus, inequality (1.7) holds for any real numbers a < b and
any θ ∈ [0, 1].

Proof for the case of a torus. We have

‖u‖2θa+(1−θ)b =
∑

s∈Zd

(
1 + |s|2

)θa+(1−θ)b|us|2

=
∑

s∈Zd

((
1 + |s|2

)θa|us|2θ
)((

1 + |s|2
)(1−θ)b|us|2(1−θ)

)

≤
( ∑

s∈Zd

(
1 + |s|2

)a|us|2
)θ( ∑

s∈Zd

(
1 + |s|2

)b|us|2
)1−θ

,

where we used Hölder’s inequality in the last step.
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Example 1.1.5. Let Q be either a Lipschitz domain in R2 or the torus T2. Then
the Sobolev embedding (1.3), with m = 1/2 and q = 4, and the interpolation
inequality (1.6) with a = 0, b = 1 and θ = 1

2 imply that

|u|4 ≤ C1‖u‖1/2 ≤ C2

√
|u|2‖u‖1 for any u ∈ H1(Q;Rn). (1.8)

This is Ladyzhenskaya’s inequality .

A proof of Properties 1.1.2 – 1.1.4 can be found in [BIN79, Ste70, Tay97].

1.1.2 Functions of space and time variables

Solutions of the equations mentioned in the introduction are functions depend-
ing on the time t and the space variables x. We fix any T > 0 and view a
solution u(t, x) with 0 ≤ t ≤ T as a map

[0, T ] −→ “space of functions of x”, t 7→ u(t, ·) .

Let us introduce corresponding functional spaces.

For a Banach space X, we denote by C(0, T ;X) the space of continuous
functions u : [0, T ] → X and endow it with the norm

‖u‖C(0,T ;X) = sup
0≤t≤T

‖u(t)‖X ,

where ‖ · ‖X stands for the norm in X. We denote by S(0, T ;X) the space of
functions of the form

u(t) =

N∑

k=1

ukIΓk
(t) ,

where N ≥ 1 is an integer depending on the function, uk ∈ X are some vectors,
Γk are Borel-measurable subsets of [0, T ] (see Subsection 1.2.1), and IΓ stands
for the indicator function of Γ. If X is separable, then for p ∈ [1,∞] define
Lp(0, T ;X) as the completion of the space S(0, T ;X) with respect to the norm

‖u‖Lp(0,T ;X) =





(∫ T

0

‖u(t)‖pXdt
)1/p

for 1 ≤ p <∞,

ess sup
0≤t≤T

‖u(t)‖X for p = ∞.

Note that, in view of Fubini’s theorem, we have

Lp
(
0, T ;Lp(Q;Rn)

)
= Lp

(
(0, T ) ×Q;Rn

)
for p <∞.

A more detailed discussion of these spaces can be found in [Lio69, Yos95].

We shall also need the space of continuous functions on an interval with
range in a metric space. Namely, let J ⊂ R be a closed interval and let X be a
Polish space, that is, a complete separable metric space with a distance distX .
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We denote by C(J ;X) the space of continuous functions from J to X. When J
is bounded, C(J ;X) is a Polish space with respect to the distance

‖u− v‖C(J;X) = max
t∈J

distX
(
u(t), v(t)

)
.

In the case of an unbounded interval J , we endow C(J ;X) with the metric

dist(u, v) =
∞∑

k=1

2−k ‖u− v‖C(Jk;X)

1 + ‖u− v‖C(Jk;X)
, (1.9)

where Jk = J ∩ [−k, k]. Note that, for a sequence {uj} ⊂ C(J,X), we have
dist(uj , u) → 0 as j → ∞ if and only if ‖uj − u‖C(Jk;X) for each k. That is,
(1.9) is the metric of uniform convergence on bounded intervals . When J = Z

(or J is a countable subset of Z), formula (1.9) may be used to define a distance
on XJ . This distance corresponds to the Tikhonov topology on XJ .

Exercise 1.1.6. Prove that if J ⊂ R is an unbounded closed interval, then
C(J ;X) is a Polish space. Prove also that if X is a separable Banach space,
then C(J ;X) is a separable Fréchet space.

1.2 Basic facts from the measure theory

In this section, we first recall the concept of a σ-algebra, together with some
related definitions, and formulate without proof three standard results on the
passage to the limit under Lebesgue’s integral. We next discuss various metrics
on the space of probability measures on a Polish space and establish some results
on (maximal) couplings of measures.

1.2.1 σ-algebras and measures

Let Ω be an arbitrary set and let F be a family of subsets of Ω. Recall that F is
called a σ-algebra if it contains the sets ∅ and Ω, and is invariant under taking
the complement and countable union of its elements. Any pair (Ω,F) is called
a measurable space. If (Ωi,Fi), i = 1, 2, are measurable spaces, then a mapping
f : Ω1 → Ω2 is said to be measurable if f−1(Γ) ∈ F1 for any Γ ∈ F2. If µ is
a (positive) measure on (Ω1,F1), then its image under f is the measure f∗(µ)
on (Ω2,F2) defined by f∗(µ)(Γ) = µ(f−1(Γ)) for any Γ ∈ F2. Note that f∗ is a
linear mapping on the space of positive measures:

f∗(c1µ1 + c2µ2) = c1f∗(µ1) + c2f∗(µ2) for any c1, c2 ≥ 0.

The product of two measurable spaces (Ωi,Fi), i = 1, 2, is defined as the set
Ω1 × Ω2 endowed with the minimal σ-algebra F1 ⊗ F2 generated by subsets
of the form Γ1 × Γ2 with Γi ∈ Fi. The product of finitely or countably many
σ-algebras is defined in a similar way.

Given a probability measure µ on a measurable space (Ω,F), we denote
by Nµ the family of subsets A ⊂ Ω such that A ⊂ B for some B ∈ F with
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µ(B) = 0. A σ-algebra F is said to be complete with respect to a measure µ if
it contains all sets from Nµ. The completion of F with respect to µ is defined
as the minimal σ-algebra generated by F ∪ Nµ and is denoted by Fµ. This
is the minimal complete σ-algebra which contains F . A subset Γ ⊂ Ω is said
to be universally measurable if it belongs to Fµ for any probability measure µ
on (Ω,F). If µ is a measure on (Ω1,F1), F1 is complete with respect to µ, and
a map f : Ω1 → Ω2 is a µ-almost sure limit of a sequence of measurable maps,
then f is measurable.

Now let X be a Polish space, that is, a complete separable metric space. We
denote by distX the metric on X. The Borel σ-algebra B = B(X) is defined as
the minimal σ-algebra containing all open subsets of X. The pair (X,B(X)) is
called a measurable Polish space. If X1 and X2 are Polish spaces, then a map
f : X1 → X2 is said to be measurable if f−1(Γ) ∈ B(X1) for any Γ ∈ B(X2). In
particular, a function f : X → R is called measurable if it is measurable with
respect to the Borel σ-algebras on X and R. An important property of Polish
spaces is that any probability measure on it is regular . Namely, Ulam’s theorem
says that, for any probability measure µ on a Polish space X and any ε > 0,
there is a compact set K ⊂ X such that µ(K) ≥ 1 − ε. A proof of this result
can be found in [Dud02] (see Theorem 7.1.4).

Recall that, for any probability measure P on a measurable space (Ω,F),
the triple (Ω,F ,P) is called a probability space. A probability space (Ω,F ,P)
is said to be complete if FP = F . We shall often consider a probability space
together with a family {Ft ⊂ F} of σ-algebras that depend on a parameter t
varying either in R+ or in Z+. In this case, we shall always assume that Ft is
non-decreasing with respect to t. The quadruple (Ω,F ,Ft,P) is called a filtered
probability space. We shall say that (Ω,F ,Ft,P) satisfies the usual hypotheses
if (Ω,F ,P) is complete and Ft contains all P-null sets of F .

If X is a Polish space, then an X-valued random variable is a measurable
map ξ from a probability space (Ω,F ,P) into X. The law or the distribution of ξ
is defined as the image of P under ξ and is denoted by D(ξ), i.e., D(ξ) = ξ∗(P).
If we need to emphasise that the distribution of a random variable is considered
with respect to a probability measure µ, then we write Dµ(ξ). An X-valued
random process is defined as a collection of a probability space (Ω,F ,P) and a
family of X-valued random variables {ξt} on Ω (where t varies in R+ or Z+). If
the underlying probability space is equipped with a filtration Ft, then we shall
say that the process ξt is adapted to Ft if ξt is Ft-measurable for any t ≥ 0.
Finally, a random process ξt defined on a filtered probability space (Ω,F ,Ft,P)
is said to be progressively measurable if for any t ≥ 0 the map (s, ω) 7→ ξs(ω)
from [0, t] × Ω to X is measurable. It is clear that if t varies in Z+, then these
two concepts coincide.

1.2.2 Convergence of integrals

In what follows, we shall systematically use well-known results on the passage
to the limit under Lebesgue’s integrals. For the reader’s convenience, we state
them here without proofs, referring the reader to Section 4.3 of [Dud02].
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Let (Ω,F) be a measurable space, let µ be an arbitrary σ-finite measure on
it (so µ(Ω) ≤ ∞), and let fn : Ω → C be a sequence of integrable functions.
The following result called Lebesgue’s theorem on dominated convergence gives
a sufficient condition for the convergence of the integrals of fn to that of the
limit function.

Theorem 1.2.1. Assume that {fn}n≥1 is a sequence of functions that converge
µ-almost surely and satisfy the inequality

|fn(ω)| ≤ g(ω) for µ-almost every ω ∈ Ω, (1.10)

where g : Ω → R+ is a µ-integrable function. Then

lim
n→∞

∫

Ω

fndµ =

∫

Ω

(
lim
n→∞

fn

)
dµ. (1.11)

In the case when the functions fn are real-valued and form a monotone
sequence, bound (1.10) can be replaced by a weaker condition, which a poste-
riori turns out to be equivalent to the former. Namely, we have the following
monotone convergence theorem.

Theorem 1.2.2. Let fn : Ω → R be a non-decreasing (or non-increasing)
sequence that converges µ-almost surely and satisfies the condition

sup
n≥1

∣∣∣∣
∫

Ω

fndµ

∣∣∣∣ <∞.

Then relation (1.11) holds.

Finally, the following result called Fatou’s lemma is useful when estimating
the integral of the limit for a sequence of non-negative functions.

Theorem 1.2.3. Let fn : Ω → R+ be an arbitrary sequence of µ-integrable
functions. Then ∫

Ω

(
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫

Ω

fndµ.

In particular, the three theorem above apply if Ω is the set N of non-negative
integers with the counting measure. In this case, they describe passage to the
limit for sums of infinite series.

1.2.3 Metrics on the space of probabilities and conver-

gence of measures

In what follows, we denote by X a Polish space with a metric dX . Define Cb(X)
as the space of bounded continuous functions f : X → R endowed with the
norm

‖f‖∞ = sup
u∈X

|f(u)|,
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and denote by Lb(X) the space of bounded Lipschitz functions on X. That is,
of functions f ∈ Cb(X) for which

Lip(f) := sup
u1,u2∈X

|f(u1) − f(u2)|
distX(u1, u2)

<∞.

The space Lb(X) is endowed with the norm

‖f‖L = ‖f‖∞ + Lip(f).

Note that Cb(X) and Lb(X) are Banach spaces with respect to the corresponding
norms. The following exercise summarises some further properties of these
spaces.

Exercise 1.2.4. Let X be a Polish space.

(i) Prove that Cb(X) is separable if and only if X is compact.

(ii) Prove that Lb(X) is not separable for the space X = [0, 1] with the usual
metric.

Hint: To prove that Cb(X) is separable for a compact metric space X, use the
existence of a finite ε-net and a partition of unity on X. To show that if X
is not compact, then Cb(X) is not separable, use the existence of a sequence
{xk} ⊂ X such that distX(xk, xm) ≥ ε > 0. Finally, to prove (ii), construct a
continuum {ϕα} ⊂ L∞(X) such that the distance between any two functions is
equal to 1, and use the integrals of ϕα.

Let us denote by P(X) the set of probability measures on (X,B(X)) and
by P1(X) the subset of those measures µ ∈ P(X) for which

m1(µ) :=

∫

X

distX(u, u0)µ(du) <∞, (1.12)

where u0 ∈ X is an arbitrary point. The triangle inequality implies that the
class P1(X) does not depend on the choice of u0. We shall need the following
three metrics.

Total variation distance :

‖µ1 − µ2‖var :=
1

2
sup

f ∈ Cb(X)
‖f‖∞ ≤ 1

∣∣(f, µ1) − (f, µ2)
∣∣, µ1, µ2 ∈ P(X). (1.13)

This is the distance induced on P(X) by its embedding into the space
dual to Cb(X). It can be extended to probability measures on an arbitrary
measurable space; see Remark 1.2.8 below.

Dual-Lipschitz distance :

‖µ1 − µ2‖∗L := sup
f ∈ Lb(X)
‖f‖L ≤ 1

∣∣(f, µ1) − (f, µ2)
∣∣, µ1, µ2 ∈ P(X). (1.14)
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This is the distance induced on P(X) by its embedding into the space
dual to Lb(X).

Kantorovich distance :

‖µ1 − µ2‖K := sup
f ∈ Lb(X)
Lip(f) ≤ 1

∣∣(f, µ1) − (f, µ2)
∣∣, µ1, µ2 ∈ P1(X). (1.15)

Exercise 1.2.5. Show that the symmetric functions (1.13) – (1.15) define met-
rics on the sets P(X) and P1(X). Hint: The only non-trivial point is that if
measures µ1 and µ2 satisfies the relation ‖µ1 − µ2‖∗L = 0, then µ1 = µ2. This
can be done with the help of monotone class technique; see Corollary 7.1.3 in
the Appendix.

An immediate consequence of definitions (1.13) – (1.15) and the inequalities
‖f‖∞ ≤ ‖f‖L and Lip(f) ≤ ‖f‖L is that

‖µ1 − µ2‖∗L ≤ 2‖µ1 − µ2‖var for µ1, µ2 ∈ P(X), (1.16)

‖µ1 − µ2‖∗L ≤ ‖µ1 − µ2‖K for µ1, µ2 ∈ P1(X). (1.17)

Furthermore, if the space X is bounded, that is, there is an element u0 ∈ X
and a constant d0 > 0 such that

distX(u, u0) ≤ d0 for all u ∈ X,

then, for any function f ∈ Cb(X) vanishing at u0 ∈ X, we have

‖f‖∞ ≤ d0 Lip(f),

where the right-hand side may be infinite. It follows that in this case

‖µ1 − µ2‖K ≤ 2d0‖µ1 − µ2‖var for µ1, µ2 ∈ P1(X).

It turns out that the distance ‖ · ‖∗L is equivalent to the one obtained by re-
placing Lb(X) in (1.14) with the space of bounded Hölder-continuous functions.
Namely, for γ ∈ (0, 1) we denote by Cγ

b (X) the space of continuous functions
f : X → R such that

|f |γ := ‖f‖∞ + sup
0<distX(u,v)≤1

|f(u) − f(v)|
distX(u, v)γ

<∞.

Let us set

‖µ1 − µ2‖∗γ := sup
f ∈ Cγ

b (X)
|f |γ ≤ 1

∣∣(f, µ1) − (f, µ2)
∣∣, µ1, µ2 ∈ P(X). (1.18)

Proposition 1.2.6. For any γ ∈ (0, 1) and µ1, µ2 ∈ P(X), we have

‖µ1 − µ2‖∗L ≤ ‖µ1 − µ2‖∗γ ≤ 5
(
‖µ1 − µ2‖∗L

) 1
2−γ .
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Proof. The lower bound of the inequality is obvious, and therefore we shall
confine ourselves to the proof of the upper bound. For any continuous function
f : X → R, we define an approximation for it by the relation

fε(u) = inf
v∈X

(
ε−1d(u, v) + f(v)

)
, u ∈ X, (1.19)

where ε > 0 is an arbitrary constant. It is a matter of direct verification to
show that if f ∈ Cγ

b (X) and ‖f‖γ ≤ 1, then

‖fε‖L ≤ 1 + ε−1, 0 ≤ f(u) − fε(u) ≤ ε
1

1−γ for u ∈ X. (1.20)

We now fix δ > 0 and find a function f ∈ Cγ
b (X) with ‖f‖γ ≤ 1 such that

‖µ1 − µ2‖∗γ ≤ |(f, µ1) − (f, µ2)| + δ. (1.21)

It follows from (1.20) that, for any ε > 0, we have

|(f, µ1) − (f, µ2)| ≤ |(fε − f, µ1)| + |(fε − f, µ2)| + |(fε, µ1) − (fε, µ2)|
≤ 2ε

1
1−γ +

(
1 + ε−1

)
‖µ1 − µ2‖∗L.

Choosing ε = (‖µ1 − µ2‖∗L)
1−γ
2−γ and noting that ‖µ1 − µ2‖∗L ≤ 2, we get

|(f, µ1) − (f, µ2)| ≤ 5
(
‖µ1 − µ2‖∗L

) 1
2−γ .

Combining this with (1.21) and recalling that δ > 0 was arbitrary, we arrive at
the required assertion.

The following proposition gives an alternative description of the total vari-
ation distance and provides some formulas for calculating it.

Proposition 1.2.7. For any µ1, µ2 ∈ P(X), we have

‖µ1 − µ2‖var = sup
Γ∈B(X)

|µ1(Γ) − µ2(Γ)|. (1.22)

Furthermore, if µ1 and µ2 are absolutely continuous with respect to a given
measure m ∈ P(X), then

‖µ1 − µ2‖var =
1

2

∫

X

∣∣ρ1(u) − ρ2(u)
∣∣ dm = 1 −

∫

X

(ρ1 ∧ ρ2)(u) dm, (1.23)

where ρi(u) is the density of µi with respect to m.

Remark 1.2.8. Let us note that a measure m ∈ P(X) with respect to which µ1

and µ2 are absolutely continuous always exists. For instance, we can take m =
1
2 (µ1 +µ2). Furthermore, relation (1.22) enables one to extend the definition of
the total variation distance to an arbitrary measurable space.
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Proof of Proposition 1.2.7. Step 1. Let us denote by ‖µ1−µ2‖′var the right-hand
side of (1.22) and show that relation (1.23) is true for it. Setting ρ = ρ1 ∧ ρ2
and integrating the obvious relation

1
2 |ρ1 − ρ2| = 1

2 (ρ1 + ρ2) − ρ

over X with respect to m, we obtain the second equality in (1.23).

We now show that

‖µ1 − µ2‖′var ≤ 1 −
∫

X

ρ(u) dm. (1.24)

Let us define the set Y = {u ∈ X : ρ1(u) > ρ2(u)}. Since ρ = ρ2 on Y , we have

µ1(Γ) − µ2(Γ) =

∫

Γ

(ρ1 − ρ2) dm ≤
∫

Γ∩Y

(ρ1 − ρ2) dm

=

∫

Γ∩Y

(ρ1 − ρ) dm ≤
∫

X

(ρ1 − ρ) dm = 1 −
∫

X

ρ(u) dm

for any Γ ∈ B(X). By symmetry, this inequality implies (1.24).

To prove the converse inequality, we note that ρ = ρ1 on Y c and ρ = ρ2
on Y . It follows that

µ1(Y ) − µ2(Y ) =

∫

Y

(ρ1 − ρ2) dm

=

(∫

Y

ρ1dm+

∫

Y c

ρ dm

)
−
(∫

Y

ρ2dm+

∫

Y c

ρ dm

)

=

(∫

Y

ρ1dm+

∫

Y c

ρ1dm

)
−

(∫

Y

ρ dm+

∫

Y c

ρ dm

)

= 1 −
∫

X

ρ dm.

This completes the proof of (1.23) for ‖µ1 − µ2‖′var.
Step 2. We now prove (1.22). Using Step 1, for any f ∈ Cb(X) with

‖f‖∞ ≤ 1, we derive

∣∣(f, µ1) − (f, µ2)
∣∣ ≤

∫

X

∣∣f(u)
(
ρ1(u) − ρ2(u)

)∣∣ dm ≤ 2 ‖µ1 − µ2‖′var,

which implies that
‖µ1 − µ2‖var ≤ ‖µ1 − µ2‖′var.

To establish the converse inequality, let us consider a function f(u) that is equal
to 1 on Y and to −1 on Y c. We have

(f, µ1) − (f, µ2) =

∫

X

f(u)
(
ρ1(u) − ρ2(u)

)
dm

=

∫

X

∣∣ρ1(u) − ρ2(u)
∣∣ dm = 2 ‖µ1 − µ2‖′var, (1.25)
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where we used the first relation in (1.23). To complete the proof of (1.22), let
us choose a sequence fn ∈ Cb(X) such that (see Exercise 1.2.12 below)

‖fn‖∞ ≤ 1 for all n ≥ 1,

fn(u) → f(u) as n→ ∞ for m-a.e. u ∈ X.

It is easy to see that the difference (fn, µ1)− (fn, µ2) tends to the left-hand side
of (1.25) as n→ ∞. This completes the proof of the proposition.

Exercise 1.2.9. Analysing the proof of relation (1.23), show that it remains valid
for any positive Borel measure m (that is, we no longer require that m(X) = 1)
with respect to which µ1 and µ2 are absolutely continuous.

Exercise 1.2.10. Let X be a Polish space and let L∞(X) be the space of bounded
measurable functions endowed with the norm ‖·‖∞. Prove that for any measures
µ1, µ2 ∈ P(X) we have (cf. (1.13))

‖µ1 − µ2‖var :=
1

2
sup

f ∈ L∞(X)
‖f‖∞ ≤ 1

∣∣(f, µ1) − (f, µ2)
∣∣. (1.26)

Two measures µ, ν ∈ P(X) are said to be mutually singular if there is a
Borel subset A ⊂ X such that µ(A) = 1 and ν(A) = 0. Relation (1.23) of
Proposition 1.2.7 implies the following result.

Corollary 1.2.11. Two measures µ, ν ∈ P(X) are mutually singular if and
only if ‖µ− ν‖var = 1.

Exercise 1.2.12. Let X be a Polish space and let m ∈ P(X). Show that for
any bounded measurable function f : X → R there is a sequence of continuous
functions that are uniformly bounded by ‖f‖∞ and converge to f for m-almost
all u ∈ X. Hint: It suffices to prove that f can be approximated by continuous
functions in the space L1(X,m). To do this, show that any bounded measurable
function can be approximated (in the sense of uniform convergence) by finite
linear combinations of indicator functions and that the indicator function of any
measurable set can be approximated (in the sense of convergence in L1(X,m))
by bounded continuous functions. For the latter property, one could use Ulam’s
theorem on interior regularity of Borel measures; see Section 1.2.1.

Exercise 1.2.13. (i) Let (Ωi,Fi), i = 1, 2, be two measurable spaces and let
f : Ω1 → Ω2 be a measurable mapping. Prove that, for any measures
µ1, µ2 on (Ω1,F1),

‖f∗(µ1) − f∗(µ2)‖var ≤ ‖µ1 − µ2‖var;

see Remark 1.2.8 and relation (1.22) for the definition of the total variation
distance in the case of measurable spaces.
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(ii) Let X be a Polish space and let ξ1, ξ2 be two X-valued random variables
defined on a probability space (Ω,F ,P) such that ξ1 = ξ2◦Φ almost surely,
where Φ : Ω → Ω is a measurable transformation. Show that

‖D(ξ1) −D(ξ2)‖var ≤ ‖P− Φ∗(P)‖var.

Hint: Use (i) with f = ξ2, µ2 = P, and µ1 = Φ∗(P).

We shall say that a sequence {µk} ⊂ P(X) converges weakly to µ ∈ P(X) if

(f, µk) → (f, µ) as k → ∞ (1.27)

for any f ∈ Cb(X). In this case, we write µk → µ. Recall that a family
{µα, α ∈ A} ⊂ P(X) is said to be tight in X if for any ε > 0 there is a compact
set Kε ⊂ X such that µα(Kε) ≥ 1 − ε for any α ∈ A. In what follows, we shall
need the following well-known result called Prokhorov theorem, which gives a
necessary and sufficient condition for the compactness of a family of measures
in the weak topology. Its proof can be found in [Dud02, Theorem 11.5.4].

Theorem 1.2.14. Let X be a Polish space and let {µα, α ∈ A} be a family of
probability measures on X. Then {µα} is relatively compact in the weak topology
of P(X) if and only if it is tight.

The following result of fundamental importance shows, in particular, that
the weak convergence of measures is equivalent to the convergence in the dual-
Lipschitz distance.

Theorem 1.2.15. (i) The set P(X) endowed with the total variation dis-
tance is a complete metric space. Furthermore, a sequence {µk} ⊂ P(X)
converges to a measure µ in this space if and only if (1.27) holds uniformly
in f ∈ Cb(X) with ‖f‖∞ ≤ 1. In particular, P(X) is naturally embedded
in the dual space of Cb(X) as its closed subspace.

(ii) The set P(X) endowed with the dual-Lipschitz distance is a complete met-
ric space. Furthermore, a sequence {µk} ⊂ P(X) converges to a measure µ
in this space if and only if either {µk} converges weakly to µ or (1.27) holds
for any f ∈ Lb(X).

Proof. Assertion (i) follows easily from the definition and basic properties of the
metric ‖ · ‖var. Indeed, if {µk} ⊂ P(X) is a Cauchy sequence, then by (1.22)
for each Borel set Γ ⊂ X there exists a limit limk→∞ µk(Γ) =: µ(Γ). If we show
that µ is a probability measure, then it will be the limit of {µk} for the total
variation distance.

It is obvious that the mapping Γ 7→ µ(Γ) is additive and that µ(Γ) = 1.
To complete the proof of (i), it remains to establish the σ-additivity of µ. To
this end, it suffices to verify that, for any decreasing sequence {Γn} of Borel
subsets in X, we have µ(∩nΓn) = limn→∞ µ(Γn). However, this relation follows
from (1.22) since each µk is a measure. The second claim of (i) is an immediate
consequence of (1.13).
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We now prove assertion (ii). To simplify the presentation, we carry out the
proof for compact metric spaces X, referring the reader to [Dud02, Chapter 11]
for the general case.

We first show that if (1.27) holds for any f ∈ Lb(X), then µk → µ in the
dual-Lipschitz distance. Indeed, using the compactness of X, it is easy to show
that for any ε > 0 the ball {f ∈ Lb(X) : ‖f‖L ≤ 1} has a finite ε-net in
Cb(X) that consists of functions of Lb(X). Therefore convergence (1.27) for
any f ∈ Lb(X) implies the convergence of {µk} in the space P(X) endowed
with the dual-Lipschitz distance.

We now prove that if µk → µ in the dual-Lipschitz distance, then (1.27)
holds for any function f ∈ Cb(X). Indeed, without loss of generality, we can
assume that f ≥ 0. The compactness of X implies that the function fε ∈ Lb(X)
defined by (1.19) converges to f in the norm ‖ · ‖∞ as ε→ 0. Furthermore,

|(f, µk) − (f, µ)| ≤ |(f, µk) − (fε, µk)| + |(fε, µk) − (fε, µ)| + |(fε, µ) − (f, µ)|.

The first and third terms on the right-hand side of this inequality go to zero
as ε → 0 uniformly in k, while the second can be made arbitrarily small by
choosing a sufficiently large k.

Finally, let us prove that the space P(X) endowed with the dual-Lipschitz
distance is complete. Let {µk} ⊂ P(X) be a Cauchy sequence. Since X is
a compact space, by Prokhorov’s theorem we can find a subsequence {µkj

}
that converges weakly to a measure µ ∈ P(X), that is, (1.27) holds for any
f ∈ Cb(X). If we show that the limiting measure µ does not depend on the
subsequence, we can conclude that the entire sequence converges to µ weakly
and, hence, in the space P(X) as well.

Since {µk} is a Cauchy sequence, for any f ∈ Lb(X) we have

lim
k→∞

(f, µk) = lim
kj→∞

(f, µkj ) = (f, µ).

Thus, the limiting measure is uniquely defined. This completes the proof of the
theorem in the case of compact metric spaces.

Let us emphasise that if µk → µ weakly in P(X), then, in general, it is not
true that

µk(Γ) → µ(Γ) as k → ∞ (1.28)

for any Γ ∈ B(X). However, the well-known portmanteau theorem claims that
µk → µ if and only if one of the following conditions is satisfied:

lim inf
k→∞

µk(G) ≥ µ(G) for any open set G ⊂ X, (1.29)

lim inf
k→∞

µk(F ) ≤ µ(F ) for any closed set F ⊂ X. (1.30)

It is also equivalent to convergence (1.28) for any Borel subset Γ ⊂ X such that
µ(∂Γ) = 0, where ∂Γ stands for the boundary of Γ. We refer to Theorem 11.1.1
in the book [Dud02] for a proof of these results.
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A simple, but important consequence of the portmanteau theorem is the
following description of the weak convergence of measures on the real line. Given
a probability measure µ ∈ P(R), we denote by Fµ(x) its distribution function,
defined by Fµ(x) = µ((−∞, x]) for x ∈ R. Note that the distribution function
of a measure is always non-decreasing and right-continuous at any point, and if
the measure has no atoms, then its distribution function is continuous.

Lemma 1.2.16. Let {µn} ⊂ P(R) be a sequence. Then {µn} converges weakly
to a measure µ ∈ P(R) if and only if

Fµn
(x) → Fµ(x) as n→ ∞,

where x ∈ R is an arbitrary point of continuity for Fµ.

Another remarkable property of weak convergence is that, under some as-
sumptions, one can pass to the limit under the integrals, even if the integrand is
not continuous. To formulate the corresponding result, recall that a continuous
mapping π : X → X acting in a Polish space X is called a projection if π◦π = π.

Lemma 1.2.17. Let X be a Polish space, let πn : X → X, n ≥ 1, be continuous
projections, and let {µk} ⊂ P(X) be a sequence converging weakly to a measure
µ ∈ P(X). Assume that f : X → R ∪ {+∞} is a Borel functional such that
{f ◦πn} is a sequence of bounded continuous functions converging to f pointwise
and

(f ◦ πn, µk) ≤ C for any k, n ≥ 1. (1.31)

Then (f, µ) ≤ C, provided that either f ≥ 0 or {f ◦ πn} is non-decreasing.

Note that if {f ◦πn} is non-decreasing, then inequality (1.31) will be satisfied
if we assume that (f, µk) ≤ C for any k ≥ 1.

Proof. We can pass to the limit in inequality (1.31) as k → ∞. This results in
(f ◦ πn, µ) ≤ C. Now the required assertion follows from Fatou’s lemma in the
first case and from the monotone convergence theorem in the second case.

We complete this subsection by two exercises establishing some further prop-
erties of the space of probability measures and of the weak convergence.

Exercise 1.2.18. (i) Let X be a Polish space. Prove that the complete metric
space (P(X), ‖ · ‖∗L) is separable.

(ii) Prove that the space (P(R), ‖ · ‖var) is not separable.

Exercise 1.2.19. Let X be a Polish space and let ζnm, ζm, ζ
n, ζ be some X-valued

random variables such that

D(ζnm) → D(ζn) as m→ ∞ for any n ≥ 1,

sup
m≥1

E
(
distX(ζm, ζ

n
m) + distX(ζn, ζ)

)
→ 0 as n→ ∞.

Show that D(ζm) → D(ζ) as m→ ∞.
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1.2.4 Couplings and maximal couplings of probability mea-

sures

Definition 1.2.20. Let µ1, µ2 ∈ P(X). A pair of random variables (ξ1, ξ2)
defined on the same probability space is called a coupling for (µ1, µ2) if

D(ξj) = µj for j = 1, 2. (1.32)

The law D(ξ1, ξ2) =: µ is a measure on the product space X × X. If we
denote by π1 and π2 the projections of X × X to the first and second factor,
respectively, then

(π1)∗µ = µ1, (π2)∗µ = µ2. (1.33)

Other way round, if µ is a measure on X ×X satisfying conditions (1.33), then
the random variables ξ1 = π1 and ξ2 = π2 defined on the probability space
(X×X,B(X×X), µ) meet (1.32). So a measure µ on X×X satisfying (1.33) is
an alternative definition of the coupling. In this form, the coupling was system-
atically used by L. Kantorovich starting from late 1930’s, e.g., see in [KA82].

In what follows, an important role is played by the maximal coupling of
measures. Let (ξ1, ξ2) be a coupling for (µ1, µ2). For any Γ ∈ B(X), we have

µ1(Γ) − µ2(Γ) = E
(
IΓ(ξ1) − IΓ(ξ2)

)

= E
(
I{ξ1 6=ξ2}

(
IΓ(ξ1) − IΓ(ξ2)

))
≤ P{ξ1 6= ξ2} .

Therefore,

P{ξ1 6= ξ2} ≥ ‖µ1 − µ2‖var .

Definition 1.2.21. A coupling (ξ1, ξ2) is said to be maximal if

P{ξ1 6= ξ2} = ‖µ1 − µ2‖var ,

and the random variables ξ1 and ξ2 conditioned on the event N = {ξ1 6= ξ2}
are independent. The latter condition means that, for any Γ1,Γ2 ∈ B(X), we
have 2

P{ξ1 ∈ Γ1, ξ2 ∈ Γ2 |N} = P{ξ1 ∈ Γ1 |N}P{ξ1 ∈ Γ1 |N} .

Exercise 1.2.22. Let µ1, µ2 ∈ P(X) be such that ‖µ1 −µ2‖var = 1. Show that a
coupling (ξ1, ξ2) for (µ1, µ2) is maximal if and only if ξ1 and ξ2 are independent.

Exercise 1.2.23. Let (ξ1, ξ2) be any pair of random variables that are indepen-
dent on the event N = {ξ1 6= ξ2}. Show that

P{ξ1 ∈ Γ, ξ2 ∈ Γ} ≥ P{ξ1 ∈ Γ}P{ξ2 ∈ Γ} for any Γ ∈ B(X). (1.34)

The following result is often referred to as the coupling lemma or Dobrushin’s
lemma. It makes an effective tool to study the total variation distance between
measures.

2In the case P(N) = 0, this condition should be omitted.
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ρ

Figure 1.1: Densities ρ1, ρ2, and ρ marked by thin and thick graphs

Lemma 1.2.24. For any two measures µ1, µ2 ∈ P(X) there exists a maximal
coupling (ξ1, ξ2).

Proof. Let us set δ := ‖µ1 − µ2‖var. If δ = 1, then, by Exercise 1.2.22, any
pair (ξ1, ξ2) of independent random variables with D(ξi) = µi, i = 1, 2, is a
maximal coupling for (µ1, µ2). If δ = 0, then µ1 = µ2, and for any random
variable ξ with distribution µ1 the pair (ξ, ξ) is a maximal coupling. Hence, we
can assume that 0 < δ < 1.

Let m = 1
2 (µ1 + µ2) and let (see Figure 1.1)

ρi =
dµi

dm
, ρ = ρ1 ∧ ρ2, ρ̂i = δ−1(ρi − ρ). (1.35)

Direct verification shows that the measures µ̂i = ρ̂idm and µ = (1 − δ)−1ρ dm
are probabilities on X. Let ζ1, ζ2, ζ, and α be independent random variables
defined on the same probability space such that

D(ζi) = µ̂i, D(ζ) = µ, P{α = 0} = δ, P{α = 1} = 1 − δ. (1.36)

We claim that the random variables ξi = αζ+(1−α)ζi, i = 1, 2, form a maximal
coupling for (µ1, µ2). Indeed, for any Γ ∈ B(X), we have

P{ξi ∈ Γ} = P{ξi ∈ Γ, α = 0} + P{ξi ∈ Γ, α = 1}
= P{α = 0}P{ζi ∈ Γ} + P{α = 1}P{ζ ∈ Γ}

= δ

∫

Γ

ρ̂i(u) dm+

∫

Γ

ρ(u) dm = µi(Γ), (1.37)

where we used the independence of (ζ1, ζ2, ζ, α) and the relation ρi = ρ + δρ̂i.
Furthermore,

P{ξ1 6= ξ2} = P{ξ1 6= ξ2, α = 0} + P{ξ1 6= ξ2, α = 1}
= P{α = 0}P{ζ1 6= ζ2} = δ,

where we used again the independence of (ζ1, ζ2, ζ, α) and also the relation

P{ζ1 = ζ2} = δ−2

∫∫

{u1=u2}

ρ̂1(u1)ρ̂2(u2)m(du1)m(du2) = 0,

which follows from the identity ρ̂1(u)ρ̂2(u) ≡ 0. A similar argument shows that
the random variables ξ1 and ξ2 conditioned on {ξ1 6= ξ2} are independent. This
completes the proof of Lemma 1.2.24.



18 CHAPTER 1. PRELIMINARIES

Relation (1.37), Corollary 1.2.11, and Exercise 1.2.22 imply the following
alternative version 3 of the coupling lemma.

Corollary 1.2.25. Any two measures µ1, µ2 ∈ P(X) admit a representation

µj = (1 − δ)µ+ δνj , j = 1, 2,

where δ = ‖µ1 − µ2‖var, µ, ν1, ν2 ∈ P(X), and the measures ν1 and ν2 are
mutually singular.

We shall call (1 − δ)µ the minimum of µ1 and µ2 and denote it by µ1 ∧ µ2.
Another important corollary is the following result on the conditional law of
the random variables that form a maximal coupling. Recall that the conditional
law D(ξ |N) of an X-valued random variable ξ given an event N of non-zero
probability is defined by the relation

D(ξ |N)(Γ) =
P({ξ ∈ Γ} ∩N)

P(N)
, Γ ∈ B(X).

Lemma 1.2.26. Let (ξ1, ξ2) be a maximal coupling for a pair of measures
µ1, µ2 ∈ P(X) such that µ1 ∧ µ2(X) > 0. Then P{ξ1 = ξ2} > 0, and we
have

D(ξ1 | {ξ1 = ξ2}) = D(ξ2 | {ξ1 = ξ2}) =
µ1 ∧ µ2

µ1 ∧ µ2(X)
. (1.38)

Proof. The case in which ξ1 = ξ2 almost surely is trivial, and we assume that
ξ1 6= ξ2 with positive probability. Proposition 1.2.7 implies that

P{ξ1 6= ξ2} = ‖µ1 − µ2‖var = 1 − µ1 ∧ µ2(X) < 1, (1.39)

whence we conclude that P{ξ1 = ξ2} > 0, and the conditional laws in (1.38) are
well defined. Let us set µ = D(ξ1 | {ξ1 = ξ2}) and µ̃i = D(ξi | {ξ1 6= ξ2}). Then

µi = P{ξ1 = ξ2}µ+ P{ξ1 6= ξ2}µ̃i, i = 1, 2.

It follows that

µ1 ∧ µ2 = P{ξ1 = ξ2}µ+ P{ξ1 6= ξ2}µ̃1 ∧ µ̃2.

Combining this with (1.39), we see that µ̃1 ∧ µ̃2 = 0, and the above relation
gives immediately (1.38).

In what follows, we deal with pairs of measures depending on a parameter,
and we shall need a maximal coupling for them that depends on the parameter
in a measurable manner. More precisely, let Z be a Polish space endowed with
its Borel σ-algebra and let {µ(z, du), z ∈ Z} be a family of probability measures
on X. We shall say that µ(z, du) is a random probability measure on X if for
any Borel set Γ ⊂ X the function z 7→ µ(z,Γ) is measurable from Z to R.

3In this form, the coupling lemma was intensively used by Dobrushin; e.g., see [Dob74].
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Exercise 1.2.27. Prove that {µ(z, du), z ∈ Z} is a random probability measure
if and only if the mapping z 7→ µ(z, ·) is measurable from Z to the space P(X)
endowed with the Borel σ-algebra corresponding to the dual-Lipschitz metric.

Theorem 1.2.28. Let X and Z be Polish spaces, and let {µi(z, du), z ∈ Z},
i = 1, 2, be two random probability measures on X. Then there is a probability
space (Ω,F ,P) and two measurable functions ξi(z, ω) : Z × Ω → X, i = 1, 2,
such that (ξ1(z, ·), ξ2(z, ·)) is a maximal coupling for (µ1(z, du), µ2(z, du)) for
any z ∈ Z.

Proof. In view of Theorem 7.2.2 in the Appendix, any Polish space is a standard
measurable space. Since the objects considered in the theorem are invariant with
respect to measurable isomorphisms, we can assume from the very beginning
that X coincides with one of the spaces described in Definition 7.2.1. To be
precise, we shall assume that X is the interval [0, 1] endowed with its Borel
σ-algebra.

We shall repeat the scheme used in the proof of Lemma 1.2.24, controlling the
dependence of the resulting random variables on the parameter z. To this end,
we first note that if µ(z, du) is a random probability measure on X, then there
is a probability space (Ω,F ,P) and a measurable function ξ(z, ω) : Z × Ω → X
such that the law of ξ(z, ·) coincides with µ(z, du) for any z ∈ Z. For instance,
we can take for the probability space the interval [0, 1], endowed with its Borel
σ-algebra and the Lebesgue measure, and define ξ by the relation

ξ(z, ω) = min{t ∈ [0, 1] : F (z, t) ≥ ω},
where F (z, t) = µ(z, (−∞, t]) is the probability distribution function for the
measure µ.

We now introduce the family

ν(z, du) = µ1(z, du) ∧ µ2(z, du),

where ν1 ∧ ν2 denotes the minimum of two measures ν1, ν2 ∈ P(X), and define
the following families of probability measures (cf. (1.35)):

µ̂i(z, du) =

{
δ(z)−1

(
µi(z, du) − ν(z, du)

)
for δ(z) 6= 0,

µ1(z, du) otherwise,

µ(z, du) =

{ (
1 − δ(z)

)−1
ν(z, du) for δ(z) 6= 1,

λ otherwise,

where δ(z) = ‖µ1(z, ·)−µ2(z, ·)‖var, and λ ∈ P(X) is any fixed measure. It can
be shown that δ is a measurable function of z ∈ Z, and µ̂i(z, ·) and µ(z, ·) are
random probability measures on X; see Exercise 1.2.29 below.

What has been said implies that there is a probability space (Ω,F ,P) and
measurable functions ζ1, ζ2, ζ, and α of the variable (z, ω) ∈ Z × Ω such that,
for any z ∈ Z, the random variables ζi(z, ·), ζ(z, ·), and α(z, ·) are independent,
and

D(ζi(z, ·)) = µ̂i(z, du), D(ζ(z, ·)) = µ(z, du),

P{α(z, ·) = 0} = δ(z), P{α(z, ·) = 1} = 1 − δ(z);
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cf. (1.36). The proof of the theorem can now be completed by a literal repetition
of the argument used to establish Lemma 1.2.24.

Exercise 1.2.29. Show that δ(z) is a measurable function of z ∈ Z, and µ̂i(z, ·)
and µ(z, ·) are random probability measures on X. Hint: Use a parameter ver-
sion of the Radon–Nikodym theorem (e.g., see [Nov05]): if λ(z, du) and ν(z, du)
are random probability measures on X such that λ(z, du) is absolutely continu-
ous with respect to ν(z, du) for any z ∈ Z, then the Radon–Nikodym derivative
dλ(z,·)
dν(z,·) can be chosen to be a measurable function of (z, u) ∈ Z ×X.

The existence result of the following exercise is useful when one constructs
a coupling for solutions of stochastic PDE’s; see [Mat02b, Oda08] and Sec-
tion 3.5.1.

Exercise 1.2.30. Let X and Y be Polish spaces.
(i) Show that for any pair of measures µ1, µ2 ∈ P(X) and any measur-

able mapping f : X → Y there is a coupling (ξ1, ξ2) for (µ1, µ2) such that
(f(ξ1), f(ξ2)) is a maximal coupling for (f∗(µ1), f∗(µ2)).

(ii) Let Z be a Polish space and let f : X × Z → Y be a measurable map-
ping. Show that for any random probability measures µ1(z, du) and µ2(z, du)
on X there is a probability space (Ω,F ,P) and X-valued measurable func-
tions ξi(z, ω), i = 1, 2, defined on Z × Ω such that, for any z ∈ Z, the
pair (f(z, ξ1), f(z, ξ2)) is a coupling for

(
f∗(z, µ1(z, ·)), f∗(z, µ2(z, ·))

)
, where

f∗(z, µi(z, ·)) stands for the image of µi(z, ·) under the mapping u 7→ f(z, u).

1.2.5 Kantorovich functionals

Let F be a measurable symmetric function on X ×X such that

F (u1, u2) ≥ distX(u1, u2) for all u1, u2 ∈ X. (1.40)

We define the Kantorovich functional corresponding to F as the following func-
tion KF on P(X) × P(X):

KF (µ1, µ2) = inf{EF (ξ1, ξ2)} , (1.41)

where the infimum is taken over all couplings (ξ1, ξ2) for (µ1, µ2). The function F
is called the (Kantorovich) density of the functional KF .

Lemma 1.2.31. For any µ1, µ2 ∈ P(X), we have 4

‖µ1 − µ2‖∗L ≤ KF (µ1, µ2) . (1.42)

Proof. Let (ξ1, ξ2) be a coupling for (µ1, µ2). Then, for any g ∈ Lb(X) with
‖g‖L ≤ 1, we have

(g, µ1 − µ2) = E
(
g(ξ1) − g(ξ2)

)
≤ E distX(ξ1, ξ2) ≤ EF (ξ1, ξ2) .

Taking first the supremum in g and then the infimum with respect to all cou-
plings (ξ1, ξ2), we obtain (1.42).

4The right-hand side of inequality (1.42) may be infinite.
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In the case when the function F coincides with distX , we have the following
result, which is the celebrated Kantorovich–Rubinstein theorem.

Theorem 1.2.32. For any probability measures µ1, µ2 ∈ P(X), we have

‖µ1 − µ2‖K = inf{E distX(ξ1, ξ2)} = KdistX (µ1, µ2) , (1.43)

where the infimum is taken over all couplings (ξ1, ξ2) for (µ1, µ2). Moreover,
the infimum is attained at some coupling (ξ1, ξ2).

In the case when the space X is endowed with the discrete topology (that is,
distX(u1, u2) = 1 for any u1 6= u2), Theorem 1.2.32 is a straightforward conse-
quence of the existence of a maximal coupling of measures (see Lemma 1.2.24).
For the general case, we refer the reader to [KA82, Section VIII.4] or [Dud02,
Theorem 11.8.2].

In his celebrated research on the mass-transfer problem (for which he was
given a Nobel prise in economics), L. Kantorovich interpreted E distX(ξ1, ξ2) as
the work needed to transport mass points ξ1(ω) to ξ2(ω), and used relation (1.43)
to estimate the work via the distance between the measures µ1 and µ2. We shall
use that equality other way round, that is, as a tool to estimate this distance.
Accordingly, inequality (1.42) will be sufficient for our purposes.

1.3 Markov processes and random dynamical sys-

tems

1.3.1 Markov processes

Let X be a Polish space. A Markov family of random processes in X (or sim-
ply a Markov process) is defined as a collection of the following objects (e.g.,
see [KS91, Section 2.5]):

• a measurable space (Ω,F) with a filtration {Ft, t ∈ T+};

• a family of probability measures {Pv, v ∈ X} on (Ω,F) such that the
mapping v 7→ Pv(A) is universally measurable5 for any A ∈ F ;

• an X-valued random process {ut, t ∈ T+} adapted to the filtration Ft and
satisfying the conditions below for any v ∈ X, Γ ∈ B(X), and t, s ∈ T+:

Pv{u0 = v} = 1, (1.44)

Pv{ut+s ∈ Γ | Fs} = Pt(us,Γ) for Pv-almost every ω ∈ Ω. (1.45)

Here Pt stands for the transition function of the family defined as the law
of ut under the probability measure Pv:

Pt(v,Γ) := Pv{ut ∈ Γ}, v ∈ X, Γ ∈ B(X). (1.46)

5See Section 7.3 for the definition of universal measurability.
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Relation (1.45) is called Markov property , and the above Markov family is de-
noted by (ut,Pv). If T+ = Z+, then the object we have just defined is also
called a family of Markov chains (or a discrete-time Markov process or simply
a Markov chain).

Given λ ∈ P(X) and a Markov process (ut,Pv), we define the probability
measure

Pλ(Γ) =

∫

X

Pv(Γ)λ(dv), Γ ∈ F , (1.47)

and denote by Eλ the corresponding mean value. The following exercise gives a
simple generalisation of the Markov property.

Exercise 1.3.1. Show that if (ut,Pv) is a Markov process, then for f ∈ L∞(X)
and λ ∈ P(X), we have

Eλ{f(ut+s) | Fs} = Eusf(ut) Pλ-almost surely. (1.48)

More generally, for any m ≥ 1, any 0 < t1 < · · · < tm, and any bounded
measurable function f : X × · · · ×X → R, we have

Eλ{f(ut1+s, . . . , utm+s) | Fs} = Eus
f(ut1 , . . . , utm) Pλ-almost surely. (1.49)

We now establish the so-called Kolmogorov–Chapman relation, which will
imply, in particular, that every Markov process generates an evolution in the
space of probability measures.

Lemma 1.3.2. For any t, s ∈ T+, v ∈ X, and Γ ∈ B(X), the transition
function Pt satisfies the relation

Pt+s(v,Γ) =

∫

X

Pt(v, dz)Ps(z,Γ). (1.50)

Proof. In view of (1.45), we have

Pt+s(v,Γ) = Ev IΓ(ut+s) = Ev

{
Ev

(
IΓ(ut+s) | Ft

)}

= Ev Ps(ut,Γ) =

∫

X

Pt(v, dz)Ps(z,Γ),

where we used the fact that the law of ut under Pv coincides with Pt(v, ·).
To each Markov process there correspond two families of linear operators

acting in the spaces of bounded measurable functions L∞(X) and of probability
measures P(X). They are called Markov semigroups and are defined in terms
of the transition function by the following relations:

Pt : L∞(X) → L∞(X), Ptf(v) =

∫

X

Pt(v, dz)f(z),

P∗
t : P(X) → P(X), P∗

tµ(Γ) =

∫

X

Pt(v,Γ)µ(dv),

where t ∈ T+. It is straightforward to check that Ptf ∈ L∞(X) for f ∈ L∞(X)
and P∗

tµ ∈ P(X) for µ ∈ P(X). The following exercise justifies the term
semigroup and establishes some simple properties.



1.3. MARKOV PROCESSES AND RANDOM DYNAMICAL SYSTEMS 23

Exercise 1.3.3. Show that the families Pt and P∗
t form semigroups, that is,

P0 = Id and Pt+s = Ps ◦Pt, and similarly for P∗
t . Show also that they satisfy

the following duality relation:

(Ptf, µ) = (f,P∗
tµ) for any f ∈ L∞(X), µ ∈ P(X).

Hint: Use the Kolmogorov–Chapman relation (1.50) for the semigroup property
and Fubini’s theorem for the duality relation.

Exercise 1.3.4. Let (ut,Pv) be a Markov process in X, let λ ∈ P(X), and
let Pλ be the measure defined by (1.47). Prove that the Pλ-law of ut coincides
with P∗

tλ. Use this property to show that if f ∈ L∞(X), then

Eλf(ut) =

∫

X

Ptf(v)λ(dv). (1.51)

Definition 1.3.5. A measure µ ∈ P(X) is said to be stationary for (ut,Pv) if
P∗

tµ = µ for all t ≥ 0.

Example 1.3.6. Let H be a separable Banach space, let S : H → H be a
continuous mapping, and let {ηk, k ≥ 1} be a sequence of i.i.d. random variables
in H defined on a complete probability space (Ω,F ,P). We fix v ∈ H and
consider a sequence {vk, k ≥ 0} defined by the rule

v0 = v, vk = S(vk−1) + ηk, k ≥ 1. (1.52)

This system defines a discrete-time Markov process in H. Indeed, let us denote
by (Ω̃, F̃) the product of the measurable spaces (H,B(H)) and (Ω,F) (that is,

Ω̃ = H × Ω and F̃ = B(H) ⊗F ) and provide it with the filtration {F̃k, k ≥ 0},

where F̃k = B(H) ⊗ Fk and Fk is the σ-algebra generated by η1, . . . , ηk (so
that F0 is the trivial σ-algebra). For any v ∈ H, we take Pv = δv ⊗P and define
a process {uk, k ≥ 0} as follows: for ω̃ = (v, ω) we set uω̃k = vωk , where {vk} is
given by (1.52). Denote by Pk(v, ·) the law of vk, where k ≥ 0 and v ∈ H. It is
easy to see that the objects introduced above meet (1.44) and (1.45).

Now let v be an H-valued random variable independent of {ηk} with a law µ.
Then, by Exercise 1.3.4, we have Dµ(uk) = P∗

kµ for k ≥ 0. In particular, if µ is
a stationary measure for the Markov process (uk,Pv), then Dµ(uk) = µ for all
k ≥ 0. In what follows, a stationary measure for (uk,Pv) is called a stationary
measure for Eq. (1.52) and the sequence {vk} defined by (1.52) is called a
stationary solution.

An important feature of Markov processes is the strong Markov property .
It says, roughly speaking, that relation (1.45) remains valid if s is replaced
by a random time σ, provided that it satisfies an addition property of the
“independence of the future”. To formulate the corresponding result, we first
introduce the concept of a stopping time, formalising that property.

Definition 1.3.7. A random variable τ : Ω → T+∪{∞} is called a stopping time
for a filtration {Ft, t ∈ T+} if the event {τ ≤ t} belongs to Ft for any t ∈ T+.
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Exercise 1.3.8. (i) Show that if τ and σ are stopping times, then the random
variables τ + σ, τ ∧ σ, and τ ∨ σ are also stopping times.

(ii) Suppose that the function t 7→ ut is continuous from R+ to X. Show that
for any closed subset A ⊂ X, the random variable 6

τ(A) = min{t ∈ T+ : ut ∈ A}

is a stopping time. Hint: See Exercise 2.7 in [KS91].

For any stopping time τ , we shall denote by Fτ the σ-algebra of the events
Γ ∈ F such that

Γ ∩ {τ ≤ t} ∈ Ft for any t ∈ T+.
Exercise 1.3.9. Show that any stopping time τ is Fτ -measurable.

In what follows, we shall always assume the Markov processes we deal with
satisfy the following additional hypotheses:

Feller property. For any f ∈ Cb(X) and t ≥ 0, we have Ptf ∈ Cb(X).

Time continuity. The trajectories ut(ω), ω ∈ Ω, are continuous in time. 7

Theorem 1.3.10. Let (ut,Pu) be a Markov process, let f : X → R be a
bounded measurable function, and let τ be a stopping time. Then, for any almost
surely finite Fτ -measurable random variable σ : Ω → T+ and any measure λ
on (X,B(X)), we have

Eλ

(
I{τ<∞}f(uτ+σ) | Fτ

)
= I{τ<∞}(Pσf)(uτ ) Pλ-almost surely. (1.53)

Relation (1.53) is called the strong Markov property of the Markov fam-
ily (ut,Pu).

Proof of Theorem 1.3.10. We confine ourselves to the case in which T+ = Z+.
The proof in the case of continuous-time Markov processes can be carried out
with the help of approximation of τ by stopping times with range in an increasing
sequence of discrete subsets of R+; e.g., see Section III.3 in [RY99].

Step 1. It suffices to show that

Eλ

(
I{τ<∞}f(uτ+m) | Fτ

)
= I{τ<∞}(Pmf)(uτ ), (1.54)

where m ≥ 0 is an arbitrary integer, and the equality holds Pλ-almost surely.
Indeed, if (1.54) is established, then we can write

Eλ

{
I{τ<∞}f(uτ+σ) | Fτ

}
=

∞∑

m=0

Eλ

{
I{τ<∞}I{σ=m}f(uτ+m) | Fτ

}

= I{τ<∞}

∞∑

m=0

I{σ=m}(Pmf)(uτ )

= I{τ<∞}(Pσf)(uτ ).

6As usual, the minimum over an empty set is equal to +∞.
7This condition is imposed only if T+ = R+.
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Step 2. We now prove (1.54). To this end, it suffices to show that

Eλ

(
IΓ∩{τ<∞}f(uτ+m)

)
= Eλ

(
IΓ∩{τ<∞}(Pmf)(uτ )

)
, (1.55)

where Γ ∈ Fτ is an arbitrary subset. Let us note that

IΓ∩{τ<∞} =
∞∑

n=0

IΓ∩{τ=n}. (1.56)

Since Γn := Γ∩{τ = n} belongs to Fn, the Markov property (1.48) implies that

Eλ

(
IΓn

f(uτ+m)
)

= Eλ

(
IΓn

f(un+m)
)

= Eλ

(
IΓn

E {f(un+m) | Fn}
)

= Eλ

(
IΓn

(Pmf)(un)
)
.

Combining this relation with (1.56), we obtain (1.55).

Corollary 1.3.11. Let τ be a stopping time such that τ ≤ t almost surely.
Then, for any Γ ∈ B(X) and u ∈ X, we have

Pt(u,Γ) = Eu Pt−τ (uτ ,Γ). (1.57)

More generally, if f : X → R is a bounded measurable function, then

Ptf(u) = Eu (Pt−τf)(uτ ) for any u ∈ X. (1.58)

Proof. To prove (1.57), let us set σ = t − τ and apply (1.53) to the function
f = IΓ. This results in the relation

Pt(u,Γ) = EuIΓ(ut) = Eu Eu

(
IΓ(uτ+σ) | Fτ

)

= Eu(PσIΓ)(uτ ) = EuPσ(uτ ,Γ).

Relation (1.58) is a straightforward consequence of (1.57).

In conclusion, we discuss yet another version of the strong Markov property.
Recall that C(T+, X) stands for the space of continuous functions8 from T+ to X
with the topology of uniform convergence on bounded subsets of T+; cf. (1.9).
In view of Exercise 1.1.6, C(T+, X) is a Polish space, and we endow it with its
Borel σ-algebra.

Exercise 1.3.12. Let f : C(T+, X) → R be a measurable function that is either
bounded or non-negative. Show that, for any u ∈ X and any stopping time τ ,
we have

Eu

(
I{τ<∞}f(uτ+·) | Fτ

)
= I{τ<∞}

(
Ev f(u·)

)∣∣
v=uτ

Pu-almost surely. (1.59)

8In the case T+ = Z+, we obtain the space of all functions from Z+ to X.
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1.3.2 Random dynamical systems

In Example 1.3.6, we constructed a Markov chain starting from a dynamical
system depending on a random parameter. That construction can be extended
to more general situations, enabling one to associate a Markov process with
some PDE subject to random perturbations. A key point here is the concept of
a random dynamical system, which is introduced below. The relation between
random dynamical systems and Markov processes is described in the next sub-
section.

Let (Ω,F ,P) be a complete probability space, let T be either R or Z, and
let θ = {θt : Ω → Ω, t ∈ T } be a group of measurable mappings. We shall say
that θ is measure-preserving if (θt)∗P = P for all t ∈ T ; that is,

P
(
θt(Γ)

)
= P(Γ) for any t ∈ T , Γ ∈ F . (1.60)

Example 1.3.13. Let U be a Polish space and let µ be a probability measure
on U . Define a probability space (Ω,F ,P) by the following rules.

• Ω is the set of functions ω : T → U ; we shall write ωt for the value of ω
at the point t.

• F is the minimal σ-algebra generated by the cylindrical sets

Γ =
{
ω ∈ Ω : ωti ∈ Γi for i = 1, . . . , n

}
, (1.61)

where t1, . . . , tn ∈ T and Γ1, . . . ,Γn ∈ B(U).

• P is the unique probability measure on (Ω,F) such that

P(Γ) =

n∏

i=1

µ(Γi)

for any cylindrical set of the form (1.61).

With a slight abuse of notation, we shall denote by the same symbol the com-
pletion of the probability space defined above.

Let θ = {θt : Ω → Ω} be the family of shifts on Ω:

(θtω)s = ωt+s for s ∈ T .

Then θ is a group of measure-preserving transformations on Ω. We refer the
reader to the book [Str93] for more details on this construction.

Below in this section, given a probability space (Ω,F ,P), we shall always
assume that a group of measure-preserving transformations θ = {θt, t ∈ T }
acts on it. Let T+ = {t ∈ T : t ≥ 0} and let X be a Polish space endowed with
its Borel σ-algebra B(X). Consider a family Φ = {ϕt : Ω ×X → X, t ∈ T+} of
measurable mappings.

Definition 1.3.14. We shall say that Φ is a (continuous) random dynamical
system (or an RDS ) in X over θ if the following properties are satisfied.
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(i) Continuity. For any ω ∈ Ω and t ∈ T+, the mapping ϕω
t : X → X is

continuous.

(ii) Cocycle property. For any t, s ∈ T+ and ω ∈ Ω, we have

ϕω
0 = IdX , ϕω

t+s = ϕθsω
t ◦ ϕω

s . (1.62)

If T = R, we assume in addition that the trajectories ϕω
t (u) are continuous in

t ∈ T+ for any ω ∈ Ω and u ∈ X. If T = Z, we shall sometimes say Φ is a
discrete-time RDS , to emphasise the difference between the two cases.

In what follows, we often omit ω from notation and write ϕtu instead
of ϕω

t (u). The following example gives a canonical way for constructing an
RDS associated with a random perturbation of a deterministic mapping.

Example 1.3.15. In the setting of Example 1.3.6, let us construct a discrete-time
RDS in H whose trajectories have the same distribution as {vk, k ∈ Z+}.

Let (Ω,F ,P) be the complete probability space defined in Example 1.3.13,
where T = Z, U = H, and µ is the law of ηk. Let θ = {θk : Ω → Ω} be
the corresponding group of shifts on Ω. We now define measurable mappings
ϕk : Ω ×H → H by the formulas

ϕω
1 u = S(u) + ω1, ϕω

ku = S(ϕω
k−1u) + ωk, k ≥ 1, (1.63)

where ω = (ωj , j ∈ Z). It is easy to verify that Φ = {ϕk, k ∈ Z+} is an
RDS over θ. Moreover, for any u ∈ H the distribution of the corresponding
trajectory {uk} under the law P coincides with that of the sequence {vk} defined
by (1.52) with v = u.

An important class of RDS is formed by those possessing an additional
property of independence of the past and the future. To each such RDS there
corresponds a Markov process. We now turn to a description of those RDS and
a construction of associated Markov processes.

1.3.3 Markov RDS

As before, let (Ω,F ,P) be a complete probability space on which acts a group
θ = {θt, t ∈ T } of measure-preserving transformations, let X be a Polish space,
and let Φ = {ϕω

t , t ∈ T+} be an RDS in X over θ. For any p, q ∈ T with p < q,
we denote by F[p,q] ⊂ F the sub-σ-algebra generated by the subsets of F of zero

measure and the X-valued random variables ϕθsω
t u, where

u ∈ X, t, s ∈ T , p ≤ s < q, 0 < t ≤ q − s. (1.64)

The definition implies that, for any t, s ∈ T and u ∈ X, the random variable
ϕθsω
t u is F[s,s+t]-measurable. We also define the σ-algebras

F[−∞,q] = σ(F[p,q] : p ∈ T , p < q),

F[p,+∞] = σ(F[p,q] : q ∈ T , q > p),

F[−∞,+∞] = σ(F[p,q] : p, q ∈ T , p < q).
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Exercise 1.3.16. Describe the σ-algebra F[p,q] for the RDS of Example 1.3.15.
Hint: F[p,q] coincides with the σ-algebra of the sets of the form

{(ωj , j ∈ Z) : (ωp+1, . . . , ωq) ∈ Γ}, Γ ∈ B(H) ⊗ · · · ⊗ B(H)︸ ︷︷ ︸
q − p times

. (1.65)

generated by ωk, p+ 1 ≤ k ≤ q and the subsets of zero measure.

Exercise 1.3.17. Show that for any finite or infinite numbers p < q, we have

θ−1
t (F[p,q]) = F[p+t,q+t], t ∈ T .

We now introduce an important concept of Markov RDS. Let us set

F− = F[−∞,0], F+ = F[0,+∞].

The σ-algebras F− and F+ are called the past and the future of Φ, respectively.

Definition 1.3.18. The RDS Φ is said to be Markov if its past and future are
independent.

Exercise 1.3.19. Show that the discrete-time RDS defined in Example 1.3.15 is
Markov.

Exercise 1.3.20. Let F−
t = F[−∞,t] and F+

t = F[t,+∞]. Show that, in the case

of Markov RDS, the σ-algebras F−
t and F+

t are independent for any t ∈ T .

In what follows, we assume that the RDS Φ under study is Markov. We
write Ft instead of F−

t and call {Ft, t ∈ T } the filtration generated by Φ.
Note that the very definition of Ft implies that the filtered probability space
(Ω,F ,Ft,P) satisfies the usual hypotheses.

An important property of Markov RDS is that the distribution of the random
variable ϕtu, where u is an X-valued random variable, depends only on the
distribution of the initial state u, provided that the latter is F0-measurable.
In other words, a Markov RDS defines an evolution in the space of probability
measures on the phase space X. To prove this assertion, we shall need the
Markov property; cf. (1.45).

Proposition 1.3.21. Let f : X → R be a bounded measurable function. Then,
for any F0-measurable random variable u : Ω → X and any s, t ∈ T+, we have

E
{
f(ϕs+tu) | Fs

}
=

{
E f(ϕtv)

}∣∣
v=ϕω

s u
P-almost surely. (1.66)

Proof. Let us consider a function g : Ω ×X → R defined as

g(ω, v) = f(ϕθsω
t v), ω ∈ Ω, v ∈ X.

The definition of the σ-algebras F[p,q] implies that, for any v ∈ X, the function
g(ω, v) is F+

s -measurable and that ϕω
s u is Fs-measurable. Since Fs and F+

s
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are independent, it follows that (for instance, see Problem 9 in Section 10.1
of [Dud02])

E{g(ω, ϕω
s u) | Fs} =

{
E g(ω, v)

}∣∣
v=ϕω

s u
almost surely. (1.67)

On the other hand, in view of the cocycle property, we have

g(ω, ϕω
s u) = f(ϕθsω

t ◦ ϕω
s u) = f(ϕω

s+tu). (1.68)

Combining (1.67) and (1.68), we obtain (1.66).

We now introduce the transition function for Φ; cf. (1.46). For any v ∈ X
and t ∈ T+, we denote by Pt(v, ·) the law of ϕtv:

Pt(v,Γ) = P{ϕtv ∈ Γ}, v ∈ X, Γ ∈ B(X). (1.69)

The following result is the analogue for Markov RDS of the property described
in Exercise 1.3.4.

Corollary 1.3.22. Let u : Ω → X be an F0-measurable random variable and
let µ = D(u). Then the distribution µt of ϕ

ω
t u is given by the formula

µt(Γ) =

∫

X

Pt(v,Γ)µ(dv). (1.70)

In particular, the measure µt depends only on µ (and not on the random vari-
able u).

Proof. In view of (1.66) with f = IΓ, for any Γ ∈ B(X), we have

E IΓ(ϕtu) = E
{
E
(
IΓ(ϕtu) | F0

)}
= E

{(
E IΓ(ϕtv)

)∣∣
v=u

}
.

It remains to note that E IΓ(ϕtv) = P{ϕtv ∈ Γ} = Pt(v,Γ).

Proposition 1.3.21 implies that the transition function (1.69) satisfies the
Kolmogorov–Chapman relation. So it is the transition function of some Markov
process; see Section III.1 in [RY99]. Using the Markov RDS Φ, it is possible
to construct a Markov process with this transition function in a canonical way.
We now present this construction.

Let us denote by Ω′ the product space X × Ω endowed with the product
σ-algebra B(X) ⊗ F , and introduce the filtration F ′

t = B(X) ⊗ Ft. Let us
define the process ut(ω

′) = ϕω
t u, where ω′ = (u, ω) ∈ Ω′, and the family of

probability measures Pu = δu ⊗ P, where δu ∈ P(X) is the Dirac measure
concentrated at u. It is straightforward to see that (ut,Pu) is a Markov family
whose transition function coincides with (1.69). We denote by Pt and P∗

t the
corresponding Markov semigroups. The continuity of ϕtu with respect to u
implies that (ut,Pu) possesses the Feller property; cf. Exercise 1.3.23 below. In
what follows, we shall often drop the prime from notation and write ω,Ω,F ,Ft

instead of ω′,Ω′,F ′,F ′
t. This will not lead to a confusion.

The following exercise implies, in particular, that the strong Markov prop-
erty is true for Markov processes corresponding to continuous Markov RDS. In
particular, relations (1.57) – (1.59) hold for them.
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Exercise 1.3.23. Show that if Φ is a continuous Markov RDS, then the corre-
sponding Markov process possesses the Feller property. Combine this fact with
Theorem 1.3.10 to conclude that the strong Markov property holds. Hint: Use
Lebesgue’s theorem on dominated convergence.

We conclude this subsection by a simple exercise describing the Markov
semigoups in the case of deterministic dynamical systems.

Exercise 1.3.24. Let Φ = {ϕω
k : X → X} be an RDS such that

ϕω
1 u = ψ(u) for any ω ∈ Ω, u ∈ X,

where ψ : X → X is a continuous operator. Describe the Markov semigroups Pk

and P∗
k in terms of ψ.

1.3.4 Invariant and stationary measures

To every RDS Φ = {ϕω
t , t ∈ T+} there corresponds a semigroup of measurable

mappings in an extended phase space. Namely, we consider the product space
(Ω ×X,F ⊗ B(X)) and define a family of mappings Θ = {Θt, t ∈ T+} by the
relation

Θt(ω, u) =
(
θtω, ϕ

ω
t u

)
, (ω, u) ∈ Ω ×X.

Exercise 1.3.25. Show that the family Θ is a semigroup of measurable transfor-
mations.

We now introduce the concept of an invariant measure for Φ. Let P(Ω×X,P)
be the set of probability measures on (Ω×X,F ×B(X)) whose projection to Ω
coincides with P.

Definition 1.3.26. A measure M ∈ P(Ω ×X,P) is said to be invariant for Φ

if (Θt)∗M = M for any t ∈ T+. In other words, Θ is a semigroup of measure-
preserving transformations of the space (Ω ×X,F ⊗ B(X),M) (cf. (1.60)).

In what follows, we shall need an alternative description of invariant mea-
sures for Φ. Recall that a family {µω, ω ∈ Ω} ⊂ P(X) is called a random
probability measure if for any Γ ∈ B(X) the function ω 7→ µω(Γ) from Ω to R

is (F ,B(R))-measurable. It is well known that any measure M ∈ P(Ω ×X,P)
admits a disintegration

M(dω, du) = µω(du)P(dω), (1.71)

where {µω} is a random probability measure on X. Relation (1.71) means that
if f : Ω ×X → R is a bounded measurable function, then

∫∫

Ω×X

f(ω, u)M(dω, du) =

∫

Ω

{∫

X

f(ω, u)µω(du)

}
P(dω).

Moreover, representation (1.71) is unique up to a set of zero measure in the
sense that if {µ′

ω, ω ∈ Ω} is another random probability measure for which (1.71)
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holds, then µω = µ′
ω for almost every ω ∈ Ω. We refer the reader to Section 10.2

of [Dud02] for the proof of these results. Note that if M is represented in the
form (1.71), then the projection of M to X coincides with the mean value of µω.
That is,

(ΠX)∗ M = Eµ· :=

∫

Ω

µωP(dω).

Proposition 1.3.27. A measure M ∈ P(Ω × X,P) is invariant for Φ if and
only if for any t ∈ T+ its disintegration {µω} satisfies the relation

(ϕω
t )∗ µω = µθtω for almost all ω ∈ Ω. (1.72)

Proof. Suppose that M is an invariant measure for Φ. Then for any bounded
measurable functions f : X → R and g : Ω → R we have

∫

Ω

∫

X

f(ϕω
t u)g(θtω)µω(du)P(dω) =

∫

Ω

∫

X

f(u)g(ω)µω(du)P(dω). (1.73)

Replacing g(ω) by g(θ−tω) and using the invariance of P with respect to θ, we
see that

∫

Ω

{∫

X

f(ϕω
t u)µω(du)

}
g(ω)P(dω) =

∫

Ω

{∫

X

f(u)µθtω(du)

}
g(ω)P(dω).

Since this relation is true for any function g, we conclude that
∫

X

f(ϕω
t u)µω(du) =

∫

X

f(u)µθtω(du) for almost all ω ∈ Ω. (1.74)

Now note that the Borel σ-algebra on a Polish space is countably generated (see
Corollary 7.1.3 in the Appendix). Therefore (1.74) implies that (1.72) holds for
any t ∈ T+.

Conversely, if (1.72) holds, then reversing the above arguments, we arrive
at (1.73) for any bounded measurable functions f and g. Application of the
monotone class technique (see Theorem 7.1.1 in the Appendix) shows that M

is invariant for Φ.

We conclude this subsection with the concept of a stationary measure for a
Markov RDS. Recall that the Markov semigroups for such an RDS were intro-
duced in the foregoing subsection.

Definition 1.3.28. A measure µ ∈ P(X) is said to be stationary for an RDS Φ

if it is stationary for the corresponding Markov process, i.e., P∗
tµ = µ for any

t ∈ T+.

Note that, in contrast to invariant measures, stationary measures are defined
only for Markov RDS.

Exercise 1.3.29. Let Ft be the filtration generated by Φ and let u : Ω → X
be an F0-measurable random variable such that D(u) = µ. Show that if µ is a
stationary measure for Φ, then

D(ϕtu) = µ for all t ∈ T+.
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Let A ⊂ X be a closed subset. We shall say that A is absorbing for the
RDS Φ if for any u ∈ X there is an almost surely finite random time Tu ∈ T+
such that, with probability 1, we have

ϕω
t u ∈ A for any t ≥ Tu.

Lemma 1.3.30. If A is an absorbing set for the RDS Φ and µ is a stationary
measure for Φ, then suppµ ⊂ A.

Proof. We need to show that if a function f ∈ Cb(X) vanishes on A, then
(f, µ) = 0. To this end, note that

(f, µ) = (f,P∗
tµ) = (Ptf, µ) =

∫

H

Ptf(u)µ(du).

Since A is an absorbing set, we have f(ϕtu) = 0 for t ≥ Tu, whence, by
Lebesgue’s theorem on dominated convergence, we conclude that

Ptf(u) = E f(ϕtu) → 0 as t→ ∞.

Hence, (f, µ) = 0 for any f ∈ Cb(X) vanishing on A. This completes the proof
of the lemma.

We conclude this chapter by a result showing that a global stability of a
Markov RDS implies the uniqueness of a stationary measure. For simplicity, we
confine ourselves to the case of a separable Banach space X with a norm ‖ · ‖.

Proposition 1.3.31. Let Φ = {ϕt, t ∈ T+} be a Markov RDS in X such that

‖ϕω
t u− ϕω

t v‖ ≤ ψu,vα(t)‖u− v‖, t ∈ T+, ω ∈ Ω, u, v ∈ X, (1.75)

where R > 0 is arbitrary, ψu,v is an almost surely finite random variable mea-
surable with respect to its arguments, and α(t) is a function going to zero as
t → +∞. Then Φ has at most one stationary measure. Moreover, if a sta-
tionary measure µ exists, then for any R ≥ 1, u ∈ X, and t ∈ T+, we have

‖Pt(u, ·)− µ‖∗L ≤ 2µ
(
BX(R)c

)
+

∫

BX(R)

E

(
2∧

(
ψu,vα(t)‖u− v‖

))
µ(dv). (1.76)

Proof. Let µ, ν ∈ P(X) be two stationary distributions. Then for any bounded
measurable function f : X → R we have

(f, µ) − (f, ν) = (Ptf, µ) − (Ptf, ν) =

∫∫

X×X

E
(
f(ϕtu) − f(ϕtv)

)
µ(du)ν(dv).

Assuming that f ∈ Lb(X) with ‖f‖L ≤ 1 and using inequality (1.76), for any
R > 0 we derive

|(f, µ)−(f, ν)| ≤ 2µ
(
Bc

X(R)
)
+2ν

(
Bc

X(R)
)
+2

∫∫

X×X

E
(
1∧Rψu,vα(t)

)
µ(du)µ(dv).
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Passing to the limit as t→ +∞ and then R → +∞, we see that (f, µ) = (f, ν)
for any f ∈ Lb(X). This implies that µ = ν.

We now prove (1.76). To this end, we essentially repeat the above argument.
Namely, take an arbitrary function f ∈ Cb(X) and write

(f, Pt(u, ·)) − (f, µ) = (Ptf, δu) − (Ptf, µ) =

∫

X

E
(
f(ϕtu) − f(ϕtv)

)
µ(dv).

Using (1.75) to bound the right-hand side of this relation and taking the supre-
mum over all f ∈ Lb(X) with ‖f‖L ≤ 1, we arrive at the required result.

Notes and comments

The basic facts about Sobolev spaces used in this monograph are very well
known, and their proof is widely available in the literature; see the books of
Lions, Magenes [LM72] and Taylor [Tay97]. A comprehensive treatment of the
theory of Sobolev spaces can be found, for instance, in the books [Ada75, Maz85]
by Adams and Maz’ja. Classes of measurable functions with range in a Banach
or Hilbert space and the concept of Bochner’s integral on an abstract measurable
space are studied in Chapter V of [Yos95], and a rich source of their applications
in the theory of nonlinear PDE’s is the book [Lio69].

An excellent book about the measure theory on metric spaces is the one by
Dudley [Dud02]. A lot of useful information can also be found in Bogachev’s two-
volume book [Bog07]. The idea of coupling goes back to Doeblin [Doe38, Doe40],
but its systematic application in the theory of stochastic processes started much
later; see the papers [Har55, Pit74] by Harris and Pitman. Lemma 1.2.24 was
often used by Dobrushin [Dob68, Dob74] in his celebrated work on Gibbs sys-
tems.

The general theory of random dynamical systems and Markov processes is
treated in many textbooks and monographs; e.g., see the books of Revuz [Rev84],
Kifer [Kif86], Karatzas, Shreve [KS91], and L. Arnold [Arn98]. Our presentation
of this subject essentially follows one of these references.
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Chapter 2

Two-dimensional

Navier–Stokes equations

In this chapter we present some well-known results on the 2D Navier–Stokes
equations. We begin with the deterministic case. Galerkin approximations are
used to prove existence, uniqueness, and regularity of solutions. Some important
estimates due to Foiaş and Prodi are also established. We next consider the
Navier–Stokes system perturbed by a random external force and prove well-
posedness of the Cauchy problem and some a priori estimates for solutions.
Combining these results with the classical Bogolyubov–Krylov argument, it is
then shown that the randomly forced Navier–Stokes equations have at least one
stationary measure.

2.1 Cauchy problem for the deterministic sys-

tem

2.1.1 Equations and boundary conditions

The 2D Navier–Stokes (NS) equations have the form

{
u̇+ 〈u,∇〉u− ν∆u+ ∇p = f(t, x),

div u = 0.
(2.1)

Here u = (u1, u2) and p are unknown velocity field and pressure, ν > 0 is the
kinematic viscosity, f is the density of an external force, and 〈u,∇〉 stands for
the differential operator u1∂1 +u2∂2. Equations (2.1) are considered either in a
bounded domain Q ⊂ R2 with a smooth boundary ∂Q or on the standard torus
T2 = R2/2πZ2. The latter means that the space variable x = (x1, x2) belongs
to R2, and the functions u, p, and f are assumed to be 2π-periodic with respect
to xi, i = 1, 2. All the results and proofs remain valid without any change

35
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for non-standard tori T2/a(Z ⊕ bZ), where a, b > 0. In the case of a bounded
domain, Eqs. (2.1) are supplemented with the no-slip boundary condition:

u
∣∣
∂Q

= 0. (2.2)

The Cauchy problem for the Navier–Stokes system consists in finding a pair of
functions (u, p) of appropriate regularity that satisfy (2.1) and (2.2) in a sense
to be specified, as well as the initial condition

u(0, x) = u0(x), (2.3)

where u0 is a given function. In the case of torus, the boundary condition (2.2)
should be omitted.

In what follows, to simplify the presentation, results of this chapter usually
are proved for the torus. If the corresponding proof in the case of a bounded
domain is different, or the result is not valid, we mention this explicitly.

2.1.2 Leray decomposition

Let Hm(T2;R2) be the space of vector fields on T2 whose components belong
to the Sobolev space of order m and let

Hm
σ = {u ∈ Hm(T2;R2) : div u = 0 on T2},

where the divergence is taken in the sense of distributions. It is clear that Hm
σ

is a closed subspace of Hm(T2;R2).

The following result can be easily established with the help of Fourier ex-
pansions of square-integrable functions.

Exercise 2.1.1. Show that Hm
σ coincides with the closure in Hm(T2;R2) of the

space

V = {u ∈ C∞(T2;R2) : div u = 0 on T2}.

Let us recall that Ḣm = Ḣm(T2) stands for the space of functions in Hm(T2)
with zero mean value (see (1.2)), and let ∇Hm+1 be the space of functions
u ∈ Hm(T2;R2) that are representable in the form u = ∇p for some p ∈ Hm+1.
Since ‖∇p‖k is a norm on Ḣm+1, we see that ∇Hm+1 is a closed subspace
in Hm(T2;R2). The following result due to Helmholtz is a common tool in the
theory of Navier–Stokes equations since the work of Leray.

Theorem 2.1.2. For any m ∈ R, the space Hm(T2;R2) admits the direct
decomposition

Hm(T2;R2) = Hm
σ ∔∇Hm+1. (2.4)

Moreover, the sum is orthogonal for m = 0, and decompositions (2.4) corre-
sponding to two different values m1 and m2 give the same representation for
any function belonging to the intersection Hm1(T2;R2) ∩Hm2(T2;R2).
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Proof. We first note that the intersection of Hm
σ and ∇Hm+1 consists of the

zero function. Let us expand a function u ∈ Hm(T2;R2) into the Fourier series:

u(x) =
∑

s∈Z2

use
isx, us ∈ C2.

Denoting s⊥ = (−s2, s1), we write

u(x) =
∑

s∈Z2

〈us, s⊥〉s⊥
|s|2 eisx +

∑

s∈Z2

〈us, s〉s
|s|2 eisx. (2.5)

To prove (2.4), it remains to note that the first sum on the right-hand side is
an element of Hm

σ , while the second is the gradient of the function

−i
∑

s∈Z2

〈us, s〉
|s|2 eisx,

which belongs to Hm+1. The fact that (2.4) is an orthogonal sum for m = 0
is easy to show with the help of integration by parts, and compatibility of
decompositions (2.4) corresponding to different values of m follows from (2.5).

In what follows, we denote by Π : Hm(T2;R2) → Hm
σ the projection associ-

ated with decomposition (2.4). It is called the Leray projection. Even though
the definition of Π depends on m, Theorem 2.1.2 implies that the function Πu
depends only on u, and not on the space Hm(T2;R2) in which the operator Π
is considered. Therefore we do not indicate the dependence of the projection
operators on m.

An analogue of the Leray–Helmholtz decomposition (2.4) is true for any
bounded Lipschitz domain. Let us formulate the corresponding result in the
case m = 0. We set

L2
σ(Q;R2) = {u ∈ L2(Q;R2) : div u = 0 in Q, 〈u,n〉 = 0 on ∂Q},

where n denotes the outward unit normal to ∂Q. Furthermore, define ∇H1 as
the space of functions u ∈ L2(Q;R2) that are representable in the form u = ∇p
for some p ∈ H1(Q). A proof of the following theorem can be found in [Tem79,
Chapter 1].

Theorem 2.1.3. The subspaces L2
σ and ∇H1 are closed in L2(Q;R2), and we

have the orthogonal decomposition

L2(Q;R2) = L2
σ ⊕∇H1. (2.6)

As before, we denote by Π : L2(Q;R2) → L2
σ the Leray projection. It can

be shown that Π is continuous in H1(Q,R2) and admits a continuous exten-
sion to an operator from H−1(Q,R2) to the dual space of L2

σ ∩H1
0 (Q,R2); see

Section I.1 in [Tem79]. We refer the reader to Chapter 17 of the book [Tay97]
for a detailed presentation of the corresponding results in the case when Q is a
compact manifold.
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2.1.3 Properties of some multilinear maps

In this subsection, we establish some elementary estimates of linear and non-
linear functionals relevant to the Navier–Stokes equations. We shall need two
auxiliary lemmas.

Lemma 2.1.4. Let X1, . . . , Xr and Y be Banach spaces and let F be an r-linear
map from the direct product X1 × · · · ×Xr to Y such that

‖F (u1, . . . , ur)‖Y ≤ C‖u1‖X1
. . . ‖ur‖Xr

for all uj ∈ Xj, j = 1, . . . , r. (2.7)

Then F is continuous. Moreover, if Vi ⊂ Xi, i = 1, . . . , r, are dense vector
spaces, F is defined for uj ∈ Vj, and inequality (2.7) holds for uj ∈ Vj, then F
extends to an r-linear continuous map from X1 × · · · ×Xr to Y .

The proof of this lemma is straightforward. To formulate the second result,
we introduce some notations. For any sufficiently regular vector fields u and v
on the torus T2, we set

Lu = −Π∆u, B(u, v) = Π
(
〈u,∇〉v

)
. (2.8)

For the periodic boundary conditions, Lu equals −∆u, but this is not the case
for bounded domains and Dirichlet boundary conditions. It is easy to check
with the help of Fourier expansion that L is a self-adjoint operator in L2

σ with
the domain D(L) = H2

σ. It is called Stokes operator .
Define the space

H = {u ∈ L2(0, T ;H1
σ) : u̇ ∈ L2(0, T ;H−1

σ )}

and endow it with the norm

‖u‖H =

(∫ T

0

(
‖u(t)‖21 + ‖u̇(t)‖2−1

)
dt

)1/2

,

where the time derivative is understood in the sense of distributions. Note
that H is a Hilbert space. A proof of the following result can be found in [LM72]
(see Theorem 3.1 in Chapter 1) and [Lio69] (see Theorem 5.1 in Chapter 1).

Lemma 2.1.5. The space H is continuously embedded in C(0, T ;L2
σ) and com-

pactly embedded in L2(0, T ;Hm
σ ) for any m < 1. In particular, u(t) is a well-

defined vector in L2
σ for any u ∈ H and t ∈ [0, T ].

We now turn to some estimates that will be needed in the sequel. The first
result essentially is an integration-by-parts formula.

Proposition 2.1.6. For any u, v ∈ H and 0 ≤ t ≤ T , we have

∫ T

0

〈Lu(t), v(t)〉 dt =

∫ T

0

〈∇u(t), ∇v(t)〉 dt , (2.9)

∫ t

0

〈u̇, u〉 ds =
1

2

(
|u(t)|22 − |u(0)|22

)
. (2.10)



2.1. CAUCHY PROBLEM FOR THE DETERMINISTIC SYSTEM 39

Proof. In view of Lemma 2.1.4, it suffices to establish (2.9) and (2.10) for smooth
functions u and v. In this case, both relations are obvious.

Let us note that the function t 7→ 〈u̇, u〉 belongs to L1(0, T ) for any u ∈ H.
It follows from (2.10) that |u(t)|2 is an absolutely continuous function, and

d

dt
|u(t)|2 = 2〈u̇, u〉 for any u ∈ H .

Proposition 2.1.7. For any divergence-free smooth vector fields u, v, and w,
we have

〈B(u, v), v〉 = 0, (2.11)

〈B(u, v), w〉 = −〈B(u,w), v〉, (2.12)

|〈B(u, v), w〉| ≤ C‖u‖1/2‖v‖1/2‖w‖1, (2.13)

‖B(u, v)‖−1 ≤ C‖u‖1/2 ‖v‖1/2 , (2.14)

‖B(u, v)‖−3 ≤ C |u|2 |v|2 , (2.15)

where C > 0 is a constant not depending on the functions.

Proof. Integrating by parts, we derive

〈B(u, v), v〉 =

2∑

j,l=1

∫

T2

uj(∂jv
l) vl dx =

2∑

j,l=1

1

2

∫

T2

uj∂j |v|2 dx

= −1

2

∫

T2

(div u)|u|2dx = 0 .

This proves (2.11). To establish (2.12), it suffices to use (2.11) with v replaced
by v + w.

Let us prove (2.13). Applying consecutively relation (2.12), the Hölder in-
equality, and the continuous embedding H1/2 ⊂ L4 (see Property 1.1.2), we
obtain

|〈B(u, v), w〉| = |〈B(u,w), v〉| ≤ C1

∫

T2

|u| |∇w| |v| dx

≤ C2 |∇w|2 |u|4 |v|4 ≤ C3‖w‖1 ‖u‖1/2 ‖v‖1/2 . (2.16)

Inequality (2.14) follows from (2.13) by duality. Finally, to establish (2.15), it
suffices to estimate the integral in (2.16) by the product |∇w|∞ |u|2 |v|2 and
apply the Sobolev embedding H2 ⊂ L∞.

Combining Lemma 2.1.4 and Propositions 2.1.6 and 2.1.9, we obtain the
following result.

Corollary 2.1.8. The operator B defined initially on smooth vector fields ex-

tends to a continuous bilinear map from H
1/2
σ ×H1/2

σ to H−1
σ and from L2

σ×L2
σ

to H−3
σ .
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Consider now a trilinear map b defined on smooth non-autonomous vector
fields on T2 by the relation

b(u, v, w) =
〈
B
(
u(t, ·), v(t, ·)

)
, w(t, ·)

〉
.

Proposition 2.1.9. The map b(u, v, w) is continuous from H×H×L2(0, T ;H1
σ)

to L1(0, T ), and
b(u, v, v) = 0 for any u, v ∈ H, (2.17)

where the equality holds in the space L1(0, T ). In particular, for any u, v ∈ H
the function B(u, v) belongs to L2(0, T ;H−1

σ ).

Proof. We first note that H ⊂ L4(0, T ;H1/2). Indeed, since ‖u‖41/2 ≤ |u|22 ‖u‖21,
we have

‖u‖4L4(0,T ;H1/2) =

∫ T

0

‖u(t)‖41/2 dt ≤
(

sup
0≤t≤T

|u(t)|22
)∫ T

0

‖u(t)‖21 dt ≤ ‖u‖4H .

Hence, using (2.14), for smooth functions u, v ∈ H and w ∈ L2(0, T ;H1
σ), we

obtain

∫ T

0

|b(u, v, w)| ds ≤ C

∫ T

0

‖w‖1 ‖u‖1/2 ‖v‖1/2 ds

≤
(∫ T

0

‖w‖21 ds
)1/2(∫ T

0

‖u‖41/2 ds
)1/4(∫ T

0

‖v‖41/2 ds
)1/4

≤ C ‖w‖L2(0,T ;H1)‖u‖H‖v‖H . (2.18)

Lemma 2.1.4 implies now the continuity of b. By duality, it follows from in-
equality (2.18) that B(u, v) belongs to L2(0, T ;H−1

σ ). Finally, relation (2.17),
which is true for smooth functions in view of (2.11), extends to the general case
by continuity.

2.1.4 Reduction to an abstract evolution equation

We now introduce the concept of a solution for the Navier–Stokes system. Let
us fix a constant T > 0 and functions f ∈ L2(0, T ;H−1) and u0 ∈ L2

σ(T2,R2).
We shall denote by D′ the space of R2-valued distributions on (0, T ) × T2.

Definition 2.1.10. A pair of functions (u, p) is called a solution of Equa-
tion (2.1) on (0, T ) × T2 if u ∈ H, p ∈ L2(0, T ;L2), and (2.1) holds in D′.
If, in addition, relation (2.3) is also satisfied, then (u, p) is called a solution of
the Cauchy problem (2.1), (2.3).

Let us note that (2.1) is not a system of evolution equations in the sense that
it does not contain the time derivative of the unknown function p. However, it
is possible to exclude the pressure from the problem in question and to obtain
a nonlocal nonlinear PDE which can be regarded as an evolution equation in a
Hilbert space.
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To this end, let us apply formally the Leray projection Π to the first equation
in (2.1). Since Π(∇p) = 0, u(t) ∈ L2

σ for any t, and Πu̇ = u̇, using notation (2.8)
we obtain

u̇+ νLu+B(u) = Πf(t), (2.19)

where B(u) = B(u, u). Let us introduce the concept of a solution for (2.19).

Definition 2.1.11. A function u ∈ H is called a solution of Equation (2.19)
on (0, T ) ×T2 if (2.19) holds in D′. If, in addition, the initial condition (2.3) is
also satisfied, then u is called a solution of the Cauchy problem (2.19), (2.3).

Note that the functions ∆u and 〈u,∇〉u are elements of L2(0, T ;H−1), and
therefore their Leray projections are well defined and belong to L2(0, T ;H−1

σ ).
Thus, all the terms in (2.2) belong to D′, and Definition 2.1.11 makes sense.
The following result shows that the Cauchy problems for (2.1) and (2.19) are
equivalent.

Theorem 2.1.12. Let a pair (u, p) ∈ H × L2(0, T ;L2) be a solution of (2.1)
on (0, T ) × T2. Then u ∈ H is a solution of (2.19). Conversely, if u ∈ H is a
solution of (2.19), then there is p ∈ L2(0, T ;L2) such that (u, p) is a solution
of (2.1).

Proof. Let (u, p) be a solution for (2.1). Then integrating the first equation
in (2.1) with respect to time, we obtain

u(t) = u0 +

∫ t

0

(
ν∆u− 〈u,∇〉u−∇p+ f

)
ds, 0 ≤ t ≤ T, (2.20)

where the equality holds in H−1. Applying to (2.20) the Leray projection Π,
which is continuous in H−1, and using the fact that Π commutes with the
integration in time, we obtain

u(t) = u0 +

∫ t

0

(
−νLu−B(u) + Πf

)
ds, 0 ≤ t ≤ T. (2.21)

This implies that (2.19) holds in D′. Conversely, let u ∈ H be a solution
of (2.19). Then u̇ ∈ L2(0, T ;H−1

σ ). Consider the equation

∇p(t) = g(t) := −u̇+ ν∆u− 〈u,∇〉u+ f, (2.22)

whose right-hand side g belongs to L2(0, T ;H−1). If we show that

g(t) ∈ ∇L2 for almost all t ∈ [0, T ], (2.23)

then we can resolve (2.23) with respect to p and find a solution p ∈ L2(0, T ;L2).
In this case, the construction will imply that (u, p) satisfies (2.1) in the sense of
distributions.

To prove (2.23), note that u satisfies (2.21). It follows that

Π

(∫ t

0

g(s) ds

)
=

∫ t

0

Πg(s) ds = 0 for 0 ≤ t ≤ T ,
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whence we conclude that Πg(t) = 0 for almost all t ∈ [0, T ]. This implies the
required relation (2.23).

An analogue of Theorem 2.1.12 is true for the Navier–Stokes system in a
bounded domain. However, its proof is more complicated, and we refer the
reader to the book [Tem79] for the details.

2.1.5 Existence and uniqueness of solution

In this subsection, we prove that problem (2.19), (2.3) possesses a unique so-
lution u ∈ H for any functions u0 ∈ L2

σ and f ∈ L2(0, T ;H−1). In view of
Theorem 2.1.12, this will imply that problem (2.1), (2.3) is also well posed in
an appropriate functional space.

Theorem 2.1.13. Let u0 ∈ L2
σ and f ∈ L2(0, T ;H−1). Then problem (2.19),

(2.3) has a unique solution u ∈ H, which satisfies the inequality

|u(t)|22 + ν

∫ t

0

|∇u(s)|22 ds ≤ |u0|22 + ν−1

∫ t

0

‖f(s)‖2−1 ds, 0 ≤ t ≤ T. (2.24)

Proof. To simplify the presentation, we shall assume that ν = 1.

Uniqueness. Let u1, u2 ∈ H be two solutions equal to u0 at t = 0. Then the
difference u = u2 − u1 satisfies the equation

u̇+ Lu+B(u2, u) +B(u, u1) = 0 . (2.25)

Multiplying this relation in H by u(s) and integrating in time, we derive

∫ t

0

(
〈u̇, u〉 + 〈Lu, u〉 + 〈B(u, u1), u〉

)
ds = 0. (2.26)

Since 〈Lu, u〉 = |∇u|22 and u(0) = 0, combining (2.26) with (2.10), (2.13) and
using the second inequality in (1.8), we obtain

1

2
|u(t)|22 +

∫ t

0

|∇u(s)|22ds = −
∫ t

0

〈B(u, u1), u〉ds

≤ C1

∫ t

0

|∇u1|2|∇u|2|u|2 ds

≤ 1

2

∫ t

0

|∇u(s)|22 ds+ C2

∫ t

0

|∇u1|22 |u|22 ds.

It follows that

|u(t)|2 +

∫ t

0

|∇u(s)|22ds ≤ 2C2

∫ t

0

|∇u1(s)|22 |u(s)|22ds.

Since t 7→ |∇u(t)|22 is an integrable function, Gronwall’s lemma implies that
u ≡ 0.
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Existence. The proof of existence is based on a well-known general approach
called Galerkin method . Roughly speaking, we construct solutions for finite-
dimensional approximations of the equation and then show that they have a
limit point which satisfies the original equation. The proof is divided into three
steps.

Step 1: A priori estimate. Let u(t, x) be a smooth solution of (2.19). We
consider the function u 7→ 1

2 |u|22 and calculate its derivative along trajectories
of (2.19):

1

2

d

dt
|u(t)|22 = 〈u(t), u̇(t)〉 = 〈u,−Lu−B(u) + Πf(t)〉

= −|∇u|22 + 〈u, f〉 ≤ −|∇u|22 + |∇u|2 ‖f‖−1

≤ −1

2
|∇u|22 +

1

2
‖f‖2−1 ,

where we used (2.11). Integrating in time, we obtain inequality (2.24) with
ν = 1. It follows that

‖u‖L∞(0,T ;H) + ‖u‖L2(0,T ;H1) ≤ |u0|2 + ‖f‖L2(0,T ;H−1) =: C1(u0, f) . (2.27)

Furthermore, using (2.14) and the interpolation inequality, we obtain

‖B(u)‖−1 ≤ C ‖u‖21/2 ≤ C |u| |∇u|2 ,

whence it follows that

‖B(u)‖L2(0,T ;H−1) ≤ C2(u0, f) .

Expressing u̇ in terms of u from (2.19) and recalling (2.27), we get

‖u̇‖L2(0,T :H−1) ≤ C3(u0, f) .

We have thus shown that

‖u‖H ≤ C(u0, f) . (2.28)

Step 2: Galerkin approximations. Let us introduce the standard trigonomet-
ric basis in L2

σ. Denote by Z2
0 the set of non-zero integer vectors s = (s1, s2).

For s ∈ Z2
0, let

es =

{
css

⊥ sin〈s, x〉, s ∈ Z2
+,

css
⊥ cos〈s, x〉, s ∈ Z2

−,
(2.29)

where cs = (
√

2π|s|)−1, s⊥ = (−s2, s1), Z2
+ stands for the set of vectors s ∈ Z2

0

such that either s1 > 0 or s1 = 0 and s2 > 0, and Z2
− is the complement of Z2

+

in Z2
0. Given an integer N > 0, we write

H(N) = span
(
{es, |s| ≤ N} ∪ {(1, 0), (0, 1)}

)
(2.30)
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and denote by
PN : L2(T2;R2) → L2(T2;R2)

the orthogonal projection onto H(N). It is clear that

H(N) ⊂ C∞ ∩ L2
σ, dimH(N) <∞,

and that the operator L maps the subspace H(N) into itself. Let us apply PN

to (2.19):
PN u̇+ PNLu+ PNB(u) = PNf .

A curve u(t) ∈ H(N) satisfies this relation if and only if

u̇+ Lu+ PNB(u) = PNf . (2.31)

This is an ODE in H(N) defined by a smooth vector field, with a square-
integrable right-hand side. Let us supplement it with the initial condition

u(0) = PNu0 . (2.32)

Problem (2.31), (2.32) has a unique solution u = uN defined on a time inter-
val [0, TN ), where either TN = T , or TN < T and uN (t) blows up as t → T−

N .
We claim that TN = T and

uN ∈ C(0, T ;H(N)), u̇N ∈ L2(0, T ;H(N)) . (2.33)

To prove these claims, we shall derive an a priori estimate for uN .
Let us calculate the derivative of the functional 1

2 |u|2 along trajectories
of (2.31). We have

1

2

d

dt
|u(t)|2 = 〈u, u̇〉 = 〈u,−Lu− PNB(u) + PNf〉

= 〈u,−Lu−B(u) + f(t)〉 .

Repeating the argument used in Step 1, we see that u = uN satisfy inequali-
ties (2.27) and (2.28) with T = TN uniformly in N ≥ 1. It follows that TN = T
for all N . Thus, the Galerkin approximations {uN} form a bounded sequence
in H.

Step 3: Passage to the limit. We now wish to pass to the limit in Eq. (2.31)
as N → ∞. Since H is a Hilbert space, and a closed ball in a Hilbert space is
weakly compact, there is a sequence Nj → ∞ such that {uNj

} converges weakly
to an element u ∈ H as j → ∞. Since the linear operators

H → L2(0, T ;H−1
σ ), u 7→ u̇,

H → L2(0, T ;H−1
σ ), u 7→ Lu,

are continuous, we have

u̇Nj
⇀ u̇ in L2(0, T ;H−1

σ ), (2.34)

LuNj
⇀ Lu in L2(0, T ;H−1

σ ) . (2.35)
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Consider now the nonlinear term {B(uNj )}. By Lemma 2.1.5,

uNj
→ u in L2(0, T ;H

1/2
σ ) . (2.36)

Noting that, by (2.14), the bilinear form u 7→ B(u) is continuous from the space

L2(0, T ;H
1/2
σ ) to L1(0, T ;H−1

σ ), we see that

B(uNj ) → B(u) in L1(0, T ;H−1
σ ) . (2.37)

Finally, due to (2.36),
uNj

(0) → u(0) in L2
σ . (2.38)

Let us take any integer m ≥ 1 and apply the projection Pm to Eq. (2.31)
with N = Nj ≥ m. Since Pm ◦ PNj

= Pm, we obtain

Pmu̇Nj
+ PmLuNj

+ PmB(uNj
) = Pmf .

Letting Nj → ∞ and using (2.34) – (2.37), we derive

Pmu̇+ PmLu+ PmB(u) = Pmf ,

where the equality holds in the space L1(0, T ;H−1
σ ). Since m is arbitrary, we

conclude that
u̇+ Lu+B(u) = f.

Furthermore, due to (2.38),

u(0) = lim
j→∞

uNj (0) = lim
j→∞

PNju0 = u0 .

We have thus proved the existence of a solution. It remains to establish inequal-
ity (2.24).

To this end, note that inequality (2.24) remains valid for u = uN . Since
{uNj

} converges weakly to u ∈ H, we see that

‖u‖L2(0,t;H1) ≤ lim inf
j→∞

‖uNj
‖L2(0,t;H1) for any t ≤ T .

Combining this with convergence (2.36), we conclude that one can pass to the
limit in (2.24) with u = uNj

as j → ∞. This results in inequality (2.24) for the
constructed solution u(t, x). The proof of Theorem 2.1.13 is complete.

Exercise 2.1.14. Show that any solution u(t, x) of the Navier–Stokes system (2.19)
satisfies the relation

|u(t)|22 + 2ν

∫ t

0

|∇u(s)|22ds = |u(0)|22 + 2

∫ t

0

〈f(s), u(s)〉ds, (2.39)

which is called the energy balance. Hint: Relation (2.39) can be obtained for-
mally by taking the scalar product of Eq. (2.19) with u and integrating in time.
To justify this calculation, use relation (2.10).
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Remark 2.1.15. Our proof shows that any sequence of Galerkin approxima-
tions uNj contains a subsequence that converges to a solution of the Navier–
Stokes system. By the uniqueness, the limiting function must coincide with the
solution u(t, x) constructed in Theorem 2.1.13. Hence, the whole sequence {uN}
converges to u weakly in H and, by Lemma 2.1.5, strongly in L2(0, T ;Hr

σ) with
r < 1:

uN ⇀ u in H, uN → u in L2(0, T ;Hr
σ). (2.40)

Theorem 2.1.13 on existence and uniqueness of a solution is true for 2D
Navier–Stokes equations in a bounded domain with the Dirichlet boundary con-
dition, and the proof remains essentially the same; see Chapter III in [Tem79].

We conclude this subsection with a remark on solutions with zero mean
value. Recall that the mean value 〈u〉 of a function u ∈ Hm(T2) with m ≥ 0
is defined in (1.2). In the case of an arbitrary m ∈ R, it can be defined as the
zero-order coefficient in the Fourier expansion of u. Let u(t, x) be a solution
of (2.19). Integrating in time Eq. (2.19) and taking the mean value of both
sides, we obtain

〈u(t)〉 +

∫ t

0

〈−∆u+B(u)〉 ds = 〈u(0)〉 +

∫ t

0

〈f(s)〉 ds.

Now note that the integrand on the left-hand side vanishes, and therefore

〈u(t)〉 = 〈u(0)〉 +

∫ t

0

〈f(s)〉 ds.

So if the mean value of f(t) is zero for almost all t ∈ [0, T ], then 〈u(t)〉 is
constant. In what follows, we shall study problem (2.19), (2.3) for the case
when the mean values of f(t) and u0 vanish. What has been said implies that
in this case 〈u(t)〉 = 0 for all t ∈ [0, T ].

Let us introduce the function spaces

H = {u ∈ L2
σ(T2,R2) : 〈u〉 = 0}, V = H1 ∩H, V k = Hk ∩H (2.41)

and denote by V ∗ the dual space of V with respect to the scalar product in L2.
Note that V ∗ can be regarded as the quotient space H−1/W , where W is the
space of functionals f ∈ H−1 vanishing on ∇H2. It follows from Poincaré’s
inequality that the usual Sobolev norm on V m is equivalent to 〈Lmu, u〉1/2.
Slightly abusing the notation, we sometimes denote the latter norm by ‖ · ‖m.
Finally, for a bounded domain Q, we write H = L2

σ and V = H1
0 (Q;R2) ∩ L2

σ

and denote by V ∗ the dual of V .
When dealing with stochastic Navier–Stokes equations, we shall very of-

ten apply Itô’s formula to processes that take values in one space and pos-
sess stochastic differentials in a larger space. In this context, the concept of a
Gelfand triple will play an important role; see Section 7.6. Note that the spaces
V ⊂ H ⊂ V ∗ form a Gelfand triple, as do the spaces V k+1 ⊂ V k ⊂ V k−1 for
any integer k ≥ 1.
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2.1.6 Regularity of solutions

The Navier–Stokes system is a parabolic-type equation, and in the 2D case it
has good smoothing properties. The proof of this fact is particularly simple for
the problem on the torus due to the following lemma.

Lemma 2.1.16. If u ∈ H ∩H2, then 〈B(u),∆u〉 = 0.

The proof of this result is based on the existence of a stream function for
divergence-free vector fields.

Exercise 2.1.17. Show that for any vector field u ∈ H on the 2D torus there
is a function ψ ∈ H1(T2) such that u = curlψ := (−∂2ψ, ∂1ψ). Moreover, the
function ψ is unique up to an additive constant, and if u ∈ Hk(T2,R2), then
ψ ∈ Hk+1(T2). Hint: Use the Fourier expansion.

Proof of Lemma 2.1.16. By Exercise 2.1.17, there is a function ψ ∈ H3(T2)
such that u = curlψ. Furthermore, it follows from Theorem 2.1.2 that for any
u ∈ H ∩H2 there is p ∈ H1(T2) such that B(u) = 〈u,∇〉u−∇p. Thus, setting
curlu = ∂1u

2 − ∂2u
1 and integrating by parts, we obtain

〈B(u),∆u〉 =

∫

T2

(
〈u,∇〉u−∇p

)
curl(∆ψ) dx

=

∫

T2

〈u,∇〉(curlu) ∆ψ dx, (2.42)

where we used the relations

curl(〈u,∇〉u) = 〈u,∇〉(curlu), curl(∇p) = 0.

Now note that curlu = curl(curlψ) = ∆ψ. Substituting this into (2.42), inte-
grating by parts, and using that div u = 0, we arrive at the required result.

We can now state a first regularisation result for 2D Navier–Stokes equations.
It says, roughly speaking, that the solution immediately becomes more regular
than the initial function.

Theorem 2.1.18. Let u0 ∈ H and f ∈ L2(0, T ;H). Then the solution u(t, x)
of problem (2.19), (2.3) belongs to the space C(t0, T ;H1)∩L2(t0, T ;H2) for any
t0 > 0. Moreover, for 0 ≤ t ≤ T , we have

t ‖u(t)‖21 + ν

∫ t

0

s‖u(s)‖22 ds ≤ |u0|22 + ν−1

∫ t

0

s |f(s)|22 ds+

∫ t

0

‖f(s)‖2−1 ds .

(2.43)

Proof. We shall confine ourselves to a formal derivation of the a priori esti-
mate (2.43) for smooth solutions. Its justification can be carried out with the
help of Galerkin approximation; cf. proof of (2.24). Once (2.43) is established,
we conclude immediately that u ∈ L∞(t0, T ;H1)∩L2(t0, T ;H2) for any t0 > 0.
Combining this with Eq. (2.19), we see that u̇ ∈ L2(t0, T ;H), whence it follows
that u ∈ C(t0, T ;H1).
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To prove (2.43), consider the functional ϕ(t, u) = t 〈Lu, u〉. Differentiating
it with respect to time and using Eq. (2.19) and Lemma 2.1.16, we derive

∂tϕ(t, u) = ‖u‖21 + 2t〈Lu, u̇〉
= ‖u‖21 + 2t〈Lu,−νLu−B(u) + Πf〉
= ‖u‖21 − 2νt |Lu|22 + 2t〈Lu, f〉.

Using the inequality 2t〈Lu, f〉 ≤ νt |Lu|22 + ν−1t |f |22, we obtain

∂t
(
t‖u‖21

)
≤ ‖u‖21 − νt ‖u‖22 + ν−1t |f |22 .

Integrating from 0 to t, we get

t ‖u(t)‖21 + ν

∫ t

0

s‖u(s)‖22 ds ≤ ν−1

∫ t

0

s |f(s)|22 ds+

∫ t

0

‖u(s)‖21 ds .

Using (2.24), we see that u satisfies (2.43).

An analogue of Theorem 2.1.18 is true for the Navier–Stokes system in a
bounded domain. However, in this case the proof becomes more complicated,
because Lemma 2.1.16 is no longer true, and the term 〈B(u), Lu〉 does not
vanish. The corresponding argument is similar to that used below to prove the
higher regularity of solutions. For simplicity, we assume again that ν = 1.

Theorem 2.1.19. Let u0 ∈ H, and let f ∈ L2(0, T ;Hm−1) for some integer
m ≥ 2. Then a solution u(t, x) of problem (2.19), (2.3) belongs to the space
C(t0, T ;Hm) ∩ L2(t0, T ;Hm+1) for any t0 > 0. Moreover, there is a constant
Cm > 0 such that the following inequality holds for 0 ≤ t ≤ T :

tm‖u(t)‖2m +

∫ t

0

sm‖u‖2m+1 ds ≤
∫ t

0

sm‖f(s)‖2m−1ds

+ Cm

(
|u0|22 + |u0|4m+2

2 + ‖f‖2L2(0,T ;H) + ‖f‖4m+2
L2(0,T ;H)

)
. (2.44)

Proof. As in the proof of the previous theorem, we shall confine ourselves to
the formal derivation of (2.44). We argue by induction. Note that, in view of
Theorem 2.1.18, inequality (2.44) holds for m = 1. We now assume that m ≥ 2
and set ϕm(t, u) = tm‖u‖2m = tm〈Lmu, u〉. Then, for a smooth solution u, we
have

∂tϕm(t, u) = mtm−1‖u‖2m + 2tm〈Lmu, u̇〉
= mtm−1‖u‖2m − 2νtm‖u‖2m+1 − 2tm〈Lmu,B(u) − f〉〉 . (2.45)

To estimate the nonlinear term, we need the following proposition, whose proof
if given at the end of this subsection.

Lemma 2.1.20. For any integer m ≥ 2 there is a constant Cm > 0 such that

|〈Lmu,B(u)〉| ≤ Cm‖u‖
4m−1
2m

m+1 ‖u‖
m+1
2m

1 |u|1/22 for u ∈ H ∩Hm+1. (2.46)
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Substituting (2.46) into (2.45) and carrying out some simple transformations,
we derive

∂t
(
tm‖u‖2m

)
+ tm‖u‖2m+1 ≤ mtm−1‖u‖2m + C1t

m ‖u‖2(m+1)
1 |u|2m2 + tm‖f‖2m−1 .

(2.47)
By Theorems 2.1.13 and 2.1.18 with ν = 1, we have

t‖u‖21|u|22 ≤ C
(
|u0|22 + ‖f‖2L2(0,T,H)

)2
.

Substituting this into (2.47) and integrating in time, we obtain

tm‖u‖2m +

∫ t

0

sm‖u(s)‖2m+1ds ≤ m

∫ t

0

sm−1‖u(s)‖2mds+

∫ t

0

sm‖f‖2m−1 ds

+ C2

(
|u0|22 + ‖f‖2L2(0,T,H)

)2m
∫ t

0

‖u(s)‖21ds. (2.48)

Using now inequality (2.24) and the induction hypothesis to estimate the first
and third integrals on the right-hand side of (2.48), we arrive at the required
estimate (2.44).

Proof of Lemma 2.1.20. We first note that

〈B(u), Lmu〉 =
∑

|α|=m

Cα 〈DαB(u), Dαu〉, (2.49)

where Cα are some constants. Each term under the sum can be written as

〈DαB(u), Dαu〉 =
∑

β≤α

(
α

β

)
〈B(Dα−βu,Dβu), Dαu〉 .

Since 〈B(u,Dαu), Dαu〉 = 0, the term with β = α vanishes, and using (2.13),
we get

|〈DαB(u), Dαu〉| ≤ C
∑

β<α

‖Dα−βu‖1/2‖Dβu‖1‖Dαu‖1/2

≤ C
∑

β<α

‖u‖1/2+m−|β| ‖u‖1+|β|‖u‖m+ 1
2
, (2.50)

where m = |α| and 0 ≤ |β| < m. Note that the numbers 1
2 + m − |β|, 1 + |β|

and m + 1
2 lie between 1 and m + 1

2 . By the interpolation inequality (1.7), for
any a ∈ [1,m+ 1

2 ], we have

‖u‖a ≤ |u|1−
a

m+1

2 ‖u‖
a

m+1

m+1 := X, ‖u‖a ≤ ‖u‖1−
a−1
m

1 ‖u‖
a−1
m

m+1 := Y .

Take any term in the sum in the right-hand side of (2.50). Estimating each of
its factors by XθY 1−θ with a suitable θ, we obtain

|〈DαB(u), Dαu〉| ≤ C ‖u‖
4m−1
2m

m+1 ‖u‖
m+1
2m

1 |u|1/22 .

Substituting this into (2.49), we arrive at (2.46).
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Theorem 2.1.19 implies, in particular, that if the right-hand side is infinitely
smooth, then so is the solution of (2.19) for t > 0. It can also be shown that
the space-time analyticity of f implies a similar property for the solution. We
refer the reader to [FT89, DG95] for an exact formulation and proof of the
corresponding result.

An analogue of Theorem 2.1.19 is true for bounded domains with smooth
boundary. In this case, to prove the regularity of u we have to assume that the
right-hand side is smooth both in space and time, and the initial function u0
satisfies some compatibility condition. These results are not needed for studying
ergodic properties of the Navier–Stokes flow, and therefore we do not give any
further details, referring the reader to [Tay97] for a systematic study of regularity
of solutions to nonlinear PDE’s.

2.1.7 Navier–Stokes process

Let us consider the Navier–Stokes system (2.19) in which f ∈ L2
loc(R+, H

−1)
and ν = 1. By Theorem 2.1.13, for any τ ∈ R and any u0 ∈ H Eq. (2.19)
has a unique solution u ∈ C(Rτ , H) ∩ L2

loc(Rτ , V ) such that u(τ) = u0, where
Rτ = [τ,∞) . We introduce the resolving operator St,τ : H → H by the relation
St,τ (u0) = u(t). It is straightforward to verify that the family {St,τ , t ≥ τ ≥ 0}
forms a process:

Sτ,τ = IdH , St,τ = St,s ◦ Ss,τ for any t ≥ s ≥ τ ≥ 0,

where IdH stands for the identity mapping in H. We shall call St,τ the Navier–
Stokes process or, for short, the NS process. Let us set St = St,0. The following
proposition establishes a dissipativity property of the NS process.

Proposition 2.1.21. (i) Let u0 ∈ H and f ∈ L2
loc(R+, H

−1). Then

|St(u0)|22 ≤ e−α1t|u0|22 +

∫ t

0

e−α1(t−s)‖f(s)‖2−1ds, (2.51)

where α1 > 0 stands for the first positive eigenvalue1 of the Laplacian.

(ii) Let u0 ∈ V and f ∈ L2
loc(R+, H). Then

‖St(u0)‖21 ≤ e−α1t‖u0‖21 +

∫ t

0

e−α1(t−s)|f(s)|22ds. (2.52)

Proof. In view of (2.24) with ν = 1, we have

|St(u0)|22 +

∫ t

0

|∇Ss(u0)|22ds ≤ |u0|22 +

∫ t

0

‖f(s)‖2−1 ds.

Using Poincaré’s inequality |∇u|22 ≥ α1|u|22 to minorise the integrand in the left-
hand side and applying the Gronwall inequality, we arrive at (2.51). The proof
of (2.52) can be carried out by a similar argument, using Lemma 2.1.16; cf. the
proof of Theorem 2.1.18.

1In the case of the standard torus T2 = R2/2πZ2, we have α1 = 1.
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Exercise 2.1.22. Prove inequality (2.52).

Exercise 2.1.23. Show that any solution of the Navier–Stokes system satisfies
the inequality

|u(0)|22 ≤ C (t−1 ∨ 1)

∫ t

0

(
‖Ss(u(0))‖21 + ‖f(s)‖2−1

)
ds, (2.53)

where C > 0 is a constant not depending on t and u0. Hint: Use (2.51) to
estimate from above the left-hand side of (2.39).

Note that inequality (2.51) remains true for the Navier–Stokes system in a
bounded domain, and the proof is literally the same as in the case of a torus.
On the other hand, inequality (2.52) is no longer valid, because Lemma 2.1.16
does not hold in general. Still, the NS process is bounded from H to V , and
some explicit bounds for ‖St(u)‖1 can be obtained by repeating the arguments
used in the proof of Theorem 2.1.18.

Corollary 2.1.24. Suppose that f ≡ 0. Then the function u = 0 is the only
fixed point of the NS semigroup, and it is globally exponentially stable in H.
Moreover, in the case of a torus, it is also globally exponentially stable in V .

We now turn to continuity properties of the NS process. We shall write
St(u0, f) to indicate the dependence of the resolving operator on the right-
hand side of the NS equation. The following result shows that St is uniformly
Lipschitz continuous on bounded subsets of H.

Proposition 2.1.25. (i) There exists a constant C > 0 such that, for any
functions u01, u02 ∈ H and f1, f2 ∈ L2

loc(R+, H
−1), we have

∣∣St(u01, f1) − St(u02, f2)
∣∣2
2
≤ |u01 − u02|22 exp

(
C

∫ t

0

‖Sr(u01, f1)‖21dr
)

+

∫ t

0

exp

(
C

∫ t

s

‖Sr(u01, f1)‖21dr
)
‖f1(s) − f2(s)‖2−1ds. (2.54)

(ii) There exists a constant C > 0 such that, for 0 < t ≤ 1 and any functions
u01, u02 ∈ H and f1, f2 ∈ L2

loc(R+, H), we have

∥∥St(u01, f1) − St(u02, f2)
∥∥2
1
≤ C

∫ t

0

|f1 − f2|22 ds

+A(t) t−3

(
|u01 − u02|22 +

∫ t

0

‖f1 − f2‖2−1ds

)
, (2.55)

where we set

A(t) = exp

(
C

∫ t

0

(
‖Sr(u01, f1)‖21 + ‖Sr(u02, f2)‖21 + |f1|22 + |f2|22

)
ds

)
.
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The proof of this result is rather standard and uses a well-known idea.
Namely, one should take the difference between the equations corresponding
to two solutions, multiply (in the sense of scalar product in H) the resulting re-
lation by an appropriate function, estimate the nonlinear terms with the help of
Sobolev embedding and interpolation inequalities, and finally apply Gronwall’s
lemma. The realisation of this scheme is somewhat technical, and to keep the
presentation on an elementary level, we postpone the proof of Proposition 2.1.25
until Section 2.6. The reader not interested in those technical details may safely
skip it.

An analogue of Proposition 2.1.25 holds for the Navier–Stokes system in a
bounded domain. Namely, in that case, inequality (2.54) and its proof remain
true without any changes. As for (2.55), its proof used inequality (2.43), which
does not hold for a general bounded domain. One can show, however, that

the quantity
∥∥St(u01, f1) − St(u02, f2)

∥∥2
1/2

is bounded by the right-hand side

of (2.55) in which t−3 is replaced by t−5/2.

Exercise 2.1.26. Prove the above claims for the Navier–Stokes system in a boun-
ded domain with the Dirichlet boundary condition.

The following exercise establishes the continuity of the resolving operator
for the Navier–Stokes system in different norms. This will be important in
Section 4.3.

Exercise 2.1.27. (i) Prove that, for any functions u0 ∈ H, h ∈ L2(0, T ;H), and
g ∈ L∞(0, T ;V ), Eq. (2.19) with the right-hand side f = h + ∂tg has a unique
solution u ∈ XT := C(0, T ;H) ∩ L2(0, T ;V ) issued from u0.

(ii) Let u1, u2 ∈ XT be two solutions of Eq. (2.19) with f = ∂tgi, i = 1, 2,
where gi ∈ L∞(0, T ;V ). Then for any R > 0 there is a constant CR > 0 such
that if |ui(0)|2 ≤ R and ‖gi‖L∞(0,T ;V ) ≤ R, then

‖u1 − u2‖XT
≤ CR

(
|u1(0) − u2(0)|2 + ‖g1 − g2‖L∞(0,T ;V )

)
.

2.1.8 Foiaş–Prodi estimates

The Foiaş–Prodi inequalities enable one to establish the exponential convergence
of two solutions for the Navier–Stokes system, on condition that one has a
good control over their low Fourier modes. We shall need two versions of these
estimates that correspond to discrete- and continuous-time perturbations.

Let us fix an integer N ≥ 1 and denote by H(N) the vector span 2 of the
basis functions es with |s| ≤ N ; see (2.29). We write PN for the orthogonal
projection in L2 onto H(N). Along with the Navier–Stokes system (2.19), let us
consider the equation

u̇+ Lu+B(u) + λPN

(
u− u′(t)

)
= Πf(t), (2.56)

2This space is slightly different from the one defined by (2.30), because we exclude the
constant functions (1, 0) and (0, 1).
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where u′(t) is a given function and λ > 0 is a large parameter. Equation (2.56) is
a Navier–Stokes-type system, and the arguments in the proof of Theorem 2.1.13
can be used to show that the Cauchy problem for (2.56) has a unique solution
u ∈ C(R+, H) ∩ L2

loc(R+, V ) for any u′ ∈ L2
loc(R+, H).

Theorem 2.1.28. Let f ∈ L2
loc(R+, H

−1) and let u′ ∈ C(R+, H)∩L2
loc(R+, V )

be a solution of the Navier–Stokes system (2.19) such that

∫ t

s

‖u′(r)‖21dr ≤ ρ+K (t− s) for s ≤ t ≤ s+ T , (2.57)

where s, T , ρ, and K are non-negative constants. Then for any M > 0 there are
constants N ≥ 1 and λ > 0 depending on M and ρ such that for any solution
u ∈ C(R+, H) ∩ L2

loc(R+, V ) of (2.56) we have

|u(t) − u′(t)|2 ≤ e−M(t−s)+Cρ|u(s) − u′(s)|2 for s ≤ t ≤ s+ T , (2.58)

where C > 0 is an absolute constant.

Proof. We confine ourselves to the formal derivation of (2.58). The difference
w = u− u′ satisfies the equation

ẇ + Lw +B(u) −B(u′) + λPNw = 0.

Taking the scalar product in L2 of this equation with 2w and using (2.11)
and (2.13), we derive

∂t|w|22 + 2|∇w|22 + 2λ |PNw|22 ≤ C1‖w‖1|w|2‖u′‖1
≤ |∇w|22 + C2‖u′‖21|w|22. (2.59)

Now note that, by Poincaré’s inequality, we have

|∇w|22 ≥ N2 |(I − PN )w|22.

Substituting this into (2.59), we obtain

∂t|w|22 +
(
λ1 − C2‖u′‖21

)
|w|22 ≤ 0,

where λ1 = min{N2, 2λ}. Application of the Gronwall inequality results in

|w(t)|22 ≤ |w(s)|22 exp

(
−λ1(t− s) + C2

∫ t

s

‖u′(r)‖21dr
)

≤ |w(s)|22 exp
(
C2ρ− (λ1 − C2K)(t− s)

)
.

Choosing λ and N so large that λ1 ≥ C2K + 2M , we arrive at (2.58) with
C = C2/2.
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Remark 2.1.29. The above proof does not use the fact that the space variables
belong to the torus, and the result remains true for a bounded domain. In this
case, PN denotes the orthogonal projection in L2 to the subspace spanned by the
first N eigenfunctions of Stokes operator L = −Π∆. Furthermore, the regularity
in time of the function f was not used either. In particular, if the right-hand
side has the form f = h + ∂tζ, where h ∈ L2

loc(R+, H) and ζ ∈ C(R+, H),
then the conclusion of Theorem 2.1.28 remains valid; cf. Exercise 2.1.27 for the
existence of a solution. This observation will be important for the case in which
the right-hand side is the sum of a deterministic function and the time derivative
of a Brownian motion.

We now turn to the discrete version of the Foiaş–Prodi estimate. To simplify
the presentation, we shall assume that the right-hand side f is independent of
time and belongs to the space H. In this case, the resolving operator St,τ of
the Navier–Stokes equation (2.19) depends only on the difference t − τ , and
we shall write St−τ . Let us fix a constant T > 0 and consider four sequences
uk, u

′
k, ζk, ζ

′
k ∈ H satisfying the relations

uk = S(uk−1) + ζk, u′k = S(u′k−1) + ζ ′k, k ≥ 1, (2.60)

where S = ST .

Theorem 2.1.30. Suppose that

PNuk = PNu
′
k, (I − PN )ζk = (I − PN )ζ ′k for l + 1 ≤ k ≤ m, (2.61)

where m > l ≥ 0 are some integers. Then there is an absolute constant C > 0
such that

|uk−u′k|2 ≤ (CN−1)k−l exp
(
C(k−l)

(
〈‖u‖21〉kl +〈‖u ′‖21〉kl +1

))
|ul−u′l|2, (2.62)

where l ≤ k ≤ m, and for a sequence {vj} ⊂ H we set

〈‖v‖21〉kl =
1

k − l

k−1∑

j=l

∫ T

0

‖St(vj)‖21dt.

Proof. Let us set ∆k = |uk − u′k|2. It follows from (2.55), (2.61), and the
Poincaré inequality that

∆k = |(I − PN )(uk − u′k)|2 =
∣∣(I − PN )(S(uk−1) − S(u′k−1))

∣∣
2

≤ C1N
−1

∥∥S(uk−1) − S(u′k−1)
∥∥
1

≤ C2N
−1∆k−1 exp

(
C2

∫ T

0

(
‖St(uk−1)‖21 + ‖St(u

′
k−1)‖21 + |f |22

)
dt

)
.

Iteration of this inequality results in (2.62).

Remark 2.1.31. As in the case of continuous-time perturbations, the conclusion
of Theorem 2.1.30 remains true for a bounded domain. The only difference is
that the constant N−1 in (2.62) should be replaced by α−1

N , where αj stands for
the jth eigenvalue of the Stokes operator L.
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2.1.9 Some hydrodynamical terminology

As we mentioned in the Introduction, the behaviour of incompressible fluid oc-
cupying a domain Q ⊂ Rd (or the d-dimensional torus Td), with d = 2 or 3,
is described by the d + 1 equations (2.1), supplemented by suitable boundary
conditions if necessary. In those equations, u(t, x), p(t, x), and ν denote, re-
spectively, the velocity, pressure, and the kinematic viscosity of the fluid. The
quantity 1

2 |u(t)|22 = 1
2

∫
Q
|u(t, x)|2dx is called the energy of the fluid (at time t).

Let us assume that f = 0 and that the fluid satisfies the no-slip condition,
i.e., u = 0 on ∂Q. Multiplying the first equation in (2.1) by u(t) in L2, we
obtain

1

2

d

dt
|u(t)|22 + ν

∫

Q

|∇u|2dx = 0.

Accordingly, the quantity ε = ν
∫
Q
|∇u|2dx is called the rate of dissipation of

energy.
The Reynolds number of the flow is defined as

R =
〈characteristic scale for x〉 · 〈characteristic scale for u〉

ν
.

The terms in the numerator are ambiguous, and for the purposes of this book,
we understand them as follows:

〈characteristic scale for x〉 = diameter of Q (or the period of torus),

〈characteristic scale for u〉 =
1√
2
|u|2 =:

√
E.

If u depends on a random parameter, then we modify this definition:

〈characteristic scale for u〉 =
(
EE

)1/2
.

In the 2D case, we denote by v = curlu = ∂1u
2 − ∂2u

1 the vorticity of the
flow, and call Ω = 1

2

∫
v2dx the enstrophy .

Exercise 2.1.32. Show that Ω = 1
2

∫
Q
|∇u|2dx.

Applying the operator curl to the first equation in (2.1) and using the relation
curl(〈u,∇〉u) = 〈u,∇〉v, we derive

v̇ − ν∆v + 〈u,∇〉v = curl f. (2.63)

Let us assume that f = 0 and consider the case of a torus. Multiplying (2.63)
by v in L2, we obtain

1

2

d

dt
|v|22 + ν

∫

T2

|∇v|2 dx = 0.

We deduce that ν
∫
T2 |∇v|2dx is the rate of dissipation of enstrophy.

Exercise 2.1.33. Show that, in the case of a torus, we have
∫
T2 |∇v|2dx = |∆u|22.
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2.2 Stochastic Navier–Stokes equations

We now turn to the Navier–Stokes system with a random right-hand side. More
precisely, we shall consider Eqs. (2.1) in which f has the form

f(t, x) = h(x) + η(t, x), (2.64)

where h is a deterministic function and η is a stochastic process. For the latter,
we study the following three cases that give rise to a Markov process in the
phase space: random kick force, spatially regular white noise, and the time
derivative of a compound Poisson process. Each of these three types of forces
has its own advantages: the first and third ones are more realistic in the sense
that they allow non-Gaussian perturbations, while the second can be considered
as a limiting model for a large class of stationary processes whose time integral
does not necessarily satisfy the condition of independence of increments; cf.
Theorem 2.2.2 below and Théorème 4.3 in [Rio00].

Let us describe the above-mentioned models in more detail. We shall say
that a stochastic process η is a random kick force on T2 if it has the form (see
Figure 2.1)

η(t, x) =

∞∑

k=1

ηk(x)δ(t− kT ), (2.65)

where T > 0 is a constant and {ηk} is a sequence of i.i.d. random variables in H.

We shall say that a stochastic process η is a spatially regular white noise if

η(t, x) =
∂

∂t
ζ(t, x), ζ(t, x) =

∞∑

j=1

bjβj(t)ej(x), t ≥ 0, (2.66)

where {ej} is an orthonormal basis in H, bj ≥ 0 are some constants such that

B :=

∞∑

j=1

b2j <∞, (2.67)

✲✲

✲

✲

✲

0 T 2T 3T · · · kT (k + 1)T t

✻

❄
η1

η2
η1 + · · · + ηk

q q q q q q

Figure 2.1: Time integral of a random kick force



2.2. STOCHASTIC NAVIER–STOKES EQUATIONS 57

and {βj} is a sequence of independent standard Brownian motions. The fol-
lowing result is a simple consequence of Doob’s moment inequality (7.56) and
Levy’s equivalence theorem 3 (see Theorem 9.7.1 in [Dud02]).

Exercise 2.2.1. Show that for any T > 0 the series in (2.66) converges almost
surely in the space C(0, T ;H). Hint: One can apply the argument used in
the proof of Theorem 2.2.2 below to prove the convergence of the series in
probability; see the solution of Exercise 2.4.17.

Finally, we shall say that η is the time derivative of a compound Poisson
process if (see Figure 2.2)

η(t, x) =
∞∑

k=1

ηk(x)δ(t− tk). (2.68)

Here {ηk} are i.i.d. random variables in H, {tk} is a sequence independent
of {ηk} such that4 τk = tk−tk−1 are i.i.d. random variables with an exponential
distribution; see Example 1.3.10 in [App04].

✲✲

✲

✲

0 t

✻

η1

η2

η1 + · · · + ηk

t1

❄

t2

✲

t3 · · · tk tk+1

q q q q q q

Figure 2.2: Compound Poisson process

We shall mostly study the first two types of noise, confining ourselves to a
brief discussion of the results for the third class.

The concept of a solution for the Navier–Stokes system with random kicks
and spatially regular white noise is defined in the next two subsections. Here
we recall a result due to Donsker which shows the universality of white noise.
Namely, we shall prove that an appropriately normalised high-frequency random
kick force is close to a spatially regular white noise.

Let t0 > 0 be a constant, let X be a separable Banach space, and let
D(0, t0;X) be the space of functions that are right-continuous and have left-
hand limits at any point of the interval [0, t0]. It is a well-known fact that the
space D(0, t0;X) is complete with respect to the modified Skorokhod metric,
which is defined in the following way (see [Bil99, Section 12]). Let Λ be the
space of all strictly increasing continuous functions λ : [0, t0] → [0, t0] such that
λ(0) = 0 and λ(t0) = t0. If ζ1, ζ2 ∈ D(0, t0;X), then the modified Skorokhod

3In [Dud02], this result is proved for real-valued random variables. However, analysing
the proof, it is easily seen that if a series of independent random variables with range in a
separable Banach space converges in probability, then it converges also almost surely.

4By definition, we set t0 = 0.
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distance is defined as the least upper bound of those δ > 0 for which there is
λ ∈ Λ such that

sup
0≤s<t≤t0

ln

∣∣∣∣
λ(t) − λ(s)

t− s

∣∣∣∣ ≤ δ, sup
0≤t≤t0

‖ζ1 − ζ2 ◦ λ‖X ≤ δ.

In the case X = R, we shall write D(0, t0) instead of D(0, t0;R).
Let us consider a family of random kick forces depending on a parameter

ε > 0 and defined by

ηε(t, x) =
√
ε

∞∑

k=1

ηk(x)δ(t− kε). (2.69)

Assume that {ηk} is a sequence of i.i.d. random variables of the form

ηk(x) =

∞∑

j=1

bjξjkej(x), (2.70)

where {ej} and {bj} are the same as in (2.66), and {ξjk} is a family of inde-
pendent scalar random variables whose laws do not depend on k and satisfy the
relations

E ξjk = 0, E ξ2jk = 1.

Let us define the time integrals of processes (2.69) and (2.66):

ζε(t, x) =
√
ε

∞∑

k=1

ηk(x)θ(t− kε) =
√
ε

∞∑

j=1

bjej(x)
∞∑

k=1

ξjkθ(t− kε),

ζ(t, x) =

∞∑

j=1

bjβj(t)ej(x). (2.71)

Here θ is the Heaviside function, that is, θ(t) = 1 for t ≥ 0 and θ(t) = 0
for t < 0. It is clear that, for any t0 > 0, almost every trajectory of ζε and ζ
belongs to D(0, t0;H).

Theorem 2.2.2. For any t0 > 0, the family D(ζε) converges to D(ζ) weakly in
the space P(D(0, t0;H)).

Proof. Let us write ζε as

ζε(t, x) =

∞∑

j=1

bjβ
ε
j (t)ej(x), βε

j (t) =
√
ε

∞∑

k=1

ξjkθ(t− kε).

Donsker’s theorem implies that, for any t0 > 0,

D(βε
j ) → D(βj) in P

(
D(0, t0)

)
as ε→ 0+;

see Section 14 of [Bil99]. It follows that, for each n ≥ 1,

D(ζnε ) → D(ζn) in P
(
D(0, t0;H)

)
as ε→ 0+, (2.72)
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where we set

ζnε (t, x) =

n∑

j=1

bjβ
ε
j (t)ej(x),

and ζn(t, x) is defined in a similar way. In view of Doob’s moment inequal-
ity (7.56), we have

E sup
0≤t≤t0

|ζn(t) − ζ(t)|22 ≤ 4E |ζn(t0) − ζ(t0)|22 ≤ 4

∞∑

j=n+1

b2j → 0 (2.73)

as n → ∞, and a similar estimate holds for ζnε and ζε. Combining (2.72)
and (2.73) and using Exercise 1.2.19, we arrive at the required result.

In Chapter 4, we shall need another version of Theorem 2.2.2 that concerns
convergence to ζ in the weak topology of the space of probability measures on
C(0, t0;H). Namely, let us denote by ζ̃ε a continuous process that coincides
with ζε at the points tεk = kε and is linear between any two consecutive points
of that form. In this case, it is easy to check that

sup
tεk−1≤t≤tεk

|ζε(t) − ζ̃ε(t)|2 ≤ √
ε |ηk|2, k ≥ 1,

whence it follows that

sup
0≤t≤t0

|ζε(t) − ζ̃ε(t)|2 ≤ √
εmax

{
|ηk|2, 1 ≤ k ≤ [t0/ε] + 1

}
. (2.74)

Exercise 2.2.3. Assuming that E|η1|q2 <∞ for some q > 2, show that

P

{
sup

0≤t≤t0

|ζε(t) − ζ̃ε(t)|2 > δ
}
→ 0 as ε→ 0, (2.75)

where t0 > 0 and δ > 0 are arbitrary constants.

Combining this result with Theorem 2.2.2, it is not difficult to show that
D(ζ̃ε) converges to D(ζ) weakly in the space P(D(0, t0;H)). The following
exercise shows that the convergence holds in fact for a stronger topology without
any additional assumption on ηk.

Exercise 2.2.4. Prove that, for any t0 > 0, the family D(ζ̃ε) converges to D(ζ)
weakly in the space P(C(0, t0;H)). Hint: Repeat the scheme used in the proof
of Theorem 2.2.2, applying Donsker’s theorem given in Section 8 of [Bil99].

2.3 Navier–Stokes equations perturbed by a ran-

dom kick force

This section is devoted to a systematic study of the Navier–Stokes system (2.1)
with a right-hand side given by (2.64), (2.65). We shall always assume that h ∈
H is a deterministic function and {ηk} is a sequence of H-valued i.i.d. random
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variables defined on a complete probability space (Ω,F ,P). After projecting to
the space H, the problem takes the form (cf. (2.19))

u̇+ νLu+B(u) = h+
∞∑

k=1

ηkδ(t− kT ). (2.76)

As before, we shall consider the case of a torus and make remarks concerning
the problem in a bounded domain. Accordingly, the problem will be studied in
the functional spaces (2.41).

2.3.1 Existence and uniqueness of solution

We begin with a definition of the concept of a solution for (2.76). Let us denote
by St : H → H the resolving operator for Eq. (2.19) with f(t, x) = h(x):

u̇+ νLu+B(u) = h. (2.77)

In other words, St takes u0 to u(t), where u ∈ C(R+, H) ∩ L2
loc(R+, V ) stands

for the solution of (2.77) satisfying u(0) = u0.
A filtration for (2.76) is defined as any non-decreasing family of σ-algebras

{Gt, t ≥ 0} of the space (Ω,F) such that Gt = G(k−1)T for (k − 1)T ≤ t < kT
and ηk is GkT -measurable and independent of G(k−1)T for any integer k ≥ 1.
Recall that a random process v(t), t ≥ 0 is said to be adapted to Gt if the
random variable v(t) is Gt-measurable for any t ≥ 0. Let us define the interval
Jk = [(k − 1)T, kT ) and the space

H(Jk) = {u ∈ L2(Jk, V ) : u̇ ∈ L2(Jk, V
∗)},

where the space V is defined in (2.41) and V ∗ denotes its dual. In view of
Lemma 2.1.5, every element of H(Jk) extends to a continuous curve J̄k → H.

Definition 2.3.1. A random process u(t), t ≥ 0, is called a solution of Eq. (2.76)
if it is adapted to the filtration Gt for (2.76), and almost every trajectory of u
satisfies the following conditions for any integer k ≥ 1:

• the restriction of u to Jk belongs to H(Jk) and satisfies (2.77) (in par-
ticular, u : Jk → H is a continuous curve which has a limit at the right
endpoint of Jk);

• we have the relation

u(t+k ) − u(t−k ) = ηk, (2.78)

where u(t−k ) and u(t+k ) denote the left- and right-hand limits of u at the
point tk := kT .

That is, on the interval (tk−1, tk) the function u is a solution of the “free”
Navier–Stokes system (see (2.77)), and at any point tk it has an instantaneous
increment equal to the kth kick ηk (see Figure 2.3). We shall always normalise
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Figure 2.3: Evolution defined by Eq. (2.76)

the solutions of (2.76) by the condition of right-continuity at the points tk,
k ≥ 1. That is, denoting uk = u(kT ), k = 0, 1, . . . , we can write

uk = ST (uk−1) + ηk, k ≥ 1, (2.79)

and for t = kT + τ with 0 ≤ τ < T , we have u(t) = Sτ (uk).

The following theorem establishes the existence and uniqueness of a solution
for the Cauchy problem for (2.76). Its proof is a straightforward consequence
of Theorem 2.1.13 and is left to the reader as an exercise.

Theorem 2.3.2. Let u0 be an H-valued G0-measurable random variable. Then
Eq. (2.76) has a solution satisfying the initial condition (2.3) for all ω ∈ Ω.
Moreover, the solution is unique in the sense that if ũ is another random process
with the above properties, then

P{u(t) = ũ(t) for all t ≥ 0} = 1.

2.3.2 Markov chain and RDS

Theorem 2.3.2 enables one to define a discrete-time process and an RDS in H
which are associated with solutions of the Navier–Stokes system, evaluated at
times kT , k ∈ Z+. Indeed, the sequence {uk, k ≥ 0}, where uk = u(kT ), satisfies
Eq. (2.79). By Example 1.3.6, the latter defines a Markov family of random
processes 5 on the extended probability space H ×Ω, and by Example 1.3.15, it
defines an RDS Φ = {ϕω

k } in H, which is Markov in view of Exercise 1.3.19.
Recall that a measure µ ∈ P(H) is said to be stationary for (2.79) if

P∗
1µ = µ, where P∗

k denotes the Markov semigroup associated with (2.79);
see Section 1.3.1. A trajectory {uk, k ≥ 0} of (2.79) such that the law of uk
coincides with a stationary measure is called a stationary solution.

5Equation (2.79) itself defines a Markov chain (starting from u0) on the original probability
space.
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2.3.3 Additional results: higher Sobolev norms and time

averages

Our next goal is to establish some estimates for solutions of (2.76). We begin
with moments of solutions, evaluated at deterministic or random times propor-
tional to T . To simplify the presentation, we assume that ν = 1; all the results
remain valid for any ν > 0 if we suitably adjust the constants.

Proposition 2.3.3. (i) In addition to the hypotheses of Theorem 2.3.2, as-
sume that

E |u0|m2 <∞, Km := E |η1|m2 <∞ (2.80)

for an integer m ≥ 1. Then there are positive constants Cm = Cm(T )
and q < 1 such that

E |u(kT )|m2 ≤ qkTE |u0|m2 + Cm(Km + 1), k ≥ 1. (2.81)

(ii) If K2m <∞ and σ is a stopping time with range in TZ+∪{∞} satisfying

the condition E :=
∑

l

(
P{σ = lT}

)1/2
<∞, then we have

E
(
I{σ<∞}|u(σ)|m2

)
≤ E

(
qσ|u0|m2

)
+ CmE

(
K

1/2
2m + 1

)
, (2.82)

where we set q∞ = 0.

Proof. Recall that uk = u(kT ). Inequality (2.51) implies that

|ST (v)|2 ≤ e−α1T/2|v|2 + C1|h|2 for v ∈ H.

Furthermore, it follows from (2.79) that

|uk|2 = |ST (uk−1) + ηk|2 ≤ |ST (uk−1)|2 + |ηk|2.
Combining the last two relations, we obtain

|uk|m2 ≤ qT |uk−1|m2 + C2

(
|ηk|m2 + |h|m2

)
, (2.83)

where q < 1 is a constant depending only on the first eigenvalue α1, and C2 > 0
depends on m. Iterating this inequality, we get

|uk|m2 ≤ qkT |u0|m2 + C2

k∑

l=1

q(k−l)T
(
|ηl|m2 + |h|m2

)
. (2.84)

Taking the mean value, we arrive at (2.81).

We now prove (2.82). Taking k = (σ/T ) ∧ n in (2.84), where n ≥ 1 is an
integer, and multiplying the resulting relation by I{σ<∞}, we get

I{σ<∞}|u(σ/T )∧n|m2 ≤ I{σ<∞}q
σ∧(nT )|u0|m2

+ C2I{1≤σ<∞}

(σ/T )∧n∑

l=1

qσ∧(nT )−lT
(
|ηl|m2 + |h|m2

)

≤ qσ∧(nT )|u0|m2 + C2

∞∑

s=1

s∧n∑

l=1

(
qT

)s∧n−l
I{σ=sT}

(
|ηl|m2 + |h|m2

)
.



2.3. NAVIER–STOKES EQUATIONS WITH RANDOM KICKS 63

Taking the expectation and using Fatou’s lemma to pass to the limit as n→ ∞
in the left-hand side of the above inequality, we derive

E
(
I{σ<∞}|uσ/T |m

)
≤ E

(
qσ|u0|m2

)
+ C2Em, (2.85)

where

Em = lim
n→∞

∞∑

s=1

s∧n∑

l=1

(
qT

)s∧n−l
E
(
I{σ=sT}

(
|ηl|m2 + |h|m2

))
.

Applying the Cauchy–Schwarz inequality, we get

Em ≤ lim
n→∞

∞∑

s=1

s∧n∑

l=1

(
qT

)s∧n−l(
P{σ = sT}

) 1
2
(
(E |ηl|2m2 )

1
2 + |h|m2

)

=
(
K

1
2
2m + 1

)
lim

n→∞

∞∑

s=1

s∧n−1∑

r=0

qTr
(
P{σ = sT}

) 1
2

≤
(
K

1
2
2m + 1

) ∞∑

s=1

s−1∑

r=0

qTr
(
P{σ = sT}

) 1
2 .

Substituting this inequality into (2.85), we obtain (2.82).

Proposition 2.3.3 implies that if all moments of the initial function u0 and
those of the random perturbations ηk are finite, then so are moments of the
solution. If we replace this hypothesis by the stronger condition of finiteness
of a second exponential moment, then we can obtain some bounds of a similar
quantity for solutions. More precisely, we have the following result.

Proposition 2.3.4. In addition to the hypotheses of Theorem 2.3.2, assume
that for some κ0 > 0 we have

E exp
(
κ0|u0|22

)
<∞, Q := E exp

(
κ0|η1|22

)
<∞. (2.86)

Then there are positive constants κ and q < 1 such that

E exp
(
κ |u(kT )|22

)
≤ C

(
E exp

(
κ |u0|22

)qkT

, k ≥ 0, (2.87)

where we set C =
(
Q exp(κ0|h|22)

)γ
and γ = (1 − qT )−1.

Proof. It follows from inequality (2.83) with m = 2 that

E exp
(
κ|uk|22

)
≤ E exp

(
κqT |uk−1|22 + C2κ(|ηk|22 + |h|22)

)

= E exp
(
κqT |uk−1|22

)
E exp

(
C2κ|ηk|22

)
exp(C2κ|h|22

)
,

where we used the independence of ηk and uk−1. Choosing κ = κ0/C2 and
applying Hölder’s inequality, we derive

E exp
(
κ|uk|22

)
≤ Q exp(κ0|h|22

)(
E exp

(
κ|uk−1|22

))qT
.

Iterating this inequality, we obtain (2.87).
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We now turn to some estimates for the mean value of higher Sobolev norms.
Since the corresponding proofs are similar to those of Propositions 2.3.3 and 2.3.4,
we shall confine ourselves to formulating the results.

Proposition 2.3.5. (i) In addition to the hypotheses of Theorem 2.3.2, as-
sume that

E |u0|m2 <∞, E ‖η1‖ms <∞ for all m ≥ 1, (2.88)

where s ≥ 1 is an integer. Then there are integers lsm ≥ m and a con-
stant Csm such that

E ‖u(kT )‖ms ≤ Csm

(
E |u((k − 1)T )|lsm2 + E ‖η1‖ms + 1

)
, k ≥ 1. (2.89)

(ii) In addition to the hypotheses of Theorem 2.3.2, assume that

E exp
(
κ0|u0|22

)
<∞, E exp

(
κ0‖η1‖2s

)
<∞. (2.90)

where s ≥ 1 is an integer. Then there are positive constants ps, κs, and Cs

such that

E exp
(
κs‖u(kT )‖ps

s

)
≤ CsE exp

(
κ |u((k−1)T )|22

)
E exp

(
κ0‖η1‖2s

)
, (2.91)

where k ≥ 1 is an arbitrary integer and κ is the constant in Proposi-
tion 2.3.4 (ii).

Let us note that, in view of Propositions 2.3.3 and 2.3.4, the right-hand
sides of (2.89) and (2.91) are finite. Thus, to ensure that the moments of
higher Sobolev norms of solutions are finite, it suffices to assume that so are
the moments of the L2-norm of the initial function. More precisely, we have the
following result on uniform bounds for the mean value of higher Sobolev norms
of solutions.

Corollary 2.3.6. Under the hypotheses of parts (i) or (ii) of Proposition 2.3.5,
we have respectively the following estimates for the solutions of Eq. (2.76) such
that u(0) = u0:

E ‖u(kT )‖ms ≤ Csm(u0), k ≥ 1, (2.92)

E exp
(
κs‖u(kT )‖ps

s

)
≤ Csm(u0), k ≥ 1, (2.93)

where Csm and Cs are some constants depending on the initial condition and
the right-hand side of (2.76).

Exercise 2.3.7. Prove Proposition 2.3.5 and Corollary 2.3.6. Hint: Use Theo-
rem 2.1.19 to establish (2.89) and (2.91); a proof can be found in the Appendix
of [KS01b].
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We now derive some estimates for the stopping time at which the time
average of solutions becomes large. Given a function u(t) with range in H1 and
integers l < k, we define

〈‖u‖21〉kl =
1

k − l

∫ kT

lT

‖u(t)‖21dt.

Let us fix a constant M > 0 and consider the stopping time

τ(M) = T min{k ≥ 1 : 〈‖u‖21〉k+1
0 > M}, (2.94)

where we set τ(M) = +∞ if the condition in the brackets is never satisfied.

Proposition 2.3.8. Assume that the conditions of Proposition 2.3.4 are ful-
filled. Then there are positive constants δ = δ(κ0, T ) and C = C(T, h) such that

P{τ(M) = kT} ≤ R (CQ)ke−δM(k+1) for k ≥ 1, (2.95)

where R = E eκ0|u0|22 . Furthermore, if δM > ln(R+ CQ), then

P{τ(M) = +∞} ≥ R

R+ CQ
> 0. (2.96)

Proof. Step 1. We first show that, for any integer k ≥ 1,

|u(tk)|22 +

∫ tk

0

‖u(t)‖21 ≤ 2|u0|22 + C1

( k∑

l=1

|ηl|22 + tk‖h‖2−1

)
, (2.97)

where tk = kT , and C1 is a constant depending on T . Indeed, on any inter-
val Jk = [tk−1, tk] the solution u(t, x) satisfies the deterministic Navier–Stokes
equations (2.77) with ν = 1. Thus, by (2.24), we have

|u(t−l )|22 +

∫ tl

tl−1

‖u(t)‖21dt ≤ |u(tl−1)|22 + T‖h‖2−1.

Furthermore, relation (2.78) implies that

|u(tl)|22 = |u(t−l )|22 + |ηl|22 + 2〈ηl, u(t−l )〉
≤ (1 + µ)|u(t−l )|22 + (1 + µ−1)|ηl|22,

where the constant µ > 0 will be chosen later. Combining these two inequalities,
we derive

(1 + µ)−1|u(tl)|22 +

∫ tl

tl−1

‖u(t)‖21dt ≤ |u(tl−1)|22 + T‖h‖2−1 + µ−1|ηl|22.

Taking the sum over l = 1, . . . , k, we obtain

(1 + µ)−1|u(tk)|22 +

∫ tk

0

‖u(t)‖21dt

≤ |u0|22 +
µ

1 + µ

k−1∑

l=1

|u(tl)|22 + tk‖h‖2−1 + µ−1
k∑

l=1

|ηl|22.
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It follows from inequality (2.53), applied to the intervals Jl, 1 ≤ l ≤ k− 1, that

k−1∑

l=1

|u(tl)|22 ≤ C2

∫ tk

0

‖u(t)‖21dt+ C2tk‖h‖2−1,

where C2 > 0 is a constant depending on T . Choosing the constant µ ∈ (0, 1)
so small that 2µC2 ≤ 1 + µ, we derive (2.97) from these two inequalities.

Step 2. Let us set

Ik = (k + 1)
〈
‖u‖21

〉k+1

0
.

Inequality (2.97) implies that

Ik ≤ 2|u0|22 + C3

( k∑

l=1

|ηl|22 + tk+1‖h‖2−1

)
.

Let the constant δ > 0 be so small that (C3 ∨ 2)δ ≤ κ0. Then it follows from
this inequality and (2.86) that

E eδIk ≤ R (CQ)k.

Chebyshev’s inequality now implies that

P
{
Ik > M(k + 1)

}
≤ R (CQ)ke−δM(k+1).

It remains to note that {τ(M) = k} ⊂ {Ik > M(k + 1)}.

Step 3. It remains to establish (2.96). Note that if δM > ln(R+ CQ), then
in view of (2.95) we have

P{τ(M) <∞} =
∞∑

k=1

P{τ(M) = k} ≤
∞∑

k=1

R (CQ)ke−δM(k+1) ≤ CQ

R+ CQ
.

This inequality readily implies the required result.

2.4 Navier–Stokes equations perturbed by a spa-

tially regular white noise

2.4.1 Existence and uniqueness of solution, and Markov

process

Let us turn to the equation

u̇+ νLu+B(u) = h+ η, η =
∂ζ

∂t
, ζ(t, x) =

∞∑

j=1

bjβj(t)ej(x), (2.98)
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where h ∈ H is a deterministic function, and bj , βj and ej are the same as
in (2.66). In particular, we assume that

B =

∞∑

j=1

b2j <∞.

This ensures that ζ(t, ·) is a continuous process with range in H. Since for
almost every ω ∈ Ω the curve ζω(t) is only H-continuous, i.e. has law smooth-
ness, we cannot apply deterministic tools to construct solutions of (2.98); see
Exercise 2.1.27. Using instead a stochastic approach, we shall show that, for
a.e. ω and for any initial function u(0) = u0 ∈ H, Eq. (2.98) has a unique solu-
tion u(t, x). Moreover, solutions can be written as u = U(u0, ζ

ω(·), where U is
a Borel mapping of its arguments.

Let us start with a concept of solution for (2.98). We shall always assume
that the Brownian motions {βj} are defined on a complete probability space
(Ω,F ,P) with a filtration Gt, t ≥ 0, and that the σ-algebras Gt are completed
with respect to (F ,P), that is, Gt contains all the P-null sets A ∈ F . In this
case, we shall say that the filtered probability space (Ω,F ,Gt,P) satisfies the
usual hypotheses.

Definition 2.4.1. An H-valued random process u(t), t ≥ 0, is called a solution
for (2.98) if :

(a) The process u(t) is adapted to the filtration Gt, and its almost every
trajectory belongs to the space6

X := C(R+;H) ∩ L2
loc(R+, V ).

(b) Equation (2.98) holds in the sense that, with probability 1,

u(t) +

∫ t

0

(
νLu+B(u)

)
ds = u(0) + th+ ζ(t), t ≥ 0, (2.99)

where the equality holds in the space H−1.

It is easy to see that, with probability 1, the left- and right-hand sides
of (2.99) belong to the space C(R+, H

−1), so relation (2.99) makes sense. The
construction of a solution for (2.98) given below is based on a reduction to an
equation with random coefficients. Namely, let us consider the stochastic Stokes
equation

ż + νLz = η(t, x) t ≥ 0. (2.100)

The concept of a solution for (2.100) is similar to that for (2.98), and we do
not repeat its definition. The following result uses the existence of an analytic

6We recall that C(R+;X) is a Fréchet space endowed with distance (1.9).
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semigroup e−νtL generated by the Stokes operator, and the concept of a stochas-
tic convolution. We refer the reader to Chapter 1 of [Hen81] and Section 5.1
of [DZ92] for the corresponding definitions and results.7

Proposition 2.4.2. Equation (2.100) has a solution z(·) ∈ X satisfying the
initial condition z(0) = 0. Moreover, this solution is unique in the sense that
if z̃(t) is another solution, then z ≡ z̃ almost surely. Finally, the solution z can
be represented as the stochastic convolution

z(t) =

∫ t

0

e−ν(t−s)Ldζ(s), (2.101)

and for almost every ω we have zω = Z(ζω), where Z : C(R+;H) → C(R+;V ∗)
is the continuous linear mapping defined by the right-hand side of (2.102).

Proof. The uniqueness of a solution can be established by the same argument
as in the deterministic case (see the proof of Theorem 2.1.13), and therefore we
shall confine ourselves to the proof of its existence and to representation (2.101).

Integrating by parts, we rewrite the stochastic integral (2.101) in the Wiener
form (cf. Section 2.1 in [McK69])

∫ t

0

e−ν(t−s)Ldζ(s) = ζ(t) − ν

∫ t

0

Le−ν(t−s)Lζ(s) ds. (2.102)

In view of Exercise 2.2.1, we have ζ ∈ C(0, T ;H) almost surely. Since the
operator Le−νtL is continuous from H to V ∗ with a norm bounded by C(νt)−1/2,
it follows from (2.102) that z(t) is a random process in V ∗ that has continuous
trajectories and is adapted to the filtration Gt. The required assertions will be
established if we prove that, with probability 1, the trajectories of z belong to
the space X introduced in Definition 2.4.1 and satisfy the relation

z(t) + ν

∫ t

0

Lz(s) ds = ζ(t), t ≥ 0. (2.103)

The proof of this fact is rather simple in the case when the orthonormal ba-
sis {ej} entering the definition of ζ (see (2.98)) consists of the eigenfunctions of
the Stokes operator L. To simplify the presentation, we shall consider only that
particular case, leaving the general situation to the reader as an exercise.

Let us consider a sequence of processes zn defined by

zn(t) = ζn(t) − ν

∫ t

0

Le−ν(t−s)Lζn(s) ds,

7The stochastic convolution is encountered only in this chapter. The reader not interested
in that concept may regard the right-hand side of (2.102) as the definition of the stochastic
convolution (the proof of Proposition 2.4.2 uses only representation (2.102)). Alternatively,
the convolution z(t) can be defined by duality:

〈ξ, z(t)〉 =

∫ t

0
〈e−ν(t−s)Lξ, dζ(s)〉 =

∞∑

j=1

bj

∫ t

0
ξj(s)dβj(s), ξ ∈ H,

where ξj(s) is the jth component of the vector e−ν(t−s)Lξ.



2.4. NAVIER–STOKES EQUATIONS WITH WHITE NOISE 69

where ζn(t) =
∑n

j=1 bjβj(t)ej . Since the subspace Hn = span{e1, . . . , en} is

invariant under L and ‖Le−cL‖L(H,V ∗) ≤ c−1, we see that zn is an Hn-valued
process with continuous trajectories such that

sup
0≤t≤T

E ‖zn(t) − z(t)‖2V ∗ → 0 as n→ ∞, (2.104)

where T > 0 is an arbitrary constant. Moreover, it is easy to see that

zn(t) + ν

∫ t

0

Lzn(s) ds = ζn(t), t ≥ 0. (2.105)

We claim that there is a subsequence znk
converging almost surely to a limit z̄

in the space XT = C(0, T ;H) ∩L2(0, T ;V ). Indeed, for any integers m < n the
Hn-valued process zmn = zn − zm satisfies the stochastic differential equation

żmn + νLzmn =

n∑

j=m+1

bj β̇j(t)ej(x).

Applying Itô’s formula to |zmn(t)|22, we derive

|zmn(t)|22 =

∫ t

0

(
−2ν |∇zmn(s)|22+Fmn

)
ds+2

n∑

j=m+1

bj

∫ t

0

〈zmn, ej〉dβj , (2.106)

where Fmn =
∑n

j=m+1 b
2
j . Taking the mean value in (2.106), we see that

sup
0≤t≤T

E |zmn(t)|22 + 2ν E

∫ T

0

‖zmn(s)‖21dt ≤ C4TFmn. (2.107)

Furthermore, application of Doob’s moment inequality (7.56) to the stochastic
integral in (2.106) results in (cf. derivation of (2.73))

E sup
0≤t≤T

|zmn(t)|22 ≤ FmnT + C6 E

∫ T

0

n∑

j=1

b2j (zmn(t), ej)
2dt. (2.108)

Now note that Fmn → 0 as m,n→ ∞. Combining this with (2.107) and (2.108),
we conclude that

E sup
0≤t≤T

|zmn(t)|22 + E

∫ T

0

‖zmn(s)‖21dt→ 0 as m,n→ ∞. (2.109)

Thus, the sequence {zn} converges to a limit z̄ in the space L2(Ω,XT ). It follows
that a subsequence {znk

} converges almost surely to z̄ in XT . Since

znk
(t) + ν

∫ t

0

Lznk
(s) ds = ζnk(t), 0 ≤ t ≤ T,

where the equality holds in H−1 for almost all ω ∈ Ω, then passing to the limit
as k → ∞, we arrive at relation (2.103) with z = z̄. Thus, the function z̄ is
a solution of (2.100) vanishing at t = 0. The fact that z̄ can be written in
the form (2.101) can easily be established by passing to the limit in a similar
relation for znk

.
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Remark 2.4.3. Denote

Hζ = span{ej : bj 6= 0} ⊂ H, (2.110)

and denote by mζ the law of ζ. This is a measure on C(R+;H) whose support
equals C(R+;Hζ). We write Fζ for the mζ-completion of the Borel σ-algebra on
C(R+;H). The process zn(t) constructed in the proof has the form zn = Zn(ζ),
where Zn is a continuous operator from C(R+;H) to X , and our proof shows
that mζ-almost surely the sequence {Zn} converges to Z. In particular, it
follows that

Z :
(
C(R+;H),Fζ

)
→ (X ,B(X ))

is a measurable mapping. It is straightforward to see that, for any T > 0, the
restriction of Z(ζ) to [0, T ] depends only on ζ[0,T ]. Finally, if

B1 =

∞∑

j=1

αjb
2
j <∞,

where {αj} are the eigenvalues of the Stokes operator, then ζ ∈ C(R+;V ) almost
surely. The restriction of Z to C(R+;V ) defines a continuous linear mapping
from C(R+;V ) to X .

Exercise 2.4.4. Without assuming that {ej} is an eigenbasis for L, prove that
the stochastic convolution (2.101) defines a random process that has continuous
trajectories and satisfies relation (2.103).

We now show how to reduce the stochastic Navier–Stokes system (2.98) to an
equation with random coefficients. As before, we assume that the deterministic
and random forces h and η satisfy the hypotheses formulated in the beginning of
this subsection. From now on, we change slightly the definition of the space H
and denote

H = {u ∈ L2(0, T ;V ) : u̇ ∈ L2(0, T ;V ∗)};

cf. Section 2.1.3. We seek a solution in the form u = z + v, where z(t) is
the process constructed in Proposition 2.4.2. The function v must satisfy the
equations

v̇ + νLv +B(v + z) = h, (2.111)

v(0) = u0. (2.112)

This is a Navier–Stokes type system with random coefficients entering through
the stochastic process z.

Proposition 2.4.5. Let ν and T be some positive constants and let h ∈ H be
a given function. Then for any u0 ∈ H and z ∈ XT problem (2.111), (2.112)
has a unique solution v ∈ H. Moreover, the operator R : H × XT → H taking
a pair (u0, z) to the solution v ∈ H is locally Lipschitz continuous. That is, for
any R > 0 there is a constant CR > 0 such that

‖R(u01, z1) −R(u02, z2)‖H ≤ CR

(
|u01 − u02|2 + ‖z1 − z2‖XT

)
, (2.113)
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where u0i ∈ H and zi ∈ XT are arbitrary functions whose norms do not ex-
ceed R.

In the case z ≡ 0, this result is a straightforward consequence of Theo-
rem 2.1.13 and Proposition 2.1.25. The case of a non-zero function z can be
handled with similar arguments, and therefore we omit the proof; cf. Exer-
cise 2.1.27. We are now ready to establish the main theorem on existence and
uniqueness of a solution for the stochastic Navier–Stokes equation (2.98).

Theorem 2.4.6. For any ν > 0 and any G0-measurable random variable u0(x)
the Navier–Stokes system (2.98) has a solution u(t), t ≥ 0, satisfying the initial
condition

u(0) = u0 almost surely. (2.114)

Moreover, if ũ(t) is another solution of (2.98), (2.114), then u(t) ≡ ũ(t) almost
surely. Furthermore, the solution u(t) possesses the following properties.

(i) Almost all trajectories of u(t) are continuous with range in H and locally
square integrable with range in V .

(ii) The process u(t) can be written in the form

u(t) = u0 +

∫ t

0

f(s) ds+ ζ(t), t ≥ 0, (2.115)

where f(t) is a V ∗-valued Gt-progressively measurable process such that

P

{∫ T

0

‖f(t)‖2V ∗dt <∞ for any T > 0} = 1. (2.116)

Let CT = C(0, T ;H) and mζ,T = D
(
ζ|[0,T ]

)
. Then suppmζ,T = C(0, T ;Hζ);

see (2.110). Let Fζ,T be the mζ,T -completion of B(CT ). Remark 2.4.3 and
Proposition 2.4.5 imply the following result.

Proposition 2.4.7. There exists a measurable mapping

U :
(
H × CT ,B(H) ⊗Fζ,T

)
→

(
XT ,B(XT )

)
,

which is locally Lipschitz continuous in u ∈ H for mζ,T -almost every ω ∈ CT ,
such that

uω = U(u0, ζ
ω) for mζ,T -almost every ω and all u0 ∈ H. (2.117)

Moreover, the restriction of U to H ×C(0, T ;V ) is locally Lipschitz continuous
in both variables.

In particular, if we denote by Ut the restriction of U at time t ∈ [0, T ], then
for any (random) initial function uω0 which is independent of ζω the law of uω(t)
can be written as the image of the product measure D(u0) ⊗ mζ,t under the
mapping Ut:

D(uω(t)) = Ut∗
(
λ⊗mζ,t

)
, λ = D(u0). (2.118)
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Proof of Theorem 2.4.6. We first prove the uniqueness. If u and ũ are two
solutions, then for almost every ω ∈ Ω the difference w = u − ũ belongs to X ,
vanishes at t = 0, and satisfies the equation

ẇ + νLw +B(w, u) +B(ũ, w) = 0.

This equation implies that ẇ ∈ L2(0, T ;V ∗) for any T > 0, and as in the case of
deterministic equation (see the proof of Theorem 2.1.13), it follows that w ≡ 0
almost surely.

To prove the existence, we denote by z(t) the solution of Eq. (2.100) van-
ishing at zero; see Proposition 2.4.2. Let Ω0 ⊂ Ω be a set of full measure that
consists of those ω ∈ Ω for which z ∈ X . We define v ∈ X as the solution of
problem (2.111), (2.112) for ω ∈ Ω0 and set v = 0 on the complement of Ω0.
Then the random process u = v + z is a solution of problem (2.98), (2.114).

We now prove assertions (i) and (ii). The continuity of trajectories of u in H
follows from a similar property for z and v. Relation (2.99) implies that u(t)
can be written in the form (2.115) with f(t) = h− νLu(t)−B(u(t)). Finally, it
follows from Propositions 2.4.2 and 2.4.5 that (2.116) holds.

Theorem 2.4.6 established above not only gives the existence and unique-
ness of a solution for the stochastic Navier–Stokes equation (2.98), but also
ensures that the solution meets Condition 7.7.4 from Section 7.7. Therefore
the infinite-dimensional Itô formula proved in the Appendix applies to the con-
structed solution. This provides us with a convenient tool for deriving a priori
estimates without resorting to finite-dimensional approximations of the Navier–
Stokes system.

In conclusion, let us note that the family of solutions corresponding to all
possible initial data form a Markov family; see Section 1.3.1. This fact is true
for “any” PDE perturbed by the time derivative of a stochastic process with
independent increments, provided that the corresponding Cauchy problem is
well posed. We refer the reader to Chapter 7 of [Øks03] for the proof of the
Markov property in the case of SDE’s (see also Section V.5 of [Kry02]) and
to Section 9.2 of [DZ92] where this property is proved for various classes of
SPDE’s. In the context of the Navier–Stokes equations perturbed by a spatially
regular white noise, the Markov property can be established with the help of a
similar argument, using relation (2.118) for the law of a solution. We also note
that, as will be shown in Section 2.4.4, the family of solutions for (2.98) forms a
Markov RDS, and as was explained in Section 1.3.3, to each Markov RDS one
can associate, in a canonical way, a Markov process. This provides a rigorous
proof of the above-mentioned claim.

For the reader’s convenience, we now briefly describe the construction of
a Markov process associated with the stochastic Navier–Stokes system. Let
Ω̃ = H × Ω, where (Ω,F ,Gt,P) is the filtered probability space defined in the
beginning of this section (see page 67), and let

F̃t = B(H) ⊗ Gt, Pv = δv ⊗ P,
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where v ∈ H. Writing ω̃ = (v, ω) for points of Ω̃, we now define the process
t 7→ ut(ω̃) ≡ uω(t; v), where uω(t; v) denotes the solution of (2.98) constructed
in Theorem 2.4.6 with a deterministic initial function u0 = v. We thus obtain a
family of Markov processes (ut,Pv), v ∈ H, associated with (2.98). All concepts
and properties that are valid in the general setting of Markov processes apply in
the case under study. In particular, a measure µ ∈ P(H) is said to be stationary
for Eq. (2.98) if P∗

tµ = µ for all t ≥ 0, where P∗
t : P(H) → P(H) denotes the

Markov semigroup for the family (ut,Pv), and a solution u(t) of Eq. (2.98)
is called stationary if its law D(u(t)) coincides with a stationary measure for
all t ≥ 0. Let us also note that P∗

tλ coincides with the right-hand side of (2.118).

2.4.2 Additional results: energy balance, higher Sobolev

norms, and time averages

Our first result concerns the energy balance for solutions of the Navier–Stokes
system (2.98). It is an analogue of relation (2.39) in the stochastic case.

Proposition 2.4.8. Under the hypotheses of Theorem 2.4.6, assume that the
initial function u0 has a finite second moment, E |u0|22 <∞. Then for any ν > 0
the following relation holds for a solution u(t) of problem (2.98), (2.114):

E |u(t)|22 + 2νE

∫ t

0

|∇u(s)|22ds = E |u0|22 +Bt+ 2E

∫ t

0

〈u, h〉ds, t ≥ 0. (2.119)

Moreover,

E |u(t)|22 ≤ e−να1tE |u0|22 + (να1)−1B + (να1)−2|h|22, t ≥ 0, (2.120)

where α1 > 0 stands for the first eigenvalue 8 of the Stokes operator L.

Proof. We wish to apply Theorem 7.7.5 to the functional F (u) = |u|22. Since

∂uF (u; v) = 2〈u, v〉, ∂2uF (u; v) = 2|v|22,

relation (7.24) takes the form

|u(t∧ τn)|22 = |u0|22 +2

∫ t∧τn

0

(
〈u, h−νLu〉+B

)
ds+2

∞∑

j=1

bj

∫ t∧τn

0

〈u, ej〉dβj(s),

(2.121)
where we set

τn = inf{t ≥ 0 : |u(t)|2 > n}.
Taking the mean value in (2.121) and using Doob’s optional sampling theorem,
we obtain

E |u(t∧τn)|22 +2νE

∫ t∧τn

0

|∇u(s)|22ds = E |u0|22 +BE (t∧τn)+2E

∫ t∧τn

0

〈u, h〉ds.
(2.122)

8Recall that, in the case of periodic boundary conditions, we consider the problem in the
spaces of functions with zero mean value, and therefore the first eigenvalue of L is positive.
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Since the trajectories of u(t) are continuous H-valued functions of time, we have
τn → ∞ as n → ∞. Passing to the limit in (2.122) as n → ∞ and using the
monotone convergence theorem, we arrive at (2.119).

We now note that

|∇u|22 ≥ α1|u|22, 2|〈u, h〉| ≤ να1|u|22 + (να1)−1|h|22.

Substituting these estimates into (2.119) and using Gronwall’s inequality, we
arrive at (2.120).

The technique used in the previous proposition applies to higher moments
of the L2-norm of solutions and gives some a priori estimates for E |u(t)|2m2 in
terms of E |u0|2m2 , where m ≥ 2 is an arbitrary integer. We shall not give either
a proof or a formulation of the corresponding results, referring the reader to
the book [VF88]. Instead we now establish an estimate for the second expo-
nential moment that will imply the above-mentioned results under a stronger
assumption on the initial function.

Proposition 2.4.9. Under the hypotheses of Theorem 2.4.6, there is a constant
c > 0 not depending on ν, h, and {bj} such that if κ > 0 satisfies the condition

κ sup
j≥1

b2j ≤ c, (2.123)

then the following assertion holds: for any G0-measurable H-valued random
variable u0(x) such that

E exp
(
κν|u0|22

)
<∞ (2.124)

the corresponding solution of (2.98), (2.114) satisfies the inequality

E exp
(
κν|u(t)|22

)
≤ e−κν2tE exp

(
κν|u0|22

)
+K(ν,κ,B, h), (2.125)

where we set

K(ν,κ,B, h) = ν−1R exp(κR/α1), R = Cν−1|h|22 + B + ν, (2.126)

and C > 0 is an absolute constant.

Proof. We wish to apply Theorem 7.7.5 to a functional F : H → R defined as
F (u) = exp(κν|u|22). It is straightforward to verify that

∂uF (u; v) = 2κνF (u)〈u, v〉,
∂2uF (u; v) = 2κνF (u)

(
|v|22 + 2κν〈u, v〉2

)
.

It follows that relation (7.24) can be rewritten as

F (u(t ∧ τn)) = F (u0) +

∫ t∧τn

0

A(s) ds+M(t ∧ τn), (2.127)
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where M(t) is a stochastic integral (cf. (2.121)), and

A(t) = 2κνF (u(t))
(
−ν〈u(t), Lu(t)〉 + 〈u(t), h〉 +

1

2
B + κν

∞∑

j=1

b2j 〈u(t), ej〉2
)
.

Taking the mean value in (2.127) and using Doob’s optional sampling theorem,
we derive

EF (u(t ∧ τn)) = EF (u0) + E

∫ t∧τn

0

A(s) ds. (2.128)

Now note that if (2.123) holds with c ≤ (8α1)−1, then

A(t) ≤ κνF (u(t))
(
−ν‖u(t)‖2V + C1ν

−1|h|22 + B
)

≤ −κν2F (u(t)) + κν2K(ν,κ,B, h),

where ‖u‖2V = 〈u, Lu〉. Substituting this inequality into (2.128) and using Fa-
tou’s lemma to pass to the limit as n→ ∞, we obtain

E exp(κν|u(t)|22) + κν2
∫ t

0

E exp(κν|u(s)|22) ds ≤ κν2K(ν,κ,B, h).

Application of Gronwall’s inequality completes the proof of the proposition.

The next result gives an estimate for the rate of growth of solutions as
t→ ∞. Let us set

Eu(t) = |u(t)|22 + ν

∫ t

0

|∇u(s)|22ds. (2.129)

Proposition 2.4.10. Assume that the hypotheses of Theorem 2.4.6 are fulfilled,
and u0 is an H-valued random variable with a finite second moment. Then for
any ρ > 0 the solution u(t) of problem (2.98), (2.114) satisfies the inequality

P

{
sup
t≥0

(
Eu(t) − (B + 2(α1ν)−1|h|22) t

)
≥ |u0|22 + ρ

}
≤ e−γνρ, (2.130)

where we set γ = 1
4α1

(
supj b

2
j

)−1
.

Proof. Let us recall that relation (2.121) was established in the proof of Propo-
sition 2.4.8. In view of (2.119), we have

E

∞∑

j=1

b2j

∫ t

0

〈u(s), ej〉2ds ≤
(

sup
j≥1

b2j

)∫ t

0

|u(s)|22ds <∞ for any t ≥ 0.

So the stochastic integral

Mt = 2

∞∑

j=1

bj

∫ t

0

〈u(s), ej〉dβj(s)
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defines a martingale (see Section 7.11), and relation (2.121) implies that, with
probability 1, we have

Eu(t) = |u0|22 + Bt+ ν

∫ t

0

|∇u(s)|22ds+ 2

∫ t

0

〈u(s), h〉ds+Mt, t ≥ 0. (2.131)

To estimate the right-hand side of this relation, we apply the classical method
of exponential supermartingales; e.g., see Problem 5 in Section 2.9 of [McK69]
for the one-dimensional case. Namely, noting that the quadratic variation of Mt

is equal to

〈M〉t = 4

∞∑

j=1

b2j

∫ t

0

〈u(s), ej〉2ds

(see Section 7.11 and [Kry02]), we rewrite (2.131) in the form

Eu(t) −Bt = |u0|22 +
(
Mt −

1

2
γν〈M〉t

)
+Kt, (2.132)

where we set

Kt = 2

∫ t

0

〈u(s), h〉ds+
1

2
γν〈M〉t − ν

∫ t

0

|∇u(s)|22ds.

Since
∣∣∣∣
∫ t

0

〈u(s), h〉ds
∣∣∣∣ ≤

ν

4

∫ t

0

|∇u(s)|22ds+ (α1ν)−1|h|22t,

〈M〉t ≤ 4α−1
1 sup

j≥1
b2j

∫ t

0

|∇u(s)|22ds =
1

γ

∫ t

0

|∇u(s)|22ds,

we see that
Kt ≤ 2(α1ν)−1|h|22t.

Substituting this inequality into (2.132), we obtain

Eu(t) −
(
B + 2(α1ν)−1|h|22

)
t ≤ |u0|22 +

(
Mt −

1

2
γν〈M〉t

)
. (2.133)

Consider the exponential function exp(γνMt − 1
2 (γν)2〈M〉t). Applying the ex-

ponential supermartingale result given in Section 7.11, we see that

P

{
sup
t≥0

(
Mt − 1

2γν〈M〉t
)
≥ ρ

}
= P

{
sup
t≥0

exp
(
γνMt − 1

2 (γν)2〈M〉t
)
≥ eγνρ

}

≤ e−γνρ.

Combining this with (2.133), we arrive at the required inequality (2.130).

Corollary 2.4.11. Under the hypotheses of Proposition 2.4.10, assume that the
random variable u0 satisfies the condition

E |u0|2m2 <∞, (2.134)
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where m ≥ 1 is an integer. Then there is a constant Cm > 0 depending only
on m such that for any T ≥ 1 we have

E sup
0≤t≤T

Eu(t)m ≤ Cm

(
E |u0|2m2 +TmBm+ν−m(γ−m+α−m

1 Tm|h|2m2 )
)
, (2.135)

where γ > 0 is the constant defined in Proposition 2.4.10.

Proof. Inequality (2.130) implies that

P

{
sup

0≤t≤T
Eu(t) ≥ |u0|22 + C T + ρ

}
≤ e−γνρ, (2.136)

where we set C = B+ 2(α1ν)−1|h|22. Now note that if ξ and η are non-negative
random variables, then

E ξm ≤ 2m−1
(
E(ξ − η)mI{ξ>η} + E ηm

)

= 2m−1

∫ ∞

0

P
{
ξ − η > λ1/m

}
dλ+ 2m−1E ηm.

Applying this inequality to ξ = supt Eu(t) and η = |u0|22+C T and using (2.136),
we derive

E sup
0≤t≤T

Eu(t)m ≤ 2m−1

∫ ∞

0

exp
(
−γνλ1/m

)
dλ+ 2m−1E (|u0|22 + C T )m.

It remains to note that the right-hand side can be estimated by that of (2.135)
with a constant Cm depending only on m.

Let us emphasise that Theorem 2.4.6, Propositions 2.4.8 – 2.4.10, and Corol-
lary 2.4.11 are valid both for periodic and Dirichlet boundary conditions, and
the same proof works in these two cases. In the next result concerning higher
Sobolev norms, it is essential that the problem is considered under periodic
boundary conditions. To simplify the presentation, we shall assume that the
sequence {ej} entering the right-hand side of (2.98) coincides with the family of
normalised eigenfunctions of the Stokes operator L and denote by α1 ≤ α2 ≤ · · ·
the corresponding eigenvalues. For any integer k ≥ 0, we set

Eu(k, t) = tk‖u(t)‖2k + ν

∫ t

0

sk‖u(s)‖2k+1ds,

so that Eu(0, t) coincides with the function Eu(t) defined by (2.129).

Proposition 2.4.12. Let k ≥ 1 be an integer, let h ∈ V k, and let the sequence
{bj} satisfy the condition

Bk :=

∞∑

j=1

αk
j b

2
j <∞. (2.137)
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Let u0 be a G0-measurable H-valued random variable satisfying (2.134) for any
integer m ≥ 1. Then for any m ≥ 1 and T ≥ 1 there is a C(k,m, T ) > 0 such
that

E sup
0≤t≤T

Eu(k, t)m ≤ C(k,m, T )
(
1 + ν−m(7k+2)

(
E |u0|4m(k+1)

2 + 1
))
. (2.138)

In what follows, this result is only used in Exercise 2.5.8 (for proving similar
bounds for stationary solutions) and in Section 3.5.3 (devoted to convergence of
mean values of functionals on higher Sobolev space). Its proof is based on the
standard idea of differentiating higher Sobolev norms along solutions. Accurate
calculations, which involve Itô’s formula for infinite-dimensional diffusions and
some interpolation inequalities, are rather technical, and we present them in
Section 2.6. The reader not interested in these details may safely skip them, to-
gether with the rest of this subsection, and jump directly to the final part of this
section, which is devoted to the construction of a Markov RDS corresponding
to Navier–Stokes equations with white noise; see page 81.

Corollary 2.4.13. Under the conditions of Proposition 2.4.12, assume that
inequality (2.124) holds for the initial function u0 with a constant κ > 0 satis-
fying (2.123). Then for any integer m ≥ 1 and any constants T ≥ 1 and t0 ≥ 1
we have

E sup
t0≤t≤t0+T

‖u(t)‖2mk + νmE

(∫ t0+T

t0

‖u(s)‖2k+1ds

)m

≤ C
(
1 + ν−m(9k+4)

(
e−κνt0E exp(κν|u0|22) +K

)
+ ν−m(7k+2)

)
, (2.139)

where K = K(ν,κ,B, h) is defined by (2.126), and C > 0 is a constant depend-
ing on k, m, T , and κ.

Proof. Let us denote by Pkm(t0, T ) the left-hand side of (2.139). Applying
Proposition 2.4.12 in which the interval [0, T ] is replaced by [t0 − 1, t0 + T ], we
conclude that

Pkm(t0, T ) ≤ C1

(
1 + ν−m(7k+2)

(
E |u(t0 − 1)|4m(k+1)

2 + 1
))
. (2.140)

Now note that

ν−m(7k+2)E |u(t0 − 1)|4m(k+1)
2 ≤ C2ν

−m(9k+4)E exp
(
κν|u(t0 − 1)|20

)
,

where C2 depends only on k, m, and κ. Using Proposition 2.4.9 to bound the
quantity E exp

(
κν|u(t0−1)|22

)
and substituting the resulting estimate into (2.140),

we arrive at (2.139).

We now state an exercise summarising some further properties of solutions
for the stochastic Navier–Stokes system on the torus. They can be established
with the help of the methods developed above.
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Exercise 2.4.14. Let us consider the stochastic Navier–Stokes system (2.11) in
which h ∈ H is a deterministic function and {ej} is the family of normalised
eigenfunctions of the Stokes operator L.

(i) Assume that B1 <∞ (see (2.137)) and the initial function u0 is such that

E exp
(
κν‖u0‖21

)
<∞,

where κ > 0 satisfies inequality (2.123) with a sufficiently small c > 0.
Show that

E exp
(
κν‖u(t)‖21

)
≤ e−κν2tE exp

(
κν‖u0‖21

)
+ ν−1R1e

κR1/α1 , (2.141)

where R1 = Cν−1|h|22 + B1 + ν, and C > 0 is a constant not depending
on other parameters. Hint: Repeat the argument used in the proof of
Proposition 2.4.9.

(ii) In addition to the above conditions, assume that

∞∑

j=1

eρ
√
αj
(
〈h, ej〉2 + b2j

)
<∞, (2.142)

where ρ > 0 is a constant. Prove that there are positive constants p and q
such that, for any any integer m ≥ 1 and any t0 ≥ 1 and T ≥ 1, we have

E sup
t0≤t≤t0+T

( ∞∑

j=1

exp
(√
αjrνν

p
)
〈u(t), ej〉2

)m

≤ Cmν
−q, E r−m

ν ≤ Cm,

where Cm > 0 is a constant not depending on ν, and rν is a random
variable not depending on p, q, and m. Hint: A proof can be found
in [Shi02].

2.4.3 Universality of white noise forces

Theorem 2.2.2 and Exercise 2.2.4 show that a spatially regular white noise force
is universal in the sense that an appropriately normalised high-frequency random
kick force converges to it in distribution. In this section, we shall prove that
this property is inherited by solutions of the corresponding equations. Namely,
together with Eq. (2.98), let us consider the Navier–Stokes system perturbed
by the high-frequency kick force (2.69):

u̇+ νLu+B(u) = h+ ηε, ηε(t, x) =
√
ε

∞∑

k=1

ηk(x)δ(t− kε), (2.143)

where {ηk} is a sequence of i.i.d. random variables of the form (2.70) and 0 < ε ≤
1. As was explained in Section 2.3, Eq. (2.143) is equivalent to the discrete-time
system

uk = Sε(uk−1) +
√
ε ηk, k ≥ 1, (2.144)
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where St denotes the time shift along trajectories of Eq. (2.143) with ηε ≡ 0.
With a slight abuse 9 of notation, we denote by P ε

t (u, ·), t ∈ εZ+, the transition
function associated with (2.144) and by Pt(ε) and P∗

t (ε) the corresponding
Markov operators. We extend the transition function P ε

t (u, ·) (as well as the
corresponding Markov semigroups) to the half-line R+ by defining it as the law
of the solution for (2.143) issued from u ∈ H.

Theorem 2.4.15. In addition to the above hypotheses, assume that B1 < ∞.
Then for any T > 0 and R > 0 we have

sup
0≤t≤T

sup
|v|2≤R

∥∥P ε
t (v, ·) − Pt(v, ·)

∥∥∗
L
→ 0 as ε→ 0+. (2.145)

Proof. We need to prove that if u(t; v) and uε(t; v) are solutions issued from
v ∈ H for the Navier–Stokes system perturbed by a high-frequency kick force
or a spatially regular white noise, then for any sequence {εn > 0} going to zero
we have

sup
t,v,f

∣∣E
(
f(uεn(t; v)) − f(u(t; v))

)∣∣ → 0 as n→ ∞, (2.146)

where the supremum is taken over t ∈ [0, T ], v ∈ BH(R), and f ∈ Lb(H) with
‖f‖L ≤ 1. This is done in two steps.

Step 1. We first note that it suffices to prove convergence (2.146) in which uε
is replaced by the solution ũε of Eq. (4.110) with η = ∂tζ̃ε, where ζ̃ε is the
continuous process defined in Section 2.2. Indeed, it follows from the condition
B1 <∞ that, with probability 1, the random variables ηk belong to a bounded
ball in V . Therefore the definition of ζ̃ε implies that (cf. (2.74))

∥∥ζ̃ε − ζε
∥∥
L∞(0,T ;V )

≤ C1

√
ε.

Recalling Exercise 2.1.27, we see that, on the set Γr = {‖ζε‖L∞(0,T ;V ) ≤ r}, we
have the estimate

sup
0≤t≤T

‖uε(t; v) − u(t; v)‖1 ≤ C2(r)
√
ε.

On the other hand, applying the Doob–Kolmogorov inequality (7.55) to ζε, we
derive

P(Γc
r) = P

{
sup

0≤t≤T
‖ζε(t)‖1 > r

}
≤ r−2E ‖ζε(T )‖21 ≤ C3(T ) r−2.

Combining these estimates, for any t ∈ [0, T ], v ∈ BH(R), and f ∈ Lb(H) with
‖f‖L ≤ 1, we obtain

∣∣E
(
f(uεn(t, v)) − f(u(t, v))

)∣∣ ≤ E
(
IΓr

‖uε(t; v) − u(t; v)‖1
)

+ 2P(Γc
r)

≤ C2(r)
√
ε+ 2C3(T ) r−2.

9In Section 2.3, the discrete time varies in Z+ independently of the length T of the interval
between two consecutive kicks. Since we wish to compare solutions for systems perturbed by
white noise and random kicks, we have to take here the same scale of time.
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The right-hand side of this inequality can be made arbitrarily small by choosing
R≫ 1 and ε≪ 1.

Step 2. We now prove (2.146) with uεn replaced by ũεn . To this end, note
that the expression in (2.146) depends only on the laws of uεn and u. In other
words, if we replace ζ̃εn and ζ by some other random variables ξn and ξ valued
in C(0, T ;V ) such that

D(ξn) = D(ζ̃εn), D(ξ) = D(ζ), (2.147)

then the corresponding solutions wn(t; v) and w(t; v) of Eq. (4.110) will satisfy
the relation

E
(
f(ũεn(t; v)) − f(u(t; v))

)
= E

(
f(wn(t; v)) − f(w(t; v))

)
, t ∈ [0, T ].

In view of Exercise 2.2.4, we have D(ζ̃εn) → D(ζ) in the weak topology of the
space P(C(0, T ;V )). Therefore, by Skorohod’s embedding theorem (see Theo-
rem 11.7.2 in [Dud02]), there are random variables ξn and ξ valued in C(0, T ;V )
such that (2.147) holds and, for any δ > 0, we have

P
{
‖ξn − ξ‖C(0,T ;V ) < δ

}
→ 0 as n→ ∞.

On the other hand, the Doob–Kolmogorov inequality (7.55) implies that

P{‖ξ‖C(0,T ;V ) > r} → 0 as r → ∞.

Combining these two relations with the argument used in Step 1, we easily prove
the required convergence. The proof of the theorem is complete.

The following exercise shows that convergence of solutions remains true in
the case when the initial function is random, and moreover, it is uniform with
respect to measures almost entirely concentrated on bounded parts of the phase
space.

Exercise 2.4.16. Under the hypotheses of Theorem 2.4.15, prove that, for any
T > 0 and any subset Λ ⊂ P(H) satisfying the condition

sup
λ∈Λ

∫

H

|u|22λ(du) <∞,

we have
sup

0≤t≤T
sup
λ∈Λ

∥∥P∗
t (ε)λ−P∗

tλ
∥∥∗
L
→ 0 as ε→ 0+. (2.148)

Hint: Use the idea applied in Step 3 of the proof of Theorem 4.3.1.

2.4.4 RDS associated with Navier–Stokes equations

We conclude this section with a construction of a Markov RDS associated with
the Navier–Stokes system perturbed by a spatially regular white noise. For any
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b > 0, denote by (Ω0,A0,Pb) the probability space associated with the two-
sided centred Brownian motion with variance b2. Namely, Ω0 is the space of
continuous functions ωt : R → R vanishing at t = 0 with the metric of uniform
convergence on bounded intervals (see (1.9)), A0 is the Borel σ-algebra, and Pb

is a Gaussian measure on (Ω,A0) such that, for any t0 < t1 < · · · < tn and any
Borel subsets Γ1, . . . ,Γn ⊂ R, we have

Pb

({
ω ∈ Ω0 : ωt1 − ωt0 ∈ Γ1, . . . , ωtn − ωtn−1 ∈ Γn

})
=

n∏

k=1

Nb(tk−tk−1)(Γk),

where Nσ stands for the normal distribution with zero mean value and vari-
ance σ2. Given a random process ζ of the form (2.98), we denote

Λ = {j ≥ 1 : bj 6= 0}.

Define (Ω,F ,P) as the completion of the direct product of the probability spaces
(Ω0,A0,Pbj ) with j ∈ Λ. Elements of Ω are continuous functions ω : R → RΛ,
where RΛ is endowed with the Tikhonov topology; see formula (1.9) and the
discussion after it.

Exercise 2.4.17. Let ω(j) be the jth component of ω ∈ Ω. Show that the series

ζ̃(t, x) =
∑

j∈Λ

ω
(j)
t ej(x), t ∈ R, (2.149)

defines an H-valued random process with almost surely continuous trajectories.
Show also that the law of the restriction of ζ̃ to the positive half-line coincides
with that of ζ.

Let us define a family of shifts on the probability space (Ω,F ,P) by the
relation

(θtω)s = ωt+s − ωt, t, s ∈ R.

Exercise 2.4.18. Show that θ = {θt : Ω → Ω, t ∈ R} is a group of measure-
preserving transformations on (Ω,F ,P).

Everything is now ready for the construction of an RDS associated with the
stochastic Navier–Stokes system (2.98). We first explain the construction for
the simpler case of a more regular force. Namely, assume that B1 <∞. In this
case, the trajectories of ζ̃ belong to C(R;V ) on a set Ω∗ ∈ F of full measure,
and solutions of (2.98) with ζ = ζ̃ can be written as u = ζ̃ + v, where v is a
solution of the problem

v̇ + νL(v + ζ̃) +B(v + ζ̃) = h, v(0) = u0.

It is clear that Ω∗ can be chosen to be invariant with respect to the group {θt}.
Let us define ϕω

t u0 = ζ̃ω(t) + vω(t) for ω ∈ Ω∗ and ϕω
t u0 = u0 for ω /∈ Ω∗. The

co-cycle property is an obvious consequence of the uniqueness of solutions for
the above problem, while the Markov property follows from the fact that ϕθsω

t u0
depends only on the increments {ωs+r − ωs, r ∈ [0, t]}.
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In the general case, the construction of an RDS associated with (2.98) is
similar. However, we need to use the Ornstein–Uhlenbeck process because the
regularity of ζ̃ is not sufficient. Let us consider the stochastic Stokes equa-
tion (2.100) in which η = ∂tζ̃. Its solution issued from zero can be written as

z̃(t) =

∫ t

0

e−ν(t−s)Ldζ̃(s), t ≥ 0. (2.150)

Let Ω̃ be the set of those ω ∈ Ω for which the corresponding trajectory z̃ω

belongs to the space X = C(R+;H) ∩ L2
loc(R+;V ). Then Ω̃ ∈ F , and by

Proposition 2.4.2, we have P(Ω̃) = 1. It follows that Ω∗ =
⋂

n∈Z
θn(Ω̃) is a set

of full measure. We now denote

ϕω
t u0 =

{
z̃ω(t) + ṽω(t), for ω ∈ Ω∗,

u0, for ω /∈ Ω∗,
(2.151)

where ṽω stands for the solution of (2.111), (2.112) with z = z̃ω. The proof
of the following result on the existence of an RDS associated with the Navier–
Stokes system is given in Section 2.6.

Theorem 2.4.19. The family Φ = {ϕω
t , t ≥ 0, ω ∈ Ω} is a continuous Markov

RDS in H over θ. Moreover, for any u0 ∈ H the law of the random vari-
able {ϕtu0, t ≥ 0} in the space C(R+;H) coincides with that of the solution
for (2.98), (2.114).

2.5 Existence of a stationary distribution

There is a general and simple method for constructing stationary distributions
for Markov processes that satisfy a compactness condition. It was introduced
by Bogoliouboff and Kryloff in [KB37] and enables one to prove the existence
of a stationary measure for a large class of nonlinear stochastic PDE’s. In this
section, we first use the method of Bogoliouboff–Kryloff to establish an abstract
result and then apply it to the Markov process associated with the 2D Navier–
Stokes system with random perturbation.

2.5.1 Bogolyubov–Krylov argument

Let (Ω,F) be a measurable space with a filtration {Ft}, let X be a Polish space,
and let (ut,Pv), v ∈ X, be a family of X-valued Markov processes on (Ω,F)
adapted to Ft. We assume that the corresponding transition function Pt(u, ·)
associated with (ut,Pv) possesses the Feller property and that the trajecto-
ries ut(ω) are continuous in time for any ω ∈ Ω. Denote by Pt and P∗

t the
Markov semigroups associated with Pt(u, ·). Let us fix λ ∈ P(X) and define a
family of measures λ̄t, t ∈ T+, by the relation

λ̄t(Γ) =
1

t

∫ t

0

(P∗
sλ)(Γ) ds =

1

t

∫ t

0

∫

X

Ps(u,Γ)λ(du) ds, Γ ∈ B(X), (2.152)
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where the integral in s ∈ [0, t] should be replaced by the sum over s = 0, . . . , t−1
if the time parameter is discrete. The Feller property implies that Ps(u,Γ) is a
measurable function of (s, u) ∈ T+×X, and therefore the integrals in (2.152) are
well defined. Recall that a family of measures {µα, α ∈ A} ⊂ P(X) is said to be
tight if for any ε > 0 there is a compact subset K ⊂ X such that µα(K) ≥ 1− ε
for any α ∈ A.

Theorem 2.5.1. Under the above condition, assume that λ ∈ P(X) is a mea-
sure for which the family {λ̄t, t ≥ 0} is tight. Then the Markov family (ut,Pv)
has at least one stationary measure.

Proof. In view of the Prokhorov compactness criterion (see Theorem 1.2.14),
there is a subsequence {tn} ⊂ T+ going to +∞ such that {λ̄tn} converges
weakly to a measure µ ∈ P(X). That is,

(f, λ̄tn) → (f, µ) as n→ ∞ for any f ∈ Cb(X).

We claim that µ is a stationary measure for (ut,Pv). Indeed, in view of this
convergence, Exercise 1.3.23, and the definition of λ̄t, for any f ∈ Cb(X) and
r ∈ T+ we have

(f,P∗
rµ) = (Prf, µ) = lim

n→∞
(Prf, λ̄tn)

= lim
n→∞

1

tn

∫ tn

0

(Prf,P
∗
sλ) ds = lim

n→∞
1

tn

∫ tn

0

(f,P∗
s+rλ) ds

= lim
n→∞

1

tn

(∫ tn

0

(f,P∗
sλ) ds+

∫ tn+r

tn

(f,P∗
sλ) ds−

∫ r

0

(f,P∗
sλ) ds

)

= (f, µ).

Since this is true for any f ∈ Cb(X), we see that P∗
rµ = µ for each r ∈ T+. So,

µ is a stationary measure.

Exercise 2.5.2. Let (ut,Pv), v ∈ H, be a family of Markov processes in X
satisfying the above conditions. Suppose that there is an initial point v ∈ X,
an increasing sequence of compact subsets Km ⊂ X and finite times tm ∈ T+
such that

sup
t≥tm

Pv{ut /∈ Km} → 0 as m→ ∞.

Show that the hypotheses of Theorem 2.5.1 are satisfied.

2.5.2 Application to Navier–Stokes equations

Let us consider the problem of existence of a stationary measure for the kick-
forced Navier–Stokes system (2.76).

Theorem 2.5.3. Let h ∈ H be a deterministic function and let {ηk} be a
sequence of i.i.d. random variables in H such that E |η1|2 <∞. Then Eq. (2.76)
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possesses at least one stationary measure. Moreover, every stationary measure
µ ∈ P(H) satisfies ∫

H

|u|2µ(du) <∞. (2.153)

Proof. Step 1. To prove the existence of a stationary measure, we shall show
that the hypotheses of Exercise 2.5.2 hold for the initial point v = 0. In view of
relation (2.79), it suffices to construct, for any given ε > 0, two compact subsets
K(1),K(2) ⊂ H such that

P{ST (uk−1) /∈ K(1)} ≤ ε, P{ηk /∈ K(2)} ≤ ε,

where {uk} is the trajectory of (2.79) with u0 = 0. Taking thenK = K(1)+K(2),
we see that P{uk /∈ K} ≤ 2ε for any k ≥ 1.

The existence of a compact set K(2) with the required property follows im-
mediately from Ulam’s theorem on regularity of probability measures on a Polish
space; see Section 1.2.1. To construct K(1), we note that (see (2.81))

E |uk|2 ≤ C for all k ≥ 0.

Hence, by Chebyshev’s inequality, for any ε > 0 there is Rε > 0 such that

P{|uk−1| > Rε} ≤ R−1
ε E |uk−1|2 ≤ ε for k ≥ 1. (2.154)

By part (ii) of Proposition 2.1.25, the operator ST is continuous from H to V .
Denoting by BH(r) the closed ball in H of radius r centred at zero, we conclude
that the set K(1) := ST (BH(Rε)) is compact in H. Inequality (2.154) implies
that the probability of the event {ST (uk−1) /∈ K(1)} does not exceed ε.

Step 2. We now prove (2.153) for any stationary measure µ ∈ P(H). Let us
fix a constant R > 0 and consider a function fR : H → R defined by

fR(u) =

{
|u|2, |u|2 ≤ R,
R, |u|2 > R.

Then, for any k ≥ 0, we have
∫

H

fR(u)µ(du) =

∫

H

∫

H

Pk(u, dv)fR(v)µ(du). (2.155)

Let us estimate the right-hand side of (2.155). If |u|2 ≤ ρ, then by inequal-
ity (2.81) with m = 1 we have

∫

H

Pk(u, dv)fR(v) ≤ E |uk|2 ≤ qkρ+ C, (2.156)

where {uk} is the trajectory of (2.79) with u0 = u, and C > 0 and q < 1 are
constants not depending on u, k, and R. Substituting (2.156) into (2.155) and
using the inequality fR ≤ R, for any R > 0 and ρ > 0 we derive

∫

H

fR(u)µ(du) ≤ Rµ
(
H \BH(ρ)

)
+ qkρ+ C.
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Passing to the limit as k → ∞ and ρ→ ∞, we see that
∫

H

fR(u)µ(du) ≤ C.

Fatou’s lemma implies now the required inequality (2.153).

Exercise 2.5.4. Show that if the law of the random variables ηk satisfies the
hypotheses of part (i) of Proposition 2.3.5 with some integer s ≥ 0, then for any
stationary measure µ ∈ P(H) of (2.76) we have

∫

H

‖u‖ms µ(du) <∞ for any m ≥ 1.

In particular, if (2.88) holds for any s > 0, then any stationary measure is con-
centrated on the space C∞(T2;R2). Similarly, show that, under the hypotheses
of part (ii) of Proposition 2.3.5, any stationary measure µ ∈ P(H) satisfies the
inequality ∫

H

exp
(
κs‖u‖ps

s

)
µ(du) <∞,

where κs and ps are some positive constants, and p0 = p1 = 2. Hint: Use the
argument of the proof of inequality (2.153).

Theorem 2.5.3 is valid for the Navier–Stokes equations in a bounded domain,
and its proof remains literally the same. Moreover, the results announced in
Exercise 2.5.4 are also true in this case, except that p1 < 2.

We now turn to the existence of a stationary measure and some estimates
for its moments in the case of the Navier–Stokes system with a spatially regular
white noise. Since the proofs are based on similar ideas, we shall mostly confine
ourselves to formulating corresponding results and outlining their proofs.

Theorem 2.5.5. Under the hypotheses of Theorem 2.4.6, the stochastic Navier–
Stokes system (2.98) with an arbitrary ν > 0 has a stationary measure. More-
over, any stationary measure µν ∈ P(H) satisfies the relations

∫

H

(
ν ‖u‖21 + exp

(
κν|u|22

))
µν(du) ≤ C

(
B + ν−1|h|22

)
, (2.157)

ν

∫

H

‖u‖21µν(du) =
B

2
+

∫

H

〈u, h〉µν(du), (2.158)

where positive constants κ and C do not depend on ν.

The left-hand side of (2.158) is called the rate of dissipation of energy ;
cf. (2.119).

Proof. We first prove the existence of a stationary measure. Let us denote
by u(t, x) the solution of (2.98) issued from u0 = 0 and by λt the law of u(t)
regarded as a random variable in H. Thus, we have λt = P∗

t δ0 for t ≥ 0,
where P∗

t : P(H) → P(H) stands for the Markov semigroup associated with
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the equation and δ0 denotes the Dirac measure concentrated at zero. By Theo-
rem 2.5.1, the existence of a stationary measure will be established if we show
that the family {λ̄t, t ≥ 0} is tight, where λ̄t is defined by relation (2.152) with
X = H. Since the embedding V ⊂ H is compact (see Property 1.1.2), it suffices
to prove that

sup
t≥0

λ̄t
(
H \BV (R)

)
→ 0 as R→ ∞, (2.159)

where BV (R) stands for the ball in V of radius R centred at zero. To this end,
let us note that relation (2.119) with u0 = 0 implies that

E

∫ t

0

|∇u(s)|22ds ≤ t (B + ν−1|h|22), t ≥ 0.

Combining this with Chebyshev’s inequality, we derive

λ̄t
(
H \BV (R)

)
=

1

t

∫ t

0

λs
(
H \BV (R)

)
ds =

1

t

∫ t

0

P
{
‖u(s)‖1 > R

}
ds

≤ 1

t
R−2 E

∫ t

0

|∇u(s)|22 ds ≤ R−2(B + ν−1|h|22),

whence follows convergence (2.159).

To prove that any stationary measure satisfies (2.157) and (2.158), we first
note that inequality (2.125) and the argument used in derivation of (2.153)
enable one to prove that

∫

H

exp
(
κν|u|22

)
µν(du) ≤ C1

(
B + ν−1|h|22

)
.

Let u0 be an H-valued random variable independent of ζ whose law coincides
with µ and let u(t) be a solution of (2.98) issued from u0. Then u(t) is a
stationary process, and it follows from (2.119) that

2νtE‖u‖21 = Bt+ 2tE〈u, h〉.

Dividing the above relation by 2t, we obtain (2.158). Combining (2.158) with
Schwarz’s and Friedrichs’ inequalities, we derive the required upper bound for
the first term on the left-hand side of (2.157). We leave the details to the reader
as an exercise.

Exercise 2.5.6. Under the hypotheses of Theorem 2.5.5, show that any station-
ary solution u(t, x) of (2.98) satisfies the inequality

E sup
t0≤t≤t0+T

(
|u(t)|22 + ν

∫ t

t0

‖u(s)‖21ds
)m

≤ Cm

(
TmBm + ν−m(γ−m + α−m

1 Tm|h|2m2 )
)
,

for any constants t0 ≥ 0, T ≥ 1, ν > 0 and any integer m ≥ 1. Here Cm is a
constant depending only on m, and γ > 0 is defined in Proposition 2.4.10. Hint:

Use inequalities (2.125), (2.135), and (2.157).
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The above theorem and exercise are true both for periodic and Dirichlet
boundary conditions. The following exercise gives some extra a priori estimates
for stationary measures for the Navier–Stokes system on the torus.

Exercise 2.5.7. In addition to the hypotheses of Theorem 2.5.5, assume that
B1 < ∞ and h ∈ V . Show that there are positive constants κ and C not
depending on ν such that any stationary measure µν ∈ P(H) for (2.98) satisfies
the relations

∫

H

exp
(
κν‖u‖21

)
µν(du) ≤ C

(
B1 + ν−1‖h‖21

)
, (2.160)

ν

∫

H

|Lu|22µν(du) =
B1

2
+

∫

H

〈∇u,∇h〉µν(du). (2.161)

Combine (2.160) with an analogue of (2.125) and (2.135) for u0 ∈ V to obtain
some bounds for E supt Eu(1, t)m, where u(t, x) is a stationary solution for (2.98).
Hint: To prove (2.160), combine (2.141) with the idea of the proof of (2.153).

The left-hand side of (2.161) is called the rate of dissipation of enstrophy ;
cf. (2.158).

In case of higher regularity of the deterministic and random forces, some
further bounds for various moments of stationary solutions in terms of the vis-
cosity can be found in [BKL00, Shi02, KS03]. In Chapter 5, we shall need the
result announced in the following exercise.

Exercise 2.5.8. Let the hypotheses of Proposition 2.4.12 be fulfilled for some
integer k ≥ 1. Show that, for any m ≥ 1 and T > 0, there is a constant
C(k,m, T ) > 0 such that any stationary solution of (2.98) satisfies the inequality

E sup
0≤t≤T

Eu(k, t)m ≤ C(k,m, T )
(
1 + ν−m(7k+2)

)
. (2.162)

In particular, if h ∈ C∞(T2;R2) and (2.137) holds for all k ≥ 1, then any
stationary measure is concentrated on the space C∞(T2;R2). Hint: Use in-
equality (2.138) and the scheme of the proof of Theorem 2.5.3.

We conclude this chapter by the following result on the uniqueness of a
stationary measure for the Navier–Stokes system with a small noise.

Exercise 2.5.9. Show that for any ν > 0 there is ε > 0 such that if |h|2 +B ≤ ε,
then the RDS Φ associated with the stochastic Navier–Stokes system (2.98)
satisfies inequality (1.75). In particular, Φ has a unique stationary measure µν .
Show also that the transition function converges to µν exponentially fast in the
dual-Lipschitz distance. Hint: Use Propositions 1.3.31 and 2.4.10, as well as the
proof of (2.54).

2.6 Appendix: some technical proofs

Proof of Proposition 2.1.25. We shall confine ourselves to the formal derivation
of (2.54) and (2.55). The calculations can be justified with the help of Galerkin
approximations.
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(i) Let us set ui(t) = St(u0i, fi), i = 1, 2. Then the difference u = u1 − u2
satisfies the equation

u̇+ Lu+B(u, u1) +B(u2, u) = f1 − f2. (2.163)

Let us take the scalar product of this equation with 2u(t) in H. Using (2.11)
and the inequalities

∣∣(B(u, u1), u)
∣∣ ≤ c1‖u‖21/2 ‖u1‖1 ≤ c2|u|2 ‖u‖1 ‖u1‖1 ≤ 1

4
‖u‖21 + c22 ‖u1‖21 |u|22,

∣∣(f1 − f2, u)
∣∣ ≤ ‖f1 − f2‖−1‖u‖1 ≤ 1

4
‖u‖21 + ‖f1 − f2‖2−1,

we derive from (2.163) the differential inequality

∂t

(
|u|22 +

∫ t

0

‖u‖21ds
)

≤ 2c22‖u1‖21
(
|u|22 +

∫ t

0

‖u‖21ds
)

+ 2‖f1 − f2‖2−1. (2.164)

Applying the Gronwall inequality, we arrive at

|u(t)|22 +

∫ t

0

‖u‖21ds ≤ exp

(
2c22

∫ t

0

‖u1‖21dr
)
|u01 − u02|22

+ 2

∫ t

0

exp

(
2c22

∫ t

s

‖u1‖21dr
)
‖f1(s) − f2(s)‖2−1ds. (2.165)

This implies, in particular, inequality (2.54).

(ii) We now take the scalar product of (2.163) with 2tLu in H:

∂t
(
t‖u‖21

)
+2t|Lu|22 = ‖u‖21−2t

(
B(u, u1), Lu

)
−2t

(
B(u2, u), Lu

)
+2t(f1−f2, Lu).

(2.166)
Let us use the inequalities

‖v‖2∞ ≤ c3|v|2 |Lv|2, ‖v‖21 ≤ |v|2 |Lv|2

to estimate the second and third terms on the right-hand side of (2.166):

∣∣(B(u, u1), Lu)
∣∣ ≤ c4‖u‖∞‖u1‖1 |Lu|2 ≤ c5|u|1/22 |Lu|3/22 |u1|1/22 |Lu1|1/22

≤ 1

8
|Lu|22 + c6|u|22|u1|22|Lu1|22, (2.167)

∣∣(B(u2, u), Lu)
∣∣ ≤ c4‖u2‖∞‖u‖1 |Lu|2 ≤ c5|u2|1/22 |Lu2|1/22 |u|1/22 |Lu|3/22

≤ 1

8
|Lu|22 + c6|u|22|u2|22|Lu2|22. (2.168)

Furthermore, by the Cauchy inequality,

|(f1 − f2, Lu)| ≤ 1

4
|Lu|22 + |f1 − f2|22. (2.169)
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Substituting (2.167) – (2.169) into (2.166) and integrating in time, we derive

t‖u‖21 +

∫ t

0

s|Lu|22ds ≤
∫ t

0

‖u‖21ds

+ c7

∫ t

0

s|u|22
(
|u1|22 |Lu1|22 + |u2|22 |Lu2|22

)
ds+ 2

∫ t

0

s |f1 − f2|22ds.

Combining this with (2.165), we see that the required inequality will be estab-
lished if we show that

∫ t

0

s|ui|22|Lui|22 ds ≤ c8 t
−2 exp

(
c8

∫ t

0

(
‖ui‖21 + |fi|22

)
ds

)
, (2.170)

where i = 1, 2 and 0 < t ≤ 1.
To prove (2.170), we first note that, by (2.43),

∫ t

0

s|Lui|22ds ≤ |u0i|22 + 2

∫ t

0

|f |22ds for 0 ≤ t ≤ 1. (2.171)

Furthermore, taking the scalar product of (2.19) with 2u and integrating in
time, we derive

|ui(t)|22 + 2

∫ t

0

‖ui‖21ds = |u0i|22 + 2

∫ t

0

〈ui, fi〉 ds.

Combining this with (2.51), we conclude that

(
1 − e−α1t

)
|u0i|2 ≤ c9

∫ t

0

(
‖ui‖21 + ‖fi‖2−1

)
ds. (2.172)

It follows from (2.51), (2.171), and (2.172) that

∫ t

0

s|ui|22|Lui|22 ds ≤ c10

(
|u0i|22 +

∫ t

0

|fi|22ds
)2

≤ c11

(
(1 − e−α1t)−1

∫ t

0

(
‖ui‖21 + ‖fi‖2−1

)
ds+

∫ t

0

|fi|22ds
)2

.

This implies the required inequality (2.170), and the proof of the proposition is
complete.

Proof of Proposition 2.4.12. The proof is by induction in k. For k = 0, a
stronger result is established in Corollary 2.4.11. We now assume that k = n ≥ 1
and that for k ≤ n − 1 inequality (2.138) is already proved. We wish to apply
Itô’s formula to the functional

Fn(t, u) = tn‖u‖2n = 〈Lnu, u〉.

To this end, we use Theorem 7.7.5 with H = V n, V = V n+1, and V ∗ = V n−1.
The fact that the hypotheses of Theorem 7.7.5 are fulfilled can be checked with
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the help of an argument similar to that used in the proof of Propositions 2.4.8
and 2.4.10 (which correspond to the case n = 0). Therefore we shall confine
ourselves to a formal derivation of estimates.

Let us set fn(t) = Fn(t, u(t)). By Itô’s formula (7.37), we have (cf. (2.131))

fn(t) =

∫ t

0

(
nsn−1‖u‖2n + 2sn〈Lnu, h− νLu−B(u)〉 + Bns

n
)
ds

+
∞∑

j=1

2bj

∫ t

0

sn〈Lnu, ej〉 dβj(s). (2.173)

We now distinguish between two cases: n = 1 and n ≥ 2. In the first case, by
Lemma 2.1.16, we have 〈Lu,B(u)〉 = 0. Combining this with (2.173) and the
relations

2s |〈Lu, h〉| ≤ ‖u‖21 + s2‖h‖21, 〈Lu, ej〉 = αj〈u, ej〉,
we derive

Eu(1, t) ≤ 2

∫ t

0

‖u‖21 ds+
1

2
B1t

2 +
1

3
‖h‖21 t3 +K1(t),

where we set

K1(t) =

∞∑

j=1

2bjαj

∫ t

0

s〈u, ej〉 dβj(s) − ν

∫ t

0

s‖u‖22 ds. (2.174)

It follows that

sup
0≤t≤T

Eu(1, t) ≤ 2

∫ T

0

‖u‖21 ds+ B1T
2 + ‖h‖21 T 3 + sup

0≤t≤T
K1(t). (2.175)

The first term on the right-hand side of (2.175) can be estimated with the help
of (2.135). To bound the last term, we repeat the argument used in the proof
of (2.130). Namely, we denote by M(t) the martingale defined by the sum
in (2.174) and remark that its quadratic variation is equal to

〈M〉t =

∞∑

j=1

4b2jα
2
j

∫ t

0

s2〈u, ej〉2ds ≤ 4T
(

sup
j≥1

b2j

) ∫ t

0

s ‖u(s)‖22 ds.

Therefore, setting γ =
(
2T supj b

2
j

)−1
, we obtain

K1(t) ≤M(t) − γν

2
〈M〉t.

By the supermartingale inequality (7.57), we have

P

{
sup

0≤t≤T
K1(t) ≥ ρ

}
= P

{
sup

0≤t≤T
exp

(
γνM(t) − (γν)2

2 〈M〉t
)
≥ eγνρ

}
≤ e−γνρ,
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whence it follows that (cf. proof of Corollary 2.4.11)

E sup
0≤t≤T

Eu(1, t)m ≤ C1

(
Bm

1 T
2m + ‖h‖2m1 T 3m

)

+ C1

(
ν−mE Eu(T )m +

∫ ∞

0

e−νγλ1/m

dλ

)
. (2.176)

Combining this with (2.135), we obtain the inequality

E sup
0≤t≤T

Eu(1, t)m ≤ C2

(
Bm

1 T
2m + ‖h‖2m1 T 3m

)

+ C2ν
−m

(
1 + E |u0|2m2 + TmBm

)
+ C2ν

−2m
(
1 + Tmα−m

1 |h|2m2
)
, (2.177)

which gives the required estimate (2.138) with k = 1.

We now assume that n ≥ 2. In this case, the scalar product 〈Lnu,B(u)〉
does not vanish, and we need to estimate it. In view of Lemma 2.1.20, we have

|〈Lnu,B(u)〉| ≤ C2‖u‖(4n−1)/2n
n+1 ‖u‖(n+1)/2n

1 |u|1/22

≤ ν

4
‖u‖2n+1 + C2

2ν
−4n‖u‖2(n+1)

1 |u|2n2 .

Combining this with (2.173) and the relations

2s |〈Lnu, h〉| ≤ sn−1‖u‖2n + sn+1‖h‖2n, 〈Lnu, ej〉 = αn
j 〈u, ej〉,

we derive

Eu(n, t) ≤ (n+ 1)

∫ t

0

sn−1‖u‖2n ds+
1

n+ 1
Bnt

n+1 +
1

n+ 2
‖h‖2n tn+2

+ C3ν
−4n

∫ t

0

sn‖u‖2(n+1)
1 |u|2n2 ds+Kn(t),

where we set

Kn(t) =
∞∑

j=1

2bjα
n
j

∫ t

0

sn〈u, ej〉 dβj(s) −
ν

2

∫ t

0

sn‖u‖2n+1 ds.

Since

sup
0≤t≤T

∫ t

0

sn‖u‖2(n+1)
1 |u|2n2 ds ≤ ν−1 sup

0≤t≤T
Eu(t)n+1Eu(1, t)n,

we conclude that

sup
0≤t≤T

Eu(n, t) ≤ C4

(
ν−1Eu(n− 1, T ) + BnT

n+1 + ‖h‖2nTn+2
)

+ C4ν
−(4n+1) sup

0≤t≤T

(
Eu(t)n+1 Eu(1, t)n

)
+ sup

0≤t≤T
Kn(t).
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Setting P (m,n) = E sup Eu(n, t)m and repeating the argument used in the
derivation of (2.176), we prove that

P (m,n) ≤ C5ν
−m

(
P (m,n− 1) + ν−4mn

(
P (2m(n+ 1), 0)P (2mn, 1)

)1/2)

+ C5(1 + ν−m). (2.178)

Recalling that (see (2.135) and (2.177))

P (2m(n+ 1), 0) ≤ C6

(
E |u0|4m(n+1)

2 + ν−2m(n+1) + 1
)
,

P (2mn, 1) ≤ C7

(
1 + ν−2mnE |u0|4mn

2 + ν−4mn
)
,

and using the induction hypothesis, we see that (2.178) implies the required
estimate (2.138) with k = n. This completes the proof of the proposition.

Proof of Theorem 2.4.19. Step 1. Suppose we have shown that

θs(Ω∗) = Ω∗ for any s ∈ R. (2.179)

To prove that Φ is an RDS, we need to check the continuity and cocylcle prop-
erties of Definition 1.3.14. The continuity of ϕω

t (·) is trivial for ω /∈ Ω∗. To
prove it for ω ∈ Ω∗, let us note that, in view of (2.151), we have

ϕω
t u0 = z̃ω(t) + Rt(u0, z̃

ω(·)) for t ≥ 0, ω ∈ Ω∗, (2.180)

where Rt : H×X → H stands for the operator that takes (u0, z) to the solution
at time t of problem (2.111), (2.112). Proposition 2.4.5 now implies the required
continuity ω ∈ Ω∗.

Let us prove the cocycle property (1.62). The first relation is obvious, as is
the second one with ω /∈ Ω∗ (in view of (2.179)). We need to show that

ϕω
t+su0 = ϕθsω

t (ϕω
s u0) for t, s ≥ 0, ω ∈ Ω∗, u0 ∈ H. (2.181)

To this end, note that, in view of (2.150) and (2.102), we have

z̃θsω(t) = z̃ωs (s+ t) for t ≥ 0, s ∈ R, ω ∈ Ω∗, (2.182)

where z̃s(t) is the solution of the problem

ż + νLz = ∂tζ̃ , z(s) = 0.

Combining (2.180) and (2.182), we write

ϕθsω
t (ϕω

s u0) = z̃ωs (t+ s) + Rt(ϕ
ω
s u0, z̃

ω
s (s, ·)). (2.183)

For any s ∈ R and ω ∈ Ω∗, the right-hand side of (2.183) regarded as a function
of t is a solution of the problem

u̇+ νLu+B(u) = h+ ∂tζ̃
ω, u(s) = ϕω

s u0. (2.184)
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On the other hand, the function ϕω
·+su0 also satisfies (2.184). By uniqueness,

the two functions must coincide, and we obtain (2.181).

Step 2. Let us prove (2.179). To this end, it suffices to show that θsω ∈ Ω̃
for any s ∈ R. Let ω ∈ Ω∗ and let n ∈ Z be such that n + s ≥ 0. In view
of (2.182), the difference

w(t) = z̃θ−nω(s+ n+ t) − z̃θsω(t) = z̃θ−nω(s+ n+ t) − z̃ωs (s+ t)

regarded as a function of t satisfies the equations

ẇ + νLw = 0, w(0) = z̃ω(s+ n) ∈ H.

It follows that w ∈ X . Since z̃θ−nω(s + n + ·) ∈ X , we conclude that z̃θsω =

z̃ω(s+ n+ ·) − w ∈ X and, hence, θsω ∈ Ω̃ for any s ∈ R.

Step 3. We now prove that Φ is Markov. In view of Definition 1.3.18, we
need to show for any finite sets u±i ∈ H, t±i , s

±
i ∈ R, i = 1, . . . , N±, such that

s−i < 0, 0 < t−i ≤ −s−i , s+i ≥ 0, t+i > 0,

and any Borel subsets Γ±
i ⊂ H, the events 10

A± =
{
ω ∈ Ω : ϕ(t±i , θs±i

ω)u±i ∈ Γ±
i , i = 1, . . . , N±}

are independent. To this end, note that (cf. (2.180) and (2.102))

ϕθsω
t u0 = z̃ωs (s+ t) + Rt(u0, z̃

ω
s (s+ ·)),

z̃ωs (s+ t) = ζ̃ω(s+ t) − e−νtLζ̃ω(s) − ν

∫ s+t

s

Le−ν(t−s)Lζ̃ω(s) ds.

where s ∈ R, t ≥ 0, and ω ∈ Ω∗. It follows that, up to an event of zero
measure, A− depends only on the path {ωs, s ≤ 0}, whereas A+ depends only
on {ωs, s ≥ 0}. Since the process ωt has independent increments and vanishes
at t = 0, we conclude that A− and A+ are independent.

Finally, the fact that the law of {ϕtu0, t ≥ 0} is the same as that of the solu-
tion u(t) for (2.98), (2.114) follows immediately from (2.151) and the construc-
tion of u (see Theorem 2.4.6). The proof of the theorem is now complete.

Notes and comments

The results presented in Section 2.1 are very well known. The well-posedness
of the 2D Navier–Stokes system in a bounded domain and the regularity of
solutions was proved due to contributions of many researchers, starting from the
pioneering paper of Leray [Ler34], followed by Ladyzhenskaya [Lad59, Lad63],
Lions and Prodi [LP59, Lio69], Temam [Tem68] and others. We refer the reader

10We write here ϕ(t, θsω) instead of ϕθsω
t to avoid triple subscripts.
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to the books [Tem79, CF88, Soh01] for a comprehensive study of the initial-
boundary value problem for Navier–Stokes equations.

The Foiaş–Prodi estimates presented in Section 2.1.8 are of fundamental
importance for this book. They show that the dynamics of the 2D Navier–Stokes
system in a bounded domain is determined by finitely many modes. This type
of result was first established by Foiaş and Prodi [FP67]. It is used in various
problems related to the large-time behaviour of solutions, including the theory
of attractors and inertial manifolds; see the books [Tem88, CFNT89, BV92] and
references therein.

The theory of well-posedness for Navier–Stokes equations with various types
of additive noise is a rather straightforward consequence of deterministic results,
due to the simple reductions described in Sections 2.3 and 2.4. The study of
the Navier–Stokes system perturbed by a spatially regular white noise was initi-
ated by Bensoussan, Temam [BT73], Viot [Vio75, Vio76], and Vishik, Komech,
Fursikov [VKF79, VF88]. They proved that the 2D Navier–Stokes system per-
turbed by a white noise force defines a Markov process in a suitable function
space and that Itô’s formula applies to its solutions and results in the a pri-
ori estimates (2.119) and (2.135) with m = 1. These inequalities with m ≥ 2
and other estimates for more regular random forces were derived by E, Mat-
tingly, Sinai [EMS01, Mat02b] and Kuksin, Shirikyan [KS02a, KS03]. The case
of an analytic random force was investigated by Bricmont, Kupiainen, Lefe-
vere [BKL00], Mattingly [Mat02a], and Shirikyan [Shi02]. A more delicate task
is to prove the existence and uniqueness of a solution for white forces of low spa-
tial smoothness. This situation was studied, for instance, by Flandoli [Fla94],
Ferrario [Fer03], Da Prato, Debussche [DD02], and Brzeźniak, Ferrario [BF09].
Navier–Stokes equations perturbed by random kicks are less traditional, but
their investigation is technically simpler. The estimates described in Section 2.3
are taken from [KS01b, Shi04]. Theorem 2.4.15 and relation (2.148) belong to
a large group of results in stochastic PDE’s motivated by numerical methods,
since a popular way to calculate solutions of a PDE perturbed by a white force
is to replace it by high-frequency normalised random kicks. This approach is
called splitting up method in numerical analysis. We refer the reader to the pa-
per of Gyöngy and Krylov [GK03] for some results in this direction that concern,
in particular, the rate of convergence.

Finally, the idea of studying limit points of the averaged laws of solutions to
construct a stationary distribution of Markov processes goes back to Kryloff and
Bogoliouboff [KB37]. It is a simple, but effective tool for producing stationary
distributions in various problems; see the books [VF88, KH95] and references
therein. The question of uniqueness of a stationary distribution is, in general,
much more complicated. However, in the laminar case, the RDS generated by
the 2D Navier–Stokes system is globally asymptotically stable, which implies the
uniqueness and exponential mixing of a stationary measure (see Exercise 2.5.9).
This fact was proved by Mattingly [Mat99].
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Chapter 3

Uniqueness of stationary

measure and mixing

This chapter contains some results on uniqueness of a stationary distribution and
the property of exponential mixing. Their proof is based on a development of the
classical coupling argument introduced by Doeblin in late thirties; see [Doe38,
Doe40]. Without going into details, let us describe two essentially equivalent
versions of Doeblin’s approach to study ergodic properties of Markov chains.

Let X be a complete metric space and let (uk,Pu), k ∈ Z+, be a Feller
family of Markov chains in X parametrised by the initial point u ∈ X. We shall
denote by Pk(u,Γ), u ∈ X, Γ ∈ B(X), the transition function associated with
the Markov family and by Pk : Cb(X) → Cb(X) and P∗

k : P(X) → P(X) the
corresponding Markov operators (see Section 1.3.3). Let us assume that

‖P1(u, ·) − P1(u′, ·)‖var ≤ γ (3.1)

for any u, u′ ∈ X, where ‖ · ‖var denotes the total variation distance, and γ < 1
is a constant not depending on u and u′. In this case, the uniqueness of a
stationary distribution and exponential mixing for the family (uk,Pu) can be
proved using the coupling lemma in one of the two equivalent forms given in
Section 1.2.4.

Contraction of the space of measures. Let us endow P(X) with the
total variation distance and consider the operator P∗

1 : P(X) → P(X). We
claim that this is a contraction:

‖P∗
1λ−P∗

1λ
′‖var ≤ γ ‖λ− λ′‖var for any λ, λ′ ∈ P(X). (3.2)

Indeed, let us use Corollary 1.2.25 to write

λ = (1 − δ)ν + δλ̃, λ′ = (1 − δ)ν + δλ̃′,

where δ = ‖λ−λ′‖var, ν ∈ P(X), and λ̃ and λ̃′ are mutually singular measures.

97
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Using (3.1) and (1.22), for any Γ ∈ B(X) we obtain

P∗
1λ(Γ) −P∗

1λ
′(Γ) = δ

(
P∗

1λ̃(Γ) −P∗
1λ̃

′(Γ)
)

= δ

∫∫

X×X

(
P1(u,Γ) − P1(u′,Γ)

)
λ̃(du)λ̃′(du′)

≤ δ

∫∫

X×X

γ λ̃(du)λ̃′(du′)

= ‖λ− λ′‖var γ.

Using the symmetry and taking the supremum over Γ ∈ B(X), we arrive at (3.2).
Since P∗

1 is a contraction of the complete metric space (P(X), ‖ · ‖var), there
is a unique measure µ ∈ P(X) such that P∗

1µ = µ, and for any λ ∈ P(X) we
have

‖P∗
kλ− µ‖var ≤ γk, k ≥ 0. (3.3)

When (3.3) holds, we say that the Markov process (which defines the semi-
group) is exponentially mixing in the total variation norm. Similarly, if inequal-
ity (3.3) holds with the total variation distance replaced by the dual-Lipschitz
distance, then we say that the Markov process is exponentially mixing in the
dual-Lipschitz norm.

Coupling argument. Let (R(u, u′, ·),R′(u, u′, ·)) be a pair of random vari-
ables in X that depend on u, u′ ∈ X and form a maximal coupling for the mea-
sures P1(u, ·) and P1(u′, ·). That is, D(R) = P1(u, ·), D(R′) = P1(u′, ·), and

P
{
R(u, u′) 6= R′(u, u′)

}
= ‖P1(u, ·) − P1(u′, ·)‖var for all u, u′ ∈ X; (3.4)

cf. Section 1.2.4. In particular, R(u, u) = R′(u, u) for any u ∈ X. Such random
variables exist in view of Theorem 1.2.28. Let us denote by Ω the direct product
of countably many copies of the probability space on which R and R′ are defined
and consider a family of Markov chains {uk} in X = X ×X given by the rule

u0(ω) = u , uk(ω) = (R(uk−1, ωk),R′(uk−1, ωk)) for k ≥ 1. (3.5)

Here ω = (ωj , j ≥ 1) ∈ Ω denotes the random parameter and u ∈ X is an initial
point. Writing u = (u, u′) and uk = (uk, u

′
k), we derive from inequalities (3.1),

(3.4) and the Markov property that

Pu{uk+1 6= u′k+1 | Fk} ≤ γ for any u ∈ X , k ≥ 0, (3.6)

where Fk denotes the σ-algebra generated by u1, . . . ,uk. Iterating inequal-
ity (3.6) and using the fact that uk−1 = u′k−1 implies uk = u′k, we obtain by
induction

Pu{uk 6= u′k} = Eu

(
I{uk−1 6=u′

k−1}Pu{uk 6= u′k | Fk−1}
)

≤ γ Pu{uk−1 6= u′k−1} ≤ γk (3.7)
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for any u ∈ X , k ≥ 0. So,

‖Pk(u, ·) − Pk(u′, ·)‖var ≤ γk. (3.8)

Combining this with the Kolmogorov–Chapman relation, we see that for any
two measures λ and λ′ on X the total variation distance between P∗

kλ and P∗
kλ

′

goes to zero exponentially fast. In particular, there is at most one stationary
distribution. Moreover, the sequence {Pk(u, ·)} converges to a limiting mea-
sure µ, which is stationary for (uk,Pu). Finally, inequality (3.3) also follows
from (3.8).

Inequality (3.1) is satisfied for a number of problems with compact phase
space, e.g., for stochastic differential equations (SDE) with non-degenerate dif-
fusion on a compact manifold. On the other hand, condition (3.1) is rather
restrictive if the phase space is not compact. For instance, in the case of SDE’s
in Rn, it is fulfilled only if there is a strong nonlinear drift towards a bounded
ball. However, sometimes one can overcome this difficulty with the help of the
following modification of the coupling argument.

Let X be a Polish space and let (uk,Pu) be a Feller family of Markov chains
in X. Retaining the notation used above, suppose we can find a closed subset
B ⊂ X for which the two properties below are satisfied:

Recurrence : The first hitting time τB of the set B is almost surely finite for any
initial point u ∈ X, and there is δ > 0 such that

Eu exp
(
δτB

)
<∞ for all u ∈ X. (3.9)

Squeezing : Inequality (3.1) with a constant γ < 1 holds for any u, u′ ∈ B.

Let (R,R′) be the family of random variables in X defined above and let {uk}
be the family of Markov chains given by (3.5). Denote by ρn the nth instant
when the trajectory uk enters the set B := B × B. Then, using (3.1), (3.4),
and the strong Markov property, we get (cf. (3.6))

P{uρn+1 6= u′ρn+1 | Fρn
} ≤ γ for any u ∈ X , n ≥ 1, (3.10)

where Fρn
denotes the σ-algebra associated with the Markov time ρn. Iteration

of (3.10) results in (cf. (3.7))

Pu{uρn+1 6= u′ρn+1} ≤ γn for any u ∈ X , n ≥ 1.

Combining this with (3.9), one can prove inequality (3.8) with a larger con-
stant γ < 1, and this implies all the properties established for the case in
which (3.1) holds uniformly. Thus, Doeblin’s method applies also in the case
of an unbounded phase space, provided that inequality (3.1) is satisfied on a
subset that can be reached from any initial point at a random time with finite
exponential moment.

Application of the above technique to stochastic PDE’s encounters one es-
sential difficulty: inequality (3.1) cannot be true (even for close u and u′), unless
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some very restrictive conditions are imposed on the diffusion; see Section 3.5.1
below for the case of Navier–Stokes equations. In this chapter, we show how
to develop Doeblin’s approach to be able to treat the 2D stochastic Navier–
Stokes equations and other dissipative SPDE’s with degenerate diffusion. In
Section 3.1, some general criteria are established for the uniqueness of a sta-
tionary distribution and mixing in the dual-Lipshcitz norm. In Sections 3.2 –
3.4 we apply these criteria to the Navier–Stokes system with various random
perturbations. Section 3.5 is devoted to some further results on uniqueness and
mixing, a discussion of the Navier–Stokes system perturbed by a compound
Poisson process, and a description of an alternative proof for mixing of the
model with random kicks. Finally, in Section 3.7, we clarify the importance of
the results of this chapter for physics.

3.1 Three results on uniqueness and mixing

In this section, we establish some sufficient conditions for uniqueness of a sta-
tionary measure for a Markov process. We begin with the case in which there is
a Kantorovich functional (see Section 1.2.5) decaying along any pair of trajec-
tories. This property immediately implies that the Markov process in question
defines a contraction in the space of measures, and therefore has a unique sta-
tionary measure, which is exponentially mixing. We next discuss a simple cri-
terion for uniqueness and mixing. Roughly speaking, we prove that if a Markov
process is recurrent, and the dual-Lipschitz distance between the laws of trajec-
tories issued from close points remains small (without any contraction!), then
there is at most one stationary measure, and if it exists, then solution converges
to it in distribution. Our third result gives a sufficient condition for unique-
ness and exponential mixing. Its proof is based on a stopping times technique
well known in the theory of renewal processes; see Chapters XI in [Fel71] or
Chapter 5 in [PSS89].

3.1.1 Decay of a Kantorovich functional

Let X be a Polish space, let T = R or Z, let T+ = {t ∈ T : t ≥ 0}, and
let (ut,Pu) be a Feller family of Markov processes in X. Recall that, given a
measurable symmetric function F : X × X → R+ satisfying (1.40), we define
the Kantorovich functional KF with the density F by relation (1.41). In what
follows, we suppose that there is a constant C > 0 and a point u0 ∈ X such
that

F (u1, u2) ≤ C
(
1 + distX(u1, u0) + distX(u2, u0)

)
for any u1, u2 ∈ X. (3.11)

Recall that P1(X) is the class of measures µ ∈ P(X) such that

m1(µ) =

∫

X

distX(u, u0)µ(du) <∞.

Inequality (3.11) implies that if ξ1 and ξ2 are two random variables whose laws
belong to P1(X), then EF (ξ1, ξ2) <∞.
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Theorem 3.1.1. Let (ut,Pu) be a Feller family of Markov processes in X sat-
isfying the following two conditions.

A priori estimate : There is a constant C > 0 and a point u0 ∈ X such that
∫

X

distX(z, u0)Pt(u, dz) ≤ C
(
1 + distX(u, u0)

)
for any u ∈ X, t ∈ T+.

(3.12)

Contraction : There is a time s ∈ T+, a constant γ < 1, and a Kantorovich
density F : X ×X → R+ satisfying (3.11) such that

KF (P∗
sλ,P

∗
sλ

′) ≤ γKF (λ, λ′) for any λ, λ′ ∈ P1(X). (3.13)

Then the Markov family (ut,Pu) has a unique stationary distribution µ ∈ P1(X).
Moreover, there are positive constants C and α such that

‖P∗
tλ− µ‖∗L ≤ C e−αt

(
1 + m1(λ)

)
for t ∈ T+, (3.14)

where λ ∈ P1(X) is an arbitrary measure.

In what follows, we shall say that a Markov process is exponentially mixing
in the dual-Lipschitz norm if it satisfies (3.14).

Proof. Step 1. Let us endow P(X) with the dual-Lipschitz distance. By The-
orem 1.2.15, this is a complete metric space. Integrating (3.12) with respect
to λ(du), we see that

m1(P∗
tλ) ≤ C (1 + m1(λ)) for t ∈ T+. (3.15)

Inequalities (1.42) and (3.13) imply that

‖P∗
ksλ−P∗

ksλ
′‖∗L ≤ KF (P∗

ksλ,P
∗
ksλ

′) ≤ γkKF (λ, λ′) for k ≥ 0. (3.16)

Let us show that {Pks(u, ·), k ≥ 1} is a Cauchy sequence in P(X) for any u ∈ X.
Indeed, applying the Kolmogorov–Chapman relation, for u, u′ ∈ X, l ≥ k, and
for an arbitrary function f ∈ Lb(X) with ‖f‖L ≤ 1, we obtain

(f, Pls(u
′, ·)) − (f, Pks(u, ·))

=

∫

X

P(l−k)s(u
′, dz)

∫

X

(
Pks(z, dw) − Pks(u, dw)

)
f(w)

≤ γk
∫

X

P(l−k)s(u
′, dz)KF (δz, δu).

Using the fact that KF (δu1
, δu2

) = F (u1, u2) and recalling inequality (3.11), we
see that

(f, Pls(u
′, ·)) − (f, Pks(u, ·))

≤ C1 γ
k

∫

X

P(l−k)s(u
′, dz)

(
1 + distX(z, u0) + distX(u, u0)

)

≤ C2 γ
k
(
1 + distX(u′, u0) + distX(u, u0)

)
.
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Integrating this inequality with respect to λ(du)λ′(du′), where λ, λ′ ∈ P1(X)
are arbitrary measures, using the symmetry with respect to λ and λ′, and taking
the supremum over f , for l ≥ k we derive

‖P∗
lsλ

′ −P∗
ksλ‖∗L ≤ C2 γ

k

∫

X

(
(1 + distX(u′, u0) + distX(u, u0)

)
λ(du)λ(du′)

≤ C2 γ
k
(
1 + m1(λ) + m1(λ′)

)
. (3.17)

In particular, taking λ = λ′ = δu, we see that {Pks(u, ·)} is a Cauchy sequence
in P(X), and therefore it converges to a limit µ ∈ P(X). It follows from (3.17)
that µ does not depend on u ∈ X. Since µ = limk→∞(P∗

s)kδu, applying P∗
s to

this relation, we see that P∗
sµ = µ.

Step 2. Let us show that µ ∈ P1(X). We choose any increasing sequence
{fn} ⊂ Cb(X) converging pointwise to the function distX(·, u0). Then, us-
ing (3.12), we can write

(fn, µ) = lim
k→∞

(fn, Pks(u0, ·)) ≤ lim sup
k→∞

∫

X

distX(z, u0)Pks(u0, dz) ≤ C.

Applying the monotone convergence theorem and passing to the limit as n→ ∞,
we see that m1(µ) ≤ C.

Step 3. Applying inequality (3.17) with l = k, λ′ = P∗
tµ, λ = µ and

using (3.15), we obtain

‖P∗
tµ− µ‖∗L = ‖P∗

ksP
∗
tµ−P∗

ksµ‖∗L ≤ C3 γ
k
(
1 + m1(µ)

)
.

Letting k → ∞, we obtain P∗
tµ = µ for each t ∈ T+, and we see that µ is

a stationary distribution. If λ ∈ P1(X) is another stationary measure, then
by (3.17) we have λ = µ. So µ is a unique stationary distribution for the
Markov family (ut,Pu) in the space P1(X).

Step 4. To complete the proof of the theorem, it remains to establish (3.14).
To this end, take any t ∈ T+ and write t = ks + r, where k ≥ 0 is an integer
and 0 ≤ r < s. Using (3.15) with t = r and inequality (3.17) in which λ′ = µ
and λ is replaced by P∗

rλ, we derive

‖P∗
tλ− µ‖∗L = ‖P∗

ks(P
∗
rλ) − µ‖∗L ≤ C3 γ

k
(
1 + m1(P∗

rλ)
)
≤ C4 γ

k
(
1 + m1(λ)

)
.

This inequality readily implies (3.14).

3.1.2 Coupling method: uniqueness and mixing

As before, we denote by (ut,Pu), t ∈ T+, a Feller family of Markov processes
in X. Let X = X × X be the direct product of two copies of X. We write
u = (u, u′) ∈ X and denote by Π : u 7→ u and Π′ : u 7→ u′ the natural
projections. Let us consider a family of Markov processes (u t,Pu), t ∈ T+,
in X . We denote by P t(u ,Γ) its the transition function and by P t and P

∗
t the

corresponding Markov operators. We shall write u t = (ut, u
′
t).
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Definition 3.1.2. The Markov family (u t,Pu) is called a coupling of two copies
of (ut,Pu) if for any u = (u, u′) ∈ X the laws under Pu of the processes Πu t

and Π′u t (regarded as measures on the space of functions from T+ to X) coincide
with those of ut under Pu and Pu′ , respectively. In this case, we shall also say
that (u t,Pu) is an extension of (ut,Pu).

That is, if (u t,Pu) is an extension of (ut,Pu), then

Π∗P t(u , ·) = Pt(u, ·), Π′
∗P t(u , ·) = Pt(u

′, ·). (3.18)

For a closed subset B ⊂ X, we denote by B the direct product B × B and
by τ (B) the first hitting time of B for u t:

τ (B) = min{t ≥ 0 : ut ∈ B, u′t ∈ B} = min{t ≥ 0 : u t ∈ B}.
The following result gives a sufficient condition for the uniqueness of a stationary
distribution and mixing in the dual-Lipschitz distance.

Theorem 3.1.3. Let (ut,Pu) be a Markov process and let (u t,Pu ) be its exten-
sion. Let us assume that for any integer m ≥ 1 there is a closed subset Bm ⊂ X
and a constant δm > 0 such that δm → 0 as m → ∞, and the following two
properties hold.

Recurrence : For any u = (u, u′) ∈ X and m ≥ 1, we have

Pu{τ (Bm) <∞} = 1. (3.19)

Stability : There is a constant Tm ∈ T+ such that

sup
t≥Tm

∥∥Pt(u, ·) − Pt(u
′, ·)

∥∥∗
L
≤ δm for any u ∈ Bm = Bm ×Bm. (3.20)

Then, for any u, u′ ∈ X, we have
∥∥Pt(u, ·) − Pt(u

′, ·)
∥∥∗
L
→ 0 as t→ ∞. (3.21)

Moreover, if µ is a stationary distribution for the family (ut,Pu), then it is
unique, and for any λ ∈ P(X) we have

∥∥P∗
tλ− µ

∥∥∗
L
→ 0 as t→ ∞. (3.22)

That is, the Markov process is mixing in the dual-Lipschitz norm.

Proof. Step 1. We first assume that (3.21) is proved and establish the claims
concerning the stationary distribution. The uniqueness is a straightforward
consequence of (3.22). To prove (3.22), we take any function f ∈ Lb(X) and
write

|(f,P∗
tλ− µ)| = |(f,P∗

tλ−P∗
tµ)|

=

∣∣∣∣
∫∫

X×X

(
Ptf(u) −Ptf(u′)

)
λ(du)µ(du′)

∣∣∣∣

≤
∫∫

X×X

∣∣Ptf(u) −Ptf(u′)
∣∣λ(du)µ(du′). (3.23)
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Taking into account (3.21) and using the Lebesgue theorem on dominated con-
vergence, we see that the right-hand side converges to zero as t → +∞ for
any f ∈ Lb(X). In view of assertion (ii) of Theorem 1.2.15, this is equivalent
to (3.22).

Step 2. We now prove (3.21). For any m ≥ 1 and t ≥ Tm, write

τ (m, t) = τ (Bm) ∧ t, p(u ,m, t) = Pu{τ (Bm) + Tm > t}.

Applying the strong Markov property (1.57) to the family (u t,Pu) and taking
into account the first relation in (3.18), for any integer m ≥ 1 we obtain

Pt(u,Γ) = P t(u ,Γ ×X) = EuP t−τ (m,t)(uτ (m,t),Γ ×X)

= EuPt−τ (m,t)(uτ (m,t),Γ).

A similar relation holds for Pt(u
′,Γ). It follows that

∥∥Pt(u, ·) − Pt(u
′, ·)

∥∥∗
L
≤ Eug(t− τ (m, t),uτ(m,t)), (3.24)

where for s ≥ 0 and z = (z, z′) ∈ X we set

g(s, z ) =
∥∥Ps(z, ·) − Ps(z

′, ·)
∥∥∗
L
.

Now note that, by the stability condition (3.20), we have

sup
s≥Tm

g(s, z ) ≤ δm for z ∈ Bm. (3.25)

Combining inequalities (3.24) and (3.25) and taking into account that the rela-
tion τ (Bm) + Tm ≤ t implies g(t− τ (m, t),uτ(m,t)) ≤ δm, we get

∥∥Pt(u, ·) − Pt(u
′, ·)

∥∥∗
L
≤ δm + p(u ,m, t) for t ≥ Tm.

In view of (3.19), the right-hand side of this inequality can be made arbitrar-
ily small by choosing m first and then taking t to be sufficiently large. This
completes the proof of Theorem 3.1.3.

Analysing the above proof, it is easy to see that if Y ⊂ X is a Borel subset
such that

sup
u∈Y

Pu{τ (Bm) > t} ≤ p(m, t), (3.26)

where p(m, t) → 0 as t→ ∞ for any integer m ≥ 1, then

sup
u∈Y

∥∥Pt(u, ·) − Pt(u
′, ·)

∥∥∗
L
→ 0 as t→ ∞. (3.27)

This simple observation enables one to prove the following result on uniform
convergence to the stationary distribution.



3.1. THREE RESULTS ON UNIQUENESS AND MIXING 105

Theorem 3.1.4. Under the hypotheses of Theorem 3.1.3, assume that (3.26)
holds for any compact set Y ⊂ X and any integer m ≥ 1, where p(m, t) → 0
as t→ ∞. Then for any compact subset Λ of the space P(H) endowed with the
dual-Lipschitz metric convergence (3.22) holds uniformly with respect to λ ∈ Λ.

Proof. Let us fix a constant ε > 0 and use Prokhorov’s theorem to find a
compact subset Y ⊂ X such that λ(Y ) ≥ 1 − ε for any λ ∈ Λ ∪ {µ}. Let
f ∈ Lb(X) be an arbitrary function such that ‖f‖L ≤ 1. Then it follows
from (3.23) that

|(f,P∗
tλ− µ)| ≤ sup

u,u′∈Y

∣∣Ptf(u) −Ptf(u′)
∣∣ + 4ε.

Using inequality (3.27) with Y = Y ×Y and recalling that ε and f are arbitrary,
we arrive at the required uniform convergence.

Let us also mention that the rate of convergence in (3.22) can be estimated
in terms of the mean value of the hitting time τ (B) and the sequence {δm}
(see the recurrence and stability conditions of Theorem 3.1.3). In particular, if
the Markov process in question depends on a parameter θ in such a way that
the above-mentioned quantities are estimated uniformly in θ, then the rate of
convergence to the stationary measure is also uniform in θ.

An application of Theorem 3.1.3 to the Navier–Stokes system is presented in
Section 3.3. Here we discuss the case of the viscous Burgers equation, for which
the stability holds uniformly with respect to the viscosity.

Example 3.1.5. Let us consider the Burgers equation with periodic boundary
conditions:

u̇− ν∂2xu+ ∂xu
2 =

∂

∂t
ζω(t, x), x ∈ T,

∫

T

u dx ≡
∫

T

ζ dx ≡ 0, (3.28)

where T = R/2πZ. We abbreviate Ḣm(T;R) = Ḣm for m ∈ R (see Sec-
tion 1.1.1) and denote by {ej , j ∈ Z0} the usual L2-normalised trigonometric
basis of these spaces. As for the white-forced Navier–Stokes system, we choose
ζω(t, x) =

∑
j bjβ

ω
j (t)ej(x). For simplicity, assume that all quantities Bm =∑

j j
2mb2j are finite. Then Eq. (3.28) is well posed in each space Ḣm, m ≥ 1,

and defines there a Markov process; see [DZ96]. Consider the RDS {ϕω
t , t ≥ 0}

defined by (3.28). It is known that for a.e. ω the maps ϕω
t extend by continuity

to non-expanding transformations L̇1 → L̇1, where L̇1 denotes the space of in-
tegrable functions on T with zero mean value; e.g., see Lemma 3.2.2 in [Hör97].
So (3.28) defines a Markov process in L̇1. Theorem 3.1.3 applies to it. Indeed,
choose Bm = BL̇1(1/m). Then the recurrence follows from the same simple
argument as for the Navier–Stokes system (see below Section 3.3.2 and the
discussion after Theorem 3.3.1). The stability with Tm = 0 and δm = 1/m im-
mediately follows from the fact that the maps ϕω

t : L̇1 → L̇1 are non-expanding.
If all numbers bj are non-zero, then the rate of recurrence may be chosen to be

independent of ν (cf. Section 3.3.2 below). Since characteristics of stability are
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also independent of ν, in this case the rate of mixing for (3.28) does not depend
on the viscosity. See [Bor12] for further properties of the Burgers equation (3.28)
and [BK07] for its relevance as a physical model.

3.1.3 Coupling method: exponential mixing

This subsection can be omitted at first reading, since its results are used only in
the proof of exponential mixing for equations with unbounded noise. To simplify
the presentation, we assume here that X is a separable Banach space with a
norm ‖ · ‖. The main result of this section—Theorem 3.1.7—gives a sufficient
condition for exponential mixing for Markov processes in X. In addition to the
coupling, the proof uses some techniques of the theory of renewal processes;
cf. [Fel71, Chapter XI] or [PSS89, Chapter 5].

Let (ut,Pu) be a Feller family of Markov processes in X, let (u t,Pu) be its
extension, and let B be a closed subset in X. Recall that τ (B) stands for the
first hitting time of the set B = B ×B for u t. We also introduce the stopping
time

σ = inf
{
t ∈ T+ : ‖ut − u′t‖ ≥ C e−βt

}
, (3.29)

where C and β are some fixed positive constants. In other words, σ is the first
instant when the curves ut and u′t “stop converging” to each other exponentially
fast. In particular, if σ = ∞, then

‖ut − u′t‖ ≤ C e−βt for t ≥ 0. (3.30)

Definition 3.1.6. We shall say that the family (ut,Pu) satisfies the coupling
hypothesis if there is an extension (u t,Pu ), a closed set B ⊂ X, and an increasing
function g(r) ≥ 1 of the variable r ≥ 0 such that the following two properties
hold.

Recurrence : There is δ > 0 such that

E u exp
(
δτ (B)

)
≤ G(u) for all u = (u, u′) ∈ X , (3.31)

where we set G(u) = g(‖u‖) + g(‖u′‖).

Exponential squeezing : There are positive constants δ1, δ2, c, K, and q > 1
such that, for any u ∈ B , we have

Pu

{
σ = ∞

}
≥ δ1, (3.32)

E u

{
I{σ<∞} exp

(
δ2σ

)}
≤ c, (3.33)

E u

{
I{σ<∞}G(uσ)q

}
≤ K. (3.34)

Any extension of (ut,Pu) satisfying the above properties will be called a mixing
extension.
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Note that σ ≡ 0 for any u ∈ X with ‖u − u′‖ > C. It follows from (3.32)
that the set B must belong to the C-neighbourhood of the diagonal, that is,
B ⊂ {u : ‖u− u′‖ ≤ C}.

Before formulating the main result of this subsection, we make some com-
ments on the above definition. Let us take an arbitrary initial point u ∈ B .
Then, in view of (3.32), with Pu-probability ≥ δ1, we have σ = ∞, and therefore,
with the same probability, the trajectories ut and u′t converge exponentially fast
(see (3.30)). On the other hand, if they do not, inequality (3.33) says that the
first instant σ when the trajectories “stop converging” is not very large. More-
over, by (3.34), we have some control over u t at the instant t = σ. If the initial
point u ∈ X does not belong to B , we cannot claim that the above properties
hold. However, we know that, with probability 1, any trajectory hits the set B ,
and by (3.31), the first hitting time τ (B) has a finite exponential moment.

These observations make it plausible that, for any initial point u ∈ X , the
trajectories ut and u′t converge exponentially fast. In fact, we have the following
result.

Theorem 3.1.7. Let (ut,Pu) be a Feller family of Markov processes that pos-
sesses a mixing extension (u t,Pu). Then there is a random time ℓ ∈ T+ such
that, for any u ∈ X , with Pu -probability 1, we have

‖ut − u′t‖ ≤ C1e
−β(t−ℓ) for t ≥ ℓ, (3.35)

E ue
αℓ ≤ C1G(u), (3.36)

where u ∈ X is an arbitrary initial point, g(r) is the function in Definition 3.1.6,
and C1, α, and β are positive constants not depending on u and t. If, in
addition, there is an increasing function g̃(r) ≥ 1 such that

Eu g
(
‖ut‖

)
≤ g̃(‖u‖) for u ∈ X, t ≥ 0, (3.37)

then the family (ut,Pu) has a unique stationary measure µ ∈ P(X), and there
is a constant γ > 0 such that

‖Pt(u, ·) − µ‖∗L ≤ V (‖u‖)e−γt for t ≥ 0, u ∈ X, (3.38)

where V is given by the relation

V (r) = 3C1

(
g(r) + g̃(0)

)
. (3.39)

Proof. We first show that inequalities (3.35) – (3.37) imply the existence and
uniqueness of a stationary measure and the mixing property (3.38). Namely, we
shall derive from these relations that, for any u, u′ ∈ X,

∥∥Pt(u, ·) − Pt(u
′, ·)

∥∥∗
L
≤ 3C1G(u) e−γt, t ≥ 0. (3.40)

To this end, we fix an arbitrary functional f ∈ Lb(X) with ‖f‖L ≤ 1 and note
that
∣∣(f, Pt(u, ·) − Pt(u

′, ·)
)∣∣ ≤ E u

∣∣f(ut) − f(u′t)
∣∣

≤ 2Pu

{
ℓ > t

2

}
+ E u

{
I{ℓ≤ t

2}
∣∣f(ut) − f(u′t)

∣∣}. (3.41)
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In view of (3.36) and Chebyshev’s inequality, we have

Pu

{
ℓ > t

2

}
≤ C1G(u) e−

αt
2 .

Furthermore, it follows from the assumption ‖f‖L ≤ 1 and inequality (3.35)
that the second term on the right-hand side of (3.41) does not exceed

E u

{
I{ℓ≤ t

2}‖ut − u′t‖
}
≤ C1e

− βt
2 .

Substituting the last two estimates into (3.41) and using that G ≥ 2, we obtain
the required inequality (3.40) with γ = 1

2 (α ∧ β).

We now use (3.40) to prove the existence and uniqueness of a stationary
measure and inequality (3.38). Let us fix arbitrary points u, u′ ∈ X and a
functional f ∈ Lb(X) such that ‖f‖L ≤ 1. By the Kolmogorov–Chapman
relation and inequality (3.40), for t ≤ s we have

∣∣(f, Pt(u, ·) − Ps(u
′, ·)

)∣∣ =

∣∣∣∣
∫

X

Ps−t(u
′, dz)

∫

X

(
Pt(u, dv) − Pt(z, dv)

)
f(v)

∣∣∣∣

≤ 3C1e
−γt

∫

X

Ps−t(u
′, dz)

[
g(‖u‖) + g(‖z‖)

]

= 3C1e
−γt

[
g(‖u‖) + Eu′ g(‖us−t‖)

]
.

Taking into account (3.37), we conclude that
∥∥Pt(u, ·) − Ps(u

′, ·)
∥∥∗
L
≤ 3C1e

−γt
(
g(‖u‖) + g̃(‖u′‖)

)
. (3.42)

Since P(X) is a complete metric space with respect to the dual-Lipschitz dis-
tance, we conclude that Pt(u, ·) converges, as t→ +∞, to a measure µ ∈ P(X),
which does not depend on u and is stationary. Setting u′ = 0 in (3.42) and
passing to the limit as s → +∞, we obtain inequality (3.38) with V given
by (3.39).

Thus, we need to establish inequalities (3.35) and (3.36). Their proof is
divided into four steps.

Step 1. We introduce the stopping time

ρ = inf{t ∈ T+ : t ≥ σ,u t ∈ B}. (3.43)

In other words, we wait until the first instant σ when the trajectories ut and u′t
“stop converging” and denote by ρ the first hitting time of B after σ. Let δ,
δ1 and δ2 be the constants in (3.31), (3.32), and (3.33). We claim that, for
any u ∈ B ,

Pu{ρ = ∞} ≥ δ1, (3.44)

E u

{
I{ρ<∞}e

αρ
}
≤ q, (3.45)

where α ≤ δ2 ∧ δ and q < 1 are positive constants not depending on u . Indeed,
the definition of ρ and (3.31) imply that {ρ = ∞} = {σ = ∞}, so (3.44) is an
immediate consequence of (3.32).
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To prove (3.45), we first show that

E u

{
I{ρ<∞}e

δ3ρ
}
≤M for any u ∈ B , (3.46)

where δ3 = (q−1)(δ2∧δ)
q and M > 0 is a constant not depending on u . Indeed,

using relation (3.43), the strong Markov property, and inequality (3.31), we
derive

E u

{
I{ρ<∞}e

δ3ρ
}

= E u

{
I{σ<∞}e

δ3σ
(
Euσ

eδ3τB
)}

≤ Eu

{
I{σ<∞}e

δ3σG(uσ)
}
.

Combining this with (3.33) and (3.34), we conclude that

E u

{
I{ρ<∞}e

δ3ρ
}
≤

(
E u

{
I{σ<∞}e

δ2σ
}) q−1

q
(
E u

{
I{σ<∞}G(uσ)q

}) 1
q

≤ (cq−1K)
1
q =: M.

To derive (3.45), let us set α = εδ3 and note that, in view of (3.44) and (3.46),
we have

E u

{
I{ρ<∞}e

αρ
}
≤

(
Pu{ρ <∞}

)1−ε(
E u

{
I{ρ<∞}e

δ3ρ
})ε ≤ (1 − δ1)1−εMε.

The right-hand side of this inequality is less than 1 if ε > 0 is sufficiently small.

Step 2. We now consider the iterations of ρ. Namely, we define two sequences
of stopping times ρk and ρ′k by the formulas

ρ0 = τB ,

ρ′k = inf{t ∈ T+ : t ≥ ρk−1, ‖ut − u′t‖ ≥ C e−β(t−ρk−1)}, k ≥ 1,

ρk = inf{t ∈ T+ : t ≥ ρ′k,u t ∈ B}, k ≥ 1.

That is, ρk is the first occurrence of ρ after ρk−1. We claim that

E u

{
I{ρk<∞}e

αρk
}
≤ qkG(u) for any u ∈ X . (3.47)

Indeed, inequality (3.47) is true for k = 0 in view of (3.31). Let us assume
that (3.47) holds for ρ0, . . . , ρk−1, where k ≥ 1. Since uρk

∈ B , inequality (3.45)
and the strong Markov property imply that

E u

{
I{ρk<∞}e

αρk
}
≤ E u

{
I{ρk−1<∞}e

αρk−1 sup
v∈B

Ev

(
I{ρ<∞}e

αρ
)}

≤ q E u

{
I{ρk−1<∞}e

αρk−1
}
.

Combining this with the induction hypothesis, we arrive at (3.47).

Step 3. We now note that, if ρk < ∞ and ρk+1 = ∞ for an integer k ≥ 0,
then

‖ut − u′t‖ ≤ C e−β(t−ρk) for t ≥ ρk. (3.48)

For any u ∈ X , let us set k̄ = sup{k ≥ 0 : ρk <∞}. We wish to show that, for
any u ∈ X ,

k̄ <∞ Pu -almost surely. (3.49)
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To this end, note that, in view of (3.44) and the strong Markov property,

Pu{ρk <∞} ≤ (1 − δ1)Pu{ρk−1 <∞} ≤ (1 − δ1)kPu{ρ0 <∞} ≤ (1 − δ1)k.

Hence, the Borel–Cantelli lemma implies (3.49).

Step 4. Let us set

ℓ =

{
ρk̄ if k̄ <∞,

+∞ if k̄ = ∞.

Inequality (3.35) follows immediately from (3.48), the definition of ρk, and the
fact that ρk̄+1 = ∞. To prove (3.36), we write

E ue
αℓ =

∞∑

k=0

E u

{
I{k̄=k}e

αρk
}
≤

∞∑

k=0

E u

{
I{ρk<∞}e

αρk
}
≤ (1 − q)−1G(u),

where we used inequality (3.47) and the fact that ℓ <∞ with Pu -probability 1
for any u ∈ X . This completes the proof of Theorem 3.1.7.

Remark 3.1.8. Analysing the proof given above, it is not difficult to see that
Theorem 3.1.7 remains valid if σ is replaced with any other stopping time σ̃
such that

Pu{σ̃ ≤ σ} = 1 for any u ∈ B .

In other word, if inequalities (3.32) – (3.35) hold with σ replaced by σ̃, then
the conclusion of Theorem 3.1.7 is true. To see this, it suffices to repeat the
arguments above, replacing everywhere σ by σ̃.

3.2 Dissipative RDS with bounded kicks

3.2.1 Main result

Let H be a separable Banach space with a norm ‖ · ‖ and let S : H → H be a
continuous (nonlinear) operator. We consider an RDS defined by the relation

uk = S(uk−1) + ηk, k ≥ 1, (3.50)

where {ηk} is a sequence of independent identically distributed (i.i.d.) random
variables in H whose law D(η1) has a bounded support. As it was explained in
Example 1.3.15, one can regard (3.50) as a Markov RDS in H. Our goal in this
section is to study the Markov chain defined by (3.50) in H (See Example 1.3.6).
In what follows, we assume that the following four conditions are satisfied.

Condition 3.2.1. For any R > r > 0 there are positive constants C = C(R),
a = a(R, r) < 1 and an integer n0 = n0(R, r) ≥ 1 such that

‖S(u1) − S(u2)‖ ≤ C(R)‖u1 − u2‖ for all u1, u2 ∈ BH(R), (3.51)

‖Sn(u)‖ ≤ max{a‖u‖, r} for u ∈ BH(R), n ≥ n0, (3.52)

where Sn stands for the nth iteration of S.
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Let us denote by K the support of the measure D(η1) and define the sets of
attainability from B ⊂ H by the relations

A0(B) = B, Ak(B) = S
(
Ak−1(B)

)
+ K for k ≥ 1.

Condition 3.2.2. There is a constant ρ > 0 and a non-decreasing continuous
function k0 = k0(R) > 0 such that

Ak(BH(R)) ⊂ BH(ρ) for any R > 0 and k ≥ k0(R), (3.53)

where BH(r) stands for the closed ball of radius r centred at origin.

Let us introduce the set

A =
⋃

k≥0

Ak

(
BH(ρ)

)
, (3.54)

where ρ is the constant defined in Condition 3.2.2. A straightforward conse-
quence of (3.51) and (3.53) is that A is a bounded invariant absorbing set for
the RDS (3.50); see Section 1.3.4.

Condition 3.2.3. There is a finite-dimensional subspace E ⊂ H, a continuous
linear projection operator P : H → H onto E, and a constant γ < 1 such that

∥∥Q
(
S(u1) − S(u2)

)∥∥ ≤ γ ‖u1 − u2‖ for all u1, u2 ∈ A, (3.55)

where Q = I − P.

Note that, in view of the Hahn–Banach theorem, a continuous projection
onto a finite-dimensional subspace of a Banach space always exists. The last
condition concerns the law of random variables ηk.

Condition 3.2.4. The support of D(η1) contains the origin and the random
variables P∗η1 and Q∗η1 are independent. Furthermore, the measure P∗D(η1)
has a density p(x) with respect to the Lebesgue measure on E, and there is a
constant C such that

∫

E

|p(x+ y) − p(x)| dx ≤ C ‖y‖ for y ∈ E. (3.56)

Before formulating the main result of this section, we make some comments
on the above conditions. Inequality (3.51) is nothing else but the Lipschitz
continuity of S on bounded subsets of H, while (3.52) expresses the property of
dissipativity for S. In particular, it follows from (3.52) that u = 0 is a stable
fixed point for the deterministic dynamical system generated by S. It is easy to
see that inequality (3.52) of Condition 3.2.1 is fulfilled if S satisfies the inequality

‖S(u)‖ ≤ q ‖u‖ for all u ∈ H,

where q < 1 and C are positive constants not depending on u. Condition 3.2.2
means that the RDS (3.50) has a bounded absorbing set, and the function k0(R)
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provides an upper bound for the time of absorption. In applications to evolu-
tionary PDE’s, Condition 3.2.3 (sometimes referred to as the squeezing property)
manifests itself as a smoothing property of flow maps. It is usually satisfied for
quasilinear parabolic PDE’s, such as Ginzburg–Landau and reaction–diffusion
equations. It also holds for the 2D Navier–Stokes system, which can be written
as a non-local parabolic PDE; see (2.19). Finally, Condition 3.2.4 expresses the
non-degeneracy of the random perturbation and the continuous dependence on
the shifts of the law of its projection to E. The latter property is certainly
satisfied if the density p belongs to the Sobolev class W 1,1(E). 1

We now formulate the main result of this section. Its proof is based on
Theorem 3.1.1 and is given in the next two subsections. An application to the
randomly forced Navier–Stokes system is discussed in Section 3.2.4.

Theorem 3.2.5. Suppose that Conditions 3.2.1 – 3.2.4 are satisfied. Then the
RDS (3.50) has a unique stationary distribution µ ∈ P(H). Moreover, there
are positive constants C and α0 such that, for any α ∈ (0, α0] we have

‖P∗
kλ− µ‖∗L ≤ Ce−αk

∫

H

exp
(
αk0(‖u‖)

)
λ(du), k ≥ 0, (3.57)

where λ ∈ P(H) is an arbitrary measure for which the right-hand side of (3.57)
is finite, and k0 is defined in Condition 3.2.2.

3.2.2 Coupling

Let us denote by χ(du) the law of the random variable η1, by χE(dx) its image
under the projection P, and by χE(u, dx), u ∈ H, the law of P(S(u) + η1). We
shall need the following auxiliary result.

Lemma 3.2.6. Let S : H → H be a continuous operator, and suppose that
Condition 3.2.4 is satisfied. Then there is a probability space (Ω,F ,P) such that
for any pair v, v′ ∈ H there are two H-valued random variables ζ = ζ(v, v′, ω)
and ζ ′ = ζ ′(v, v′, ω) possessing the following properties.

(i) The laws of ζ and ζ ′ coincide with χ.

(ii) The random variables (Pζ,Pζ ′) and (Qζ,Qζ ′) are independent. Further-
more, the projections Qζ and Qζ ′ coincide for all ω ∈ Ω and do not depend
on (v, v′).

(iii) The pair
V = P

(
S(v) + ζ

)
, V ′ = P

(
S(v′) + ζ ′

)

is a maximal coupling for (χE(v, ·), χE(v′, ·)). Moreover,

P
{
V 6= V ′} ≤ C1‖S(v) − S(v′)‖ for any v, v′ ∈ H, (3.58)

where C1 > 0 is a constant not depending on v and v′.

1Inequality (3.56) means precisely that the density p belongs to the Nikolski–Besov

space Λ1,∞
1 (E); see Chapter V in [Ste70].
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(iv) The functions ζ and ζ ′ are measurable with respect to (v, v′, ω).

Proof. For any v, v′ ∈ H, let (V, V ′) be a maximal coupling for the pair of
measures (χE(v, ·), χE(v′, ·)). By Theorem 1.2.28, we can assume that V and V ′

are defined on the same probability space (Ω1,F1,P1) for all v, v′ ∈ H and are
measurable functions of (v, v′, ω1). Let (Ω2,F2,P2) be the probability space on
which the random variables ηk are defined. We denote by (Ω,F ,P) the direct
product of these two spaces and, for any ω = (ω1, ω2) ∈ Ω, set

ζ(v, v′, ω) = V (v, v′, ω1) − PS(v) + Qη1(ω2),

ζ ′(v, v′, ω) = V ′(v, v′, ω1) − PS(v′) + Qη1(ω2).
(3.59)

Assertions (i), (ii), (iv) and the first part of (iii) are straightforward conse-
quences of the construction. To prove inequality (3.58), we note that χE(v, dy)
is absolutely continuous with respect to the Lebesgue measure on E, and the
corresponding density is given by p(x − PS(v)). Since (V, V ′) is a maximal
coupling, inequality (3.56) and relation (1.23) imply that

P
{
V 6= V ′} =

∥∥χE(v, ·) − χE(v′, ·)
∥∥
var

=
1

2

∫

E

∣∣p(x− PS(v)) − p(x− PS(v′))
∣∣ dx

≤ 1

2
C ‖P(S(v) − S(v′))‖ ≤ C1‖S(v) − S(v′)‖,

where we used the continuity of the projection P. This completes the proof of
Lemma 3.2.6.

We now fix a constant d > 0 and use the following rules to define coupling
operators (R,R′) on the probability space (Ω,F ,P) (constructed in the proof
of Lemma 3.2.6): for v, v′ ∈ A with ‖v − v′‖ ≤ d, we set

R(v, v′, ω) = S(v) + ζ(v, v′, ω), R′(v, v′, ω) = S(v′) + ζ ′(v, v′, ω); (3.60)

for v, v′ ∈ A with ‖v − v′‖ > d, we set

R(v, v′, ω) = S(v) + η1(ω2), R′(v, v′, ω) = S(v′) + η1(ω2). (3.61)

Let us recall that the concept of extension for a family of Markov chains was
introduced in Section 3.1.2. We now define an extension of the Markov chain
associated with the RDS (3.50). Denote by (Ω̂, F̂ , P̂) the direct product of
countably many copies of the probability space (Ω,F ,P) in Lemma 3.2.6. We

shall write ω̂ = (ω1, ω2, . . . ) for the points of Ω̂.
Let us consider the following RDS Φk = (Φk, Φ

′
k) on the product spaceH×H:

Φ0(ω̂)(v, v′) = v, Φ′
0(ω̂)(v, v′) = v′,

Φk(ω̂)(v, v′) = R(Φk−1(v, v′), Φ′
k−1(v, v′), ωk),

Φ′
k(ω̂)(v, v′) = R′(Φk−1(v, v′), Φ′

k−1(v, v′), ωk).
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Note that Φk depends only on (ω1, . . . , ωk). Arguing by induction and using
the definition of the coupling operators R and R′, we see that the Markov chain
(uk,Pu) associated with Φk is an extension 2 for the restriction to A of the
Markov chain (uk,Pu) corresponding to (3.50). In what follows, we shall drop
the hat from the notations and write P, ω, etc. The following two propositions
are crucial points of the proof of Theorem 3.2.5.

Proposition 3.2.7. Suppose that Conditions 3.2.1 – 3.2.4 are satisfied. Then,
for sufficiently small d > 0 there is a constant K > 0 such that, for any pair of
vectors v, v′ ∈ A with ‖v − v′‖ ≤ d, we have

P
{
‖R(v, v′) −R′(v, v′)‖ ≤ γ ‖v − v′‖

}
≥ 1 −K ‖v − v′‖, (3.62)

P
{
‖Φk(v, v′) − Φ′

k(v, v′)‖ ≤ γk‖v − v′‖ for k ≥ 0
}
≥ 1 −K1‖v − v′‖, (3.63)

where K1 = K
1−γ .

Proof. We first prove (3.62). The definition of the operators R and R′ implies
that if v, v′ ∈ A and ‖v − v′‖ ≤ d, then

‖R(v, v′) −R′(v, v′)‖ ≤ ‖V (v, v′) − V ′(v, v′)‖ + ‖Q(S(v) − S(v′))‖. (3.64)

In view of (3.51) and (3.58), the first term on the right-hand side of (3.64)
vanishes with probability no less than 1 −K ‖v − v′‖. Furthermore, it follows
from (3.55) that

‖Q(S(v) − S(v′))‖ ≤ γ ‖v − v′‖.
Combining this with (3.64), we arrive at (3.62).

We now iterate (3.62) to prove (3.63). Let us assume that d > 0 is so small
that K1d ≤ 1/2. For any integer k ≥ 1, we set

Gk =
{
‖Φk(v, v′) − Φ′

k(v, v′)‖ ≤ γ ‖Φk−1(v, v′) − Φ′
k−1(v, v′)‖

}
,

Gk =

k⋂

l=1

Gl, k ≤ +∞.

It is clear that the event on the left-hand side of (3.63) coincides with G∞.
Since G1 ⊃ G2 ⊃ · · · , inequality (3.63) will be established once we show that

P(Gk) ≥ 1 −K ‖v − v′‖
k−1∑

l=0

γl =: κk for each k ≥ 1. (3.65)

The proof of (3.65) is by induction in k. For k = 1, inequality (3.65) coincides
with (3.62). Assume now that (3.65) is established for some k. Let us write
ω = (ωk, ω

′
k), where ωk := (ω1, . . . , ωk) and ω′

k := (ωj , j ≥ k + 1), and denote

2In other words, the laws of the components of the random variables uk = Φk(ω)(v, v
′)

coincide with Pk(v, ·) and Pk(v
′, ·) for any v, v′ ∈ A.
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by Pk the projections of P to the first k components of ω. Since Φk depends
only on ωk, the event Gk can be written as

Gk = {ω = (ωk, ω
′
k) ∈ Ω : ωk ∈ gk},

where gk is a measurable subset of the direct product of k copies of the prob-
ability space constructed in Lemma 3.2.6. By the induction hypothesis, we
have Pk(gk) ≥ κk, and by (3.62), for each ωk ∈ gk the probability of the event
{ωk+1 : (ωk, ω

k+1) ∈ gk+1} is minorised by 1 −Kγk‖v − v′‖. Therefore,

Pk+1(gk+1) ≥ κk(1 −Kγk‖v − v′‖) > κk+1,

whence we conclude that (3.65) holds with k replaced by k+ 1. This completes
the proof of the proposition.

Proposition 3.2.8. Suppose that Conditions 3.2.1 – 3.2.4 are satisfied and that
2K1d ≤ 1, where K1 is the constant constructed in Proposition 3.2.7. Then for
any δ > 0 there is an integer ℓ = ℓδ ≥ 1 and a constant θδ > 0 such that

P
{
‖Φℓ(v, v

′) − Φ′
ℓ(v, v

′)‖ ≤ δ
}
≥ θδ for any v, v′ ∈ A. (3.66)

Proof. We fix δ > 0 and assume, without loss of generality, that δ ≤ d∧(2K1)−1.
Let us introduce the stopping time

τ = τ(v, v′) = min{k ≥ 0 : ‖Φk(v, v′) − Φ′
k(v, v′)‖ ≤ d}.

Choose m ≥ 0 so large that dγm ≤ δ. In view of the strong Markov property
and inequality (3.63), for any integer ℓ ≥ 1 we have

P{‖Φℓ+m − Φ′
ℓ+m‖ ≤ δ} ≥ P

(
{τ ≤ ℓ} ∩ {‖Φℓ+m − Φ′

ℓ+m‖ ≤ δ}
)

= E
(
I{τ≤ℓ}P

(
{‖Φℓ+m − Φ′

ℓ+m‖ ≤ δ} | Fτ

))

≥ (1 −K1d)P{τ ≤ ℓ}
≥ 1

2 P{τ ≤ ℓ}.

Thus, inequality (3.66) will be established if we show that

P{τ(v, v′) > ℓ} ≤ p for all v, v′ ∈ A, (3.67)

where ℓ ≥ 1 is a suitable integer and p < 1.

To prove (3.67), we use inequality (3.52) with r = d/4 to find an integer
ℓ ≥ 1 such that

‖Sℓ(u)‖ ≤ d
4 for all u ∈ A.

The Lipschitz continuity of S on bounded subsets implies that if ε > 0 is
sufficiently small and ‖ηk‖ ≤ ε for k = 1, . . . , ℓ, then the trajectory {uk}
of (3.50) issued from any point u ∈ A satisfies the inequality ‖uℓ‖ ≤ d/2.
By Condition 3.2.4, we have ν = P{‖η1‖ ≤ ε} > 0. Let us define random
variables ζk(v, v′) and ζ ′k(v, v′) by the relations

ζk = Φk − S(Φk−1), ζ ′k = Φ′
k − S(Φ′

k−1), k ≥ 1.
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The construction implies that each of the sequences {ζk} and {ζ ′k} consists of
i.i.d. random variables whose distributions coincide with that of η1. Let us
consider the events

G = {‖ζk‖ ≤ ε, 1 ≤ k ≤ ℓ}, G′ = {‖ζ ′k‖ ≤ ε, 1 ≤ k ≤ ℓ}.

What has been said above implies that P(G) = P(G′) = νℓ and

‖Φℓ(v, v
′)‖ ∨ ‖Φ′

ℓ(v, v
′)‖ ≤ d/2 for ω ∈ G ∩G′,

whence it follows that

‖Φℓ(v, v
′) − Φ′

ℓ(v, v
′)‖ ≤ d for ω ∈ G ∩G′.

Thus, we see that

τ(v, v′) ≤ ℓ for ω ∈ G ∩G′ and any v, v′ ∈ A. (3.68)

On the other hand, the definition of Φk and Φ′
k implies that if ω ∈ {τ > ℓ},

then ζk = ζ ′k for 1 ≤ k ≤ ℓ. It follows that

G ∩G′ ∩ {τ > ℓ} = G ∩ {τ > ℓ} = G′ ∩ {τ > ℓ}. (3.69)

Assume that P{τ > ℓ} > 1 − νℓ. Then the event in (3.69) is not empty, which
contradicts (3.68). So (3.67) is proved with p = 1 − νℓ.

3.2.3 Proof of Theorem 3.2.5

Step 1. Let us recall that the set A defined by (3.54) is invariant and absorbing
for the RDS (3.50). Therefore, by Lemma 1.3.30, the support of any stationary
measure is contained in A. Let us fix any stationary measure µ and suppose we
have proved that

‖Pk(u, ·) − µ‖∗L ≤ C e−α0k for k ≥ 0, u ∈ A, (3.70)

where C and α0 are some positive constants. In this case, if µ′ is another
stationary measure, then by the Lebesgue theorem on dominated convergence,
for any f ∈ Lb(H) we have

(f, µ′) = (f,P∗
kµ

′) = (Pkf, µ
′) =

∫

H

(f, Pk(u, ·))µ′(du) → (f, µ) as k → ∞.

Thus, (f, µ) = (f, µ′) for any f ∈ Lb(H), and therefore µ′ = µ.
We now prove that (3.70) implies (3.57). By Condition 3.2.2, we have

uk ∈ A for any u ∈ H and k ≥ k0(‖u‖).

Therefore, the support of the measure Pk(u, ·) is contained in A for k ≥ k0(‖u‖).
Combining this with inequality (3.70) and the Kolmogorov–Chapman relation,
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we obtain

|(f, Pk(u, ·)) − (f, µ)| =

∣∣∣∣
∫

H

Pk0
(u, dz)

(
(f, Pk−k0

(z, ·)) − (f, µ)
)∣∣∣∣

≤
∫

H

Pk0
(u, dz) sup

z∈A

∣∣(f, Pk−k0
(z, ·)) − (f, µ)

∣∣

≤ C e−α0(k−k0), (3.71)

where f ∈ Lb(H) is any function with ‖f‖L ≤ 1 and k ≥ k0 = k0(‖u‖).
Furthermore, inequality (3.71) remains valid for 0 ≤ k < k0, provided that
C ≥ 2. It follows that, for any u ∈ H, k ≥ 0, and α ∈ (0, α0], we have

|(f, Pk(u, ·)) − (f, µ)| ≤ C e−α(k−k0).

Integrating this inequality with respect to λ(du) and taking the supremum over
f ∈ Lb(H) with ‖f‖L ≤ 1, we arrive at (3.57).

Step 2. We now prove (3.70). To this end, we apply Theorem 3.1.1, in which
X = A, and the Markov family in question is the one generated by the restriction
of the RDS (3.50) to A. Since the metric space A is bounded, inequality (3.12)
is trivial, and we only need to check (3.13).

Let us choose a small constant d > 0 and set d−1 = +∞ and dm = γmd
for m ≥ 0, where γ > 0 is defined in Proposition 3.2.7. We now define a
Kantorovich density F by the relation

F (u1, u2) =

{
R for ‖u1 − u2‖ > d0,

R2dm for dm+1 < ‖u1 − u2‖ ≤ dm,

where m ≥ 0, and R ≥ 1 stands for a constant that will be chosen later in such a
way that Rd ≤ 1/2, so that F (u1, u2) ≤ R. We claim that if d > 0 is sufficiently
small, then

KF (P∗
ℓλ,P

∗
ℓλ

′) ≤ γ′KF (λ, λ′) for any λ, λ′ ∈ P(A), (3.72)

where ℓ ≥ 1 is the integer defined in Proposition 3.2.8 for δ = d, and γ′ < 1
is a constant not depending on the measures λ and λ′. Once this inequality is
established, the required result will follow from Theorem 3.1.1.

For any pair of vectors (v, v′) ∈ H ×H, we set

f(v, v′) = EF
(
Φl(v, v

′), Φ′
l(v, v

′)
)
,

where the RDS Φk = (Φk, Φ
′
k) is defined in Section 3.2.2. Define the subsets

Am = {(v, v′) ∈ A×A : dm+1 < ‖v − v′‖ ≤ dm}, m ≥ −1.

Since F ≤ R, for (v, v′) ∈ Am we have

f(v, v′) ≤ R2dm+1P
(
Qm(v, v′)

)
+R

(
1 − P

(
Qm(v, v′)

))

= R2dm+1Pm(v, v′) +R
(
1 − Pm(v, v′)

))
,
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where m ≥ −1, Qm(v, v′) = {ω ∈ Ω : ‖Φℓ(v, v
′) − Φ′

ℓ(v, v
′)‖ ≤ dm+1}, and

Pm(v, v′) = P
(
Qm(v, v′)

)
. It follows that if (u, u′) is a coupling for the pair of

measures λ, λ′ ∈ P(A) which is independent of {Φk, k ≥ 1}, then

EF (Φℓ(u, u
′), Φ′

ℓ(u, u
′)) =

∞∑

m=−1

E
{
I{(u,u′)∈Am}f(u, u′)

}

≤
∞∑

m=−1

E

{
I{(u,u′)∈Am}

(
R2dm+1Pm(u, u′) +R

(
1 − Pm(u, u′)

))}

= RE
{
I{(u,u′)∈A−1}

(
1 − P−1(u, u′)(1 −Rd)

)}

+

∞∑

m=0

R2dmE
{
I{(u,u′)∈Am}

(
γPm(u, u′) + (Rdm)−1(1 − Pm(u, u′))

)}
.

By (3.66) and (3.63) for (u, u′) ∈ A−1 and (u, u′) ∈ Am, m ≥ 0, we have
P−1 ≥ θd and Pm ≥ 1 −K1d. So choosing R and d so that γ +R−1K1 < 1 and
2Rd ≤ 1, we derive

EF (Φℓ(u, u
′), Φ′

ℓ(u, u
′)) ≤ R

(
1 − θd(1 −Rd)

)
P{(u, u′) ∈ A−1}

+

∞∑

m=0

R2dm(γ +R−1K1)P
{
{(u, u′) ∈ Am} ≤ γ′EF (u, u′), (3.73)

where θd is constructed in Proposition 3.2.8, and γ′ < 1 is a constant not
depending on u and u′. Since inequality (3.73) is true for some coupling (u, u′)
of the pair of measures (λ, λ′), taking the infimum over all couplings, we arrive
at (3.72). The proof of the theorem is complete.

3.2.4 Application to Navier–Stokes equations

Let us consider the homogeneous Navier–Stokes system perturbed by a random
kick force (cf. (2.76)):

u̇+ νLu+B(u) =

∞∑

k=1

ηkδ(t− kT ). (3.74)

Here {ηk} is a sequence of i.i.d. random variables in H of the form

ηk(x) =

∞∑

j=1

bjξjkej(x), (3.75)

where {ej} stands for an orthonormal basis in H consisting of the eigenfunctions
of the Stokes operator L, ξjk are independent scalar random variables whose
ranges are included in [−1, 1] and laws are independent of k, and bj ≥ 0 are
some constants such that

B :=
∞∑

j=1

b2j <∞. (3.76)
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As was explained in Section 2.3, the restriction of trajectories for (3.74) to TZ+

satisfies relation (3.50), where uk = u(kT ), and S : H → H stands for the oper-
ator that takes u0 to the solution at time T of the homogeneous Navier–Stokes
system. We denote by Φ = {ϕk, k ≥ 0} the Markov RDS associated with (3.50)
and by Pk and P∗

k the corresponding Markov semigroups; see Section 1.3.3.
Recall that a function p : [−1, 1] → R is said to have a bounded variation if 3

Var(p) = sup
{rj}

m∑

j=1

|p(rj) − p(rj−1)|, (3.77)

where the supremum is taken over all partitions r0 = −1 < r1 < · · · < rm = 1
of the interval [−1, 1].

Theorem 3.2.9. Under the above conditions, assume that the laws of ξjk are
absolutely continuous with respect to the Lebesgue measure, and the correspond-
ing densities pj are functions of bounded variation such that

∫ ε

−ε

pj(r) dr > 0 for any ε > 0. (3.78)

In this case, there is an integer N = N(B, ν) ≥ 1 such that if

bj 6= 0 for j = 1, . . . , N, (3.79)

then the RDS Φ has a unique stationary measure µ ∈ P(H). Moreover, there
are positive constants C and α such that

‖P∗
kλ− µ‖∗L ≤ C e−αk

(
1 +

∫

H

|u|2λ(du)
)
, k ≥ 0, (3.80)

where λ ∈ P(H) is an arbitrary measure with finite first moment.

For example, the assumptions of Theorem 3.2.9 are met for any ν > 0 if
the random variables ξjk are independent, each ξjk is uniformly distributed
on a non-degenerate segment [r′j , r

′′
j ] ⊂ [−1, 1] containing the point r = 0, all

numbers bj are non-zero, and B <∞.

Proof. We shall show that the Markov family generated by Φ satisfies the hy-
potheses of Theorem 3.2.5. It follows from assertion (i) of Proposition 2.1.25
and inequality (2.24) that the operator S : H → H is Lipschitz-continuous on
bounded subsets. Moreover, inequality (2.51) implies that

|S(u)|2 ≤ q|u|2 for any u ∈ H, (3.81)

where q = exp(−α1T/2). Thus, S satisfies Condition 3.2.1.

3Equivalently, the derivative p′ of the function p(x) in the sense of distributions is a signed
measure, and Var(p) = 2‖p′‖var (see (1.13)).
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We now check Condition 3.2.2. It follows from (3.76) that |ηk|2 ≤
√
B almost

surely, and therefore the support of the law for ηk is contained in a ball BH(r).
Combining this with inequality (3.81), we see that

|ϕ1u|2 ≤ q |u|2 + r for any u ∈ H and almost every ω ∈ Ω.

It follows that

sup
u∈Ak(BH(R))

|u|2 ≤ qkR+ (1 − q)−1r.

We conclude that Condition 3.2.2 holds with

ρ = 2r(1 − q)−1, k0(R) =
[(

ln q−1
)−1

ln
(
2R
r + 1

)]
+ 1, (3.82)

where [a] stands for the integer part of a.

Let us check Condition 3.2.3. To this end, we use the regularising property
of S. Inequality (2.55) implies that

‖S(u1) − S(u2)‖1 ≤ Cν |u1 − u2|2 for any u1, u2 ∈ A,

where A is defined by (3.54). Combining this with Poincaré’s inequality, we see
that

|(I − PN )(S(u1) − S(u2))|2 ≤ 1√
αN+1

‖S(u1) − S(u2)‖1

≤ Cν√
αN+1

|u1 − u2|2,

where αj denotes the eigenvalue of L corresponding to an eigenvector ej , and PN

stands for the orthogonal projection to the space E := span{e1, . . . , eN}. Since
αj → ∞ as j → ∞, we conclude that Condition 3.2.3 is satisfied for P = PN

with a sufficiently large N ≥ 1.

It remains to verify Condition 3.2.4. We first show that the support of D(η1)
contains the origin. To this end, it suffices to prove that

P{|η1|2 < δ} > 0 for any δ > 0.

But this relation readily follows from (3.76) and (3.78). Indeed, if m is suffi-
ciently large, then (3.76) implies that |(I − Pm)η1|2 ≤ δ/2 for almost all ω, and
it follows from (3.78) that P{|Pmη1|2 < δ/2} > 0 for any m ≥ 1.

To check the second part of Condition 3.2.4, we note that the law of PNη1
possesses a density (with respect to the Lebesgue measure on E) given by the
relation

p(x) =

N∏

j=1

qj(xj), qj(xj) = b−1
j pj(xj/bj), x = (x1, . . . , xN ) ∈ E. (3.83)
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To prove (3.56), we first assume that pj are C1-smooth functions. In this case,
we have

∫

E

|p(x+ y) − p(x)| dx ≤ |y|
∫

E

∫ 1

0

∣∣(∇p)(x+ θy)
∣∣ dθdx

= |y|
∫

E

∣∣(∇p)(x)
∣∣ dx ≤ |y|

N∑

j=1

∫

R

∣∣∂xjqj(xj)
∣∣ dxj

= |y|
N∑

j=1

Var(qj) = |y|
N∑

j=1

b−1
j Var(pj).

In the general case, inequality (3.56) can be established by a standard approxi-
mation argument.

We have thus shown that the conclusion of Theorem 3.2.5 holds for the
RDS (3.50) corresponding to the kicked Navier–Stokes system (3.74). This
proves the uniqueness of a stationary measure and inequality (3.57). To estab-
lish (3.80), we choose α ∈ (0, α0] such that α ≤ ln q−1. In this case, taking into
account the second relation in (3.82), we see that

exp
(
αk0(R)

)
≤ C1(R+ 1).

Substituting this inequality into (3.57), we arrive at (3.80). The proof of Theo-
rem 3.2.9 is complete.

3.3 Navier–Stokes system perturbed by white

noise

In this section, we consider the stochastic Navier–Stokes system in a bounded
domain Q ⊂ R2 (or on a torus R2/(aZ ⊕ bZ), assuming that the space-mean
values of the force and solutions vanish). Namely, we study the problem

u̇+ νLu+B(u) = h+ η(t), (3.84)

u(0) = u0, (3.85)

where ν > 0, h ∈ H is a deterministic function, and η is a random process of
the form (2.66), i.e.,

η(t, x) =
∂

∂t

∞∑

j=1

bjβj(t)ej(x),

where B =
∑

j b
2
j < ∞. We shall denote by u(t;u0) the unique solution

of (3.84), (3.85) constructed in Theorem 2.4.6. The main result of this sec-
tion claims that, under some non-degeneracy assumptions, the Markov process
associated with (3.84) has a unique stationary measure µ, and all the trajecto-
ries of (3.84) converge to µ in law. Among a number of theorems of this kind,
we have chosen the one with the simplest proof. Stronger results and those with
different assumptions on the random force η are discussed in Section 3.5.
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3.3.1 Main result and scheme of its proof

Let us denote by (ut,Pu) the Markov family in H associated with the Navier–
Stokes system (3.84) and denote by Pt and P∗

t the corresponding Markov semi-
groups. Recall that if u0 is an H-valued random variable independent of {βj},
then the law of the solution for (3.84), (3.85) coincides with P∗

tλ, where λ is
the distribution of u0.

Theorem 3.3.1. Let us assume that the basis {ej} in the definition of the
process η consists of the eigenfunctions for the Stokes operator L and the co-
efficients bj satisfies (2.67). Then the Markov family (ut,Pu) has a unique
stationary measure µ ∈ P(H), provided that bj 6= 0 for all j ≥ 1. Moreover, for
any compact subset Λ of the space P(H) endowed with the dual-Lipschitz metric
we have

sup
λ∈Λ

‖P∗
tλ− µ‖∗L → 0 as t→ ∞. (3.86)

This theorem remains true under the weaker hypothesis that bj 6= 0 for
j = 1, . . . , N , with a sufficiently large N . Indeed, the only point where we use
that all the coefficients bj (rather than finitely many of them) are non-zero is
Lemma 3.3.11. However, we need the conclusion of that lemma to be true only
for the family of balls B centred at a given point û ∈ H. In this situation, finitely
many non-zero components of the noise η are sufficient to be able to prove that,
for an appropriately chosen function û ∈ H, the probability of transition from
a given point to any neighbourhood of û is positive. For instance, if h = 0,
then the function û = 0 is a globally exponentially stable fixed point for the
unperturbed dynamics (see Corollary 2.1.24), and it is not difficult to see that
the probability of transition from any point to an arbitrary small neighbourhood
of origin is positive. We refer the reader to Exercise 3.3.12 for some more hints
in the case of a non-zero function h and finitely many non-zero coefficients.

Convergence (3.86) and the a priori estimates for solutions of the Navier–
Stokes system imply that for a large class of functionals f : H → R the following
assertion holds: the mean value of f calculated at a solution at time t converges,
as t → ∞, to the mean value of f with respect to the stationary distribution.
Namely, denote by W the space of continuous functions w(r) > 0 that are de-
fined and non-decreasing on the positive half-line. In what follows, the elements
of W will be called weight functions . For any w ∈ W, let C(H,w) be the space
of continuous functionals f : H → R such that

|f |w := sup
u∈H

|f(u)|
w(|u|2)

<∞. (3.87)

Corollary 3.3.2. Under the hypotheses of Theorem 3.3.1, there is κ > 0 such
that if f ∈ C(H,w) with w(r) = exp(κνr2), then

E f
(
u(t; v)

)
→

∫

H

f(z)µ(dz) as t→ +∞ for any v ∈ H. (3.88)

In particular, this convergence holds for the energy functional E(u) = 1
2 |u|22.



3.3. NAVIER–STOKES SYSTEM PERTURBED BY WHITE NOISE 123

Proof. Let us denote by κ1 and κ2 the constants κ > 0 defined in Proposi-
tion 2.4.9 and Theorem 2.5.5, respectively, and let κ = (κ1/2) ∧ κ2. Then
for f ∈ C(H,w) the quantities Ef(u(t; v)) and (f, µ) are well defined in view
of (2.125) and (2.157).

Convergence (3.86) with λ = δv and assertion (ii) of Theorem 1.2.15 imply
that

Ptg(v) = E g
(
u(t; v)

)
→ (g, µ) as t→ +∞, (3.89)

where g ∈ Cb(H) is an arbitrary function. For any R > 0, let χR ∈ Cb(H) be
a function such that 0 ≤ χR ≤ 1, χR(u) = 1 for |u|2 ≤ R, and χR(u) = 0 for
|u|2 ≥ R+ 1. Then for any f ∈ C(H,w) we can write

E f
(
u(t; v)

)
= (Ptf≤R)(u) + E f≥R

(
u(t; v)

)
, (3.90)

where we set f≤R = χRf and f≥R = (1 − χR)f . Note that f≤R ∈ Cb(H).
By (3.89), the first term in the right-hand side of (3.90) satisfies the inequality

|(Ptf≤R)(u) − (f≤R, µ)| ≤ ε1(t, R, u),

where ε1(t, R, u) → 0 as t → ∞ for any R > 0 and u ∈ H. Furthermore, it
follows from Proposition 2.4.9 and Chebyshev’s inequality that

|E f≥R

(
u(t; v)

)
| ≤

∣∣E
{(

1 − χR(u(t; v))
)

exp
(
κν|u(t; v)|22

)}∣∣

≤
(
P{|u(t; v)|2 > R}

)1/2(
E exp(2κν|u(t; v)|22)

)1/2

≤ C(|u|2)ε2(R),

where t ≥ 0 is arbitrary, and ε2(R) → 0 as R→ ∞. We have thus shown that
∣∣∣∣E f(u(t; v)) −

∫

H

f(z)µ(dz)

∣∣∣∣ ≤ |(f≥R, µ)| + ε1(t, R, u) + C(|u|2)ε2(R).

This inequality implies the required convergence, since (f≥R, µ) → 0 as R→ ∞
in view of Theorem 2.5.5 and Lebesgue’s theorem on dominated convergence.

Theorem 3.3.1 applies to the Navier–Stokes system (3.84) in a bounded
domain or on the torus. In the latter case, we can consider the unique stationary
distribution µ as a measure on the space of locally square-integrable functions
on R2 that are 2π-periodic in both variables. Hence, one may ask a question
about the invariance of µ with respect to the translations in space. It turns out
that this is indeed true, provided that the random force is invariant. Namely,
let us consider the white-forced Navier–Stokes system (3.84), in which 4 h ≡ 0
and the coefficients of the random process

η(t, x) =
∂

∂t
ζ(t, x), ζ(t, x) =

∑

s∈Z
2
0

bsβs(t)es(x),

4Note that the Dirac measure concentrated at a function h(x) is invariant with respect to
translations if and only if h is constant. Since the mean value of h over the torus must be
zero, the assumption that h ≡ 0 is necessary for the law of the right-hand side of (3.84) to be
invariant.
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satisfy the relations
bs = b−s for all s ∈ Z2

0. (3.91)

We claim that in this case the law of the process ζ(t, x) is invariant under
translations with respect to x. Indeed, if a ∈ R2 and Ta : T2 → T2 denotes the
translation operator taking x to x+ a (mod 2π), then

ζ(t, Tax) =
∑

s∈Z
2
+

csbss
⊥(βs(t) cos〈s, Tax〉 + β−s(t) sin〈s, Tax〉

)

=
∑

s∈Z
2
+

csbss
⊥(β̃s(t) cos〈s, x〉 + β̃−s(t) sin〈s, x〉

)
,

where cs and Z2
+ are defined in Section 2.1.5,

β̃s(t) = βs(t) cos〈s, a〉 + β−s(t) sin〈s, a〉,
β̃−s(t) = −βs(t) sin〈s, a〉 + β−s(t) cos〈s, a〉.

The following property of the multidimensional Brownian motion is a simple
consequence of the definition.

Exercise 3.3.3. Let B(t) be a d-dimensional Brownian motion, that is, an Rd-
valued stochastic process whose components are independent standard Brow-
nian motions. Then for any orthogonal d × d matrix U the process UB(t) is
also a Brownian motion. Hint: Show that UB(t) is a Gaussian process with the
same correlations as B(t).

Applying this property with d = 2, we see that β̃s and β̃−s are independent
Brownian motions. Thus, the processes ζ(t, Tax) and ζ(t, x) have exactly the
same form and, hence, the same laws. A similar argument proves that the laws
of ζ(t,−x) and ζ(t, x) also coincide. The following assertion shows that the
same properties hold for the stationary measure.

Corollary 3.3.4. Let us assume that h ≡ 0 and the coefficients bs 6= 0 are such
that

∑
s b

2
s < ∞ and (3.91) holds. Then for any ν > 0 the unique stationary

measure µν of (3.84) is invariant under translations of R2 and the reflection
x 7→ −x.

Proof. We first prove the invariance of µν under translations. Let us consider
Eq. (3.84) in which η is replaced by ηa(t, x) = η(t, Tax). Then, by Theorem 3.3.1
applied to the torus, the new equation has a unique stationary distribution,
which must coincide with µν , because the laws of η and ηa are the same. On
the other hand, the process uaν(t, x) = uν(t, Tax) is a stationary solution of
Eq. (3.84) with η replaced by ηa. By the uniqueness of a stationary measure,
the law of uaν(t) coincides with µν . A similar argument shows that µν is invariant
under the reflection x 7→ −x.

Example 3.3.5. Let us assume that the hypotheses of Corollary 3.3.4 are satisfied
and the unique stationary measure µ ∈ P(H) for (3.84) is concentrated on V k+1
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with some integer k ≥ 1. (This is indeed the case if h ∈ V k and (2.137)
holds; see Exercise 2.5.8.) Consider a functional of the form fx(u) = g(u(x)),
where g : R2 → R is a continuous function and x ∈ T2 is a fixed point. The
functional fx is well defined on V 2, and therefore its mean value (fx, µ) has a
sense. Moreover, the invariance of µ with respect to space translations implies
that the function x 7→ (fx, µ) is constant. On the other hand, by Fubini’s
theorem, we have

〈(fx, µ)〉 = (2π)−2

∫

T2

∫

V k+1

g(u(x))µ(du) dx =

∫

V k+1

〈g(u(·)〉µ(du).

In particular, taking g(v1, v2) = vj with j = 1 or 2, we see that 〈uj(·)〉 = 0 for
any u ∈ H and, hence,

∫

V k+1

uj(x)µ(du) = 0 for x ∈ T2, j = 1, 2.

Thus, the mean velocity in the unique stationary regime is equal to zero. Let us
also note that we did not use the uniqueness, and the same conclusion is true for
any space-invariant stationary distribution concentrated 5 on V k+1 with k ≥ 1.

Let us outline now the proof of Theorem 3.3.1. We wish to apply Theo-
rem 3.1.4. To this end, we shall construct an extension (u t,Pu) for the fam-
ily (ut,Pu) and a decreasing sequence of closed subsets Bm ⊂ H such that
the recurrence and stability properties of Theorem 3.1.3 hold, together with
inequality (3.26) in which Y ⊂ H is an arbitrary compact subset.

Let us first describe a trivial extension for (ut,Pu) that will be called a pair
of independent copies. We denote by (Ω,F) the measurable space on which the
family (ut,Pu) is defined and by (Ω,F) the direct product of two copies (Ω,F):

Ω = Ω × Ω, F = F ⊗ F .

The points of Ω will be denoted by ω = (ω, ω′). We now define a process u t(ω)
in the space H = H ×H by the formula

u t(ω) = (ut(ω), ut(ω
′))

and, for any u = (u, u′) ∈ H , we denote Pu = Pu × Pu′ . Clearly, the fam-
ily (u t,Pu) is an extension for (ut,Pu), and its transition function P t satisfies
the relation

P t(u ,Γ × Γ′) = Pt(u,Γ)Pt(u
′,Γ′) for u = (u, u′) ∈ H , Γ,Γ′ ∈ B(H), (3.92)

where Pt(u,Γ) stands for the transition function of (ut,Pu).
Let us denote by Bm ⊂ H the closed ball of radius 1/m centred at zero and

define the stopping time

τ = τ (m) = min{t ≥ 0 : u t ∈ Bm ×Bm}.
5The fact that µ is concentrated on V k+1 is not really important: one can give a meaning

to the mean value (fx, µ) for any space-invariant measure µ ∈ P(H), and the same conclusion
will be valid; see [VF88].
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We shall show in the next two subsections that the following propositions are
true.

Proposition 3.3.6. Under the hypotheses of Theorem 3.3.1, for any integer
m ≥ 1 there are two positive constants C and α such that

Eu exp(ατ ) ≤ C
(
1 + |u|22 + |u′|22

)
for all u, u′ ∈ H. (3.93)

In particular, the stopping time τ is almost surely finite for any initial point
u ∈ H .

Proposition 3.3.7. Under the hypotheses of Theorem 3.3.1, there is a sequence
δm > 0 going to zero such that

sup
t≥0

‖Pt(u, ·) − Pt(u
′, ·)‖∗L ≤ δm for any u, u′ ∈ Bm. (3.94)

Once these two propositions are established, the required results will follow
from Theorem 3.1.3.

Analysing the proof of the theorem, it is not difficult to see that convergence
is uniform with respect to the random perturbations η that are bounded and
“uniformly non-degenerate”. Namely, we have the following result that can be
established by repeating step by step the proof of Theorem 3.3.1.

Exercise 3.3.8. Let ν > 0 be a constant, let h ∈ H be a deterministic function,
and let {b̂j} be a sequence of positive numbers such that

∑
j b̂

2
j < ∞. Prove

that for any B > 0 there is δ > 0 such that if

∞∑

j=1

b2j ≤ B, sup
j≥1

|bj − b̂j | ≤ δ,

then the Markov family (ut,Pu) associated with Eq. (3.84) has a unique sta-
tionary measure µ ∈ P(H), and for any compact subset Λ ⊂ P(H) we have

sup
λ∈Λ

‖P∗
tλ− µ‖∗L ≤ αΛ(t) → 0 as t→ ∞,

where αΛ is a function depending only on B and {b̂j}.

Finally, it is sometimes useful to know that laws of solutions in the space of
trajectories also converge to a limiting measure. Namely, let ũ(t), t ≥ 0, be a
stationary solution of (3.84) and let µ̃ ∈ P

(
C(R+;H)

)
be its law.

Exercise 3.3.9. Under the hypotheses of Theorem 3.3.1, show that for any so-
lution u(t) of (3.84) we have

D
(
u(t+ ·)

)
→ µ̃ as t→ ∞,

where the convergence holds in the weak topology of the space P
(
C(R+;H)

)
.
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3.3.2 Recurrence: proof of Proposition 3.3.6

For any R > 0, define the stopping time

TR = min{t ≥ 0 : ‖u t‖ ≤ R},

where we set
‖u‖ = |∇u |, |u |2 = |u|22 + |u′|22.

The proof of Proposition 3.3.6 is based on the following two lemmas.

Lemma 3.3.10. For any ν > 0, h ∈ H, and B ≥ 0 there is R > 0 such that if
the coefficients bj ≥ 0 satisfy the inequality

∑
j b

2
j ≤ B, then

Eu exp(γ TR) ≤ 1 +K |u |2 for any u ∈ H , (3.95)

where K and γ are positive constants. In particular, Pu{TR < ∞} = 1 for any
u ∈ H .

Lemma 3.3.11. Under the hypotheses of Theorem 3.3.1, for any R > 0 and
any non-degenerate ball B ⊂ H there is p > 0 such that

P1(u , B ×B) ≥ p for any u, u′ ∈ BV (R). (3.96)

Let us emphasise that, in the first lemma, some of the constants bj may be
zero, whereas in the second lemma, the condition that all of them are positive
is crucial for the result to be true with an arbitrary non-degenerate ball. Note,
however, that if we wish (3.96) to be true for any ball centred at a fixed point ,
then it suffices to assume that a large, but finite number of coefficients bj are
non-zero; see below Exercise 3.3.12. Taking the above lemmas for granted, let
us complete the proof of the proposition. It is divided into three steps.

Step 1. Let us introduce an increasing sequence of stopping times σ′
n by the

rule
σ′
0 = TR, σ′

n = min{t ≥ σ′
n−1 + 1 : ‖u t‖ ≤ R}, n ≥ 1.

We also set σn = σ′
n + 1. In order to estimate the stopping time τ = τ (m)

(which is the first instant when |ut| ∨ |u′t| ≤ 1/m), we start with estimating the
first integer n = n(m) for which |uσn

| ≤ 1/m. The probability of the event
{n(m) > k} is equal to

Pu(k) = Pu

( k⋂

n=1

{
|uσn

| > 1/m
})

.

By the construction of σ′
n and the strong Markov property, we have

Pu (k) ≤ (1 − p)k for any u ∈ H , k ≥ 1, (3.97)

where p = p(m) > 0 is the constant constructed in Lemma 3.3.11 for the ball
B = Bm.
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Step 2. We now show that

Eu exp(γσk) ≤ Ck
1

(
1 + |u |2

)
, k ≥ 1, (3.98)

where C1 > 0 depends only on R. Indeed, define T ′
R = min{t ≥ 1 : ‖u t‖ ≤ R}.

Then, by the Markov property and inequalities (3.95) and (2.120), for any u

such that |u | ≤ R we have

Eue
γT ′

R = EuEu

(
eγT

′
R |F1

)
= eγEu

(
Eu1

eγTR
)
≤ eγEu

(
1 +K |u1|2

)
≤ C2,

where F t is the filtration corresponding to the process u t and C2 > 0 is a
constant depending only on R. Applying now the strong Markov property, for
k ≥ 1 we obtain 6

Eue
γσ′

k = EuEu

(
eγσ

′
k |F1

)
= Eu

(
eγσ

′
k−1Eu(σ′

k−1)
eγT

′
R
)
≤ C2 Eue

γσ′
k−1 ,

where we used again the fact that ‖uσ′
n
‖ ≤ R for any n ≥ 0. Iteration of this

inequality results in
Eue

γσ′
k ≤ Ck

2Eue
γσ′

0 .

Combining this with (3.95), we arrive at (3.98).

Step 3. We can now prove (3.93). For any initial point u ∈ H , any constant
M > 0, and any integer k ≥ 1, we have

Pu{τ ≥M} = Pu{τ ≥M,σk < M} + Pu{τ ≥M,σk ≥M}
≤ Pu{τ > σk} + Pu{σk ≥M}. (3.99)

It follows from (3.97), (3.98), and Chebyshev’s inequality that

Pu{τ > σk} ≤ Pu(k) ≤ (1 − p)k,

Pu{σk ≥M} ≤ e−γMEu exp(γσk) ≤ Ck
1 e

−γM
(
1 + |u |2

)
.

Substitution of these estimates into (3.99) results in

Pu{τ ≥M} ≤ (1 − p)k + Ck
1 e

−γM
(
1 + |u |2

)
.

Choosing k ∼ εM , where ε > 0 is sufficiently small, we obtain

Pu{τ ≥M} ≤ C3e
−γ′M

(
1 + |u |2

)
,

where C3 and γ′ < γ are some positive constants. This inequality immediately
implies (3.93), where α < γ′. To complete the proof of Proposition 3.3.6, it
remains to establish the two lemmas above.

Proof of Lemma 3.3.10. If all the coefficients bj are zero, then we get a deter-
ministic Navier–Stokes system, and the lemma is a straightforward consequence

6We shall sometimes write u(σn) instead of uσn to avoid double subscript.
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of (2.44) (with t = 1 and m = 1) and (2.52). Therefore, we shall assume that
there are non-zero coefficients.

Recall that relation (2.131) was established in the proof of Proposition 2.4.10
as a result of application of Itô’s formula to the functional F (u) = |u|22. A similar
argument applied to F (t,u) = eα1νt|u |2 implies that

eα1νt|u t|2 + 2ν

∫ t

0

eα1νs|∇us|2ds = |u0|2

+

∫ t

0

eα1νs
(
α1ν|us|2 + 2B + 2〈us + u′s, h〉

)
ds+Mt,

where Mt is the corresponding stochastic integral. Let us fix a parameter N > 0,
take t = TR ∧N =: T , and apply Eu . Using Doob’s optional sampling theorem
and the inequalities

|us|2 ≤ α−1
1 |∇us|2, |〈us + u′s, h〉| ≤

α1ν

4
|u t|2 +

2

α1ν
|h|22,

we derive

Eu

(
eα1νT |uT |2

)
+Eu

∫ T

0

eα1νs
(ν

2
|∇us|2 −

(
2B+ 4

α1ν
|h|22

))
ds ≤ |u |2. (3.100)

Now note that ‖us‖2 ≥ R2 for 0 ≤ t ≤ TR. Hence, if

R2 ≥ 8ν−1
(
B + 2

α1ν
|h|22

)
,

then (3.100) implies that

Eu

(
νR2

4

∫ T

0

eα1νsds

)
≤ |u |2.

Therefore,

Eu

(
exp{α1ν(TR ∧N)} − 1

)
≤ 4α1

R2
|u |2.

Passing to the limit as N → ∞ and using Fatou’s lemma, we obtain the required
inequality (3.95) with γ = α1ν and K = 4α1R

−2.

Proof of Lemma 3.3.11. In view of (3.92), it suffices to show that

inf
v∈BV (R)

P1(v,B) > 0.

In other words, we must prove that

inf
v∈BV (R)

P{|u(1; v) − û|2 < ε} > 0 for any û ∈ H, ε > 0. (3.101)

Before giving a rigorous proof of (3.101), we describe the main idea. We wish
to show that the probability of transition from any state v ∈ BV (R) to the
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ε-neighbourhood of a given point û ∈ H is separated from zero. Since our noise
is non-degenerate in all Fourier modes, it is straightforward to find a path ζ̂
that belongs to the support of the noise and stirs the solution from v to an
arbitrarily small neighbourhood of û. By continuity of the resolving operator,
we can find δ > 0 such that for any path ζ from the δ-tube Oδ around ζ̂ the
corresponding trajectory ends up in the ε-neighbourhood of û. Since ζ̂ is in
the support of the noise, the probability of the event {ζ ∈ Oδ} is positive,
and therefore so is the probability of {|u(1; v) − û|2 < ε}. The fact that these
probabilities are separated from zero uniformly in v ∈ BV (R) follows from some
compactness and continuity arguments.

The accurate realisation of this scheme is rather simple when the external
force is H1-regular. To simplify the presentation, we give here the proof in this
particular case; the general situation is considered in Section 3.6.1.

Let us assume that h ∈ V and B1 < ∞. In view of Proposition 2.4.7, so-
lutions of the stochastic Navier–Stokes systems are locally Lipschitz continuous
with respect to the trajectories of the noise. In particular, a solution at time 1
can be written as u(1) = U1(v, ζ), where U1 : H × C(0, T ;V ) → H is a locally
Lipschitz continuous mapping. We claim that, for any ε > 0 and v ∈ BV (R),

we can find ζ̂v ∈ C(0, T ;V ) such that

sup
v∈BV (R)

|U1(v, ζ̂v) − û|2 ≤ ε/2, (3.102)

and the mapping v 7→ ζ̂v is continuous from H to C(0, T ;V ). Indeed, let χ(t)
be a smooth function equal to 1 for t ≤ 0 and to 0 for t ≥ 1. For δ > 0 and
0 ≤ t ≤ 1, we set

uδ(t) = χ(t)e(νt+δ)Lv + (1 − χ(t))eδLû,

ζ̂v(t) = uδ(t) − uδ(0) +

∫ t

0

(
νLuδ +B(uδ)

)
ds− th.

Then uδ(0) = eδLv and U1(eδLv, ζδ) = eδLû. Choosing δ > 0 sufficiently small
and using the uniform continuity of U1, as well as the compactness of BV (R)

in H, we conclude that (3.102) holds. The continuous dependence of ζ̂v on v is
a straightforward consequence of the above relations.

We now choose δ > 0 so small that for any ξ ∈ C(0, T ;V ) satisfying the

inequality ‖ξ − ζ̂v‖C(0,T ;V ) < δ we have (cf. (3.102))

sup
v∈BV (R)

|U1(v, ξ) − û|2 < ε,

It follows that

{|u(1; v) − û|2 < ε} ⊃ {‖ζ − ζ̂v‖C(0,T ;V ) < δ} =: Γ(v) for v ∈ BV (R),

whence we conclude that

inf
v∈BV (R)

P{|u(1; v) − û|2 < ε} ≥ inf
v∈BV (R)

P
(
Γ(v)

)
. (3.103)
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Since the support of the law for the restriction of ζ to [0, T ] coincides with
C(0, T ;V ), we have P

(
Γ(v)

)
> 0 for any v ∈ BV (R). Furthermore, in view of

the portmanteau theorem, the function v 7→ P
(
Γ(v)

)
is lower semicontinuous.

It remains to note that the image of BV (R) by the mapping v 7→ ζ̂v is a com-
pact subset of C(0, T ;V ), and therefore the right-hand side of (3.103) must be
positive. This completes the proof of the lemma in the case of an H1-regular
external force.

Exercise 3.3.12. Prove that, for any R, ν > 0 and h ∈ H, there is a function
û ∈ H and an integer N ≥ 1 such that, if bj 6= 0 for j = 1, . . . , N , then

PT (u , B ×B) ≥ p for any u, u′ ∈ BV (R), (3.104)

where B ⊂ H is any ball centred at û, and T > 0 and p ∈ (0, 1] are some
cosnatnts depending on B. Hint: If h = 0, then the claim is true with û = 0
for any coefficients bj ≥ 0. Similarly, if |h|2 ≪ 1, then the unperturbed problem
has a unique stationary point û ∈ V , which is globally exponentially stable as
t → ∞, and the claim is valid again for any bj ≥ 0. In the case of an arbitrary
h ∈ H, one can use finitely many non-zero components of the noise to annihilate
the low modes of h, while the contribution of high modes will be small.

3.3.3 Stability: proof of Proposition 3.3.7

We first outline the scheme of the proof, which is based on the Foiaş–Prodi
estimate and Girsanov’s theorem. Without loss of generality, we can assume
that u = 0, because the general case can be easily derived from this one with
the help of the triangle inequality. Thus, we need to show that

‖D(ut) −D(u′t)‖∗L ≤ δm for all t ≥ 0, (3.105)

where ut and u′t stand for trajectories of the Navier–Stokes system (3.84) that
are issued from u = 0 and u′ ∈ Bm = {u ∈ H : |u|2 ≤ m−1}, respectively,
and δm → 0 as m → ∞. Let us define an auxiliary process vt as a solution of
the problem

v̇ + νLv +B(v) + λPN (v − u′t) = h+ η(t), (3.106)

v0 = 0, (3.107)

where PN : H → H denotes the orthogonal projection on the subspace H(N)

spanned by ej , j = 1, . . . N , and λ > 0 and N ≥ 1 are large parameters that
will be chosen later. Using the Foiaş–Prodi estimate (see Theorem 2.1.28), we
shall show that, with high probability,

|vt − u′t|2 ≤ Ce−t|u′|2 for t ≥ 0, (3.108)

where C > 0 is a deterministic constant. This inequality will imply that

‖D(vt) −D(u′t)‖∗L ≤ δ(1)m for all t ≥ 0, (3.109)
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where δ
(1)
m → 0 as m→ ∞. Thus, it suffices to compare the laws of ut and vt.

We shall prove that if |u′|2 ≤ 1
m , then

‖D(ut) −D(vt)‖∗L ≤ δ(2)m for all t ≥ 0, (3.110)

where δ
(2)
m → 0 as m→ ∞. Note that since inequality (3.110) concerns the law

of solutions (and not the solutions themselves), we can choose the underlying
probability space (Ω,F ,P) at our convenience. We assume that it coincides with
the canonical space of the Wiener process {ζ(t), t ≥ 0}; see (2.71). Namely, Ω is
the space of continuous functions ω : R+ → H endowed with the metric of
uniform convergence on bounded intervals, P is the law of ζ, and F is the
completion of the Borel σ-algebra with respect to P (cf. Example 1.3.13 and
Section 3.4 in [Str93]). In this case, ζ is the canonical process given by ζ(t) = ωt

for t ≥ 0. We now define a transformation Φ : Ω → Ω by the relation

Φ(ω)t = ωt − λ

∫ t

0

PN (vs − u′s) ds, (3.111)

where vt and u′t are solutions of the corresponding equations with the right-hand
side η(t) = ηω(t) = ∂tωt. We shall show that

P
{
ut(Φ(ω)) = vt(ω) for all t ≥ 0

}
= 1. (3.112)

In view of Exercise 1.2.13 (ii) and inequality (1.16), to prove (3.110) it suffices
to estimate the total variation distance between P and Φ∗(P). This will be done
with the help of Girsanov’s theorem. We now turn to the accurate proof, which
is divided into several steps.

Step 1. Let us prove (3.109). To this end, we fix any integer ε > 0 and use
Proposition 2.4.10 to find positive constants K and ρε such that

P

{∫ t

0

‖u′s‖21ds ≤ ρε +Kt for all t ≥ 0

}
≥ 1 − ε for any u′ ∈ B1.

Let ΩK,ρε be the event in the left-hand side of this inequality. By Theorem 2.1.28
with M = 1 and Remark 2.1.29, there is a constant λ > 0 and an integer N ≥ 1
such that if v is a solution of (3.106), (3.107), then inequality (3.108) with
C = Cε = ecρε holds for ω ∈ ΩK,ρε

. In this case, for any t ≥ 0, u′ ∈ B1, and
f ∈ Lb(H) with ‖f‖L ≤ 1 we have

∣∣E
(
f(vt) − f(u′t)

)∣∣ ≤ 2P(Ωc
K,ρε

) +
∣∣E IΩK,ρε

(
f(vt) − f(u′t)

)∣∣ ≤ 2ε+ Cε|u′|2

Since f was arbitrary, we conclude that (3.109) holds.

Step 2. We now prove (3.112). Let us set ṽt(ω) = ut(Φ(ω)). Since

∂

∂t
Φ(ω) =

∂ζ

∂t
− λPN (vt − u′t),
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the process ṽ is a solution of problem (3.106), (3.107). By the uniqueness of a
solution (see Theorem 2.4.6), we conclude that

P
{
ṽt(ω) = vt(ω) for all t ≥ 0

}
= 1.

This relation coincides with (3.112).

Step 3. We have thus shown that, for any t ≥ 0, the random variables ut
and vt satisfy the hypotheses of Exercise 1.2.13 (ii). Therefore, to estab-
lish (3.110), it suffices to prove that the transformation Φ : Ω → Ω defined
by (3.111) satisfies the inequality

‖P− Φ∗(P)‖var ≤ δ(2)m → 0 as m→ ∞. (3.113)

The proof of this fact is based on Girsanov’s theorem. The space Ω = C(R+, H)
can be written as the direct sum of the closed subspaces ΩN = C(R+, H(N))

and Ω⊥
N = C(R+, H

⊥
(N)). We shall accordingly write Ω ∋ ω = (ω(1), ω(2)). In

this notation, the transformation Φ takes the form

Φ(ω(1), ω(2)) =
(
Ψ(ω(1), ω(2)), ω(2)

)
,

where Ψ : Ω → ΩN is defined by the relation

Ψ(ω(1), ω(2))t = ω
(1)
t +

∫ t

0

a
(
s;ω(1), ω(2)

)
ds, a(t) = −λPN

(
vt − u′t

)
. (3.114)

We now need the following lemma established at the end of this subsection.

Lemma 3.3.13. Let PN and P⊥
N be the images of P under the natural projections

PN : Ω → ΩN , QN : Ω → Ω⊥
N .

Then

‖Φ∗(P) − P‖var ≤
∫

Ω⊥
N

∥∥Ψ∗
(
PN , ω

(2)
)
− PN

∥∥
var

P⊥
N (dω(2)), (3.115)

where Ψ∗
(
PN , ω

(2)
)
stands for the image of PN under the mapping Ψ(·, ω(2)).

Thus, to prove the required result, it suffices to derive an appropriate es-
timate for the right-hand side of (3.115). To do this, we may try to apply
Theorem 7.10.1 to the processes y = ω(1) and ỹ = Ψ(ω(1), ω(2)). However,
we cannot do it directly because the process a(t) does not necessarily satisfy
Novikov’s condition (7.51). To overcome this difficulty, we fix any ε > 0 and
find a constant C = Cε > 0 such that (3.108) holds with probability no less
than 1 − ε (cf. Step 1). We now introduce an auxiliary process defined as

ã(t) = χ
((
C|u′|2

)−1
sup

0≤s≤t

(
es|vs − u′s|2

))
a(t),
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where χ is the indicator function of the interval [0, 1]. In other words, the
process ã coincides with a if v−u′ satisfies (3.108) and is zero starting from the
first instant t ≥ 0 when (3.108) fails. This construction implies that

P{ã(t) = a(t) for all t ≥ 0} ≥ 1 − ε. (3.116)

We now define Φ̃(ω(1), ω(2)) =
(
Ψ̃(ω(1), ω(2)), ω(2)

)
, where Ψ̃ : Ω → ΩN is given

by relation (3.114) with a replaced by ã. Inequality (3.116) implies that Φ and Φ̃
coincide with probability ≥ 1 − ε, whence it follows that

‖Φ∗(P) − Φ̃∗(P)‖var ≤ ε. (3.117)

We now estimate the total variation distance between Φ̃∗(P) and P. In view

of (3.115), it suffices to compare Ψ̃∗(P, ω(2)) and PN . To this end, we apply
Theorem 7.10.1. Define the processes

y(t) = ω
(1)
t , ỹ(t) = ω

(1)
t +

∫ t

0

ã
(
s;ω(1), ω(2)

)
ds

and note that PN = D(y) and Ψ̃∗(P, ω(2)) = D(ỹ). Furthermore, the definition
of ã implies that

|ã(t)| ≤ C e−t|u′|2 for all t ≥ 0 and a.e. ω ∈ Ω, (3.118)

and therefore Novikov’s condition (7.51) holds for ã. Hence, recalling that bj > 0
for all j ≥ 1 and using (7.52), we derive

‖Ψ̃∗(P, ω(2)) − PN‖var ≤
1

2

(√
QN − 1

)1/2
, (3.119)

where we set

QN = E exp
(

6 b̄−2
N

∫ ∞

0

|ã(t)|2dt
)
, b̄N = min

1≤j≤N
bj .

It follows from (3.118) that QN ≤ exp(CN,ε|u′|22), where CN,ε > 0 does not
depend on u′. Combining this with (3.117) and (3.119), we conclude that

‖Φ∗(P) − P‖var ≤ ε+ C ′
N,ε|u′|2 for any u′ ∈ B1.

Since ε > 0 was arbitrary, we arrive at (3.113). To complete the proof of
Proposition 3.3.7, it remains to establish Lemma 3.3.13.

Step 4: Proof of Lemma 3.3.13. Let f : Ω → R be a bounded continuous
function with ‖f‖∞ ≤ 1. Then

∣∣E
(
f(Φ(ω)) − f(ω)

)∣∣ =

∣∣∣∣
∫

Ω

(
f(Ψ(ω), ω(2)) − f(ω(1), ω(2))

)
P(dω)

∣∣∣∣

≤
∫

Ω⊥
N

∣∣∣∣
∫

ΩN

(
f(Ψ(ω(1), ω(2)), ω(2)) − f(ω(1), ω(2))

)
PN (dω(1))

∣∣∣∣P
⊥
N (dω(2))

≤
∫

Ω⊥
N

∥∥Ψ∗(PN , ω
(2)) − PN‖var P⊥

N (dω(2)).

Since f was arbitrary, we arrive at (3.115). The proof of Proposition 3.3.7 is
complete.
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3.4 Navier–Stokes system with unbounded kicks

In Section 3.2.4, we proved that the homogeneous Navier–Stokes system per-
turbed by a sufficiently non-degenerate bounded kick force has a unique sta-
tionary distribution, and the laws of all other solutions converge to it exponen-
tially fast. The proof of this result was based on the exponential decay of a
Kantorovich functional (see Theorem 3.1.1). In this section we establish these
results for the case of unbounded kicks. To do this, we use Theorem 3.1.7, whose
proof combines the coupling with a stopping times technique.

3.4.1 Formulation of the result

Let us consider the Navier–Stokes system (3.84) in a bounded domain Q ⊂ R2.
We assume that h ∈ H is a deterministic function and η is the random process
given by (2.65), (3.75):

η(t, x) =

∞∑

k=1

ηk(x)δ(t− kT ), ηk(x) =

∞∑

j=1

bjξjkej(x),

where the kicks {ηk} form a sequence of i.i.d. random variables in H. As was
explained in Section 2.3, the problem in question is equivalent to the discrete-
time RDS (3.50), in which S = ST : H → H stands for the operator that takes
a function u0 ∈ H to the value at time T of the solution of the deterministic
Navier–Stokes system (2.77) supplemented with the initial condition u(0) = u0.

We now formulate the main conditions imposed on the kicks. We assume
that {ej} is an orthonormal basis in H formed of the eigenfunctions of L, bj ≥ 0
are some constants satisfying (3.76), and ξjk are independent scalar random
variables satisfying the inequality

E exp
(
κ |ξjk|2

)
≤ C (3.120)

with some positive constants C and κ not depending on j and k. It is straight-
forward to see that if this inequality holds, then E exp(κ0|η1|22) < ∞ for some
κ0 ∈ (0,κ]. In particular, the conclusions of Propositions 2.3.4 and 2.3.8 hold.

Recall that we denote by {ϕk, k ≥ 0} the Markov RDS associated with (3.50);
that is, ϕku0 = uk for k ≥ 0, where u0, u1, u2, . . . are defined by (3.50). Let Pk

and P∗
k be the corresponding Markov operators. The following theorem is the

main result of this section (cf. Theorem 3.2.9).

Theorem 3.4.1. Under the above conditions, assume that the laws of the ran-
dom variables ξjk are absolutely continuous with respect to the Lebesgue mea-
sure, and the corresponding densities pj are functions of bounded total vari-
ation that are positive almost everywhere. In this case, there is an integer
N = N(B, ν) ≥ 1 such that if

bj 6= 0 for j = 1, . . . , N, (3.121)
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then the RDS {ϕk, k ≥ 0} has a unique stationary measure µ ∈ P(H). More-
over, there are positive constants C and α such that

‖P∗
kλ− µ‖∗L ≤ C e−αk

(
1 +

∫

H

|u|2λ(du)
)
, k ≥ 0, (3.122)

where λ ∈ P(H) is an arbitrary measure with finite first moment.

The scheme of the proof of this result is described in the next subsection, and
the details are given in Subsections 3.6.2 and 3.6.3. Here we make a comment on
the conditions imposed on the external force of (3.84) and establish a corollary
of Theorem 3.4.1.

In the case of bounded kicks, we assumed that the function h is zero, and the
support of the law for the kicks contains zero. This hypothesis ensured that, with
positive probability, any two solutions approach each other arbitrarily closely.
In the present section, the function h ∈ H is arbitrary, however, we do assume
that the noise is very efficient in the sense that the support of its law contains a
subspace of high dimension (rather than a ball in a subspace of high dimension,
as was the case in Theorem 3.2.9).

As in the case of white noise, the mixing and a priori estimates imply the con-
vergence of the mean value of a functional f : H → R, calculated on solutions,
to the mean value of f with respect to the stationary distribution. Namely, for
any weight function w ∈ W and a constant γ ∈ (0, 1], we denote by Cγ(H,w)
the space of Hölder-continuous functions f : H → R with finite norm

|f |w,γ = sup
u∈H

|f(u)|
w(|u|2)

+ sup
0<|u−v|2≤1

|f(u) − f(v)|
|u− v|γ2

(
w(|u|2) + w(|v|2)

) .

Note that in the case γ = 1 and w ≡ 1 we obtain the space Lb(H).

Corollary 3.4.2. Under the conditions of Theorem 3.4.1, for any γ ∈ (0, 1],
ν > 0, and B > 0 there are positive constants C, β, and κ such that, for any
function f ∈ Cγ(H,w) with w(r) = exp(κr2), we have

∣∣∣∣E f(ϕku) −
∫

H

f(v)µ(dv)

∣∣∣∣ ≤ C|f |w,γw(|u|2)e−βk for k ≥ 0, u ∈ H. (3.123)

Proof. We shall apply the scheme used in the proof of Corollary 3.3.2. The only
difference is that now the estimates are more quantitative.

We first note that both terms on the left-hand side of (3.123) are well de-
fined. Indeed, the fact that E f(ϕku) is finite was proved in Proposition 2.3.4.
Furthermore, repeating the argument of the proof of Theorem 2.5.3 and using
inequality (2.87) instead of (2.81), for κ ≪ 1 one can show that

∫

H

exp(2κ|v|22)µ(dv) <∞. (3.124)

This implies, in particular, that (f, µ) is finite for any f ∈ Cγ(H,w).
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To prove (3.123), we fix any function f ∈ Cγ(H,w) and assume, without
loss of generality, that |f |w,γ = 1. Using representation (3.90) with t = k, we
estimate the left-hand side ∆k of (3.123) as follows:

∆k ≤ |Pkf≤R(u) − (f≤R, µ)| + |E f≥R(ϕku)| + |(f≥R, µ)|. (3.125)

Let us estimate each term of the right-hand side. Inequality (3.122) and Lemma 1.2.6
imply that

|Pkg(u) − (g, µ)| ≤ C1|g|γe
−γαk

(
1 + |u|2

)
, k ≥ 0, (3.126)

where g ∈ Cγ
b (H) is an arbitrary function. Taking g = f≤R, we get

|Pkf≤R(u) − (f≤R, µ)| ≤ C2e
−γαkw(R+ 1)

(
1 + |u|2

)
.

Furthermore, it follows from inequality (2.87) with κ replaced by 2κ that

|E f≥R(ϕku)| =
∣∣E
(
I{|ϕku|2≥R}f≥R(ϕku)

)∣∣

≤
(
P{|ϕku|2 ≥ R}

)1/2(
E f2≥R(ϕku)

)1/2

≤
(
P{w(ϕku) ≥ w(R)}

)1/2(
E exp(2κ|ϕku|22)

)1/2

≤ C3w(|u|2)√
w(R)

.

Finally, inequality (3.124) implies that

|(f≥R, µ)| ≤ C4

w(R)
.

Substituting the above estimates into (3.125), we obtain

∆k ≤ C5

(
e−γαkw(R+ 1)

(
1 + |u|2

)
+

1 + w(|u|2)√
w(R)

)
.

Choosing R such that R2 = γαk
2κ , we arrive at the required inequality (3.123)

with β = γα
4 .

3.4.2 Proof of Theorem 3.4.1

Let (uk,Pu) be the Markov family that is associated with the RDS {ϕk, k ≥ 0}
corresponding to (3.50). It follows from Proposition 2.3.3 that

E |uk|2 ≤ C1

(
1 + |u|2

)
for all u ∈ H, k ≥ 0

where C1 > 0 does not depend on u and k. By Theorem 3.1.7, the required
result will be established if we construct a mixing extension (uk,Pu) for the
family (uk,Pu) and show that relations (3.31) – (3.34) hold with a function of
the form

g(r) = C(1 + r). (3.127)
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It turns out that one can construct a suitable extension in the same way as for
the case of bounded kicks (see Section 3.2.2). Namely, we fix an integer N ≥ 1
and denote by PN : H → H and QN : H → H the orthogonal projections
onto the subspaces H(N) and H⊥

(N), respectively. The proof of Lemma 3.2.6
does not use the boundedness of the kick ηk and its assertions remain valid in
the context of this section with E = H(N), P = PN , and Q = QN . Let us
denote by ζ = ζ(v, v′, ω) and ζ ′ = ζ ′(v, v′, ω) the random variables constructed
in Lemma 3.2.6 and define coupling operators (R,R′) be relations (3.60). Re-
peating the construction of Section 3.2.2, we obtain an RDS Φk = (Φk, Φ

′
k) in

the product space H ×H such that the corresponding Markov family (uk,Pu)
is an extension for (uk,Pu). Let us set

σ0 = min{k ≥ 0 : |uk − u′k|2 ≥ c e−k}, (3.128)

where c > 0 is a constant that will be chosen later. In Section 3.6, we shall show
that the following two propositions are true.

Proposition 3.4.3. Suppose that condition (3.121) is satisfied with a suffi-
ciently large N ≥ 1. Then for any d > 0 the recurrence property of Defini-
tion 3.1.6 holds for the extension (uk,Pu) with B = Bd = BH(d) ×BH(d) and
a function g of the form (3.127).

Proposition 3.4.4. For sufficiently large integers N ≥ 1 there is a stopping
time σ and a constant d > 0 such that if condition (3.121) is satisfied, then

Pu{σ ≤ σ0} = 1 for any u ∈ Bd, (3.129)

and relations (3.32) – (3.34) hold for (uk,Pu) with B = Bd.

Combining these results with Theorem 3.1.7 and Remark 3.1.8, we easily
derive the uniqueness of stationary distribution and inequality (3.122). Indeed,
in view of the propositions, we can choose the parameters N ≥ 1 and d > 0 so
that, if condition (3.121) is fulfilled, then the Markov family (uk,Pu) possesses
the recurrence and exponential squeezing properties of Definition 3.1.6 with B =
Bd, a stopping time σ satisfying (3.129), and a function g of the form (3.127).
Therefore, by Remark 3.1.8, the conclusions of Theorem 3.1.7 are true for the
Markov family (uk,Pu). This completes the proof of the theorem.

3.5 Further results and generalisations

3.5.1 Flandoli–Maslowski theorem

The very first result on the uniqueness of a stationary distribution for the 2D
Navier–Stokes system perturbed by a random force was obtained by Flandoli
and Maslowski [FM95]. In this subsection we formulate their result and give
some references.

Let us consider again the Navier–Stokes system (3.84), in which h ∈ H is a
deterministic function and η is a random process of the form (2.66). In contrast
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to the situation studied in Section 3.3, we now assume that all coefficients bj
are non-zero and satisfy the two-sided inequality

cα
− 1

2
j ≤ bj ≤ Cα

− 3
8−ε

j for any j ≥ 1, (3.130)

where C, c, and ε are positive constants and {αj} is the non-decreasing sequence
of eigenvalues for the Stokes operator L. Note that, by the well-known spectral
asymptotics for L (e.g., see Chapter 4 in [CF88]), we have αj ∼ j as j → ∞,
whence it follows that condition (2.67) is not satisfied, so that the random
force η(t, x) is very rough as a function of the space variable x. Nevertheless,
one can show that the initial-boundary value problem for (3.84) is well posed.
We consider the corresponding Markov process in H. The main result of [FM95]
is the following theorem.

Theorem 3.5.1. Assume that the coefficients bj satisfy condition (3.130). Then
the following assertions hold.

Uniqueness : The Markov process possesses a unique stationary distribution
µ ∈ P(H).

Mixing : For any λ ∈ P(H), we have

‖P∗
tλ− µ‖var → 0 as t→ ∞.

Ergodicity : Let f : H → R be a Borel-measurable function integrable with
respect to µ and let u(t, x) be any solution with a deterministic initial
datum u(0) ∈ H. Then

lim
T→∞

1

T

∫ T

0

f(u(t)) dt =

∫

H

f dµ almost surely.

Without going into details, let us outline the main ideas of the proof.7 It
is based on Doob’s theorem which provides sufficient conditions for uniqueness
and mixing; see [Doo48, DZ96, Ste94, Sei97]. According to that result, if the
transition function of the Markov RDS Φ is regular in the sense that the prob-
ability measures Pt(u, ·), u ∈ H, are absolutely continuous with respect to one
another for some t > 0, then the conclusions of Theorem 3.5.1 are valid. The
regularity of the transition function is, in turn, a consequence of the following
two properties.

Irreducibility : There is t1 > 0 such that

Pt1

(
u,BH(v, r)

)
> 0 for all u, v ∈ H, r > 0.

Strong Feller property : There is t2 > 0 such that the function u 7→ Pt2(u,Γ)
is continuous on H for any Γ ∈ B(H).

7The scheme presented below is not entirely accurate. We refer the reader to the original
work [FM95] for the precise argument, which is more complicated.
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It is not difficult to show that if these properties holds, then the transition
probabilities are mutually absolutely continuous for t = t1 + t2. Thus, it suffices
to establish the irreducibility and strong Feller property.

The proof of irreducibility can be carried out by repeating the argument
used to establish Lemma 3.3.11. The hard point of the Flandoli–Maslowski
analysis is the verification of the strong Feller property. The latter is based on
an application of the Bismut–Elworthy formula [Bis81, Elw92] to Galerkin’s ap-
proximations of the Navier–Stokes system and derivation of a uniform estimate
for the derivative of the Markov semigroup.

The Flandoli–Maslowski result was developed and extended by many au-
thors. In particular, Ferrario [Fer99] proved that the non-degeneracy condi-
tion (3.130) can be relaxed to allow random forces that are regular with respect
to the space variables, Bricmont, Kupiainen, and Lefevere [BKL01] established
the exponential convergence to the unique stationary distribution in the total
variation norm for the Navier–Stokes system perturbed by a kick force, and
Goldys and Maslowski [GM05] obtained a similar result in the case of white
noise perturbations. We refer the reader to those papers for further references
on this subject.

3.5.2 Exponential mixing for the Navier–Stokes system

with white noise

Let us recall that Theorem 3.3.1 establishes the uniqueness of a stationary mea-
sure and the mixing property for the Navier–Stokes system (3.84) with a spa-
tially regular white noise η. On the other hand, Theorems 3.2.9 and 3.4.1 show
that, in the case of a non-degenerate kick force, the corresponding RDS is ex-
ponentially mixing. It turns out that a similar result is true for white noise
perturbations. Namely, the following theorem was proved in [BKL02, Mat02b,
KS02a, Oda08] at various levels of generality; see Notes and Comments at the
end of this chapter.

Theorem 3.5.2. In the setting of Section 3.3, assume that B =
∑

j b
2
j < ∞.

Then there is an integer N ≥ 1 depending on ν, B, and |h|2 such that the
following properties hold, provided that

bj 6= 0 for j = 1, . . . , N. (3.131)

Uniqueness : The Eq. (2.98) has a unique stationary measure µ ∈ P(H).

Exponential mixing : There are positive constants C and α such that

‖P∗
tλ− µ‖∗L ≤ C e−αt

(
1 +

∫

H

|u|22λ(du)
)
, t ≥ 0, (3.132)

where λ ∈ P(H) is an arbitrary measure for which the right-hand side is
finite.
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Let us also mention that this theorem remains true for some classes of multi-
plicative noises (see [Oda08]). The proof is based on the ideas used to establish
the exponential mixing in the case of a kick force, and therefore we confine our-
selves to a brief description of the coupling construction. The interested reader
will be able to fill in the details repeating the scheme applied for the kick force
model (cf. the paper [Shi08] in which the details are carried out for the complex
Ginzburg–Landau equation (0.4)).

Outline of the proof of Theorem 3.5.2. Let (ut,Pv) be the Markov process as-
sociated with (2.98) and let {u(t; v), t ≥ 0} be a solution of (2.98) issued
from v ∈ H at t = 0. We wish to construct a mixing extension for (ut,Pv);
cf. Definition 3.1.6. Let us fix a time T > 0, an integer N ≥ 1, and an arbitrary
function χ ∈ C∞(R) such that χ(t) = 0 for t ≤ 0 and χ(t) = 1 for t ≥ T .
Recall that PN and QN stand for the orthogonal projections in H onto the sub-
spaces HN and H⊥

N , respectively, where HN is the vector span of the first N
eigenfunctions of the Stokes operator. Given two points v, v′ ∈ H, we denote
by λ(v), λ′(v, v′) ∈ P(C(0, T ;H ×H)) the laws of the random variables

(
(u(t; v), ζ(t)), t ∈ [0, T ]

)
,

(
(u(t; v′) − χ(t)PN (v′ − v), ζ(t)), t ∈ [0, T ]

)
.

Let us define a mapping f : C(0, T ;H×H) → C(0, T ;HN ×H⊥
N ) by the formula

f
(
(u(t), ξ(t), t ∈ [0, T ])

)
=

(
(PNu(t),QNξ(t), t ∈ [0, T ])

)
.

In view of Exercise 1.2.30, there is a coupling (Υ (v, v′),Υ ′(v, v′)) for the pair of
measures (λ(v), λ′(v, v′)) such that

(
f(Υ (v, v′)), f(Υ ′(v, v′))

)
is a maximal cou-

pling for
(
f∗(λ(v)), f∗(λ′(v, v′))

)
. Thus, Υ and Υ ′ are H ×H-valued stochastic

processes on the interval [0, T ], and we denote by Υt(v, v
′) and Υ ′

t (v, v
′) the re-

striction of their first components to time t. We now define coupling operators
on the interval [0, T ] by the relations (cf. (3.60))

Rt(v, v
′) = Υt(v, v

′), R′
t(v, v

′) = Υ ′
t (v, v

′) + χ(t)PN (v′ − v), 0 ≤ t ≤ T.

Iteration of R and R′ enables one to construct a Markov RDS Φt = (Φt, Φ
′
t) in

the product space H ×H; cf. Section 3.2.2. Namely, we define (Ω,F ,P) as the
direct product of countably many copies of the probability space for the coupling
operators and denote by ω = (ω1, ω2, . . . ) points of Ω. Given v, v′ ∈ H, we now
set

Φt(ω)(v, v′) = Rt(v, v
′, ω1)

Φ′
t(ω)(v, v′) = R′

t(v, v
′, ω1)

}
for 0 ≤ t ≤ T ,

Φt(ω)(v, v′) = Rt(Φ(k−1)T (ω)(v, v′), ωk)

Φ′
t(ω)(v, v′) = R′

t(Φ(k−1)T (ω)(v, v′), ωk)

}
for (k − 1)T ≤ t ≤ kT ,

where k ≥ 2. It is straightforward to see that the Markov process (u t,Pv )
associated with the RDS Φt is an extension for (ut,Pv). It turns out that the
recurrence and exponential squeezing properties of Definition 3.1.6 hold for it,
so that we have a mixing extension for (ut,Pv). Application of Theorem 3.1.7
enables one to conclude the proof.
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As in the case of the Navier–Stokes system perturbed by random kicks,
Theorem 3.5.2 implies the exponential convergence of the probabilistic average
for an observable to its mean value with respect to the stationary distribution.
Namely, we have the following result that can be established by repeating the
arguments of the proof of Corollary 3.4.2.

Corollary 3.5.3. Under the hypotheses of Theorem 3.5.2, for any γ ∈ (0, 1]
and sufficiently small κ > 0 there are positive constants C and β such that, for
any f ∈ Cγ(H,w) with w(r) = eκr2 , we have

∣∣Eu f(ut) − (f, µ)
∣∣ ≤ Ce−βt|f |γ,ww(|u|2), t ≥ 0, u ∈ H. (3.133)

All the results of this chapter that concern the Navier–Stokes system were
established for a general bounded domain with smooth boundary. In the case of
periodic boundary conditions and white noise perturbations, one can go further
and prove the uniqueness and exponential mixing for any ν > 0 with a fixed
finite-dimensional external force. More precisely, let us consider the Navier–
Stokes equation (2.98) on the standard 2D torus. The following result was
established by Hairer and Mattingly [HM06, HM08, HM11]; see also the pa-
pers [AS05, AS06] by Agrachev and Sarychev dealing with the closely related
question of controllability of the Navier–Stokes system by a finite-dimensional
external force and the review [Kup10] by Kupiainen.

Theorem 3.5.4. In the setting of Section 3.3, assume that x ∈ T2 and h = 0.
Then there is an integer N ≥ 1 not depending on ν > 0 such that the conclusions
of Theorem 3.5.2 are true, provided that condition (3.131) holds.

The proof of this theorem is based on the Kantorovich functional technique
(see Sections 3.1 and 3.2) and some gradient estimates for the Markov semi-
group Pt. The latter, in turn, uses a version of Malliavin calculus developed by
Mattingly and Pardoux [MP06]. We refer the reader to the above-cited original
works for more details of the proof. Let us also mention the paper [AKSS07],
which proves that, for a large class stochastic nonlinear systems with finite-
dimensional noises, the corresponding solutions are such that projections of
their distributions to any finite-dimensional subspace are absolutely continuous
with respect to the Lebesgue measure.

3.5.3 Convergence for functionals on higher Sobolev spaces

Theorems 3.2.9, 3.3.1, 3.4.1, and 3.5.2 show that if a random perturbation acting
on the Navier–Stokes system is sufficienly non-degenerate, then for a large class
of continuous functionals on H, the ensemble average converges, as t → ∞,
to the space average with respect to the stationary distribution. At the same
time, many important characteristics of fluid flows, such as the enstrophy or
correlation tensors, are continuous functions on higher Sobolev spaces, but not
on H. It is therefore desirable to have similar convergence results for that type of
functionals. In this subsection, we prove that convergence of functionals defined
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on higher Sobolev spaces can easily obtained from we have already established,
provided that the external force is regular in the space variables. To simplify
the presentation, we confine ourselves to the case of a torus with a spatially
regular white force.

We thus consider Eq. (2.98) on T2 and assume that, for some integer k ≥ 1,
we have

h ∈ V k, Bk =

∞∑

j=1

αk
j b

2
j <∞. (3.134)

For any integer m ≥ 0 and κ > 0, we define weight functions w(m)(r) = (1+r)m

and wρ(r) = eρr
2

.

Theorem 3.5.5. In addition to the hypotheses of Theorem 3.5.2, let us assume
that (3.134) holds for some integer k ≥ 1. Then for any γ ∈ (0, 1] and ρ > 0,
any integer m ≥ 0, and any functional f ∈ Cγ(V k, w(m)) we have

∣∣Eu f(ut) − (f, µ)
∣∣ ≤ Ce−βt|f |γ,w(m)wρ(|u|2), t ≥ 0, u ∈ H, (3.135)

where C and β are positive constants not depending on f .

For instance, if (3.134) holds with k = 1, then the result applies to the
enstrophy functional Ω(u) = 1

2 | curlu|22. Furthermore, if (3.134) holds with
k = 2, then convergence (3.135) is valid for the velocity correlation tensors

fn(u) = ui1(x1) · · ·uin(xn), (3.136)

where il ∈ {1, 2} and x1, . . . , xn ∈ T2. Or one can take for f a structure function
f(u) = |u(x+ ℓ) − u(x)|p with x ∈ T2, ℓ ∈ R2, and p ∈ N. .

To prove Theorem 3.5.5, we shall need the following lemma, which is of
independent interest and will also be used in Chapter 4.

Lemma 3.5.6. Suppose that (3.134) holds for some integer k ≥ 0. Then the
following assertions hold.

(i) For any γ ∈ (0, 1] and sufficiently small κ > 0 there exist positive con-
stants α ≤ γ and ρ such that Ptf ∈ Cα(H,wρ) for any f ∈ Cγ(H,wκ),
and the norm of the linear operator

Pt : Cγ(H,wκ) → Cα(H,wρ) (3.137)

is bounded uniformly on any compact interval [0, T ]. Moreover, the con-
stants α and ρ can be chosen in such a way that ρ→ 0 as κ → 0.

(ii) For any integerm ≥ 0 and any γ ∈ (0, 1] and ρ > 0, there is α ∈ (0, γ] such
that Ptf ∈ Cα(H,wρ) for any f ∈ Cγ(V k, w(m)) and t > 0. Moreover,
the norm of the linear operator

Pt : Cγ(V k, w(m)) → Cα(H,wρ) (3.138)

is bounded uniformly on any compact interval [τ, T ], where τ = 0 for k = 0
and τ > 0 for k ≥ 1.
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Proof of Theorem 3.5.5. Let us note that, by the semigroup property, for t ≥ 1
we have

Euf(ut) = Ptf(u) =
(
Pt−1(P1f)

)
(u).

In view of Lemma 3.5.6 (ii), the function P1f belongs to Cα(H,wρ), where
ρ > 0 can be chosen arbitrarily small. Applying Corollary 3.5.3 to P1f , we see
that

∣∣Euf(ut) − (f, µ)
∣∣ =

∣∣(Pt−1(P1f)
)
(u) − (P1f, µ)

∣∣

≤ Ce−β(t−1)|P1f |α,wρ
wρ(|u|2).

Since operator (3.138) is continuous, the right-hand side of this inequality can
be estimated by that of (3.135).

Proof of Lemma 3.5.6. (i) Let us fix arbitrary constants γ ∈ (0, 1] and κ > 0
and a functional f ∈ Cγ(H,wκ) with norm |f |wκ ,γ ≤ 1. The continuity of
operator (3.137) and the uniform boundedness of its norm will be established if
we show that

∣∣Ptf(u)
∣∣ ≤ C eρ|u|

2
2 , (3.139)

∣∣Ptf(u) −Ptf(v)
∣∣ ≤ C |u− v|α2 ebt+ρ(|u|22+|v|22), (3.140)

where u, v ∈ H, 0 ≤ t ≤ T , and b, C are some positive constants depending only
on γ and κ. Inequality (3.139) with ρ = κ follows immediately from (2.125). To
prove (3.140), let us denote by ut and vt the trajectories of (2.98) issued from
the initial points u and v, respectively. Then, by (2.54), the difference ut − vt
satisfies the inequality

|ut − vt|2 ≤ |u− v|2 exp
(
C1

∫ t

0

‖us‖21ds
)
, t ≥ 0. (3.141)

Now note that, for any α ∈ (0, γ], we have

∣∣f(ut) − f(vt)
∣∣ ≤ |ut − vt|γ2

(
wκ(|ut|2) + wκ(|vt|2)

)

≤ C2 |ut − vt|α2
(
w2κ(|ut|2) + w2κ(|vt|2)

)
. (3.142)

Combining inequalities (3.141) and (3.142) and choosing α ≤ γ so small that
αC1 ≤ 2κν, we derive

∣∣Ptf(u) −Ptf(v)
∣∣ ≤ E

∣∣f(ut) − f(vt)
∣∣ ≤ C3 |u− v|α2 Ee2κξt , (3.143)

where we set

ξt = |ut|22 + |vt|22 + ν

∫ t

0

‖us‖21ds.

Inequality (2.130) implies that

Pu{ξt ≥ |u|22 + |v|22 + 2B0t+ z} ≤ e−cz, t ≥ 0, z ∈ R,
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where c > 0 does not depend on t, z and u, v ∈ H. Therefore, if 0 < ε < c, then

E eεξt ≤ C4 exp
(
2cB0t+ c(|u|22 + |v|22)

)
.

Hence, if 2κ ≤ ε, then

E e2κξt ≤
(
E eεξt

)2κ/ε ≤ C4 exp
(
bt+ ρ(|u|22 + |v|22)

)
,

where b = 4cκB0/ε and ρ = 2κc/ε. Comparing this with (3.143), we arrive
at (3.140). The explicit form of the constant ρ implies that it goes to zero
with κ.

(ii) We shall confine ourselves to proving the required properties under a
slightly more restrictive condition. Namely, we shall assume that (3.134) holds
with k replaced by k+ 1. The proof in the general case is based on an estimate
for the V k-norm of the difference between two solutions; cf. (2.55) for the case
k = 1. That estimate can be obtained by taking the scalar product in H
of (2.163) with the function 2tLku and carrying out some arguments similar to
those in Section 2.6. Since the corresponding estimates are technically rather
complicated, we do not present them here, leaving the proof of assertion (ii) in
full generality to the reader as an exercise.

We need to show that if f ∈ Cγ(V k, w(m)) is a functional whose norm does
not exceed 1, then inequalities (3.139) and (3.140) hold for t ∈ [τ, T ] with some
positive constants C and b. The first of them follows immediately from (2.138).
To prove the second, we use the interpolation inequality (1.7) and the Hölder
continuity of f to write

∣∣f(ut) − f(vt)
∣∣ ≤ ‖ut − vt‖γk

(
w(m)(‖ut‖k) + w(m)(‖vt‖k)

)

≤ C5 |ut − vt|α2
(
1 + ‖ut‖k+1 + ‖vt‖k+1

)m+1
,

where α ∈ (0, γ
k+1 ] is arbitrary, and we keep notation used in the proof of (i).

Combining this with (3.141), we derive

∣∣Ptf(u) −Ptf(v)
∣∣ ≤ E

∣∣f(ut) − f(vt)
∣∣

≤ C5 |u− v|α2 E

{(
1 + ‖ut‖k+1 + ‖vt‖k+1

)m+1
exp

(
αC1

∫ t

0

‖us‖21ds
)}
.

Applying Schwarz’s inequality to the expectation, using (2.138) with k and m
replaced by k + 1 and m + 1, and repeating the argument used in the proof
of (i), we see that (3.140) holds for sufficiently small α > 0. This completes the
proof of the lemma.

3.5.4 Mixing for Navier–Stokes equations perturbed by a

compound Poisson process

In this section, we consider the Navier–Stokes system(3.84) in which η is the time
derivative of a compound Poisson process (2.68). It is straightforward to check
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that a solution of (3.84), (2.68) satisfies a deterministic Navier–Stokes system
between two consecutive random times tk−1 and tk, while at the point t = tk
it has a jump of size ηk. Let us set Tω = {tk(ω), k ≥ 1}. The following result
is a consequence of the existence and uniqueness of a solution for the Navier–
Stokes system and the well-known property of independence of increments for
a compound Poisson process.

Exercise 3.5.7. Show that, for any u0 ∈ H, problem (3.84), (2.68) has a unique
solution u(t, x) issued from u0 whose almost every trajectory belongs to the
space C(R+ \ Tω;H) ∩ L2

loc(R+;V ) and can be chosen to be right continuous
with left limits existing at the points tk. Prove also that the corresponding
solutions form a Markov process in H.

Let us denote by Pt and P∗
t the Markov semigroups associated with (3.84),

(2.68). The following result on existence, uniqueness, and polynomial mixing
of a stationary measure was established by Nersesyan [Ner08] in the case of
the complex Ginzburg–Landau equation, which is technically more complicated
than the 2D Navier–Stokes system.

Theorem 3.5.8. Assume that the random kicks ηk satisfy the hypotheses im-
posed in Theorem 3.2.9. Then for any ν > 0 there is an integer N ≥ 1 such
that if bj 6= 0 for j = 1, . . . , N , then the following assertions hold.

Existence and uniqueness : The semigroup P∗
t has a unique stationary dis-

tribution µ.

Polynomial mixing : For any p ≥ 1 there is a constant Cp > 0 such that for
any function f ∈ Lb(H) we have

|Ptf(u) − (f, µ)| ≤ Cp t
−p(1 + |u|22)‖f‖L, t ≥ 0.

We confine ourselves to outlining the main idea of the proof, referring the
reader to the original work [Ner08] for the details. Let us set ũk = u(tk) and
note that

ũk = Sτk(ũk−1) + ηk, k ≥ 1. (3.144)

It turns out that the trajectories {ũk} form a Markov chain in H, whose proper-
ties are rather similar to those of the RDS (3.50) with unbounded8 kicks. Using
the ideas of Section 3.4, it is possible to prove that (3.144) has a unique station-
ary measure µ̃, which is mixing faster than any negative degree of k. Once this
property is established, one can go back to the original problem and prove the
uniqueness and polynomial mixing of a stationary measure µ for it. Moreover,
the measures µ and µ̃ are linked by the following Khas’minskii relation:

(f, µ) = (E τ1)−1 Eµ̃

∫ τ1

0

f(ut) dt, f ∈ Cb(H). (3.145)

8Note that even though the kicks ηk are bounded, in the case when they are non-zero
almost all trajectories of (3.144) are unbounded in H. This is due to the fact that on any
finite interval interval the system can receive arbitrarily large number of kicks.
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Exercise 3.5.9. Prove that if µ̃ is a stationary measure for (3.144), then the
measure µ defined by (3.145) is stationary for the Markov process associated
with (3.84), (2.68).

3.5.5 Description of some results on uniqueness and mix-

ing for other PDE’s

The methods developed in this chapter for proving the uniqueness of a stationary
measure and exponential mixing apply, roughly speaking, to random perturba-
tions of any dissipative PDE with a finite-dimensional attractor. Let us describe
briefly some results concerning the complex Ginzburg–Landau equation:

u̇− (ν + i)∆u+ (α+ iλ)|u|2pu = h(x) + η(t, x), u
∣∣
∂Q

= 0. (3.146)

Here ν > 0, α ≥ 0, λ > 0, and p > 0 are some parameters, Q ⊂ Rd is a bounded
domain with smooth boundary, h is a deterministic function, and η is a random
force from one of the classes described in Section 2.2. We thus consider only
the case when the conservative term i|u|2pu is defocusing. In this case, the
Cauchy problem for (3.146) is well posed in H1

0 = H1
0 (Q;C) under the following

assumptions on the parameter p:

p <∞ for d = 1, 2, p ≤ 2

d− 2
for d ≥ 3. (3.147)

The behaviour of solutions for (3.146) heavily depends on whether the pa-
rameter α is positive or not. Roughly speaking, when α > 0, the dissipative
term α|u|2pu compensates for the strong nonlinear effects due to the conserva-
tive term, and the uniqueness of a stationary measure and exponential mixing
can be established under essentially the same hypotheses. On the other hand,
without strong nonlinear dissipation (i.e., for α = 0), these properties are not
known to hold, unless either the random perturbation is bounded or the pa-
rameter p satisfies much more restrictive conditions. Let us discuss the latter
situation in more details, referring the reader to the papers [Hai02b, Oda08]
for the easier case of equations with a strong nonlinear dissipation. Note that
Eq. (3.146) with α = 0 is a stochastic PDE with a conservative nonlinearity and
a linear damping. So this is an analogue of the main topic of this book—the
stochastic Navier–Stokes system.

We assume that p satisfies the following inequalities (cf. (3.147)):

p ≤ 1 for d = 1, p < 1 for d = 2, p ≤ 2

d
for d ≥ 3. (3.148)

Concerning the external force, we suppose that h ∈ H1(Q;C) and η(t, x) is a
random process of the form (2.66), where {bj} ⊂ R is a sequence decaying faster
than every negative degree of j, {ej} is an eigenbasis for the Dirichlet Laplacian
in Q, and {βj = β1

j + iβ2
j } is a sequence of independent complex Brownian

motions. A proof of the following result can be found in [Shi08].
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Theorem 3.5.10. Under the above hypotheses, assume that α = 0 and bj 6= 0
for all j ≥ 1. Then for any ν > 0 and λ > 0 the Markov process associated
with (3.146) has a unique stationary measure µ ∈ P(H1

0 ). Moreover, for any
function f ∈ Lb(L

2(Q;R)) and any solution u(t) for (3.146), we have

|Ef(u(t)) − (f, µ)| ≤ Ce−γt‖f‖L
(
1 + E|u(0)|22

)
, t ≥ 0,

where C and γ > 0 are universal constants.

A brief discussion on other results concerning the uniqueness and mixing for
various classes of randomly forced PDE’s can be found in the section Notes and
comments at the end of this chapter.

3.5.6 An alternative proof of mixing for kick force models

In Section 3.2, we established the uniqueness of a stationary distribution and
the exponential mixing for the Markov chain defined by (3.50). The proof
presented their is based on a coupling argument which enabled one to establish
a contraction in a space of measures. In this section, we outline an alternative
proof of the uniqueness and mixing, which is based on a Lyapunov–Schmidt
reduction and a version of the Ruelle–Perron–Frobenius theorem. To simplify
the presentation, we impose more restrictive hypotheses on the system than in
Section 3.2; however, essentially the same proof works in the general case.

We consider the discrete-time RDS (3.50), in which S : H → H is a locally
Lipschitz compact mapping in a Hilbert space H with a norm ‖ · ‖ and {ηk} is
a sequence of i.i.d. random variables in H supported by a compact subset. We
assume that

‖S(u)‖ ≤ q ‖u‖ for all u ∈ H, (3.149)

where q < 1 does not depend on u. Then, for a sufficiently large R > 0,
the ball BH(R) is an invariant absorbing set for (3.50). It follows that the
RDS (3.50) has a compact absorbing set X ⊂ BH(R), and we can confine our
consideration to X. We assume, in addition, that there is a constant γ < 1
and a projection P : H → H with a finite-dimensional range E ⊂ H such
that inequality (3.55) holds with A = BH(r) and r = R/(1 − q), the random
variables (I −P)ηk are almost surely zero, and the law of Pηk has a C1-smooth
density ρ with respect to the Lebesgue measure on E such that ρ(0) > 0. Let us
denote by Pk(u,Γ) the transition function of the Markov chain (3.50) restricted
to X and by Pk and P∗

k the corresponding Markov semigroups. Our aim is to
establish the following result.

Theorem 3.5.11. Under the above hypotheses, there is a unique stationary
distribution µ ∈ P(X) for P∗

k, and for any λ ∈ P(X) we have

‖P∗
kλ− µ‖∗L → 0 as k → ∞. (3.150)

Existence of a stationary measure is a consequence of the Bogolyubov-Krylov
argument (see Section 2.5.2). We now outline the proof of the uniqueness under
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the additional hypothesis that (I − P)ηk = 0 almost surely. It is divided into
three steps.

Step 1: Lyapunov–Schmidt reduction. Let us consider the projection of
Eq. (3.50) to the orthogonal complement of E:

wk = QS(vk−1 + wk−1). (3.151)

Here Q = I − P, vk = Puk, and wk = Quk. We denote by X and Y the spaces
of sequences v = (vk, k ∈ Z−) and w = (wk, k ∈ Z−) with vk ∈ BE(R) and
wk ∈ BE⊥(qr), endowed with the metric

dX (u1,u2) = sup
k≤0

(
eαk‖u1k − u2k‖

)
, u

i = (uik, k ∈ Z−),

where α > 0 is such that γeα < 1. Using the contraction mapping principle, it is
straightforward to prove that for any v ∈ X there is a unique w := W(v) ∈ Y

satisfying (3.151) for each k ≤ 0. Moreover, the mapping W : X → Y is
globally Lipschitz-continuous. (These properties are essentially a consequence
the Foiaş–Prodi estimates discussed in Section 2.1.8.)

Let us define a Markov RDS in X by the formula

v
k =

(
v
k−1,PS(vk−1

0 + W(vk−1)) + ηk
)
, (3.152)

where W = W(v) stands the zeroth component of W(v), and given two el-
ements v = (vk, k ∈ Z−) ∈ X and v ∈ BE(R), we write (v , v) for the se-
quence (. . . , v−1, v0, v) ∈ X . Given a stationary measure µ for P∗

k, we denote
by µ ∈ P(X ) a unique law satisfying the relation

µ
(
{(vk, k ∈ Z−) ∈ X : (v−l, . . . , v0) ∈ Γ}

)

=

∫

Γ̃

µ(du−l)P1(u−l, du1−l) . . . P1(u1, du0) for any Γ ∈ B(H l+1).

Here Pk(u, ·) is the transition function of the family of Markov chains corre-
sponding to (3.50), and

Γ̃ = {(u−l, . . . , u0) ∈ H l+1 : (Pu−l, . . . ,Pu0) ∈ Γ}.

In other words, µ is the restriction to Z− of the law for the projection to E of
a stationary trajectory of (3.50) with distribution µ. The following proposition
establishes a relationship between (3.50) and (3.152). Its proof can be found
in [KS00].

Proposition 3.5.12. Let µ ∈ P(H) be a stationary measure for P∗
k. Then µ

is a stationary measure for (3.152).

Thus, the uniqueness of a stationary measure for P∗
k will be established if

we establish this property for the Markov chain (3.152). In the next step, we
formulate an abstract result that gives a sufficient condition for the uniqueness
and mixing of a stationary measure for a Markov semigroup on a compact space.
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Step 2: Ruelle–Perron–Frobenius type theorem. Let X be a compact metric
space and let Pk(v ,Γ) be a Markov transition function on X . We denote
by Pk : C(X ) → C(X ) and P

∗
k : P(X ) → P(X ) the corresponding Markov

semigroups. Recall that a family C ⊂ C(X ) is said to be determining if any
two measures µ,ν ∈ P(X ) satisfying the relation (f,µ) = (f,ν) for all f ∈ C
coincide. The following result gives a sufficient condition for the uniqueness and
mixing for a stationary measure.

Theorem 3.5.13. Suppose that the transition function satisfies the following
two hypotheses.

Uniform Feller property. There is a determining family C such that for any
f ∈ C the sequence {Pkf, k ≥ 0} is uniformly equicontinuous.

Uniform recurrence. There is v̂ ∈ X such that for any r > 0 one can find
an integer m ≥ 1 and a constant p > 0 for which

Pk(u , BX (v̂, r)) ≥ p for k ≥ m and all u ∈ X . (3.153)

Then P
∗
k has a unique stationary measure µ ∈ P(X ), and for any f ∈ C(X ),

we have
Pkf → (f,µ) as k → ∞ uniformly on X . (3.154)

This theorem has an independent interest, and its proof is given at the end
of this subsection. We now show how to apply it in our situation.

Step 3: Verification of the hypotheses. The uniform recurrence condition is
a straightforward consequence of the fact that u = 0 is a globally stable fixed
point for the deterministic (nonlinear) semigroup obtained by iterations of S
and the fact that the random variables ηk are small with a positive probability.
The latter follows from the inequality ρ(0) > 0. To prove the uniform Feller
property, we note that the transition function Pk(v , ·) for the Markov chain
associated with (3.152) is such that

Pk(v ,Γ) =

∫

Γ

0∏

l=1−k

ρ(zl − F (v , z1−k, . . . , z−l−1) dz1−k . . . dz0, (3.155)

where Γ ⊂ Ek+1 is an arbitrary Borel subset, F (v) = PS(v0 + W(v)) for
v = (vm,m ∈ Z−), and

Γ = {v = (vm,m ∈ Z−) : (v−k, . . . , v0) ∈ Γ}.

Let us denote by C the space of functions f ∈ C(X ) that depend on finitely
many components. It follows from (3.155) that if a function f ∈ C depends only
on v−N , . . . , v0, then

Pkf(v) =

∫

Ek

0∏

l=1−k

ρ(zl − F (v , z1−k, . . . , zl−1))f(z−N , . . . , z0) dz1−k . . . dz0.
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Since the mapping W is Lipschitz continuity, so is F , and the above formula
readily gives uniform equicontinuity of the family {Pkf, k ≥ 0} for any f ∈ C.

Further analysis shows that the original and the reduced systems are equiv-
alent, and therefore the convergence to the stationary measure for (3.152) im-
plies (3.150). We refer the reader to the original work [KS00] for more details
on this subject.

Proof of Theorem 3.5.13. Existence of a stationary measure follows immedi-
ately from the compactness of X and the Bogolyubov–Krylov argument. To
prove the uniqueness, it suffices to show that if µ ∈ P(X ) is a stationary dis-
tribution, then (3.154) holds for any f ∈ C. Indeed, if (3.154) is proved and
µ,ν ∈ P(X ) are two stationary measures, then (f,µ) = (f,ν) for any f ∈ C.
Since C is a determining family, we conclude that µ = ν.

Suppose now that µ ∈ P(X ) is a stationary measure. Let f ∈ C be an
arbitrary function. We wish to prove (3.154). There is no loss of generality in
assuming that 0 ≤ f ≤ 1. It follows from the uniform Feller property that Pknf
converges uniformly to a limit g ∈ C(X ) for some sequence kn → ∞. We claim
that g must be constant. If this assertion is proved, then the obvious relation
(P1h,µ) = (h,µ), which holds for any h ∈ C(X ), implies that the constant
must be equal to (f,µ), whence we conclude that the whole sequence {Pkf}
converges to (f,µ).

Suppose that g 6≡ C. We can assume that mn = kn+1 − kn → ∞ as n→ ∞.
It is easy to see that Pmng → g uniformly on X . Since g is not constant,
then g(v̂) (where v̂ is defined in the uniform recurrence condition) is either
smaller than the maximum of g or greater than the minimum of g. Assume that
the first case is true. Denoting by u ∈ X a point where g attains its maximum,
we can find positive constants δ and r such that

g(u) ≥ g(z ) + δ for z ∈ BX (v̂, r). (3.156)

We now write

Pmn
g(u) =

∫

X

Pmn
(u , dz )g(z )

=

∫

BX (v̂,r)

Pmn(u , dz )g(z ) +

∫

Bc
X
(v̂,r)

Pmn(u , dz )g(z ).

Using (3.156), we derive

Pmn
g(u) ≤ Pmn

(u , BX (v̂, r))(g(u) − δ) + Pmn
(u , Bc

X (v̂, r))g(u)

≤ g(u) − δPmn
(u , BX (v̂, r)). (3.157)

Since mn → ∞, inequality (3.153) implies that

Pmn
g(u) ≤ g(u+) − δp for n≫ 1. (3.158)

Passing to the limit as n → ∞, we arrive at a contradiction. This completes
the proof of the theorem.
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3.6 Appendix: some technical proofs

In this section, we have compiled some relatively difficult proofs that are not of
primary importance. The reader not interested in technical details may safely
skip this section.

3.6.1 Proof of Lemma 3.3.11

Compared to the case of H1-regular external force, the additional difficulty is
that the resolving operator is not continuous as a mapping defined on the space
of H-valued paths. To overcome this problem, we first rewrite the Navier–Stokes
system as an equation with random coefficients and then repeat essentially the
same scheme, using the continuous dependence of solutions on coefficients. The
proof is divided into three steps.

Step 1. Let us recall a decomposition of u(t; v) described in Section 2.4. We
write u(t; v) = z(t) + ṽ(t), where z(t) is the solution of Stokes’ equation (2.100)
with zero initial condition and

ṽ(t) = Rt(v, z)

is the solution of problem (2.111), (2.112); see Proposition 2.4.5. Recall that the
space XT = C(0, T ;H) ∩ L2(0, T ;V ) and denote by ẊT the space of functions
in XT vanishing at t = 0. We claim that the following two properties hold.

(a) For any û ∈ V there is a continuous operator Zû : H → Ẋ1, v 7→ Zû(v; t),
that is uniformly Lipschitz on bounded subsets and is such that the solu-
tion of (2.100) with η = ∂tZû + νLZû equals û at t = 1:

R1(v, Zû(v)) + Zû(v; 1) = û. (3.159)

(b) Let O ⊂ Ẋ1 be any neighbourhood of the origin and let K ⊂ Ẋ1 be a
compact set. Then

inf
ẑ∈K

P{z − ẑ ∈ O} > 0. (3.160)

Taking these properties for granted, let us complete the proof of (3.101). With-
out loss of generality, we can assume that û ∈ V . Since the operator Z is
continuous, there is a constant ρ > 0 such that the image of the compact
set BV (R) ⊂ H under Z is contained in the ball BẊ1

(ρ). The Lipschitz prop-
erty on bounded subsets implies that

|R1(v, z1) −R1(v, z2)|2 ≤ C ‖z1 − z2‖X1

for any v ∈ BV (R) and z1, z2 ∈ BẊ1
(ρ), where C ≥ 1 is a constant depending

only on R. In particular, taking z2 = Zû(v), we see that

|R1(v, z1) −R1(v, Zû(v))|2 ≤ ε

2
for ‖z1 − Zû(v)‖X1 ≤ ε

2C
.
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It follows from property (a) that

|u(1; v) − û|2 ≤ |z(1) − Zû(v; 1)|2 + |R1(v, z1) −R1(v, Zû(v))|2

Combining the last two inequalities, we conclude that

P{|u(1; v)− û|2 < ε} ≥ P

{
‖z−Zû(v)‖X1

<
ε

2C

}
for any v ∈ BV (R). (3.161)

Applying property (b) in which K = Zû(BV (R)) and O ⊂ Ẋ1 is the open ball of
radius ε

2C centred at zero, we see that the right-hand side of (3.161) is separated
from zero uniformly in v ∈ BV (R). Thus, to complete the proof of (3.101), it
suffices to establish properties (a) and (b).

Step 2: Proof of (a). Let w̃ ∈ H be the solution of the problem

∂tw̃ + νLw̃ = 0, w̃(0) = v.

For any v ∈ H, define a function w ∈ H by the relation w(t) = χ(t)w̃(t) + tû,
where χ ∈ C∞(R) is an arbitrary function such that χ(t) = 1 for t ≤ 0 and
χ(t) = 0 for t ≥ 1. Then w(0) = v, w(1) = û, and

η := ∂tw + νLw +B(w) − h ∈ L2(0, 1;V ∗).

Moreover, η is uniformly Lipschitz continuous in v ∈ H on bounded subsets as
a function with range in L2(0, 1;V ∗). Let us define Zû(v) ∈ Ẋ1 as the unique
solution of the problem

Ż + νLZ = η(t), Z(0) = 0.

Then
w(t) = Zû(v; t) + Rt(v, Zû(v)),

whence we conclude that (3.159) holds. The Lipschitz continuity of Zû(v) follows
from a similar property for the mapping v 7→ η.

Step 3: Proof of (b). Let us note that the process z(t) can be written in the
form (cf. (2.101))

z(t) =

∞∑

j=1

bj

∫ t

0

e−αjν(t−s)dβj(s) ej(x), 0 ≤ t ≤ 1,

where {ej} stands for the family of normalised eigenfunctions of the Stokes
operator, αj denotes the eigenvalue corresponding to ej , and the series above

converges in L2(Ω; Ẋ1). We claim that the support of the law for the process
{z(t), 0 ≤ t ≤ 1} regarded as a random variable in Ẋ1coincides with the entire
space. To prove this, it suffices to show that, for any ẑ ∈ C(0, 1;V ) vanishing
at zero and any ε > 0, we have

P
{
‖z − ẑ‖X1

< ε
}
> 0. (3.162)
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Let us fix a function ẑ and write it in the form

ẑ(t) =

∞∑

j=1

ẑj(t)ej(x),

where ẑj(t) = 〈z(t), ej〉, and the series converges in V uniformly in t ∈ [0, 1].
For any integer N ≥ 1, we have

z(t) − ẑ(t) = DN (t) + rN (t) + r̂N (t), (3.163)

where we set

DN (t) =

N∑

j=1

(
bj

∫ t

0

e−αjν(t−s)dβj(s) − ẑj(t)

)
ej(x),

rN (t) =

∞∑

j=N+1

bj

∫ t

0

e−αjν(t−s)dβj(s) ej(x),

r̂N (t) =

∞∑

j=N+1

ẑj(t)ej(x).

Let us estimate each term on the right-hand side of (3.163). Since {ej} is an
orthogonal system with respect to the scalar product 〈Lu, u〉1/2 and ‖ej‖2V = αj

for any j ≥ 1, we have

‖DN (t)‖V ≤ √
αN max

1≤j≤N

(
sup

0≤t≤1
bj

∣∣∣
∫ t

0

e−αjν(t−s)dβj(s) − ẑj(t)
∣∣∣
)
.

Since ẑj is a continuous function on [0, 1] vanishing at zero, combining this
inequality with Proposition 7.4.2, we see that

P

{
sup

0≤t≤1
‖DN (t)‖V <

ε

3

}
> 0 for any N ≥ 1. (3.164)

Now let PN : H → H be the orthogonal projection onto the vector span of
e1, . . . , eN . Then one can find an integer N1(ε) ≥ 1 such that

sup
0≤t≤1

‖r̂N (t)‖V = sup
0≤t≤1

‖(I − PN )ẑ(t)‖V ≤ ε

3
for N ≥ N1(ε).

Furthermore, the technique developed in the proof of Proposition 2.4.2 (see
derivation of (2.109)) enables one to show that

E ‖rN‖2X1
= E ‖(I − PN )z‖2X1

→ 0 as N → ∞.

Therefore there is an integer N2(ε) ≥ 1 such that

P

{
‖rN‖X1 ≤ ε

3

}
> 0 for N ≥ N2(ε).
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Combining the above estimates and noting that the random variablesDN and rN
are independent, we arrive at the required inequality (3.162).

We are now ready to prove (3.160). Since suppD(z) = X1, for any neigh-
bourhood of zero O ⊂ Ẋ1 the function p(ẑ) = P{z − ẑ ∈ O} is positive at
any point of Ẋ1. Furthermore, in view of a well-known property of the weak
convergence of measures (e.g., see Theorem 11.1.1 in [Dud02]), p is lower semi-
continuous. It follow that p is separated from zero on any compact subset of Ẋ1.
This completes the proof of Lemma 3.3.11.

3.6.2 Recurrence for Navier–Stokes equations with un-

bounded kicks

This section is devoted to the proof of Proposition 3.4.3. For any d > 0, we
introduce the stopping time

τd = inf{k ≥ 0 : uk ∈ Bd}.

We wish to show that, for any u ∈ H and d > 0, the random variable τd is
Pu -almost surely finite, and there are positive constants δ and C > 0 such that

Eu exp(δτd) ≤ C(1 + |u |), (3.165)

where |u | = |u|2 + |u′|2.
As in the case of the Navier–Stokes system with spatially regular white

noise, inequality (3.165) is a consequence of the following two lemmas (cf. Sec-
tion 3.3.2).

Lemma 3.6.1. There is R∗ > 0 such that

Pu{τR <∞} = 1 for any u ∈ H , R ≥ R∗. (3.166)

Moreover, there are positive constants K and γ such that

Eu exp(γτR) ≤ 1 +KR−1|u | for any u ∈ H , R ≥ R∗. (3.167)

Lemma 3.6.2. For any positive constants B, R, d, and ν there is p > 0 and
integers N0 ≥ 1 and m ≥ 1 such that if (3.121) holds, then

Pu{um ∈ Bd} ≥ p for any u ∈ BR. (3.168)

Once these lemmas are established, inequality (3.165) will follow by exactly
the same argument as in Section 3.3.2. Thus, we shall confine ourselves to the
proof of the above lemmas.

Proof of Lemma 3.6.1. We use a well-known argument based on the existence
of a Lyapunov function. It follows from Proposition 2.3.3 that

Eu |uk| ≤ q
(
|u | ∨R∗

)
for any u ∈ H , (3.169)
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where q < 1 and R∗ > 0 are some constants not depending on u . Let us fix any
R ≥ R∗ and set

pk(u) = Eu

(
I{τR>k}|uk|

)
.

The Markov property and inequality (3.169) imply that

pk+1(u) ≤ Eu

(
I{τR>k}(Eu |uk+1| |Fk)

)
= Eu

(
I{τR>k}(Ev |u1|)

∣∣
v=uk

)

≤ Eu

(
I{τR>k} q(|uk| ∨R∗)

)
= q pk(u),

where we used the fact that |uk| > R ≥ R∗ on the set {τR > k}. Iterating the
above inequality and noting that p0(u) ≤ |u |, we obtain

pk(u) ≤ qk|u | for all k ≥ 0, u ∈ H .

It follows that

Pu{τR > k} ≤ R−1Eu

(
I{τR>k}|uk|

)
≤ R−1qk|u |, (3.170)

whence we conclude that (3.166) holds.
We now prove (3.167). Let γ > 0 be so small that eγq < 1. Then, us-

ing (3.166) and (3.170), we derive

Eu exp
(
γτR

)
=

∞∑

k=0

Eu

(
I{τR=k} exp(γτR)

)

≤ 1 +

∞∑

k=1

eγkPu

{
τR > k − 1

}

≤ 1 +R−1|u |
∞∑

k=1

eγkqk−1.

The series on the right-hand side of this inequality converges in view of the
choice of γ, and we obtain (3.167).

Proof of Lemma 3.6.2. Step 1. Inequality (3.168) will be established if for any
constants R > d > 0 we find ε > 0 and q < 1 such that

P
{
|R(v, v′)|2 ∨ |R′(v, v′)|2 ≤

(
q(|v| ∨ |v′|)

)
∨ d

}
≥ ε for (v, v′) ∈ BR. (3.171)

Indeed, let us denote by G(v, v′) the event on the left-hand side of this inequality

and choose an integer m ≥ 1 so that qd < qmR ≤ d. Denoting B
(k) = BqkR,

k ≥ 0, we have B
(m) ⊂ Bd. Combining (3.171) with the Markov property, for

1 ≤ k ≤ m− 1 we derive

Pu{uk ∈ B
(k)} ≥ Pu

(
G(uk−1) ∩ {uk−1 ∈ B

(k−1)})

= Eu

(
I
B(k−1)(uk−1)Pu{G(uk−1) |Fk−1}

)

= Eu

(
I
B(k−1)(uk−1)P

(
G(v, v′)

)∣∣
(v,v′)=uk−1

)

≥ εPu{uk−1 ∈ B
(k−1)}.
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A similar argument shows that

Pu{um ∈ Bd} ≥ εPu{um−1 ∈ B
(m−1)}

Combining the above inequalities, we see that

Pu{um ∈ Bd} ≥ εmPu{u0 ∈ B
(0)} = εm.

This implies inequality (3.168) with p = εm.

Step 2. We now prove (3.171). For δ > 0, we set

Aδ =
{
PNR(v, v′) = PNR′(v, v′), |PNR(v, v′)|2 ≤ δ, |QNζ(v, v′)|2 ≤ δ

}
,

where ζ(v, v′) = R(v, v′) − S(v). Suppose that for any δ > 0 and a constant
ε′ = ε′(δ) > 0 we have

P(Aδ) ≥ ε′ for (v, v′) ∈ BR. (3.172)

In this case, using the regularising property of S and the Foiaş–Prodi estimate
(see Theorems 2.1.18 and 2.1.30), for any ω ∈ Aδ we derive

|R(v, v′)|2 ≤ |PNR(v, v′)|2 + |QNR(v, v′)|2
≤ δ + C1α

−1/2
N ‖S(v)‖1 + |QNζ(v, v′)|2

≤ 2δ + C2α
−1/2
N |v|2,

|R′(v, v′)|2 ≤ |R(v, v′)|2 + |R′(v, v′) −R(v, v′)|2
≤ 2δ + C2α

−1/2
N |v|2 + C3(R)α

−1/2
N |v − v′|2.

Combining these two inequalities, we obtain

|R(v, v′)|2 ∨ |R′(v, v′)|2 ≤ 2δ + C4(R)α
−1/2
N

(
|v|2 ∨ |v′|2

)
.

Choosing N ≥ 1 and δ > 0 so that C4(R)α
−1/2
N ≤ 1/2 and δ = d/6, we see that

the right-hand side of this inequality does not exceed
(
3
4 (|v|2 ∨ |v′|2)

)
∨ d. We

thus arrive at (3.171) with q = 3
4 .

Step 3. It remains to establish (3.172). The construction of (R,R′) implies
that QNζ is independent of (PNR,PNR′). Hence,

P(Aδ) ≥ P(A
(1)
δ )P(A

(2)
δ ), (3.173)

where we set

A
(1)
δ =

{
|QNζ(v, v′)|2 ≤ δ

}
,

A
(2)
δ =

{
|PNR(v, v′)|2 ≤ δ,PNR(v, v′) = PNR′(v, v′)

}
.

Since D(ζ(v, v′)) = D(η1), the conditions imposed on bj and D(ξjk) imply that

P(A
(1)
δ ) ≥ ε1(δ) > 0 for any δ > 0.
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Furthermore, recalling that the pair
(
PNR(v, v′),PNR′(v, v′)

)
is a maximal

coupling for (χv
N , χ

v′

N ), where χu
N = (PN )∗D(S(u)+η1), and using Lemma 1.2.26,

we derive
P(A

(2)
δ ) =

(
χv
N ∧ χv′

N

)(
BH(N)

(δ)
)
.

Now note that χu
N (dx) = p(x − PNS(u)) dx, where p stands for the density of

the law for PNη1 with respect to the Lebesgue measure on H(N) (see (3.83)).
Since p(x) > 0 almost everywhere, we conclude that

inf
(v,v′)∈BR

(
χv
N ∧ χv′

N

)(
BH(N)

(δ)
)
≥ ε2(δ) > 0 for any δ > 0.

The required inequality (3.172) follows now from (3.173).

3.6.3 Exponential squeezing for Navier–Stokes equations

with unbounded kicks

In this section, we establish Proposition 3.4.4. Its proof is divided into three
steps.

Step 1. For any M > 0, we define the stopping times

τ (M) = min
{
k ≥ 1 :

k∑

j=0

∫ T

0

(
‖St(uj)‖21 + ‖St(u

′
j)‖21

)
dt > M(k + 1)

}
,

σ(M) = τ (M) ∧ min{k ≥ 1 : PNuk 6= PNu
′
k}.

We claim that for any M > 0 there is an integer N ≥ 1 such that, for any d > 0
and an appropriate choice of the parameter c > 0 entering the definition of σ0,
relation (3.129) holds, that is, σ ≤ σ0 almost surely. Indeed, by the Foiaş–Prodi
estimate (2.62), on the set {σ(M) > k} we have

|uk − u′k|2 ≤
(
Cα

−1/2
N

)k
exp

(
C(M + 1)k

)
|u0 − u′0|2 ≤ 2d

(
CeC(M+1)α

−1/2
N

)k
.

Choosing c = 3d and N ≥ 1 so large that CeC(M+1)α
−1/2
N ≤ e−1, we see

that (3.129) is true.

Step 2. We now prove that, for sufficiently large M > 0 and N ≥ 1, the
stopping time σ(M) satisfies (3.32) – (3.34). To this end, it suffices to show
that

Pu{σ(M) = k} ≤ 2e−2k for k ≥ 1, u ∈ Bd. (3.174)

Indeed, if these relations are established, then

Pu{σ(M) = ∞} = 1 −
∞∑

k=1

Pu{σ(M) = k} ≥ 1 − 2
∞∑

k=1

e−2k > 0,

Eu

(
I{σ(M)<∞}e

σ(M)
)

=
∑

k=1

ekPu{σ(M) = k} = 2
∞∑

k=1

e−k <∞.
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Furthermore, by inequality (2.82), we have

Eu

(
I{σ(M)<∞}|uσ(M)|2

)
≤ Eu |u |2 + C1 ≤ 2d2 + C1, u ∈ Bd,

where C1 > 0 is a constant depending on E |η1|42 and
∑

k(Pu{σ(M) = k})1/2.
Thus, it remains to prove (3.174).

Step 3. Let us introduce the events

A(k) =
{
PNuk = PNu

′
k

}
, Ā(k) =

k⋂

l=1

A(l),

D(k) =
{ k∑

j=0

∫ T

0

(
‖St(uj)‖21 + ‖St(u

′
j)‖21

)
dt ≤M(k + 1)

}
.

We argue by induction on k ≥ 1. For k = 1, we have

{σ(M) = 1} ⊂ {τ (M) = 1} ∪A(1)c. (3.175)

Proposition 2.3.8 implies that if M > 0 is sufficiently large, then

Pu

{
τ (M) = 1

}
≤ e−2. (3.176)

Furthermore, since S : H → H is Lipschitz-continuous on bounded subsets (see
Proposition 2.1.25), we have

|S(v) − S(v′)|2 ≤ C2|v − v′| ≤ 2C2d for (v, v′) ∈ Bd.

Assertion (iii) of Lemma 3.2.6 now implies that

Pu{A(1)c} = Pu{PNuk 6= PNu
′
k

}
≤ C3(N)d ≤ e−2 for d≪ 1.

Combining this with (3.175) and (3.176), we obtain (3.174) with k = 1.

We now assume that k = m ≥ 2 and for 1 ≤ k ≤ m− 1 inequality (3.174) is
already established. It follows from the definition of σ(M) that (cf. (3.175))

{σ(M) = m} ⊂ {τ (M) = m} ∪B(m), (3.177)

where B(m) = Ā(m−1)∩A(m)c∩{τ (M) > m}. Let us estimate the probability
of the two events on the right-hand side of (3.177). Proposition 2.3.8 implies
that, for M ≫ 1, we have

Pu

{
τ (M) = m

}
≤ C4Q

me−δM(m+1) ≤ e−2m. (3.178)

Furthermore, using (3.174) with 1 ≤ k ≤ m− 1, for any u ∈ Bd we derive

Pu

{
Ā(m− 1) ∩D(m− 1)

}
≥ Pu

{
σ(M) ≥ m

}
≥ 1 − 2

m−1∑

k=1

e−2k ≥ 1

2
. (3.179)
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Therefore, since {τ (M) > m} ⊂ D(m− 1), we can write

Pu

(
B(m)

)
≤ Pu

{
Ā(m− 1) ∩A(m)c ∩D(m− 1)

}

≤ 2Pu

{
A(m)c | Ā(m− 1) ∩D(m− 1)

}
, (3.180)

where we used (3.179) to get the second inequality. By the Markov property,
the conditional probability Pu{A(m)c |Fm−1} depends only on um−1. The
construction of coupling operators and Lemma 3.2.6 imply that

Pu{A(m)c |Fm−1} ≤ C5(N)
∣∣S(um−1) − S(u′m−1)

∣∣
2
.

It follows from Theorem 2.1.30 and Remark 2.1.31 that, for N ≫ 1 and Pu -a.e.
ω ∈ Ā(m− 1) ∩D(m− 1),

∣∣S(um−1) − S(u′m−1)
∣∣
2
≤ 2d

(
Cα

−1/2
N

)m
eC(M+1)m ≤ C6d e

−2m.

Combining these two inequalities with (3.180), we see that

Pu

(
B(m)

)
≤ C7(N)d e−2m.

Choosing d ≪ 1 and evoking (3.177) and (3.178), we get the required inequal-
ity (3.174) with k = m. The proof of Proposition 3.4.4 is complete.

3.7 Relevance of the results for physics

The uniqueness of a stationary distribution and the convergence to this distri-
bution are very important for the statistical hydrodynamics. In the physical
literature, these two properties are usually postulated. For instance, in the clas-
sical book of G. K. Batchelor [Bat82], it is taken for granted that dynamical
systems with a large number of degrees of freedom, and with coupling between
these degrees of freedom, approach a statistical state which is independent (par-
tially, if not wholly) of the initial condition; see there pp. 6–7. The results of
this chapter rigorously prove this postulate for the periodic 2D turbulent flows
(with zero space average) and for flows in bounded 2D domains, driven by a
non-degenerate random forces.

Namely, we show that if in Eq. (0.1) the random force f(t, x) is a kick
force, or a white in time force, or a compound Poisson process (see Introduc-
tion and Section 2.2) and if it is non-degenerate, then Eq. (0.1) has a unique
stationary distribution µ, which is a measure in the space of divergence-free
vector fields {u(x)}. The distribution of every solution u(t, x) for (0.1) at time t
(which is a measure in the same function space) converges to µ exponentially
fast when t → ∞. The measure µ is one-smoother than the force f(t, x), re-
garded as a function of the space variables, and any functional g(u) is integrable
with respect to µ(du), unless g(u) grows at infinity very fast (i.e., faster than
exp(δ|u|22) with some fixed positive δ). So practically for any observable g(u)
and for any solution u(t) of (0.1) our results imply that the averaged in ensemble
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observable E g(u(t)) approaches
∫
g(u)µ(du) exponentially fast when the time t

goes to infinity, provided that the random force f is as above and is sufficiently
smooth in the x-variable. In particular, this is true if the observable g(u) is the
energy of a flow u, or its enstrophy, or the correlation tensor ui(x)uj(y) (where i
and j are 1 or 2, and x, y are any fixed points).

In the case of periodic boundary conditions when the flows u have zero space-
average, the stationary measure µ is space-homogeneous if so is the force f . In
this situation, we have

∫
g(u)µ(du) =

∫
〈g〉(u)µ(du),

where 〈g〉 is the space-averaged observable defined by

〈g〉(u) = (2π)−2

∫

T2

g(uy(·)) dy, uy(x) = u(x+ y)

(we assumed that both periods equal 2π). In particular, if g(u) is a linear
functional, then 〈g〉(u) = g〈u〉 = 0, so

∫
g(u)µ(du) = 0. For example, choosing

g(u) = uj(x) we get

∫
uj(x)µ(du) = 0 for j = 1, 2 and for any x.

That is, for the homogeneous turbulence the mean value of velocity, evaluated
at any fixed point, vanishes.

Notes and comments

The investigation of uniqueness of a stationary distribution for the Markov pro-
cess generated by the randomly forced 2D Navier–Stokes equation began in 1995
by the pioneering article of Flandoli and Maslowski [FM95]. The main result of
their paper is Theorem 3.5.1 of this section on uniqueness of a stationary distri-
bution and the mixing property in total variation norm. The proof in [FM95]
is obtained by adjusting Doob’s argument [Doo48] to the infinite-dimensional
system defined by the Navier–Stokes equations (3.84), under the crucial assump-
tion that the noise is a rough function of x (i.e. the coefficients bj decay to zero
very slowly). The Flandoli–Maslowski theorem was generalised in various direc-
tions. Ferrario [Fer97, Fer99] gave a simpler proof of Theorem 3.5.1, allowing for
more regular noises. Bricmont, Kupiainen, and Lefevere [BKL01] established
the uniqueness of a stationary measure and exponential mixing for the Navier–
Stokes system perturbed by a rough kick force. Goldys and Maslowski [GM05]
proved a similar result in the case of white noise force with low spatial regu-
larity. Da Prato, Debussche, Tubaro [DDT05], Barbu, Da Prato [BD07], and
Da Prato, Röckner, Rozovskii, Wang [DRRW06] studied the Burgers, magneto-
hydrodynamics and porous media equations in analogous settings. Eckmann,
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Hairer [EH01] and Hairer [Hai02a] considered a one-dimensional Ginzburg–
Landau equation with a mildly degenerate rough forcing and proved the ex-
ponential convergence to a unique stationary measure in the total variation
norm.

From the physical point of view, the roughness condition imposed on the
noise is not very natural, and much efforts were spent to remove it. In the
context of randomly forced PDE’s, a first result in this direction was obtained
by Sinai [Sin91]. He studied the Burgers equation on the real line, perturbed
by a white in time space-periodic random force. Sinai proved that there ex-
ists a space-periodic stationary measure which attracts distributions of a large
class of solutions (these solutions are not space-periodic, and the uniqueness
of a space-periodic stationary measure was not established). A few years later
Mattingly [Mat99], then a PhD student of Sinai, established that the 2D Navier–
Stokes system considered on the torus T2, with a large viscosity and spatially
regular white force, has a unique stationary measure, which attracts distribu-
tions of all solutions. 9

A first result on the uniqueness of a stationary measure for Navier–Stokes
equations with any positive viscosity and a smooth in x random force was ob-
tained by Kuksin and Shirikyan [KS00] (see also [KS01b, KS02b] for some fur-
ther developments). They proved Theorem 3.5.11, applicable to a large class
of dissipative PDE’s perturbed by a smooth random kick force which is non-
zero in sufficiently many modes. The proof is based on two key ingredients:
a Lyapunov–Schmidt reduction and a version of the Ruelle–Perron–Frobenius
theorem. The first of them is a well-known tool for studying dissipative PDE’s
and was used, for instance, in the theory of inertial manifolds. It is a con-
sequence of the Foiaş–Prodi estimates and enables one to reduce the Navier–
Stokes equations to a finite-dimensional system with memory (which may be
regarded as an abstract Gibbs system in the sense of Bowen [Bow75]). The sec-
ond ingredient provides a sufficient condition for the uniqueness of a stationary
measure for Markov semigroups. Various versions of this result were known ear-
lier (see [Rue68, LY94, Sza97]), however, the uniform Feller property introduced
in [KS00] was a crucial point and turned out to be useful in other situations; e.g.,
see [LS06]. The simple proof of the Ruelle–Perron–Frobenius theorem given in
Section 3.5.6 seems to be new. Next, Weinan E, Mattingly, Sinai [EMS01] and
Bricmont, Kupiainen, Lefevere [BKL02] studied the stochastic Navier–Stokes
system in the case when the space variables x belong to the torus and the
right-hand side is white noise in time. They showed that there is at most one
stationary measure. Moreover, it was established in [BKL02] that the distribu-
tions of solutions converge to the stationary measure exponentially fast. These
two works are similar to [KS00]: they also are based on the Lyapunov–Schmidt
reduction, followed by a study of the resulting finite-dimensional system with
memory. The papers [EMS01, BKL02] treat the case when the random force

9The large viscosity case is much simpler since, in this situation, inequality (2.130) implies
that any two solutions with non-random initial data converge exponentially fast almost surely;
cf. Exercise 2.5.9.
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has a large, but finite number of exited modes (so it is a random trigonometric
polynomial in x). Important contribution of [EMS01] to this field of research
is the introduction of Girsanov’s theorem as a tool for studying ergodicity of
stochastic PDE’s with spatially regular white noise.

A different approach for investigating mixing behaviour of randomly forced
PDE’s was developed by Kuksin and Shirikyan [KS01a], Mattingly [Mat02b],
Masmoudi and Young [MY02], and Hairer [Hai02b]. It is based on the concept of
coupling and enables one to obtain stronger results with shorter proofs. Namely,
it was established in [KS01a, KPS02, Kuk02b] that the Navier–Stokes system
perturbed by a bounded kick force is exponentially mixing. The approach pre-
sented in Sections 3.1.1 and 3.2 is taken from these articles. In particular,
the method of Kantorovich functional as tool to study mixing for stochastic
Navier–Stokes system was introduced in [KPS02, Kuk02b], while the Lipschitz-
dual distance as a suitable metric for convergence to a stationary distribution
in the context of randomly forced PDE’s was suggested in [KS01a]. These two
tools are now commonly used in works of this field. A different, but closely
related method was developed independently by Masmoudi and Young [MY02].
Mattingly [Mat02b] combined the coupling with a stopping time technique to
establish the exponential mixing for the Navier–Stokes system with periodic
boundary conditions and a random force which is a white noise in time and a
trigonometric polynomial in space of a large finite degree. Similar techniques
were used by Hairer [Hai02b] to study some parabolic PDE’s with nonlinear
dissipation. Various versions of the coupling argument were applied by Kuksin
and Shirikyan [KS02a] to prove the exponential mixing for the Navier–Stokes
system in a bounded domain with a spatially regular white noise of infinite di-
mension, by Shirikyan [Shi04] to study the Navier-Stokes system perturbed by
an unbounded kick force, and by Debussche and Odasso [DO05] to investigate a
1D Schrödinger equation with a linear damping. Further results on the problem
of mixing for various types of randomly forced PDE’s can be found in [Shi05a,
Shi06b, Ner08, Oda08, Shi08]. The presentation of Sections 3.1.2 and 3.1.3
follows essentially [Shi04, Shi05a, Shi08], and the proof of the stability property
of Section 3.3.3 is based on some ideas taken from [EMS01, Oda08]. We refer
the reader to the review papers [ES00, Kuk02a, Bri02, Mat03, Hai05, Shi05b]
for further discussions of the results on the uniqueness and mixing for stochastic
PDE’s with a sufficiently non-degenerate smooth noise.

All the above results concern the case when all determining modes of the
problem in question are perturbed by a random force. In particular, when
these results are applied to the Navier–Stokes system, in order to have a unique
stationary measure, one has to assume that the dimension of the random per-
turbation goes to infinity when the viscosity goes to zero; e.g;, every mode of
the random force is exited. An important question is whether one can prove
the uniqueness and mixing for finite-dimensional noises for any positive value of
the viscosity. A progress in this direction was achieved by Hairer and Mat-
tingly in 2006. Combining the method of the Kantorovich functional with
an infinite-dimensional Malliavin calculus (developed in [MP06]), they proved
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in [HM06, HM08, HM11] that if the problem is studied on the standard torus
and the deterministic part of the noise is zero, then the uniqueness of a station-
ary measure is true for a four-dimensional white-noise force and the exponential
convergence of other solutions to the stationary measure holds in the dual-
Lipschitz metric; see Theorem 3.5.4. Two key questions remain open in this
context. Namely, does a similar result hold when: (a) the deterministic part
of the external force is non-zero; (b) the random perturbation is not white in
time. Note that the answers to both questions are positive for a different type
of degenerate noises. Namely, it was proved recently by Shirikyan [Shi11a] that
the Navier–Stokes equations with a random perturbation supported by a given
subregion of the space domain possess the exponential mixing property under
some mild non-degeneracy assumptions. We also mention the work [AKSS07],
in which it is proved that, for a large class of low-dimensional random forces,
the support of the law D(u(t)) of a solution of the 2D Navier–Stokes system is
infinite-dimensional for any t > 0; see Section 6.3.1 for more details.



Chapter 4

Ergodicity and limiting

theorems

In this chapter, we study limiting theorems for the 2D Navier–Stokes system
with random perturbations. To simplify the presentation, we shall confine our-
selves to the case of spatially regular white noise; however, all the results remain
true for random kick forces. The first section is devoted to derivation of the
strong law of large numbers (SLLN), the law of iterated logarithm (LIL), and
the central limit theorem (CLT). Our approach is based on the reduction of the
problem to similar questions for martingales and an application of some gen-
eral results on SLLN, LIL, and CLT. In Section 4.2, we study the relationship
between stationary distribution and random attractors. Roughly speaking, it
is proved that the support of the random probability measure obtained by the
disintegration of the unique stationary distribution is a random point attractor
for the RDS in question. The third section deals with the stationary distribu-
tions for the Navier–Stokes system perturbed by a random force depending on
a parameter. We first prove that that the stationary measures continuously de-
pend on spatially regular white noise. We next consider high-frequency random
kicks and show that, under suitable normalisation, the corresponding family of
stationary measures converges weakly to the unique stationary distribution cor-
responding to the white noise perturbation. Finally, in Section 4.4, we discuss
the physical relevance of the results of this chapter.

4.1 Ergodic theorems

4.1.1 Strong law of large numbers

Let us consider the Navier–Stokes system (3.84) in which h ∈ H is a given func-
tion and η is a spatially regular white noise of the form (2.66). As was established
in Theorem 3.3.1, if sufficiently many first coefficients bj are non-zero, then
Eq. (3.84) has a unique stationary distribution. Moreover, by Theorem 3.5.2,
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the Markov process (ut,Pu) defined by the equation is exponentially mixing,
and by Corollary 3.5.3, for any functional f ∈ Cγ(H,wκ), where γ ∈ (0, 1] and

wκ(r) = eκr2 with 0 < κ ≪ 1, and any initial datum v ∈ H the mean value
of the corresponding trajectory Evf(ut) converges to (f, µ) as t → ∞ expo-
nentially fast (see inequality (3.133)). The following theorem shows that the
mean value with respect to the probability ensemble can be replaced by time
average. In this case, however, the convergence to the mean value holds only at
an algebraical rate.

Theorem 4.1.1. Under the hypotheses of Theorem 3.5.2, there is a constant
κ > 0 such that for any ε > 0, γ ∈ (0, 1], v ∈ H, and f ∈ Cγ(H,wκ), with
Pv-probability 1, we have

lim
t→∞

t
1
2−ε

(
t−1

∫ t

0

f(us) ds− (f, µ)

)
= 0.

Proof. We first outline the main idea. Without loss of generality, we can assume
that (f, µ) = 0. We need to prove that, for any v ∈ H,

t−
1
2−ε

∫ t

0

f(us) ds→ 0 with Pv-probability 1. (4.1)

Let us denote by Ft the filtration corresponding to the Markov process (ut,Pv)
(see Section 1.3.1) and consider Gordin’s martingale approximation:

Mt =

∫ ∞

0

(
Ev(f(us) | Ft) − Ev(f(us) | F0)

)
ds, v ∈ H, t ≥ 0. (4.2)

By Proposition 7.13.3, the process Mt is a martingale with respect to the fil-
tration {Ft} and the probability Pv. Furthermore, relation (7.70) implies that

∫ t

0

f(us) ds =

∫ t̂

0

f(us) ds+

∫ t̂

t

f(us) ds = Mt̂ − g(ut̂) + g(u0) + dt, (4.3)

where t̂ stands for the integer part of t ≥ 0,

dt =

∫ t

t̂

f(us) ds, g(u) =

∫ ∞

0

Psf(u) ds. (4.4)

Using representation (4.3) and a priori estimates for solutions of the Navier–
Stokes system, we show that

lim
t→∞

∣∣∣∣t
− 1

2

∫ t

0

f(us) ds− t̂−
1
2Mt̂

∣∣∣∣ = 0 Pv-almost surely. (4.5)

Hence, to prove (4.1), it suffices to establish the SLLN for the discrete-time
martingale Mk. This will be done with the help of Theorem 7.12.1. We now
turn to the accurate proof divided into two steps.
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Step 1. We first prove (4.5). In view of (4.3), it suffices to show that

Pv

{
lim
k→∞

k−
1
2

(
sup

k≤t≤k+1
|dt| + |g(uk)|

)
= 0

}
= 1. (4.6)

In what follows, we denote by Ci positive constants that may depend on f , but
not on u. Let us set

Uk = sup
k≤t≤k+1

|ut|22, Dk = sup
k≤t≤k+1

|dt|.

By inequality (2.130), we can find positive constants C1 and γ such that

Pv{U0 ≥ ρ} ≤ C1e
γ|v|22−γρ for v ∈ H, ρ ≥ 0.

Combining this with the Markov property and inequality (2.125), we obtain

Pv{Uk ≥ ρ} = EvPuk
{U0 ≥ ρ} ≤ C1e

−γρEve
γ|uk|22 ≤ C2

(
eγ|v|

2
2 + 1

)
e−γρ. (4.7)

On the other hand, in view of Corollary 3.5.3, we have

|g(v)| ≤
∫ ∞

0

|Psf(v)| ds ≤ C3e
κ|v|22 , v ∈ H. (4.8)

Furthermore, the definition of dt implies that

Dk ≤ C4e
κUk for k ≥ 0. (4.9)

Combining (4.7) – (4.9), for κ < γ
4 we derive

∞∑

k=1

Pv

{
Dk + |g(uk)| ≥ k1/4

}
≤

∞∑

k=1

Pv

{
C4e

κUk + C3e
κ|uk|2 ≥ k1/4

}

≤
∞∑

k=1

Pv

{
C5e

κUk ≥ k1/4
}

=

∞∑

k=1

Pv

{
Uk ≥ 1

4κ ln k − C6

}

≤ C7

(
eγ|v|

2
2 + 1

) ∞∑

k=1

k−γ/4κ <∞.

Hence, by the Borel–Cantelli lemma, there is a Pv-almost surely finite random
integer k0 ≥ 1 such that

sup
k≤t≤k+1

|dt| + |g(uk)| ≤ k1/4 for k ≥ k0.

This implies the required relation (4.6).
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Step 2. We now prove that

Pv

{
lim
k→∞

k−
1
2−εMk = 0

}
= 1 for any v ∈ H.

In view of Theorem 7.12.1, this claim will be established if we check that the
martingale differences Xk = Mk −Mk−1 satisfies the condition

∞∑

k=1

k−1−δ EvX
2
k <∞ for any v ∈ H, δ > 0. (4.10)

It follows from (4.3) that

Xk = g(uk) − g(uk−1) + d−k , d−k =

∫ k

k−1

f(us)ds. (4.11)

By the Markov property, we have

EvX
2
k = EvEv(X2

k | Fk−1) = Evϕ(uk−1) = (Pk−1ϕ)(v), (4.12)

where ϕ(v) = EvX
2
1 . We see that

∞∑

k=1

k−1−δ EvX
2
k =

∞∑

k=1

k−1−δ (Pk−1ϕ)(v). (4.13)

To estimate the right-hand side of this relation, let us derive an explicit formula
for ϕ. It follows from (4.11) that

ϕ(v) = Evg
2(u1) + Evg

2(u0) + Ev(d−1 )2

− 2Ev

(
g(u1)g(u0)

)
+ 2Ev

(
d−1 g(u1)

)
− 2Ev

(
d−1 g(u0)

)
. (4.14)

Now note that

Evg
2(u0) = g2(v), Evg

2(u1) = P1g
2(v),

Ev

(
g(u0)g(u1)

)
= g(v)P1g(v), Ev

(
d−1 g(u0)

)
= g(v)

∫ 1

0

Psf(v) ds.

Furthermore, using the Markov property, we write

Ev(d−1 )2 = Ev

(∫ 1

0

f(us) ds

)2

=

∫ 1

0

∫ 1

0

Ev

(
f(us)f(ut)

)
dsdt

= 2

∫ 1

0

∫ t

0

Ps

(
fPt−sf

)
(v) dsdt,

Ev

(
d−1 g(u1)

)
= Ev

(
g(u1)

∫ 1

0

f(us) ds

)
=

∫ 1

0

Ps

(
fP1−sg

)
(v) ds.

We now need the following lemma, whose proof is given at the end of this
subsection.
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Lemma 4.1.2. Under the hypotheses of Theorem 4.1.1, for any γ ∈ (0, 1] and
sufficiently small κ > 0 there exist positive constants α ≤ γ and ρ such that
the function g defined by (4.4) belongs to Cα(H,wρ) for any f ∈ Cγ(H,wκ)
satisfying the condition (f, µ) = 0, and the linear operator taking f to g is
bounded in the corresponding spaces. Moreover, the constants α and ρ can be
chosen in such a way that ρ→ 0 as κ → 0.

Lemmas 3.5.6 and 4.1.2 show 1 that all the functions on the right-hand side
of (4.14) belong to the space Cα(H,wρ) with suitable constants α and ρ, and
their norms are bounded by C|f |wκ ,γ . Therefore we have ϕ ∈ Cα(H,wρ) and

|ϕ|wρ,α
≤ C7|f |wκ ,γ . (4.15)

Furthermore, since ρ → 0 as κ → 0, Corollary 3.5.3 imply that if κ > 0 is
sufficiently small, then

∣∣(Pkϕ)(v) − (ϕ, µ)
∣∣ ≤ C8(|v|2) e−βk, k ≥ 0.

Combining this with (4.13), we see that condition (4.10) is satisfied. This com-
pletes the proof of the theorem.

Proof of Lemma 4.1.2. Since g satisfies (4.8), to prove that g ∈ Cα(H,wρ), it
suffices to show that if |f |γ,wκ

≤ 1 and (f, µ) = 0, then

∣∣g(u) − g(v)
∣∣ ≤ C2|u− v|α eρ(|u|22+|v|22), u, v ∈ H. (4.16)

By Corollary 3.5.3, for any such function f ∈ Cγ(H,wκ), we have

|Ptf(u)| ≤ C exp(−βt+ κ|u|22), t ≥ 0, u ∈ H. (4.17)

Combining this with (3.140), for any u, v ∈ H and T > 0, we derive

∣∣g(u) − g(v)
∣∣ ≤

∫ T

0

∣∣Ptf(u) −Ptf(v)
∣∣ dt+

∫ ∞

T

(
|Ptf(u)| + |Ptf(v)|

)
dt

≤ C3 |u− v|α ebT+ρ(|u|22+|v|22) + C4e
−βT

(
eκ|u|22 + eκ|v|22

)
.

Choosing T = εκ
(
|u|22 + |v|22 + ln(1 ∨ |u − v|−1

2 )
)
, where 0 < ε ≪ 1, we arrive

at inequality (4.16) in which α and ρ are replaced with (α − εκ) ∧ (βεκ) and
(ρ+ bεκ) ∨ κ, respectively.

The fact that the linear operator taking f to g is continuous follows from
inequalities (4.8) and (4.16), which are true for any f ∈ Cγ(H,wκ) such that
|f |wκ ,γ ≤ 1 and (f, µ) = 0. Finally, the explicit form of the constant ρ implies
that it goes to zero with κ.

1Lemma 3.5.6 was proved for the Navier–Stokes system on the torus. However, when k = 0,
the assertions remain true in the case of a bounded domain.
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Exercise 4.1.3. Under the hypotheses of Theorem 4.1.1, prove that, for any
function f ∈ Cγ(H,wκ) with a sufficiently small κ > 0 and any measure λ
satisfying the condition (wκ(|u|2), λ) <∞, we have

Pλ

{
k−1

k−1∑

l=0

f(ul) → (f, µ) as k → ∞
}

= 1.

Hint: Use the same scheme as for the continuous time. In this case, the mar-
tingale approximation is defined by

Mk =

∞∑

l=0

(
Eλ(f(ul) | Fk) − Eλ(f(ul) | F0)

)
.

4.1.2 Law of iterated logarithm

The law of large numbers established in the previous subsection can be strengthen
to the law of iterated logarithm. To simplify the presentation, we shall confine
ourselves to the case of stationary solutions. The general case is briefly outlined
in Exercise 4.1.6.

As before, we consider the Navier–Stokes system (3.84), in which η is spa-
tially regular white noise of the form (2.66). Let {Ft, t ≥ 0} be the filtration as-
sociated with the corresponding Markov process (ut,Pv). In what follows, we as-
sume that the hypotheses of Theorem 3.5.2 are satisfied and denote by µ ∈ P(H)
the unique stationary measure. Recall that, given a function f ∈ Cγ(H,wκ)
with κ ≪ 1 such that (f, µ) = 0, we defined g(u) =

∫∞
0

Psf(u) ds; see (4.4).
Before formulating the LIL, we establish the following auxiliary result.

Proposition 4.1.4. Under the above hypotheses, we have

lim
t→∞

Eµ

(
1√
t

∫ t

0

f(us) ds

)2

= 2(fg, µ) =: σ2
f , σf ≥ 0. (4.18)

Moreover, σf > 0 if f 6≡ 0 and the constants bj entering (2.66) are all non-zero.

Proof. Using the Markov property and the stationarity of µ, we write

Eµ

(∫ t

0

f(us) ds

)2

= Eµ

∫ t

0

∫ t

0

f(ur)f(us) drds

= 2

∫ t

0

dr

∫ t

r

Eµ

(
f(ur)Eµ(f(us) | Fr)

)
ds

= 2

∫ t

0

dr

∫ t

r

Eµ

(
f(ur)(Ps−rf)(ur)

)
ds

= 2

∫ t

0

dr

∫ t

r

(fPs−rf, µ) ds = 2

∫ t

0

(t− s)(fPsf, µ) ds.

Dividing both sides of this relation by t and using (4.17) together with Lebesgue’s
theorem to pass to the limit as t→ ∞, we arrive at (4.18).
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We now assume that bj 6= 0 for all j ≥ 1 and prove that σf > 0, provided
that f 6≡ 0. Suppose, by contradiction, that σf = 0. We first show that

Pµ{Mk = 0 for all integers k ≥ 0} = 1. (4.19)

Indeed, it follows from relation (4.3), which is true with Pµ-probability 1, that

∫ k

0

f(us) ds = Mk − g(uk) + g(u0), k ≥ 0. (4.20)

In view of the Markov property, we have

EµM
2
k ≤ 3Eµ

(∫ k

0

f(us) ds

)2

+ 3Eµ|g(uk)|2 + 3Eµ|g(u0)|2

= 3Eµ

(∫ k

0

f(us) ds

)2

+ 3

∫

H

(
Pkg

2(u) + g2(u)
)
µ(du).

Combining this with Corollary 3.5.3 and Lemma 4.1.2, we see that

lim
k→∞

k−1EµM
2
k ≤ 3Eµ

(∫ k

0

f(us) ds

)2

= 0. (4.21)

On the other hand, since Mk is a martingale with stationary differences Xk, we
have

EµM
2
k = Eµ

( k∑

l=1

Xl

)2

= Eµ

k∑

l=1

X2
l = kEµX

2
1 .

Substituting this into (4.21), we conclude that EµX
2
k = 0 for any k ≥ 0. It

follows that Mk = 0 almost surely for any k ≥ 0, and therefore (4.19) holds.

We now prove that relation (4.20) with Mk = 0 cannot hold for all k ≥ 0,
unless f ≡ 0. Indeed, suppose there is a non-degenerate ball B ⊂ H and a
constant ε > 0 such that f(u) ≥ ε for u ∈ B. Using the fact that bj 6= 0 for all
j ≥ 1, it is not difficult to show that (cf. proof of Lemma 3.3.11)

Pµ

{
ut ∈ B for 0 ≤ t ≤ k

}
> 0 for any k ≥ 1.

It follows that

Pµ

{∫ k

0

f(us) ds ≥ kε

}
> 0 for any k ≥ 1. (4.22)

On the other hand, since g is bounded on bounded subsets of H, we have
g(v) ≤ C for v ∈ B. This implies that if u0, uk ∈ B, then |g(uk) − g(u0)| ≤ 2C.
Choosing k ≥ 1 so large that kε > 2C and recalling (4.22), we see that (4.20)
cannot hold with probability 1. The contradiction obtained completes the proof
of the proposition.
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Theorem 4.1.5. Under the hypotheses of Theorem 3.5.2, assume that 2 σf >
0. Then for any γ ∈ (0, 1], sufficiently small κ > 0, and any function f ∈
Cγ(H,wκ) such that (f, µ) = 0 we have

Pµ

{
lim sup
t→∞

1

ω(t)

∫ t

0

f(us) ds = σf

}
= 1, (4.23)

Pµ

{
lim inf
t→∞

1

ω(t)

∫ t

0

f(us) ds = −σf
}

= 1, (4.24)

where ω(t) = (2t ln ln t)1/2.

Proof. In view of (4.5), it suffices to establish the LIL for Mk. To this end, we
shall apply Theorem 7.12.2. Let us define the conditional variance V 2

k by rela-
tion (7.58) in which E is replaced by Eµ. The required result will be established
if we show that

Pµ{k−1V 2
k → σ2

f as k → ∞} = 1. (4.25)

Repeating the calculations used in Step 2 of the proof of Theorem 4.1.1, we
see that

k−1V 2
k = k−1

k∑

l=1

ϕ(ul−1),

where ϕ(v) = EvM
2
1 . As was mentioned in the proof of Theorem 4.1.1 (see

inequality (4.15)), the function ϕ belongs to Cα(H,wρ), where ρ→ 0 as κ → 0.
Therefore, by Exercise 4.1.3 with λ = µ and f = ϕ, the required relation (4.25)
will be established if we show that (ϕ, µ) = σ2

f .
In view of relation (4.14) and the formulas for the terms in its right-hand

side, we have

(ϕ, µ) = (P1g
2, µ) + (g2, µ) + 2

∫ 1

0

∫ t

0

(
Ps(fPt−sf), µ

)
dsdt

− 2(gP1g, µ) + 2

∫ 1

0

(
Ps(fP1−sg), µ

)
ds− 2

∫ 1

0

(gPsf, µ) ds. (4.26)

Let us denote by Am the mth term on the right-hand side of this relation. Then,
using the stationarity of µ, we derive

A1 = (g2, µ), A3 = 2

∫ 1

0

(1 − s)(fPsf, µ) ds A5 = 2

∫ 1

0

(fPsg, µ) ds.

Substituting these expressions into (4.26) and using the simple relation

Psg =

∫ ∞

0

Ps+tf dt = g −
∫ s

0

Ptf dt,

we obtain the required result. The proof is complete.

2We recall that, by Proposition 4.1.4, σf > 0 if bj 6= 0 for all j ≥ 1.
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Exercise 4.1.6. Prove that the assertions of Theorem 4.1.5 remain valid for all
solutions. Hint: There are two possibilities: (a) one can apply Theorem 4.7
of [HH80] to prove that the martingale Mk satisfies the LIL; (b) using the
existence of a mixing extension, one can couple a given solution with a stationary
one. See the paper [Kuk02a] in which the latter idea is applied to prove a CLT.

Exercise 4.1.7. Under the hypotheses of Theorem 3.5.2, assume that σf = 0.
Show that, for any γ ∈ (0, 1], sufficiently small κ > 0, and any f ∈ Cγ(H,wκ)
such that (f, µ) = 0, we have

Pµ

{
lim
t→∞

1√
t

∫ t

0

f(us) ds = 0

}
= 1. (4.27)

Hint: Use (4.19) and (4.5).

4.1.3 Central limit theorem

Let us denote by N(0, σ) the centred normal law with a variance σ2 ≥ 0 and
by Φσ its distribution function (see Section 7.4). Recall that the constant σf ≥ 0
is defined by (4.18). The following theorem establishes the CLT for solutions
of (3.84), (2.66).

Theorem 4.1.8. Under the hypotheses of Theorem 3.5.2, the following conver-
gence holds for an arbitrary γ ∈ (0, 1], sufficiently small κ > 0, any function
f ∈ Cγ(H,wκ) with (f, µ) = 0, and any v ∈ H:

Dv

(
1√
t

∫ t

0

f(us) ds

)
→ N(0, σf ) as t→ ∞, (4.28)

where Dv denote the distribution of a random variable under the law Pv.

Note that, in view of Lemma 1.2.16, the weak convergence (4.28) is equivalent
to

Pv

{
1√
t

∫ t

0

f(us) ds ≤ x

}
→ Φσf

(x) as t→ ∞ for any x ∈ R. (4.29)

A more detailed analysis enables one to prove that convergence (4.29) holds
with the rate t−1/4−ε for any ε > 0; see [Shi06c]. This rate is the best possible
in the case of martingales (see [Bol82]), but it is not known if it is optimal in
our context.

Proof of Theorem 4.1.8. We confine ourselves to the more complicated case
σf > 0. The main idea of the proof is the same as in the previous two subsec-
tions: we use the martingale approximation to reduce the problem to a similar
question for martingales and apply a general result on CLT for martingales.

Let us note that, for any v ∈ H, we have the relation (cf. (4.5))

lim
t→∞

Ev

∣∣∣t−1/2

∫ t

0

f(us) ds− t̂−1/2Mt̂

∣∣∣
2

= 0,
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which follows from (4.3) and the inequality

Ev

∣∣dt − g(ut̂) + g(u0)
∣∣2 ≤ C1 for all t ≥ 0,

with a constant C1 > 0 depending only on |v|2. Thus, it suffices to prove that

Dv(k−1/2Mk) → N(0, σf ) as k → ∞.

By Theorem 7.12.3, this convergence will be established if we check that the
martingale Mk satisfies Lindeberg’s condition (7.64). To this end, it suffices to
show that the martingale differences Xk satisfy the inequality

EvX
4
k ≤ C exp(c |v|22) for all k ≥ 0; (4.30)

see the remark preceding Theorem 7.12.3. To prove (4.30), using the Markov
property, we write (cf. (4.12))

EvX
4
k = EvEv

(
X4

k | Fk−1

)
= EvEuk−1

X4
1 = Evψ(uk−1),

where we set ψ(v) = EvX
4
1 . Since

ψ(v) ≤ C3

(
Evg

4(u1) + g(v) +

∫ 1

0

Evf
4(us) ds

)
,

f ∈ Cγ(H,wκ), and g ∈ Cα(H,wρ), where ρ → 0 as κ → 0, we see from
Lemmas 3.5.6 and 4.1.2 that ψ(v) ≤ C4 exp(c |v|22) for v ∈ H and some small
c > 0. Applying again Lemma 3.5.6, we arrive at the required estimate (4.30).
This completes the proof of Theorem 4.1.8.

Exercise 4.1.9. Prove analogues of Theorems 4.1.1, 4.1.5, and 4.1.8 for the
Navier–Stokes system perturbed by a kick force of the form (2.66). Hint: The
martingale approximation described in Section 7.13 remains true for discrete-
time RDS, and the same schemes apply. Note that, in this case the constant σf
entering the LIL and CLT is defined by the relation σ2

f = 2(fg, µ) − (f2, µ),

where g(u) =
∑∞

k=0 Pkf(u).

Exercise 4.1.10. Prove the SLLN, LIL, and CLT for Hölder continuous func-
tionals defined on higher Sobolev spaces. Hint: Combine Theorem 3.5.5 with
scheme used above.

4.2 Random attractors and stationary distribu-

tions

In this section, we study the relationship between stationary distributions for
Markov RDS and random attractors. We first establish a sufficient condition
ensuring the existence of a minimal random point attractor in the sense of almost
sure convergence. We next prove the Ledrappier–Le Jan–Crauel theorem which
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shows that there is a one-to-one correspondence between stationary distributions
and Markov invariant measures. Finally, we establish the main result of this
section claiming that the support of the disintegration of a Markov invariant
measure is a minimal random point attractor in the sense of convergence in
probability. We shall confine ourselves to the case of continuous-time RDS,
which is technically more complicated.

4.2.1 Random point attractors

Let X be a Polish space with a metric distX . For any subset K ⊂ H, we define
the function

distX(u,K) = inf
v∈K

distX(u, v),

where the infimum over an empty set is equal to +∞. Let (Ω,F ,P) be a complete
probability space and let K = {Kω, ω ∈ Ω} be a family of closed subsets in X.

Definition 4.2.1. The family K is said to be measurable if for any u ∈ X the
real-valued function ω 7→ distX(u,Kω) is (F ,B(R))-measurable. In this case,
K will be called a closed random set . If, in addition, Kω is compact for almost
every ω, then K is called a compact random set .

Exercise 4.2.2. Let K be a closed random set in X. Prove the following prop-
erties.

(i) If f : Ω → X is an (F ,B(X))-measurable function, then the function
ω 7→ distX(f(ω),Kω) is measurable.

(ii) The function (ω, u) 7→ distX(u,Kω) is (F ⊗ B(X),B(R))-measurable.

Hint: Use approximation by functions taking at most countably many values.

Let us assume that a group of measure-preserving transformations θ =
{θt, t ∈ R} is defined on Ω and consider an RDS Φ = {ϕω

t , t ∈ R+} over θ

(see Section 1.3.2). We shall always assume that the trajectories ϕω
t (u) are

continuous in time for any u ∈ X and ω ∈ Ω.

Definition 4.2.3. A compact random set A = {Aω, ω ∈ Ω} in H is called
a random point attractor for Φ in the sense of almost sure convergence3 if it
satisfies the following properties:

(i) Invariance. For almost every ω ∈ Ω, we have

ϕω
t Aω = Aθtω, t ≥ 0. (4.31)

(ii) Attraction. For any u ∈ X, we have

P
{

distX(ϕ
θ−tω
t (u), Aω) → 0 as t→ ∞

}
= 1. (4.32)

3In what follows, if there is no confusion, we shall simply say a random attractor .
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Definition 4.2.4. A random point attractor A is said to be minimal if for any
other random point attractor A

′ = {A′
ω, ω ∈ Ω} we have

Aω ⊂ A′
ω for almost every ω ∈ Ω.

The following theorem provides a sufficient condition for the existence of a
minimal random point attractor in the sense of almost sure convergence.

Theorem 4.2.5. Let Φ = {ϕt, t ≥ 0} be an RDS over θ in a Polish space X.
Suppose that there is a compact random set K = {Kω} and a subset Ω∗ ∈ F of
full measure such that θt(Ω∗) = Ω∗ for all t ∈ R and

distX(ϕ
θ−tω
t (u),Kω) → 0 as t→ ∞ for any ω ∈ Ω∗, u ∈ X. (4.33)

Then Φ possesses a minimal random attractor.

Proof. Step 1. For any u ∈ X and ω ∈ Ω∗, we set

Aω(u, n) =
⋃

t≥n

ϕ
θ−tω
t (u), (4.34)

where C denotes the closure of C in X. Note that Aω(u, n) is the union of the

continuous curve {ϕθ−tω
t (u), t ≥ n} and of the set of its limit points. The latter

is a closed set that belongs to Kω in view of (4.33). The sequence {Aω(u, n)}
is a nested family of compact sets, and therefore

Aω(u) =
⋂

n≥0

Aω(u, n)

is a non-empty compact subset of X. Furthermore,

Aω(u) is the set of all limiting points for the curve {ϕθ−tω
t (u), t ≥ 0}. (4.35)

Thus, by (4.33),

Aω(u) ⊂ Kω for all u ∈ X, ω ∈ Ω∗. (4.36)

We now define a family of subsets A = {Aω, ω ∈ Ω} by the rule

Aω =

{ ⋃
u∈X

Aω(u) for ω ∈ Ω∗,

∅ for ω ∈ Ω \ Ω∗.
(4.37)

Due to (4.36), Aω is a compact set for each ω ∈ Ω. We shall show that A is a
minimal random point attractor.

Step 2. Let us show that A is a compact random set. To this end, we need
to show that the function ω 7→ distX(v,Aω) is (F ,B(R))-measurable for any
v ∈ X.
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Using the compactness of Aω(u, n), it is easy to show that

distX(v,Aω(u)) = lim
n→∞

distX(v,Aω(u, n)) = lim inf
k→∞

dX(v, ϕ
θ−tω
t u)

for any u, v ∈ X and ω ∈ Ω∗. Since the probability space (Ω,F ,P) is complete
and P(Ω∗) = 1, we conclude that the function

d : X ×X × Ω → R, d(u, v, ω) = distX(v,Aω(u)),

is measurable. By Corollary 7.3.2 of the projection theorem (see Section 7.3),
for any v ∈ X the function

ω 7→ inf
u∈X

d(u, v, ω) = distX(v,Aω)

is universally measurable. Using again that (Ω,F ,P) is complete, we arrive at
the required result.

Step 3. Let us prove that A satisfies the invariance property. In what follows,
we shall sometimes write ϕt(ω) instead of ϕω

t to avoid complicated expressions
in superscripts.

The invariance property is a consequence of the relation

ϕω
t Aω(u) = Aθtω(u) for any u ∈ X, ω ∈ Ω∗. (4.38)

Indeed, if (4.38) is proved, then ϕω
t Aω(u) ⊂ Aθtω, whence it follows that

ϕω
t Aω ⊂ Aθtω. To establish the converse inclusion, note that ϕω

t Aω is a compact
set containing Aθtω(u) for any u ∈ X. Therefore, it must contain the closure of
∪uAθtω(u), which coincides with Aθtω.

To prove (4.38), note that, in view of (4.35), a point v ∈ X belongs to Aω(u)
if and only if there is a sequence tj → ∞ such that

ϕtj (θ−tjω)u→ v as j → ∞.

Applying the continuous operator ϕω
t and using the cocycle property, we see

that
ϕt+tj (θ−(t+tj)(θtω))u→ ϕω

t v as j → ∞.

This implies that ϕω
t v ∈ Aθtω(u) for any v ∈ Aω(u), that is, ϕω

t Aω(u) ⊂ Aθtω(u).
Conversely, suppose that w ∈ Aθtω(u) and choose a sequence tj → ∞ such that

ϕtj (θ−tj (θtω))u→ w as j → ∞. (4.39)

Now note that

ϕtj (θ−tj (θtω)) = ϕω
t ◦ ϕtj−k(θ−(tj−k)ω) for tj ≥ k. (4.40)

It follows from (4.35) that the sequence ϕtj−k(θ−(tj−k)ω)u has a limit point v,
which belongs to Aω(u). Since ϕω

t is continuous, we conclude from (4.40) that

ϕtj (θ−tj (θtω))u→ ϕω
t v as j → ∞.
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Comparing this with (4.39), we obtain ϕω
t v = w. Since w ∈ Aθtω was arbitrary,

we have proved that ϕω
t Aω(u) ⊃ Aθtω(u).

Step 4. We now prove that A possesses the attraction property. Let ω ∈ Ω∗
and let u ∈ X. If ϕ

θ−tω
t u does not tend to Aω, then there is a constant ε > 0

and a sequence tj → ∞ such that

distX(ϕtj (θ−tjω)u,Aω) ≥ ε for all j ≥ 1. (4.41)

In view of (4.33) and the compactness of Kω, there is no loss of generality in
assuming that the sequence {ϕtj (θ−tjω)u} converges to a point in X. This point
belongs to Aω, which contradicts (4.41).

Step 5. It remains to show that A is a minimal random attractor. We claim
that if A′ = {A′

ω} is another random attractor and Ω′
∗ is the set of full measure

on which the attraction property holds for A
′, then

Aω ⊂ A′
ω for ω ∈ Ω∗ ∩ Ω′

∗. (4.42)

Indeed, for any ω ∈ Ω∗ ∩ Ω′
∗ and u ∈ X the set A′

ω must contain all the limit
points of the curve {ϕt(θ−tω)u}. It follows that

Aω(u) ⊂ A′
ω for any u ∈ X.

Since A′
ω is closed, we conclude that (4.42) holds. To complete the proof of

Theorem 4.34, it remains to note that Ω∗ ∩ Ω′
∗ is a set of full measure.

In what follows, we shall need another concept of random attractors for
which the attraction property holds in a weaker sense.

Definition 4.2.6. A compact random set A = {Aω, ω ∈ Ω} in X is called a
random point attractor for Φ in the sense of convergence in probability (or a weak
random attractor) if it possesses the following properties (cf. Definition 4.2.3):

(i) Invariance. For any t ≥ 0 and almost every ω ∈ Ω, we have ϕω
t Aω = Aθtω.

(ii) Attraction. For any u ∈ X, the function ω 7→ distX(ϕ
θ−tω
t u,Aω) converges

to zero in probability as k → +∞, that is, for any ε > 0, we have

P
{

distX(ϕt(θ−tω)u,Aω) ≥ ε
}
→ 0 as t→ ∞. (4.43)

Note that the convergence “from the past” (4.43) is equivalent to the con-
vergence “in the future”

P
{

distX(ϕω
t u,Aθtω) ≥ ε

}
→ 0 as t→ ∞, (4.44)

because θt preserves P, and for discrete-time RDS, the invariance property of
Definitions 4.2.6 and 4.2.3 are equivalent. Since almost sure convergence im-
plies convergence in probability, any random attractor (in the sense of Defini-
tion 4.2.3) is also a weak random attractor. However, it does not need to be
minimal (cf. Definition 4.2.4).
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A natural question is whether (weak) random attractors contain “all rele-
vant information” on the system as time goes to +∞. In particular, do they
support disintegrations of invariant measures? In general, the answer is neg-
ative (see [Bax89, Cra01]). There is, however, an important class of invariant
measures for which this property is true. They are called Markov invariant
measures and are studied in the next section.

4.2.2 Ledrappier–Le Jan–Crauel theorem

Let (Ω,F ,P) be a complete probability space, let X be a Polish space, and
let Φ = {ϕω

t , t ≥ 0} be a Markov RDS over a measure-preserving group of
transformations θ = {θt, t ∈ R}. Recall that the concepts of an invariant
measure for Φ and of its disintegration, as well as the class P(Ω ×X,P), were
introduced in Section 1.3.4.

Definition 4.2.7. An invariant measure M ∈ P(Ω ×X,P) for Φ is said to be
Markov if its disintegration {µω} is F0-measurable, that is, for any Γ ∈ B(X)
the function ω 7→ µω(Γ) is (F0,B(R))-measurable.

The following proposition shows that the time t = 0 does not play any
particular role for a Markov invariant measure.

Proposition 4.2.8. Let M ∈ P(Ω×H,P) be an invariant measure for a Markov
RDS Φ. Then following properties are equivalent:

(a) M is Markov.

(b) µω is Ft-measurable for some t ∈ R.

(c) µω is Ft-measurable for any t ∈ R.

Proof. We shall only show that (b) implies (a), because the proof of the impli-
cation (a) ⇒ (c) is similar, and (c) trivially implies (b).

Suppose that µω is Ft-measurable for some t > 0. Then the random measure

µθ−tω is F0-measurable and the mapping ω 7→ ϕ
θ−tω
t u acting from Ω to X is

(F0,B(X))-measurable. We claim that the random measure (ϕ
θ−tω
t )∗µθ−tω is

F0-measurable. If this is proved, then the F0-measurability of µω follows from
relation (1.72) and the fact that F0 contains all subsets of F of zero measure.

We need to show that the real-valued function f(ω) = µθ−tω

(
(ϕ

θ−tω
t )−1(Γ)

)

is F0-measurable for any Γ ∈ B(X). We have

f(ω) =

∫

X

h(ω, u)µθ−tω(du), (4.45)

where h(ω, u) = IΓ(ϕ
θ−tω
t u). The function h is (F0 ⊗ B(X),B(R))-measurable.

If it was the product of two functions h1(ω) and h2(u), then the integral (4.45)
could be written in the form

h1(ω)

∫

X

h2(u)µθ−tω(du),
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and the required measurability would follow immediately. The F0-measurability
of (4.45) in the general case can be obtained with the help of the monotone class
technique. We leave the details to the reader as an exercise.

We now turn to the main result of this section, which shows that there is
a one-to-one correspondence between the Markov invariant measures and the
stationary distributions for Φ.

Theorem 4.2.9. Let Φ = {ϕω
t , t ≥ 0} be a Markov RDS in a Polish space X.

Then the following assertions hold.

(i) Let M ∈ P(Ω × X,P) be a Markov invariant measure and let {µω} be
its disintegration. Then Eµ· is a stationary measure for Φ. Moreover, if
M′ ∈ P(Ω ×X,P) is another Markov invariant measure with disintegra-
tion {µ′

ω} such that Eµ′
· = Eµ·, then M′ = M.

(ii) Let µ ∈ P(X) be a stationary measure for Φ. Then for any sequence

tk + ∞ there is a set Ω̃ ∈ F of full measure such that there is a weak∗

limit
µω = lim

k→∞
ϕtk(θ−tkω)∗(µ) (4.46)

for any ω ∈ Ω̃. Moreover, if {t′k} is another sequence going to +∞, then
the corresponding family of measures {µ′

ω} coincides with {µω} almost
surely. Finally, the measure M ∈ P(Ω × X,P) defined by its disintegra-
tion 4 {µω} is a Markov invariant measure for Φ, and Eµ· = µ.

Thus, there is a one-to-one correspondence between the stationary measures and
Markov invariant measures for Φ.

Proof. (i) In view of Proposition 1.3.27, we have

(f(ϕtu), µω) = (f, µθtω) P-almost surely, (4.47)

where f : X → R is an arbitrary bounded measurable function. We wish to
take the mean value. Using the fact that µω is F0-measurable and ϕtu is F+

t -
measurable and recalling that F0 and F+

t are independent, we can write

E
(
f(ϕtu), µω

)
=

(
E f(ϕtu),Eµω

)
= (Ptf, µ), (4.48)

where we set µ = Eµ·. On the other hand, since P is invariant with respect
to θ, we have

E (f, µθtω) = (f, µ). (4.49)

Combining (4.47) – (4.49), we obtain

(f,P∗
tµ) = (f, µ) for any bounded measurable function f,

whence it follows that µ is a stationary measure for Φ.

4We set µω = γ for ω ∈ Ω \ Ω̃, where γ ∈ P(X) is an arbitrary measure.
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Exercise 4.2.10. Justify the first equality in (4.48) and relation (4.49). Hint:

Use the monotone class technique.

We now prove the second part of (i). Let us fix any increasing sequence {tk}
going to +∞. In view of Proposition 1.3.27, with probability 1 we have

ϕtk(θ−tkω)µθ−tk
ω = µω for all k ≥ 1. (4.50)

It follows that

∫

X

f
(
ϕtk(θ−tkω)u

)
µθ−tk

ω(du) =

∫

X

f(u)µω(du) for any k ≥ 1, f ∈ Cb(X).

(4.51)
Let us set Gk = F[−tk,0] for k ≥ 1 and note that f(ϕtk(θ−tkω)u) is Gk-measurable,
while µθ−tk

ω is independent of Gk. Therefore, taking the conditional expectation
of both sides of (4.51) given Gk, with probability 1 we derive

∫

X

f
(
ϕtk(θ−tkω)u

)
µ(du) = E

(
(f, µω) | Gk

)
. (4.52)

Since µω is F0-measurable and F0 = σ{Gk, k ≥ 1}, we see that the right-hand
side of (4.52) is a right-closable martingale with respect to the filtration {Gk}.
Hence, by Doob’s theorem on convergence of right-closed martingale sequences,
we have

lim
k→∞

(
f, ϕtk(θ−tkω)µ

)
= lim

k→∞

∫

X

f
(
ϕtk(θ−tkω)u

)
µ(du) = (f, µω)

for any f ∈ Cb(X) and almost every ω ∈ Ω. Theorem 7.5.2 now implies that

there is a set of full measure Ω̃ ∈ F such that (4.46) holds, where the convergence
of measures is understood in the weak∗ topology. It follows that µω is uniquely
defined by µ on the set Ω̃, and therefore M′ = M for any Markov invariant
measure M′ for which the associated stationary measure coincides with µ.

(ii) Let us take an arbitrary sequence {tk} going to +∞. Without loss of
generality, we can assume that {tk} is increasing. Given a bounded continuous
function f : X → R, consider the sequence ξk(ω) = (f, ϕtk(θ−tkω)µ). Sup-
pose we have shown that {ξk} is a martingale with respect to the filtration
Gk = F[−tk,0]. Since {ξk} is bounded uniformly in k and ω, Doob’s martingale
convergence theorem implies that ξk(ω) converges almost surely. In particular,
for any f ∈ Cb(X) the sequence (f, µk

ω) converges for almost every ω ∈ Ω. There-
fore, by Theorem 7.5.2, there is a random probability measure {µω} ⊂ P(X)

and a set of full measure Ω̃ ∈ F such that (4.46) holds.

We now prove that {ξk} is a martingale. Setting gk(ω, v) = f(ϕtk(θ−tkω)v),
we can write

ξk =
(
gk(ω, ·), µ

)
=

(
gk(ω, v), µ(dv)

)
.
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The cocycle and Markov properties imply that

E {ξk+1 | Gk} = E
{

(gk+1(ω, ·), µ) | Gk

}

= E
{

(gk(ω, ϕsk(θ−tk+1
ω)v), µ(dv)) | Gk

}

= Eω′

{
(gk(ω, ϕsk(θ−tk+1

ω′)v), µ(dv))
}

= Eω′

{
(gk(ω, ϕsk(ω′)v), µ(dv))

}

=
(
Pskgk(ω, ·), µ

)
=

(
gk(ω, ·),P∗

sk
µ
)

= ξk,

where sk = tk+1 − tk, and we used that µ is a stationary measure for Φ.

Let us show that the limit in (4.46) does not depend on {tk}. Indeed, let {t′k}
be another sequence going to +∞ and let µ′

ω be the corresponding limit. Let us
consider the altered sequence {sk} = {t1, t′1, t2, t′2, . . . }. Since the limit (4.46)
with tk = sk also exists almost surely, we conclude that µω = µ′

ω for a.a. ω ∈ Ω.

We now set
M(dω, du) = µω(du)P(dω) (4.53)

and prove that is a Markov invariant measure for Φ. Indeed, the definition of M
implies that its disintegration is F0-measurable. To prove that M is invariant,
it suffices to show that

ϕω
t µω = µθtω for any t > 0 and a.e. ω ∈ Ω. (4.54)

Let us set tk = kt and denote by Ω̃ the set of convergence in (4.46). Choose

any ω ∈ Ω̃ such that θtω ∈ Ω̃. Then convergence (4.46) and the cocycle property
imply that

(
f, ϕω

t µω

)
=

∫

X

f
(
ϕω
t u

)
µω(du) = lim

k→∞

∫

X

f
(
ϕω
t u

)(
ϕtk(θ−tkω)µ

)
(du)

= lim
k→∞

∫

X

f
(
ϕω
t ◦ ϕtk(θ−tkω)u

)
µ(du)

= lim
k→∞

∫

X

f
(
ϕtk+1

(θ−tk+1
(θtω))u

)
µ(du) = (f, µθtω).

Since f ∈ Cb(X) is arbitrary, it remains to note that the set {ω ∈ Ω̃ : θtω ∈ Ω̃}
is of full measure.

It remains to show that Eµ· = µ. To this end, take any function f ∈ Cb(X)
and note that, in view of (4.46), we have

(f, µω) = lim
k→∞

(f, ϕk(θ−kω)µ) for almost every ω ∈ Ω.

Taking the mean value of both sides and using the Lebesgue theorem on domi-
nated convergence and the stationarity of µ, we obtain

E (f, µ·) = lim
k→∞

E
(
f, ϕk(θ−k·)µ

)

= lim
k→∞

E

∫

X

f(ϕku)µ(du) = lim
k→∞

(Pkf, µ) = (f, µ).

The proof of Theorem 4.2.9 is complete.
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Exercise 4.2.11. In the setting of Theorem 4.2.9, prove that, for any Γ ∈ B(X)
and any sequence {tk} going to +∞, we have

(
ϕtk(θ−tkω)µ

)
(Γ) → µω(Γ) as k → ∞ for almost every ω ∈ Ω.

Hint: The fact that {ξk} is a martingale is true for any bounded measurable
function f .

We now study the relationship between the support of the disintegration for
a Markov invariant measure and weak random attractors.

Proposition 4.2.12. Let Φ be a Markov RDS, let M ∈ P(Ω×P,P) be a Markov
invariant measure for Φ with disintegration {µω}, and let A = {Aω} be a weak
random attractor for Φ. Then

suppµω ⊂ Aω for almost all ω ∈ Ω. (4.55)

Proof. Step 1. We first show that if f(ω, u) is a real-valued bounded measurable
function on Ω×H that is continuous in u and µ ∈ P(H) is the stationary measure
associated with M (see Theorem 4.2.9), then

∫∫

Ω×H

f(ω, ϕ
θ−kω
k u)µ(du)P(dω) →

∫∫

Ω×H

f(ω, u)µω(du)P(dω) (4.56)

as k → ∞. Indeed, by (4.46), for almost every ω ∈ Ω, we have

∫

H

f(ω, ϕ
θ−kω
k u)µ(du) =

∫

H

f(ω, u)
(
ϕ
θ−kω
k µ

)
(du) →

∫

H

f(ω, u)µω(du)

as k → ∞. Taking the mean value with respect to ω and using the Lebesgue
theorem on dominated convergence, we obtain (4.56).

Step 2. We now fix any integer n ≥ 1 and set

fn(ω, u) = 1 −
(
n distX(u,Aω)

)
∧ 1,

An
ω = {u ∈ H : distX(u,Aω) ≤ 1/n}.

Applying (4.56) to fn, we obtain

lim
k→∞

∫∫

Ω×H

fn(ω, ϕ
θ−kω
k u)µ(du)P(dω) =

∫∫

Ω×H

fn(ω, u)µω(du)P(dω)

≤
∫

Ω

µω(An
ω)P(dω). (4.57)

On the other hand, it follows from (4.43) that

lim
k→∞

∫

Ω

fn(ω, ϕ
θ−kω
k u)P(dω) = 1 for any u ∈ H.
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Integrating this relation with respect to µ and using again the Lebesgue theorem,
we derive

lim
k→∞

∫∫

Ω×H

fn(ω, ϕ
θ−kω
k u)µ(du)P(dω) = 1. (4.58)

Comparing (4.57) and (4.58), we see that

∫

Ω

µω(An
ω)P(dω) = 1.

It follows that

P
{
ω ∈ Ω : µω(An

ω) = 1
}

= 1 for any integer n ≥ 1.

Since ∩nA
n
ω = Aω, we obtain the relation

P{µω(Aω) = 1} = 1,

which is equivalent to (4.55).

4.2.3 Ergodic RDS and minimal attractors

We now study the connection between invariant measures and random attractors
for ergodic RDS. As before, we denote by Φ = {ϕω

t , t ≥ 0} an RDS in a Polish
space X over a group of measure-preserving transformations θ = {θt, t ∈ R}.
We shall assume that Φ satisfies the two hypotheses below.

Condition 4.2.13. Compactness: There is a compact random set K = {Kω}
attracting trajectories of ϕω

t (in the sense specified in Theorem 4.2.5). Moreover,
for any ε > 0 there is Ωε ∈ F and a compact set Cε ⊂ X such that P(Ωε) ≥ 1−ε
and

ϕ
θ−tω
t u ∈ Cε for ω ∈ Ωε, u ∈ X, t ≥ tε(u), (4.59)

where the time tε(u) > 0 depends only on u and ε.

Condition 4.2.14. Mixing: The RDS Φ is of mixing type in the following
sense: it has a unique stationary measure µ, and for any f ∈ Lb(X) and any
initial point u ∈ X we have

Ptf(u) = E f
(
ϕtu

)
→ (f, µ) =

∫

X

f(u)µ(du) as t→ ∞. (4.60)

Exercise 4.2.15. Prove that if an RDS Φ satisfies Condition 4.2.13, then there
is a compact random set A = {Aω} that satisfies the invariance property of
Definition 4.2.6 and the attraction property of Definition 4.2.3. In particular,
A is a weak random attractor for Φ. Hint: Repeat the scheme used in the proof
of Theorem 4.2.5.
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Recall that the concept of the semigroup associated with an RDS was intro-
duced in Section 1.3.4. The following theorem shows that if a Markov RDS Φ

satisfies Conditions 4.2.13 and 4.2.14, then the associated semigroup Θt also
possesses a mixing property. For any sub-σ-algebra G ⊂ F , denote by L(X,G)
the set of measurable functions F (ω, u) : Ω×X → R that are G-measurable in ω
for any fixed u ∈ X and satisfy the condition

ess sup
ω∈Ω

‖F (ω, ·)‖L <∞. (4.61)

Theorem 4.2.16. Let us assume that Φ satisfies Conditions 4.2.13 and 4.2.14.
Let µ ∈ P(X) be the unique stationary measure for Φ and let M ∈ P(Ω×X,P)
be the corresponding Markov invariant measure. Then for any F ∈ L(X,F−)
we have

EF
(
Θt(·, u)

)
→ (F,M) =

∫

Ω

∫

X

F (ω, u)µω(du)P(dω) as t→ ∞, (4.62)

where u ∈ X is an arbitrary initial point.

Let us denote by µω the disintegration of M and set

Aω =

{
suppµω, ω ∈ Ω̃,

∅, ω /∈ Ω̃,
(4.63)

where Ω̃ ∈ F is a set of full measure on which the limit (4.46) exists. By
Corollary 1.6.5 in [Arn98], Aω is a closed random set. Moreover, it follows
from (4.46) that Aω is measurable with respect to F− in the sense that the
function ω 7→ distX(u,Aω) is (F−,B(R))-measurable for any u ∈ X.

Theorem 4.2.17. Let us assume that Φ satisfies Conditions 4.2.13 and 4.2.14.
Then the random set {Aω} defined by (4.63) is almost surely compact and forms
a minimal weak random attractor for Φ.

Proof of Theorem 4.2.16. Step 1. We first assume that F (ω, u) ∈ L(X,F[−ℓ,0])
for some ℓ ≥ 0. Since θt preserves P, for any t ≥ s ≥ 0 we have

pt(u) := EF
(
θtω, ϕ

ω
t u

)
= EF

(
ω, ϕ

θ−tω
t u

)
= EE

{
F
(
ω, ϕ

θ−tω
t u

) ∣∣F[−s,0]

}
.

By the cocycle property (see (1.62)),

ϕ
θ−tω
t = ϕθ−sω

s ◦ ϕθ−tω
t−s , s ≤ t.

Hence, setting Fs(ω, u) = F (ω, ϕ
θ−sω
s u), for any s ≤ t we derive

pt(u) = EE
{
Fs

(
ω, ϕ

θ−tω
t−s u

) ∣∣F[−s,0]

}
. (4.64)

We now note that Fs ∈ L(X,F[−s,0]) if s ≥ ℓ. Since ϕ
θ−tω
t−s u is measurable with

respect to F[−t,−s] and since the σ-algebras F[−s,0] and F[−t,−s] are independent,
it follows from (4.64) that

pt(u) = EE′{Fs

(
ω, ϕ

θ−tω
′

t−s u
)

= E (Pt−sFs)(ω, u), (4.65)
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where ℓ ≤ s ≤ t and E′ denotes the expectation with respect to ω′. In view of
Condition 4.2.14 and the Lebesgue theorem, for any s ≥ ℓ, the right-hand side
of (4.65) tends to E (Fs(ω, ·), µ) as t → +∞. Recalling the definition of Fs, we
see that

(
Fs(ω, ·), µ

)
=

(
F (ω, ·), ϕθ−sω

s µ
)
→

(
F (ω, ·), µω

)
as s→ ∞,

where we used Proposition 1.3.27. What has been said implies the relation

lim
t→+∞

pt(u) = E
(
F (ω, ·), µω

)
,

which coincides with (4.62).

Step 2. We now show that (4.62) holds for functions of the form F (ω, u) =
f(u)g(ω), where f ∈ Lb(X) and g is a bounded F−-measurable function. To
this end, we use a version of the monotone class theorem.

Let us fix f ∈ Lb(X) and denote by H the set of bounded F−-measurable
functions g for which convergence (4.62) with F = fg holds. It is clear that H
is a vector space containing the constant functions. Moreover, as was shown
in Step 1, it contains all bounded functions measurable with respect to F[−ℓ,0]

for some ℓ ≥ 0. Since the union of F[−ℓ,0], ℓ ≥ 0, generates F−, the required
assertion will be proved as soon as we establish the following property: if gn ∈ H
is an increasing sequence of non-negative functions such that g = sup gn is
bounded, then g ∈ H.

Suppose that a sequence {gn} ⊂ H satisfies the above conditions. Without
loss of generality, we shall assume that 0 ≤ g, gn ≤ 1. By Egorov’s theorem, for
any ε > 0 there is Ωε ∈ F such that P(Ωε) ≥ 1 − ε and

lim
n→+∞

sup
ω∈Ωε

∣∣gn(ω) − g(ω)
∣∣ = 0.

It follows that for any ε > 0 there is an integer nε ≥ 1 such that nε → +∞ as
ε→ 0 and

gnε
(ω) ≤ g(ω) ≤ gnε

(ω) + ε+ IΩc
ε
(ω) for all ω ∈ Ω.

Multiplying this inequality by f(ϕ
θ−tω
t u), taking the expectation, passing to the

limit as t→ +∞, and using the estimate P(Ωc
ε) ≤ ε, we derive

E
{

(f, µω)gnε(ω)
}
≤ lim inf

k→+∞
E
{
f(ϕ

θ−tω
t u)g(ω)

}

≤ lim sup
k→+∞

E
{
f(ϕ

θ−tω
t u)g(ω)

}
≤ E

{
(f, µω)gnε(ω)

}
+ 2ε.

Since ε > 0 is arbitrary and E
{

(f, µω)gnε
(ω)

}
→ E

{
(f, µω)g(ω)

}
as ε → 0

(by the monotone convergence theorem), we conclude that

E
{
f(ϕω

t u)g(θtω)
}

= E
{
f(ϕ

θ−tω
t u)g(ω)

} t→+∞−→ E
{

(f, µω)g(ω)
}
,
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which means that g ∈ H. This completes the proof of (4.62) in the case
when F (ω, u) = f(u)g(ω).

Step 3. Now we consider the general case. Let F ∈ L(X,F−) be an arbitrary
function such that ‖F (ω, ·)‖L(X) ≤ 1 for a.e. ω ∈ Ω. For any u ∈ X and
ε > 0, we choose tε(u) ≥ 1, Ωε ∈ F , and Cε ⋐ X for which (4.59) holds.
By the Arzelà–Ascoli theorem, the unit ball Bε = {f ∈ Lb(Cε) : ‖f‖L ≤ 1}
is compact in the space Cb(Cε), and therefore there is a finite set {hj} ⊂ Bε

whose ε-neighbourhood contains Bε. It follows that Bε can be covered by non-
intersecting Borel sets Uj ∋ hj , j = 1, . . . , N , whose diameters do not exceed 2ε.
Let us denote by fj ∈ L(X) arbitrary extensions of hj to X such that ‖fj‖L ≤ 2.
For instance, we can take

fj(u) = inf
v∈Cε

(
hj(v) + distX(u, v) ∧ 1

)
.

Let us consider the following approximation of F :

Gε(ω, u) =

N∑

j=1

fj(u)gj(ω), gj(ω) = IUj

(
FCε(ω, ·)

)
,

where FCε(ω, u) is the restriction of F to Ω×Cε. Since only one of the functions gj
can be non-zero, we have ‖Gε(ω, ·)‖∞ ≤ 2. Therefore, for any u ∈ X and
a.e. ω ∈ Ω, we derive

∣∣Gε(ω, u) − F (ω, u)
∣∣ ≤ 2ε+ ICc

ε
(u)

(
‖Gε(ω, ·)‖∞ + ‖F (ω, ·)‖∞

)

≤ 2ε+ 3ICc
ε
(u), (4.66)

where we used the inequality ‖F (ω, ·)‖∞ ≤ 1. Let us set

pt(u) = EF (θtω, ϕ
ω
t u), pt(u, ε) = EGε(θtω, ϕ

ω
t u).

It is clear that

∣∣pt(u)−(F,M)
∣∣ ≤

∣∣pt(u)−pt(u, ε)
∣∣+

∣∣pt(u, ε)−(Gε,M)
∣∣+

∣∣(Gε−F,M)
∣∣. (4.67)

Let us estimate each term on the right-hand side of (4.67). Combining (4.59)
and (4.66), for t ≥ tε(u) we derive

∣∣pt(u) − pt(u, ε)
∣∣ ≤

∣∣E
{
F (ω, ϕ

θ−tω
t u) −Gε(ω, ϕ

θ−tω
t u)

}∣∣

≤ 2ε+ 3P
{
ϕ
θ−tω
t u) /∈ Cε

}
≤ 2ε+ 3P(Ωc

ε) ≤ 5ε. (4.68)

Furthermore, the functions gj are F−-measurable, and hence, by Step 2, for any
fixed ε > 0,

pt(u, ε) → (Gε,M) as t→ +∞. (4.69)

Finally, inequality (4.66) implies that

∣∣(Gε − F,M)
∣∣ ≤ 2ε+ 3(ICc

ε
,M) = 2ε+ 3µ(Cc

ε). (4.70)
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Since ε > 0 is arbitrary, it follows from (4.67) – (4.70) that the required conver-
gence (4.62) will be established if we show that µ(Cc

ε) → 0 as ε→ 0.
To this end, we note that

µ(Cc
ε) =

∫

X

P
{
ϕω
t u /∈ Cε

}
µ(du). (4.71)

It follows from Condition 4.2.13 that, for any fixed u ∈ X,

lim sup
t→+∞

P
{
ϕω
t u /∈ Cε

}
= lim sup

t→+∞
P
{
ϕ
θ−tω
t u /∈ Cε

}
≤ ε.

Passing to the limit t → +∞ in (4.71), we conclude that µ(Cc
ε) ≤ ε for any

ε > 0. This completes the proof of Theorem 4.2.16.

Proof of Theorem 4.2.17. We first show that Aω is compact for almost every
ω ∈ Ω. To this end, note that, by Exercise 4.2.15, the RDS possesses a (compact)
weak random attractor {A′

ω}. Furthermore, by Proposition 4.2.12, we have
Aω ⊂ A′

ω for almost every ω. Since Aω is closed, we obtain the required result.

We now prove that the compact random set {Aω} is a random attractor.
Let us fix δ ∈ (0, 1) and consider the function

F (ω, u) = 1 − distX(u,Aω)
δ ∧ 1, u ∈ X, ω ∈ Ω.

We claim that F ∈ L(X,F−). Indeed, the definition implies that F (ω, u) is a
bounded measurable function and that

∣∣F (ω, u) − F (ω, v)
∣∣ ≤ distX(u,v)

δ for all u, v ∈ X, ω ∈ Ω.

Thus, F satisfies (4.61). Since Aω is a compact random set measurable with
respect to F−, we conclude that so is the function F . This proves the required
properties of F .

Since F (ω, u) = 1 for u ∈ Aω, we see that (F,M) = 1. So, applying
Theorem 4.2.16, we get

EF (θtω, ϕ
ω
t u) = 1 − E

(distX(ϕω
t u,Aθtω)

δ
∧ 1

)
→ (F,M) = 1.

That is,

pt(u) := E

(distX(ϕω
t u,Aθtω)

δ
∧ 1

)
→ 0. (4.72)

We now note that, by Chebyshev’s inequality,

P
{

distX(ϕω
t u,Aθtω) > δ

}
≤ pt(u)

δ
.

In view of (4.72), the right-hand side of this inequality goes to zero as t→ +∞.
This completes the proof of the fact that Aω is a random attractor.

To show that Aω is a minimal random attractor, it suffices to note that,
by Proposition 4.2.12, the Markov invariant measure M is supported by any
random attractor {A′

ω}, and therefore suppµω ⊂ A′
ω for a.e. ω ∈ Ω.
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4.2.4 Application to the Navier–Stokes system

In this subsection, we show that Theorems 4.2.16 and 4.2.17 can be applied to
the Navier–Stokes system (3.84) perturbed by a white noise force (2.66). To this
end, it suffices to check that Conditions 4.2.13 and 4.2.14 are fulfilled. As was
proved in Theorem 3.3.1, the second condition holds if the coefficients bj are all
positive and satisfy (2.67). Thus, we shall concentrate on Condition 4.2.13 and
prove that it holds for any sequence bj satisfying the hypothesis

B1 =
∞∑

j=1

αjb
2
j <∞. (4.73)

Recall that a Markov RDS associated with the Navier–Stokes system per-
turbed by a spatially regular white noise was constructed in Section 2.4.4.
We denote by (Ω,F ,Ft,P) the corresponding filtered probability space and by
θt : Ω → Ω the group of shift operators on Ω. We shall show that the required
properties are implied by the following proposition.

Proposition 4.2.18. There is an increasing sequence of subsets Ωk ∈ F satis-
fying the following properties.

(i) The union Ω∗ = ∪kΩk is invariant under the group θt and has the full
measure.

(ii) For any k ≥ 1 there is an almost surely finite random constant Rk such
that

∥∥ϕθ−tω
t (w)

∥∥
1
≤ Rk(ω) for ω ∈ Ωk, w ∈ H, t ≥ Tk(w), (4.74)

where Tk(w) ≥ 0 is a deterministic constant.

Taking this result for granted, let us check Condition 4.2.13. We first prove
the existence of a compact random set attracting the trajectories. Let us set Ω∗
be the set defined in Proposition 4.2.18 and let

Kω =

{
BV

(
Rk(ω)

)
for ω ∈ Ωk \ Ωk−1,

∅, for ω /∈ Ω∗,

where Ω0 = ∅. Then K = {Kω} is a compact random set in H. We claim that
it is an absorbing set. Namely, there is a measurable function T : H×Ω∗ → R+

such that

ϕ
θ−tω
t (w) ∈ Kω for any w ∈ H, ω ∈ Ω∗, t ≥ T (w, ω). (4.75)

Indeed, if we set T (w, ω) = Tk(w) for ω ∈ Ωk \ Ωk−1, then (4.75) follows
immediately from (4.74). Furthermore, since Tk is almost surely finite, so is T .

We now prove (4.59). Let us fix ε > 0 and choose kε ≥ 1 so large that
P(Ωkε

) ≥ 1 − ε
2 . We next find ρε > 0 such that P{Rkε

> ρε} ≤ ε
2 . It is
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straightforward to see that (4.59) holds with Cε = Bρε(V ) and tε(u) = Tkε(u).
Thus, it suffices to establish Proposition 4.2.18. Before doing so, we summarise
the properties resulting from the application of Theorems 4.2.16 and 4.2.17 to
the Navier–Stokes system (3.84).

Theorem 4.2.19. Let us assume that the random part η of the external force
in (3.84) is such that bj 6= 0 for all j ≥ 1 and B1 < ∞. Let µ be the corre-
sponding unique stationary measure and let {µω} be the Markov disintegration
of the invariant measure associated with µ. Then there is a full measure event
Ω̃ ⊂ Ω such that the random set Aω defined by (4.63) is a minimal weak random
attractor for (3.84).

Let us mention that similar results hold for the Navier–Stokes system per-
turbed by a random kick force. Furthermore, the weak random attractor de-
scribed in Theorem 4.2.19 is contained in the global random attractor , which may
be even larger than the one constructed in Theorem 4.2.5. A minimal global
random attractor {Aω} is uniquely defined (in the sense described in Defini-
tion 4.2.4), and for many stochastic PDE’s (including the 2D Navier–Stokes
system), it is known that the Hausdorff dimension of almost every set Aω can
be estimated by a deterministic constant; see [Deb97, Deb98, LR06].

Proof of Proposition 4.2.18. We shall need the following auxiliary result estab-
lished at the end of this subsection.

Lemma 4.2.20. Suppose that (4.73) holds and define a process ζ(t) as in (2.98).
Then for any α > 0, the stochastic integral

zα(t) =

∫ t

−∞
e−α(t−s)Ldζ(s), t ∈ R, (4.76)

defines an H-valued stationary process possessing the following properties.

(i) The process zα is adapted to the filtration {Ft, t ∈ R}, and its trajectories
belong to the space C(R;V )∩L2

loc(R;V 2) with probability 1 and satisfy the
equation

ż + αLz = ∂tζ(t), t ∈ R. (4.77)

(ii) For any γ > 0 and almost every ω ∈ Ω, we have

sup
−1≤t≤0

‖zα(t)‖1 <∞, (4.78)

lim
t→−∞

|t|−γ |zα(t)|22 = 0, (4.79)

lim
t→−∞

1

|t|

∫ 0

t

|∇zα(s)|22ds =
B

2α
, (4.80)

lim
t→−∞

1

|t|

∫ 0

t

|Lzα(s)|22ds =
B1

2α
. (4.81)
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We wish to construct an increasing sequence {Ωk} ⊂ F satisfying (i) and
random constants Rk ≥ 0 such that the solution u of Eq. (3.84) issued from w
at time t = t0 satisfies the inequality

‖u(0)‖1 ≤ Rk(ω) for ω ∈ Ωk, w ∈ H, t0 ≤ −Tk(w). (4.82)

This will imply the required inequality (4.74).

Let u(t) be a solution (3.84) satisfying the initial condition

u(t0) = w.

We can write it in the form u = zα + v, where the (large) constant α > 0 will
be chosen later. Then v must satisfy the equations

v̇ + νLv +B(v + zα) = h+ (α− ν)Lzα, v(t0) = w − zα(t0). (4.83)

For fixed M > 0 and k ∈ Z+, let Ωk be the set of those ω ∈ Ω for which

1

|t|

∫ 0

t

|Lzα(s)|22ds ≤
M

α
, eνα1t|zα(t)|22 ≤ 1 for t ≤ −k. (4.84)

By (4.81), for a sufficiently large M > 0 we have P(Ωk) → 1 as k → ∞, whence
it follows that the union Ω∗ = ∪kΩk is a set of full measure. Moreover, it is
easy to see that it is invariant under the shifts. The proof of (4.82) is divided
into two steps.

Step 1. We first show that

sup
−1≤t≤0

|v(t)|2 ≤ rk(ω) for ω ∈ Ωk, w ∈ H, t0 ≤ −Tk(w), (4.85)

where rk is an almost surely finite random constant and Tk depends only on w.
Taking the scalar product of (4.83) with v and carrying out some transforma-
tions based on Schwarz’s inequality and standard estimates of the nonlinear
term, we derive

∂t|v|22 + ν ‖v‖21 ≤ C1g(t) + C1|∇zα|22|v|22, (4.86)

where g = |h|22 + α2|∇zα|22 + |zα|2|Lzα|2. Since ‖v‖1 ≥ α1|v|22, applying Gron-
wall’s inequality, we obtain

|v(t)|22 ≤ e−A(t,t0)|w − zα(t0)|22 + C1

∫ t

t0

e−A(t,s)g(s) ds, (4.87)

where we set

A(t, s) =

∫ t

s

(
να1 − C1|∇zα(r)|22

)
dr.

Choosing α > 0 sufficiently large, we see from the first inequality in (4.84) that

A(t, s) ≥ να1(t− s− 1) for −1 ≤ t ≤ 0, s ≤ −k, ω ∈ Ωk.
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Substituting this into (4.87) and using the second relation in (4.84), for t0 ≤ −k,
−1 ≤ t ≤ 0, and ω ∈ Ωk we obtain

|v(t)|22 ≤ C2

(
1 + eνα1t0 |w|22

)

+ C2

(∫ −k

−∞
e−να1(t−s−1)g(s) ds+

∫ t

−k

e−A(t,s)g(s) ds

)
.

This implies the required inequality (4.85), in which

rk(ω) = C2

(
2 +

∫ −k

−∞
eνα1(s−2)g(s) ds+ sup

−1≤t≤0

∫ t

−k

e−A(t,s)g(s) ds

)
.

Step 2. We now use the regularising property of the Navier–Stokes dynamics
to prove that

‖v(0)‖1 ≤ r̃k(ω) for ω ∈ Ωk, w ∈ H, t0 ≤ −Tk(w), (4.88)

where r̃k are random constants. Once this inequality is established, the required
estimate (4.82) with Rk(ω) = ‖zα(0)‖1 + r̃k(ω) will follow from the representa-
tion u(0) = zα(0) + v(0).

Integrating (4.86) in t ∈ (−1, 0) and using (4.85) and the first inequality
in (4.84), we get

ν

∫ 1

0

‖v(t)‖21dt ≤ |v(−1)|22 + C1

∫ 0

−1

g(t) dt+ C1

∫ 0

−1

|∇zα|22|v|22dt

≤ rk(ω)

(
1 + C1

∫ 0

−k

|∇zα|22dt
)

+ C3

∫ 0

−k

(
1 + |Lzα|22

)
dt

≤ C4k rk(ω). (4.89)

We now take the scalar product in H of (4.83) with 2(t + 1)Lv. After some
transformations, we obtain

∂t
(
(t+ 1) |L1/2v|22

)
+ ν(t+ 1) |Lv|22 ≤ ‖v‖21 + C5(t+ 1)

(
|h|22 + ‖zα‖22

)

+ C5(t+ 1)
(
|v + zα|2|L(v + zα)|2

)1/2‖v + zα‖1|Lv|2.

It follows from (4.85) and (4.78) that the last term on the right-hand side of
this inequality can be estimated by

C6(ω)(t+ 1)
(
|Lv|3/22 + |Lzα|3/22

)(
|L1/2v|2 + 1

)
,

where C6 is a random constant. Therefore, the function ψ(t) = (t+1)|L1/2v(t)|2
satisfies the differential inequality

ψ′(t) ≤ C7(ω)ψ(t) + C7(ω)
(
|Lzα|22 + ‖v‖21 + 1

)
, −1 ≤ t ≤ 0.
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By Gronwall’s inequality, we obtain

‖v(0)‖21 ≤ eC7(ω)

∫ 0

−1

(
|Lzα|22 + ‖v‖21 + 1

)
dt

≤ eC7(ω)

(∫ 0

−k

|Lzα|22dt+

∫ 0

−1

‖v‖21dt+ 1

)
.

Recalling (4.84) and (4.89), we arrive at the required inequality (4.88). This
completes the proof of the proposition.

Proof of Lemma 4.2.20. The fact that zα is a well-defined H-valued stationary
process possessing properties mentioned in (i) follows easily by finite-dimensional
approximations (cf. proof of Proposition 2.4.2). Therefore we shall confine our-
selves to the proof of assertion (ii).

An analogue of Proposition 2.4.10 is true for the process zα. By stationarity,
it follows that

E

(
sup

T≤t≤T+1
exp

(
σν‖zα‖21

))
= C1 <∞ for all T ∈ R, (4.90)

where σ > 0 does not depend on ν and T . Inequality (4.90) implies, in partic-
ular, that (4.78) holds. Let us introduce the events

Γk =
{

sup
−k≤t≤1−k

|zα(t)|2 > k−γ/4
}
, k ≥ 1.

Then (4.90) implies that
∑

k P(Γk) <∞, whence it follows that |zα(t)|2 ≤ t−γ/4

for t ≤ −t0, where t0 > 0 is an almost surely finite random constant. We thus
obtain (4.79).

To prove (4.80), we apply Itô’s formula to the process |zα(t)|22. This results
in

|zα(0)|22 + 2α

∫ 0

t

|∇zα(s)|22ds = |zα(t)|22 + B|t| + 2

∫ 0

t

〈zα(s), dζ(s)〉.

Dividing this relation by 2α|t|, we derive

1

|t|

∫ 0

t

|∇zα(s)|22ds =
B

2α
+

1

2α|t|

(
|zα(t)|22 − |zα(0)|22 + 2

∫ 0

t

〈zα, dζ〉
)
. (4.91)

As was proved above,

1

|t|
(
|zα(0)|22 + |zα(t)|22

)
→ 0 as t→ −∞ almost surely.

On the other hand, using Theorem 7.12.1 and inequality (4.90), one can show

1

|t|

∣∣∣∣
∫ 0

t

〈zα, dζ〉
∣∣∣∣ → 0 as t→ −∞ almost surely.

Combining this with (4.91), we obtain (4.80). Finally, the proof of (4.81) is
based on the application of Itô’s formula to the functional ‖z‖21 and can be
carried out by a similar argument.
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4.3 Dependence of a stationary measure on the

random force

In this section, we discuss some continuity properties of stationary measures
with respect to parameters. We shall study only the dependence of a stationary
measure on the random component of an external force. However, similar results
remain true when one varies the deterministic component of an external force
or the viscosity. We begin with the case in which the random force η entering
Eq. (3.84) depends continuously on a parameter a. It is shown that if the
hypotheses ensuring the uniqueness of a stationary measure are fulfilled, then
the stationary measure continuously depends on a. This implies, in particular,
that a solution of the Cauchy problem converges in distribution to a limiting
solution uniformly in time. We next turn to the case of a high-frequency random
kicks that converge to a spatially regular white noise and establish a similar
result on convergence of stationary measures.

4.3.1 Regular dependence on parameters

Let us consider the Navier–Stokes equations (3.84), in which ν > 0 and h ∈ H
are fixed, and η is a spatially regular white noise depending on a parameter a
that belongs to a metric space X:

η(t, x) = ηa(t, x) =
∂

∂t
ζa(t, x), ζa(t, x) =

∞∑

j=1

bj(a)βj(t)ej(x). (4.92)

Here βj and ej are the same as in (2.98), and bj : X → R+ are some continuous
functions. We shall always assume that

B := sup
a∈X

∞∑

j=1

b2j (a) <∞. (4.93)

We denote by P a
t (u,Γ) the transition function associated with ηa, and by Pt(a)

and P∗
t (a) the corresponding Markov semigroups. The following theorem shows

that if the stationary measure is unique for some a = â, then it is the only
accumulation point of stationary distributions in the sense of weak convergence
as a→ â.

Theorem 4.3.1. Under the above hypotheses, let bj(â) > 0 for all j ≥ 1, where
â ∈ X is a given point, and let {µa, a ∈ X} be any family of stationary measures
for Eq. (3.84) with η = ηa. Then µa → µâ in the weak topology as a→ â.

Proof. We first outline the scheme of the proof. We wish to prove that

‖µa − µâ‖∗L → 0 as distX(a, â) → 0. (4.94)

To this end, we note that P∗
t (a)µa = µa for all t ≥ 0, whence it follows that

µa − µâ =
(
P∗

t (a)µa −P∗
t (â)µa

)
+
(
P∗

t (â)µa − µâ

)
. (4.95)



4.3. DEPENDENCE OF STATIONARY MEASURE ON THE FORCE 195

It suffices to show that both terms on the right-hand side of (4.95) go to zero in
the dual-Lipschitz metric as distX(a, â) → 0. Suppose for any T > 0 and R > 0
we have proved that

sup
0≤t≤T

sup
|v|2≤R

‖P a
t (v, ·) − P â

t (v, ·)‖∗L → 0 as distX(a, â) → 0. (4.96)

In this case, using Prokhorov’s theorem, one can show that, for any T > 0 and
any tight family Λ ⊂ P(H), we have

sup
0≤t≤T

sup
λ∈Λ

‖P∗
t (a)λ−P∗

t (â)λ‖∗L → 0 as distX(a, â) → 0. (4.97)

Furthermore, by Theorem 3.3.1,

sup
λ∈Λ

‖P∗
t (â)λ− µâ‖∗L → 0 as t→ ∞. (4.98)

Combining (4.95), (4.97), and (4.98) and noting that the family {µa} is tight
in H, we arrive at the required result. The accurate proof is divided into four
steps.

Step 1. Let us prove (4.96), where T > 0 is any fixed number. To this end, we
first establish an estimate for the difference between two solutions for Eq. (3.84)
with different right-hand sides. Let ua(t, x) be a solution of problem (3.84),
(3.85) in which η = ηa and u0 = v. Then the difference u(t) = ua(t) − uâ(t)
vanishes at t = 0 and satisfies the equation

u̇+ νLu+B(ua(t), u) +B(u, uâ(t)) = ξ(t, x),

where we set

ξ(t, x) =
∂

∂t

∞∑

j=1

(
bj(a) − bj(â)

)
βj(t)ej(x).

Let us denote by z(t) = z(t; a, â) a solution of the linear problem

ż + νLz = ξ(t, x), z(0) = 0.

Then we can write u = z + w, where w vanishes at t = 0 and satisfies the
equation

ẇ + νLw +B(ua, z + w) +B(z + w, uâ) = 0. (4.99)

For any curve ξ ∈ C(0, T ;H) ∩ L2(0, T ;H1), let

Eξ(t) = |ξ(t)|22 + ν

∫ t

0

|∇ξ(s)|22ds.

The argument used in the proof of Proposition 2.4.2 (see the derivation of (2.109))
enables one to show that

E

(
sup

0≤t≤T
Ez(t)

)
≤ C1

∞∑

j=1

|bj(a) − bj(â)|2.
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Recalling that bj are continuous functions that satisfy (4.93), we conclude that

E

(
sup

0≤t≤T
Ez(t)

)
→ 0 as distX(a, â) → 0. (4.100)

Furthermore, Corollary 2.4.11 implies that if |v|2 ≤ R, then

sup
a∈X

E

(
sup

0≤t≤T
Eua(t)

)
≤ C2 = C2(R, T ). (4.101)

Taking the scalar product of (4.99) with 2w and carrying out some standard
transformations (cf. proof of Proposition 2.1.25), we obtain

∂t|w|22 + 2ν‖w‖21 ≤ C3‖w‖1|w|2‖uâ‖1
+ C3

(
‖ua‖1|ua|2 + ‖uâ‖1|uâ|2

)1/2(‖z‖1|z|2
)1/2‖w‖1,

whence it follows that

∂t|w|22 + ν‖w‖21 ≤ C4 ‖uâ‖21|w|22 + C4

(
‖ua‖1|ua|2 + ‖uâ‖1|uâ|2

)
‖z‖1|z|2,

where C4 > 0 depends on ν. Application of Gronwall’s inequality results in

sup
0≤t≤T

Ew(t) ≤ C5(ν) exp

(
C5(ν)

∫ T

0

‖uâ(t)‖21dt
)
K(a, â), (4.102)

where we set

K(a, â) =

∫ T

0

(
‖ua‖1|ua|2 + ‖uâ‖1|uâ|2

)
‖z‖1|z|2dt.

Suppose we have shown that, for any positive constants δ and R,

sup
|v|2≤R

P

{
sup

0≤t≤T
Eu(t) > δ

}
→ 0 as a→ â. (4.103)

Let us take any function f : H → R such that ‖f‖L ≤ 1 and fix an initial datum
v ∈ BH(R). Denoting by Ωδ,a the event on the left-hand side of (4.103), for
0 ≤ t ≤ T we write

∣∣E
(
f(ua(t)) − f(uâ(t))

)∣∣ ≤ E
∣∣IΩc

δ,a

(
f(ua(t)) − f(uâ(t))

)∣∣ + 2P(Ωδ,a)

≤
√
δ + 2P(Ωδ,a).

Since f and v were arbitrary, we arrive at the required convergence (4.96).

Step 2. We now prove (4.103). Since Eu(t) ≤ 2(Ez(t) + Ew(t)) for all t ≥ 0,
in view of (4.100), it suffices to show that

sup
|v|2≤R

P{E(w) > δ} → 0 as a→ â, (4.104)



4.3. DEPENDENCE OF STATIONARY MEASURE ON THE FORCE 197

where for a function g(t, x) we write

E(g) = sup
0≤t≤T

Eg(t).

For any M > 0, we have

P{E(w) > δ} ≤ P{E(ua) > M} + P{E(uâ) > M}
+ P{E(w) > δ, E(ua) ≤M, E(uâ) ≤M}.

In view of (4.101), the first two terms in the right-hand side of this inequality
can be made arbitrarily small, uniformly in v ∈ BH(R), by choosing a large M .
Therefore, convergence (4.104) will be established if we show that

sup
|v|2≤R

P{E(w) > δ, E(ua) ≤M, E(uâ) ≤M} → 0 as a→ â, (4.105)

for any positive δ and M . To this end, note that, in view of (4.102), on the set
{E(ua) ≤M, E(uâ) ≤M}, we have

E(w) ≤ C6K(a, â) ≤ C7E(z).

Combining this with (4.100) and Chebyshev’s inequality, we easily prove (4.105).

Step 3. Let us prove (4.97). Let Λ ⊂ P(H) be a tight family in H. Then,
for any ε > 0 and a sufficiently large Rε > 0, we have

sup
λ∈Λ

λ
(
Bc

H(Rε)
)
≤ ε. (4.106)

On the other hand, the obvious relation

P∗
t (a)λ−P∗

t (â)λ =

∫

H

(
P a
t (z, ·) − P a

t (z, ·)
)
λ(dz)

implies that, for any R > 0,

‖P∗
t (a)λ−P∗

t (â)λ‖∗L ≤ sup
|v|2≤R

‖P a
t (v, ·) − P a

t (v, ·)‖∗L + λ
(
Bc

H(R)
)
.

Combining this inequality with (4.106) and (4.96) (whereR = Rε), we get (4.97).

Step 4. To complete the proof of (4.94), it remains to show that the fam-
ily {µa} ⊂ P(H) is tight in H. To see this, let us note that, in view of (2.157),
we have ∫

H

‖u‖21µa(du) ≤ C8(ν) for all a ∈ X.

Chebyshev’s inequality and the compactness of the embedding V ⊂ H prove
that the family {µa} is tight in H. The proof of Theorem 4.3.1 is complete.

As a consequence of Theorem 4.3.1, we have the following result on uniform
convergence of distributions of solutions for Cauchy’s problem.
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Corollary 4.3.2. Under the hypotheses of Theorem 4.3.1, for any compact
subset Λ ⊂ P(H) there is a continuous function AΛ(ρ) > 0 going to zero with ρ
such that

sup
t≥0

∥∥P∗
t (a)λ1 −P∗

t (â)λ2
∥∥∗
L
≤ AΛ

(
‖λ1 − λ2‖∗L + distX(a, â)

)
, (4.107)

where λ1, λ2 ∈ Λ and a ∈ X.

In particular, if ua(t, x) is a solution of (3.84), (3.85) with η = ηa, then

sup
t≥0

∥∥D(ua(t)) −D(uâ(t))
∥∥∗
L
→ 0 as a→ â.

Proof of Corollary 4.3.2. Let us fix a compact subset Λ ⊂ P(H) and define the
function

∆(t, a, λ1, λ2) =
∥∥P∗

t (a)λ1 −P∗
t (â)λ2

∥∥∗
L
.

To establish (4.107), it suffices to prove that for any ε > 0 there are positive
constants T and δ such that

sup
t≥T

∆(t, a, λ1, λ2) ≤ ε for λ1, λ2 ∈ Λ, distX(a, â) ≤ δ. (4.108)

Indeed, an argument similar to that used in Step 1 of the proof of Theorem 4.3.1
enables one to show that

sup
0≤t≤T

∆(t, â, λ1, λ2) → 0 as λ1, λ2 ∈ Λ, ‖λ1 − λ2‖∗L → 0.

Combining this with (4.97), we conclude that

sup
0≤t≤T

∆(t, a, λ1, λ2) → 0 as λ1, λ2 ∈ Λ, ‖λ1 − λ2‖∗L → 0, distX(a, â) → 0.

This convergence and inequality (4.108) imply the required result.

We now prove (4.108). Let µa be a stationary measure for (3.84) with η = ηa.
By Exercise 3.3.8, such a measure is unique for distX(a, â) ≤ δ ≪ 1 and satisfies
the inequality

sup
a∈BX(â,δ)

sup
λ∈Λ

‖P∗
t (a)λ− µa‖∗L → 0 as t→ ∞. (4.109)

We write

∆(t, a, λ1, λ2) ≤
∥∥P∗

t (a)λ1 − µa

∥∥∗
L

+
∥∥P∗

t (â)λ2 − µâ

∥∥∗
L

+ ‖µa − µâ‖∗L.

In view of (4.109), the first two terms on the right-hand side of this inequality
go to zero uniformly in λ1, λ2 ∈ Λ as t → ∞. Furthermore, by Theorem 4.3.1,
the third term vanishes as a → â. These two observations immediately im-
ply (4.108).
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4.3.2 Universality of white noise perturbations

In this section, we consider the Navier–Stokes system

u̇+ νLu+B(u) = η, (4.110)

where the space variable belongs to a bounded domain and the right-hand
side η = ηε is a high-frequency kick force of the form (2.69), i.e.,

ηε(t, x) =
√
ε

∞∑

k=1

ηk(x)δ(t− kε).

We assume that the random variables ηk satisfy the hypotheses of Theorem 3.2.9.
In this case, if bj 6= 0 for all j ≥ 1, then for any ε > 0 the RDS associated with
the equation

uk = Sε(uk−1) +
√
ε ηk, k ≥ 1, (4.111)

has a unique stationary distribution µε. On the other hand, if η is a spatially
regular white noise of the form (2.66), then the Navier–Stokes system (4.110)
also has a unique stationary distribution µ. The following theorem shows that,
under a mild regularity assumption, the family {µε} converges to µ in the weak
topology.

Theorem 4.3.3. Let us assume that the above hypotheses are fulfilled and the
coefficients bj are such that B1 =

∑
j αjb

2
j < ∞. Then µε → µ as ε → 0+ in

the weak topology of P(H).

Proof. We essentially repeat the scheme used in the proof of Theorem 4.3.1.
Let P ε

t (u,Γ) (where t ∈ εZ+, u ∈ H, and Γ ∈ B(H)) be the transition func-
tion for the Markov family defined by (4.111) and let Pt(ε) and P∗

t (ε) be the
corresponding Markov operators; cf. Section 2.4.3. In this case, we can write
(cf. (4.95))

µε − µ =
(
P∗

t (ε)µε −P∗
tµε

)
+
(
P∗

tµε − µ
)
, t ∈ εZ+, (4.112)

where Pt and P∗
t stand for the Markov semigroups associated with Eq. (4.110)

in which η is given by (2.66). We wish to show that the right-hand side of (4.112)
goes to zero in the dual-Lipschitz distance as t → +∞ and ε → 0+. By Exer-
cise 2.4.16, for any T > 0 and any subset Λ ⊂ P(H) satisfying the condition

sup
λ∈Λ

∫

H

|u|22λ(du) <∞, (4.113)

we have (cf. (4.97))

sup
0≤t≤T

sup
λ∈Λ

∥∥P∗
t (ε)λ−P∗

tλ
∥∥∗
L
→ 0 as ε→ 0+, (4.114)

where the Markov semigroup P∗
t (ε) is extended to R+ in a natural way; cf.

Section 2.4.3. Furthermore, by Theorem 3.5.2, for any family Λ ⊂ P(H) satis-
fying (4.113), we have

sup
λ∈Λ

∥∥P∗
tλ− µ

∥∥∗
L
→ 0 as t→ ∞. (4.115)



200 CHAPTER 4. ERGODICITY AND LIMITING THEOREMS

If we prove that the family of measures Λ = {µε} satisfies (4.113), then com-
bining (4.112) with relations (4.114) and (4.115), we see that ‖µ − µε‖∗L → 0
asε→ 0+. Thus, it remains to show that (4.113) holds for the family Λ = {µε}.

In view of (2.51), we have |Sε(u)|2 ≤ e−ε|u|2 for u ∈ H. Since ηk and uk are
independent, it follows that

E |uk|22 = E
∣∣Sε(uk−1)

∣∣2
2

+ εE |ηk|22 ≤ e−2εE |uk−1|22 + εB,

where we used the relations

E ηk = 0, E |ηk|22 =

∞∑

j=1

b2j E ξ
2
jk =

∞∑

j=1

b2j = B.

Iterating the above inequality, we derive

E |uk|22 ≤ e−2εk|u0|22 +
εB

1 − e−2ε
≤ e−2εk|u0|22 +

3B

2
for all k ≥ 0.

The argument used in the proof of Theorem 2.5.3 implies now the required
inequality (4.113).

In contrast to Section 4.3.1, we cannot derive from Theorem 2.5.3 a result
similar to Corollary 4.3.2 since we miss an analogue of (4.109). In other words,
we cannot prove that the convergence D(uε(t; v)) → µε is uniform with respect
to the parameter ε > 0.

4.4 Relevance of the results for physics

The Strong Law of Large Numbers proved in this chapter shows that, for the
2D turbulence driven by a non-degenerate random force, the time average of
an observables equals its ensemble average. This equality is postulated in the
theory of turbulence; e.g., see [Bat82], p. 17, or [Fri95], p. 58. It is important
for numerical and experimental simulations, since it allows to calculate various
averaged characteristics of a turbulent flow by running one experiment for a long
time, rather than by making a large number of costly independent experiments
in the stationary regime. The Law of Iterated Logarithm shows that the rate
of convergence to the time-average is essentially the same as for the sum of
independent random variables.

The Central Limit Theorem, in particular, justifies the widely accepted belief
that, in the turbulent regime, in large time-scales the velocity of the fluid has
an approximately normal distribution; see [Bat82], p. 174. For instance, an
experiment carried out by A. A. Townsend in the middle of 20th century showed
that the probability density function of the velocity of a turbulent fluid at an
arbitrary point is very close to the Gaussian density; see [Bat82], p. 169. We
believe that this observation is explained by the CLT, since any mechanical
device measures not the instantaneous velocity, but its average over some time
interval.
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The random attractors and their deterministic counterparts are well-estab-
lished tools for studying 2D Navier–Stokes equations. The fact that they have
finite dimension for any positive value of the viscosity implies that large-time
asymptotics of fluid motion, even in the turbulent regime, can be described by
finite-dimensional dynamical systems. Theorem 4.2.19 shows that the random
attractor has an additional natural structure—the probability measures µω,
which form a disintegration of the unique invariant measure.

Results of Section 4.3.1 indicate that, for statistical hydrodynamics, in strik-
ing difference with its deterministic analogue, the distribution of a velocity
field u(t, ·) satisfying (0.1) continuously depends on parameters of the random
force f uniformly in time t.

Finally, our results in Section 4.3.2 establish that, in certain sense, white
forces are universal for the randomly forced 2D Navier–Stokes system (0.1).
Namely, there we prove that if the system is perturbed by the force

fε(t, x) =
√
ε η(ε−1t, x), 0 < ε≪ 1, (4.116)

where η is a non-degenerate kick-process with zero mean value, then its unique
stationary measure converges, as ε → 0, to the unique stationary measure of a
white-forced system. Certainly this is a general phenomenon which holds true
for many other fast oscillating random forces of the form (4.116), provided that
the random field η(t, x) satisfies assumptions (a) and (b) from the Introduction.

Notes and comments

The LLN, LIL, and CLT are well understood for independent random variables
and for processes with strong mixing properties. Roughly speaking, these re-
sults hold as soon as the strong mixing coefficient decays to zero sufficiently
fast; see the books [Has80, JS87, MT93, Rio00]. In the context of randomly
forced PDE’s, this condition can be satisfied only if the noise is rough with
respect to the space variables; cf. Example 1.3 in [Shi06c]. In the context of
randomly forced Navier–Stokes system, the SLNN and CLT were established
by Kuksin [Kuk02a], using a coupling argument and some general limit the-
orems for stationary processes. The martingale approximation introduced by
Gordin [Gor69] is a powerful tool for studying limit theorem for stochastic pro-
cesses. It was used by Shirikyan [Shi06c] to derive the rates of convergence in
the SLLN and CLT. The LIL for Navier–Stokes equations was announced by
Denisov [Den04], however, a proof has never appeared. The SLLN and CLT
discussed in this monograph can be derived from more general results of the
book [DDL+07], while the LIL can be obtained as a consequence of the invari-
ance principles established in the recent papers [DM10] and [BMS11].

A systematic study of random dynamical systems can be found in the book
of L. Arnold [Arn98]. Random attractors are a natural extension of attrac-
tors for non-autonomous equations (cf. [CV02]). They were constructed in the
papers of Crauel, Debussche, and Flandoli [CF94, CDF97], and their finite-
dimensionality for various stochastic PDE’s was proved by Debussche [Deb97,
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Deb98], Langa, Robinson [LR06], and many others. Theorem 4.2.9 was estab-
lished at various levels of generality by Ledrappier [Led86], Le Jan [Le 87], and
Crauel [Cra91]. Theorems 4.2.16, 4.2.17, and 4.2.19 were proved by Kuksin and
Shirikyan [KS04a]

The dependence of stationary measures on various parameters in the context
of randomly forced PDE’s was studied by Kuksin, Shirikyan [KS03], Chueshov,
Kuksin [CK08a], and Hairer, Mattingly [HM08]. The presentation here follows
the paper [KS03].



Chapter 5

Inviscid limit

In this chapter, we consider the Navier–Stokes system on the 2D torus T2,
perturbed by a spatially regular white noise (with trivial deterministic part)
whose amplitude is proportional to the square root of the viscosity:

∂tu+ νLu+B(u) =
√
ν η(t, x), (5.1)

η(t, x) =
∂

∂t
ζ(t, x), ζ(t, x) =

∑

s∈Z
2
0

bsβs(t)es(x), (5.2)

Here {es} is the basis defined in (2.29), {βs} is a sequence of independent
standard Brownian motions, and bs ≥ 0 are some constants decaying to zero
sufficiently fast. According to Theorem 3.3.1, if all the constants bs are non-zero,
then Eq. (5.1) has a unique stationary distribution µν . In this chapter, we show
that the family {µν} is tight and investigate properties of the limiting measures.
In particular, it will be proved that any such measure is the law of a stationary
process concentrated on solutions of the homogeneous Euler equation. Some
a priori estimates and a non-degeneracy property will also be obtained. The
results of this chapter (with properly modified constants) remain true for the
Navier–Stokes system on a non-standard torus R2/(aZ⊕ bZ), a, b > 0.

5.1 Balance relations

5.1.1 Energy and enstrophy

As before, for k ∈ Z+ we denote

Bk =
∑

s∈Z0

αk
sb

2
s ≤ ∞,

where αs = |s|2 stands for the eigenvalue associated with es. Note that B0 = B.

203
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Let us recall some results established in Section 2.5.2. Theorem 2.5.5 implies
that, if B0 <∞ and uν(t, x) a stationary solution of problem (5.1), (5.2), then

E 〈Luν , uν〉 =
1

2
B0, (5.3)

E exp
(
κ0|uν |22

)
≤ C0, (5.4)

where κ0 and C0 are positive constants not depending on ν > 0. Furthermore,
by Exercise 2.5.7, if B1 <∞, then

E |Luν |22 =
1

2
B1, (5.5)

E exp
(
κ1‖uν‖21

)
≤ C1, (5.6)

where the positive constants κ1 and C1 are also independent of ν > 0. Note that
relations (5.3) and (5.4) are true for any bounded domain with smooth boundary,
whereas (5.5) and (5.6) are valid only for periodic boundary conditions, because
their proof uses the crucial relation 〈B(u), u〉 = 0.

A simple corollary of the above estimates is the inequality

B2
0

2B1
≤ E

∫

T2

|uν(t, x)|2dx ≤ B0

2
for all ν > 0. (5.7)

Indeed, the right-hand estimate is a straightforward consequence of (5.3) and
the obvious inequality |v|22 ≤ 〈Lv, v〉. To prove the left-hand estimate, note
that, by the interpolation inequality for Sobolev spaces (see Property 1.1.4), we
have

〈Lv, v〉 ≤ |v|2|Lv|2 for any v ∈ V 2.

It follows that

E 〈Luν , uν〉 ≤
(
E |uν |22

)1/2(
E |Luν |22

)1/2
.

Recalling relations (5.3) and (5.5), we arrive at the left-hand inequality in (5.7).

5.1.2 Balance relations

Equalities (5.3) and (5.5) are related to the fact that the energy and enstrophy
are integrals of motion for the 2D Euler equations on the torus. It is well known
that the integral over T2 of any function of vorticity also is preserved under the
dynamics of the Euler system. It turns out that if the right-hand side of (5.1)
is sufficiently smooth in x, then to each function of vorticity there corresponds
a balance relation similar to (5.3) and (5.5). To formulate the corresponding
result, we first introduce some notation.

Let us assume that B2 < ∞. Then, by Exercise 2.5.8 with k = 2, al-
most every trajectory of a stationary solution uν(t, x) for (5.1) belongs to the
space L2

loc(R+;V 3)∩C(R+;V 2). Applying the operator curl to (5.1) and using
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the relation curl(∇q) = 0, we obtain the following equation1 for the station-
ary process vν = curluν whose almost every trajectory belongs to the space
L2
loc(R+;H2) ∩ C(R+;H1):

∂tv − ν∆v + 〈u,∇〉v =
√
ν ξ. (5.8)

Here ξ is an H1-smooth white noise given by the relation

ξ(t, x) = curl η(t, x) =
∂

∂t

∑

s∈Z
2
0

bsβs(t)ϕs(x), (5.9)

where we set

ϕs(x) =
|s|√
2π

{
cos〈s, x〉, s ∈ Z2

+,

− sin〈s, x〉, s ∈ Z2
−.

(5.10)

Theorem 5.1.1. Let B2 <∞ and let g(r) be a continuous function satisfying
the inequality

|g(r)| ≤ C(1 + |r|)l for r ∈ R, (5.11)

where C and l are some constants. Then for all ν > 0 and t ≥ 0 we have

E

∫

T2

g(vν)|∇vν |2dx =
1

2

∑

s∈Z
2
0

b2s E

∫

T2

g(vν)ϕ2
sdx. (5.12)

The meaning of the left-hand side of inequality (5.12) needs to be clarified,
because the trajectories of vν are continuous only as functions of time with
range in H1, and the integral in x does not necessarily converges. However,
it follows from Exercise 2.5.8 that E ‖vν(t)‖22 < ∞ for almost every t, and the
mean value of the integral makes sense for almost every t. Since vν is stationary,
the left-hand side of (5.12) is in fact independent of time. Readers willing to
avoid this type of complications may assume that B3 < ∞, in which case all
the terms are well defined without taking the mean value.

Proof of Theorem 5.1.1. Let G be the second primitive of g vanishing at zero
together with its first derivative, that is, G′′(r) = g(r) and G(0) = G′(0) = 0.
Consider a functional F : H1 → R defined by

F (w) =

∫

T2

G(w(x)) dx. (5.13)

It is straightforward to see that F satisfies the hypotheses of Theorem 7.7.5
for the triple (V,H, V ∗) = (H2, H1, L2), and therefore we can apply Itô’s for-
mula (7.24) to the process F (vν(t)). Omitting the subscript ν for the simplicity
of notations, we get

F
(
v(t ∧ τn)

)
= F

(
v(0)

)
+

∫ t∧τn

0

(
A(θ) dθ +

∑

s∈Z
2
0

Bs(θ) dβs

)
, (5.14)

1Note that Eq. (5.8) is valid for any solution whose trajectories possess the above-mentioned
regularity.
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where τn = inf{t ≥ 0 : ‖v(t)‖1 > n},

A(t) =

∫

T2

(
G′(v)

(
ν∆v − 〈u,∇〉v

)
+
ν

2

∑

s∈Z
2
0

b2sg(v)ϕ2
s

)
dx,

Bs(t) =
√
ν bs

∫

T2

G′(v)ϕs dx.

Suppose we have shown that condition (7.36) is satisfied for the process F (v).
Then, by Corollary 7.7.6, relation (5.14) implies that

F
(
v(t)

)
= F

(
v(0)

)
+

∫ t

0

A(θ) dθ +Mt, (5.15)

where Mt stands for the corresponding stochastic integral. Taking the mean
value of both sides of (5.15), using the stationarity of v, and recalling the defi-
nition of A, we get EA(t) = 0 for any t ≥ 0. Noting that

∫

T2

G′(v)
(
ν∆v − 〈u,∇〉v

)
dx = −ν

∫

T2

g(v)|∇v|2 dx

for any functions v ∈ H2 and u ∈ V 2, we arrive at the required relation (5.12).

To complete the proof of the theorem, it remains to prove that we can apply
Corollary 7.7.6. That is, we need to check that

∑

s∈Z
2
0

E

∫ t

0

|Bs(θ)|2dθ <∞ for any t > 0. (5.16)

In view of (5.10), (5.11), and (5.6), for any t > 0 we have

∑

s∈Z
2
0

E

∫ t

0

|Bs(θ)|2dθ = ν
∑

s∈Z
2
0

b2sE

∫ t

0

∣∣∣∣
∫

T2

G′(v)ϕs

∣∣∣∣
2

dθ

≤ C1ν
∑

s∈Z
2
0

b2s|s|2
∫ t

0

E
∣∣v(θ)

∣∣2(l+1)

2(l+1)
dθ ≤ C2B1tν,

where C1 and C2 are some constants not depending on ν and {bs}. The proof
is complete.

Exercise 5.1.2. Calculate the first and second derivatives of the functional F
defined by (5.13) and verify that the hypotheses of Theorem 7.7.5 are satisfied
for F . Hint: Use the fact that the Sobolev space H1 is continuously embedded
in Lp for any finite p ≥ 1.

We now consider a particular case in which the stationary measure is unique,
and the law of the random perturbation is invariant under translations and re-
flections. Namely, as was proved in Corollary 3.3.4, if the coefficients bs are
all non-zero and bs ≡ b−s, then the unique stationary measure µν is invariant
under translations and reflections. This property enables one to draw some fur-
ther conclusions on the stationary distributions. Namely, we have the following
result.
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Proposition 5.1.3. In addition to the hypotheses of Theorem 5.1.1, suppose
that B4 <∞ and

bs = b−s 6= 0 for all s ∈ Z2
0.

Let µν be the unique stationary measure of (5.1), let uν be a corresponding
stationary solution, and let vν = curluν . Then for all ν > 0, t ≥ 0, and x ∈ T2

we have 2

E
(
g(vν(t, x))|∇vν(t, x)|2

)
=

1

2
(2π)−2B1 E

(
g(vν(t, x))

)
. (5.17)

Equalities (5.17) (with various functions g) are called balance relations for a
stationary solution vν .

Proof of Proposition 5.1.3. Since bs = b−s, the right-hand side of (5.12) is equal
to

1

4
E
∑

s∈Z
2
0

b2s

∫

T2

g(vν)(ϕ2
s + ϕ2

−s) dx =
1

2
(2π)−2B1E

∫

T2

g(vν) dx,

where we used the relation ϕ2
s + ϕ2

−s = |s|2
2π2 . Substituting this into (5.12), we

derive ∫

T2

E

(
g(vν)

(
|∇vν |2 − 1

2 (2π)−2B1

))
dx = 0.

Since the law of vν is invariant under translations in x, the integrand is inde-
pendent of x and vanishes. The proof is complete.

Relation (5.3) and the space homogeneity of the process vν(t, x) imply that
E|∇vν(t, x)|2 = 1

2B0(2π)−2. So (5.17) means that the random variables g(vν(t, x))
and |∇vν(t, x)|2 are uncorrelated: the expectation of their product equals the
product of their expectations. Jointly the balance relations (5.17) (i.e., the as-
sertion of Proposition 5.1.3) may be reformulated in terms of the conditional
expectation with respect to the σ-algebra Fvν(t,x) generated by vν(t, x).

Corollary 5.1.4. Under the hypotheses of Proposition 5.1.3, for all ν > 0,
t ≥ 0, and x ∈ T2 we have

E
(
|∇vν(t, x)|2 | Fvν(t,x)

)
=

1

2
(2π)−2B1.

Proof. We first note that, in view of Exercise 2.5.8, almost all trajectories of vν
are continuous in time with range in H3, whence it follows that, with proba-
bility 1, the expression |∇vν(t, x)| is well defined for any t ≥ 0 and x ∈ T2.
The required assertion is now a straightforward consequence of (5.17) and the
definition of the conditional expectation.

2Note that the left- and right-hand side of (5.17) are well defined, because almost every
trajectory of vν is a continuous function of time with range in H3, and the corresponding
norm has finite moments; see Exercise 2.5.8.



208 CHAPTER 5. INVISCID LIMIT

Other way round, the assertion of the corollary implies that

E
(
g(vν(t, x))|∇vν(t, x)|2

)
= E

(
g(vν(t, x))|∇vν(t, x)|2 | Fvν(t,x)

)

=
1

2
(2π)−2B1 E

(
g(vν(t, x))

)
.

Thus, Corollary 5.1.4 is equivalent to the balance relations.
The following exercise gives yet another form of the balance relations (5.17).

Exercise 5.1.5. In addition to the hypotheses of Proposition 5.1.3, assume that
B6 <∞. Prove that the following properties hold for any fixed t ≥ 0.

(i) For τ ∈ R and ω ∈ Ω, define Γt(τ, ω) = {x ∈ T2 : vν(t, x) = τ}. Then for
almost all ω ∈ Ω and τ ∈ R, the set Γt(τ, ω) is a C3-smooth curve in T2.

(ii) Let dℓ be the length element on Γt(τ, ω) (whenever the latter is a smooth
curve). Then for almost every τ ∈ R, we have the following co-area form
of the balance relations:

E

∫

Γt(τ,ω)

|∇vν | dℓ =
1

2
(2π)−1B1E

∫

Γt(τ,ω)

|∇vν |−1dℓ.

Hint: Integrate (5.17) over dx and perform the co-area change of variables
dx = |∇vν |−1dτdℓ in the integral. (We refer the reader to [Kuk06b] for a full
proof of this result.)

5.1.3 Pointwise exponential estimates

Inequality (5.6), which is true for any stationary solution uν of (5.1), implies
that

P{‖uν(t)‖1 ≥ R} ≤ C1e
−κ1R

2

for all R > 0.

Thus, large values of the enstrophy are very unlikely in a stationary regime. The
aim of this section is to show that if the law of the random perturbation η is
invariant under translations, then some similar estimates hold pointwise for uν
and ∇uν . Namely, we have the following result.

Theorem 5.1.6. Under the hypotheses of Proposition 5.1.3, there are positive
constants σ and K, depending only on B1, such that, for all t ≥ 0, x ∈ T2,
ν > 0, we have

E eσ|vν(t,x)| + E eσ|uν(t,x)| + E eσ|∇uν(t,x)|1/2 ≤ K. (5.18)

Proof. It suffices to estimate each term on the left-hand side of (5.18) by a
constant depending only on B1. We begin with the first term.

Integrating over x ∈ T2 relation (5.17) in which g(r) = |r|2p with p > 0 and
applying Hölder’s inequality, we derive

E

∫

T2

|vν |2p|∇vν |2dx = C1B1E

∫

T2

|vν |2pdx

≤ C1(2π)2/(p+1)

(
E

∫

T2

|vν |2(p+1)dx

) p
p+1

. (5.19)
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On the other hand, in view of generalised Poincaré’s inequality (7.75), we have
∫

T2

|vν |2p|∇vν |2dx ≥ C2(p+ 1)−2

∫

T2

|vν |2(p+1)dx.

Taking the mean value and substituting the resulting inequality into (5.19), we
obtain

E

∫

T2

|vν |2(p+1)dx ≤ (C3B1)p+1(p+ 1)2(p+1) for any p > 0. (5.20)

Since the law of vν(t, x) is invariant under the translations, we conclude that

E |vν(t, x)|m ≤ (C4B1)m/2mm for all integers m ≥ 0,

where we set 00 = 1. It follows that if 0 < σ ≤ (e
√
C4B1)−1, then

E eσ|vν(t,x)| =

∞∑

m=0

σm

m!
E |vν(t, x)|m ≤

∞∑

m=0

σm

m!
(C4B1)m/2mm

≤
(
1 − σe

√
C4B1

)−1
, (5.21)

where we used the well-known inequality m! ≥ (m/e)m. We have thus proved
the required estimate for the first term on the left-hand side of (5.18).

The derivation of an upper bound for the second and third terms is based on
similar ideas, and we shall confine ourselves to the proof for the more difficult
third term. Let us recall that the velocity field uν can be recovered from the
vorticity vν by the relation uν = curl(∆−1vν), where ∆−1 stands for the inverse
of the Laplace operator on the space of the L2 function on T2 with zero mean
value. It follows that the components of the matrix ∇uν can be written in the
formRvν = γ(∂i∂j∆

−1)vν , where γ = ±1. Now note thatR is a singular integral
operator on T2, or more precisely, a composition of two Riesz projections; see
Chapters II and III in [Ste70] for definitions. Therefore, by the Calderón–
Zygmund theorem (see Sections 2.2 and 6.2 in Chapter II of [Ste70]), we have

|Rvν |q ≤ Cq |vν |q for any q ∈ [2,∞).

Combining this estimate with q = 2(p+ 1) and inequality (5.20), we obtain

E

∫

T2

|∇uν |2(p+1)dx ≤ (C5B1)p+1(p+ 1)4(p+1) for any p > 0.

Since the law of ∇uν(t, x) is invariant under translations, it follows that

E |vν(t, x)|m/2 ≤ (C6B1)m/4mm for all m ≥ 0.

The required estimate can now be obtained by exactly the same argument as
above; see (5.21).

Exercise 5.1.7. Prove that the middle term in (5.18) can be bound by the right-
hand side. Hint: Repeat the scheme of the proof of Theorem 5.1.6 using the
fact that |uν |p ≤ C |vν |p for any p ≥ 2, where C > 0 does no depend on p; the
latter follows from the elliptic regularity for the Laplacian and an interpolation
theorem for Sobolev spaces.
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5.2 Limiting measures

5.2.1 Existence of accumulation points

Throughout this subsection, we shall assume that

B1 <∞.

Let {uν , ν > 0} be a family of stationary solutions for (5.1) and let µν be the
law of uν(t, ·). In view of the results described in Section 5.1.1, we have

E ‖uν(t, ·)‖22 =

∫

H

‖v‖22 µν(dv) ≤ C for all ν > 0. (5.22)

Since the embedding H2 ⊂ H2−ε is compact for any ε > 0, Prokhorov’s theo-
rem implies that the family {µν} is tight in H2−ε, and therefore any countable
subsequence {µνj , νj → 0} has a limiting point in the sense of weak conver-
gence of measures on H2−ε. Furthermore, if µ is an accumulation point of
the sequence {µνj

}, then µ is concentrated on H2. Indeed, for any R > 0
the ball BH2(R) is closed in H2−ε, and µνj

(BH2(R)) ≥ 1 − CR−2 by (5.22)
and Chebyshev’s inequality. Therefore, by the portmenteau theorem, we have
µ(BH2(R)) ≥ 1 − CR−2 for any R > 0, so µ(H2) = 1. Theorem 5.2.2 estab-
lished below shows that the laws of the solutions uνj (regarded as elements of
an appropriate space of trajectories) also converge to a limiting measure. We
shall need some notations.

Let us denote by µν the law of a stationary solution uν . Since the trajecto-
ries of solutions of (5.1) almost surely belong to the space L2

loc(R+;V ), we see
that µν is a probability measure on on it.

Exercise 5.2.1. Show that if B1 < ∞, then the measure µν is concentrated on
the space C(R+;V ) ∩ L2

loc(R+;V 2).

Given a Banach space X, a finite interval J ⊂ R, and constants α ∈ (0, 1)
and p ≥ 1, we define Wα,p(J ;X) as the space of curves f ∈ Lp(J ;X) such that

‖f‖Wα,p(J;X) = ‖f‖pLp(J;X) +

∫

J

∫

J

‖f(t) − f(s)‖pX
|t− s|1+αp

ds dt <∞.

The following theorem proves the tightness of the family {µν} in an appropriate
functional space and describes some properties of the limiting measures.

Theorem 5.2.2. For any ε > 0 the family of measures {µν} is tight 3 in the
space C(R+;H1−ε)∩L2

loc(R+;H2−ε). Moreover, if µ is a limiting point for {µν}
and u(t, x) is a random process whose law coincides with µ, then the following
properties hold.

3Recall that the space C(R+;V ) is endowed with the topology of uniform convergence on
bounded intervals of R+; see Section 1.1.2. Similarly, the space L2

loc(R+;Hs) is endowed with
the topology generated by the norms of L2(0, n;Hs), where n ≥ 1 is any integer.
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(i) Almost every realisation of u(t, x) belongs to the space

L2
loc(R+;V 2) ∩W 1,1

loc (R+;V ) ∩W 1,∞
loc (R+;Lp) (5.23)

for any p ∈ [1, 2) and satisfies the Euler equation

u̇+B(u) = 0. (5.24)

(ii) The process u(t, x) is stationary in time, and the functions |u(t)|2 and
|∇u(t)|2 are time-independent random constants.

Before proving this result, we establish the following corollary.

Corollary 5.2.3. Let µ be a limiting point of the family {µν} in the space
C(R+;H1−ε) as ν → 0+, where ε ∈ (0, 1), and let µ be the restriction of µ at
time t = 0. Then

∫

H

|u|22µ(du) ≥ B2
0

2B1
, (5.25)

∫

H

‖u‖21µ(du) =
B0

2
, (5.26)

∫

H

|Lu|22µ(du) ≤ B1

2
, (5.27)

∫

H

exp
(
κ‖u‖21

)
µ(du) ≤ C, (5.28)

where κ and C are some positive constants. If, in addition, the hypotheses of
Proposition 5.1.3 are fulfilled, then for all x ∈ T2 we have

∫

H

(
eσ|u(x)| + eσ|∇u(x)|1/2)µ(du) ≤ K (5.29)

with suitable positive constants σ and K. Moreover, in this case the measure µ

is invariant under translations and reflections of R2.

Proof. Inequality (5.25) is a straightforward consequence of (5.26), (5.27) and
the interpolation inequality for Sobolev spaces; cf. proof of (5.7). The deriva-
tion of (5.26) – (5.29) is based on passing to the limit in similar estimates for
stationary solutions of the Navier–Stokes system. The last assertion of the the-
orem follows from similar properties of the measures µν . Therefore, we shall
confine ourselves to the proof of (5.27), (5.28) and (5.26).

Since µ is a limiting point of the family {µν}, there is a sequence νj → 0+

such that µνj
→ µ in the sense of weak convergence of measures on C(R+;H1−ε).

It follows that µνj → µ as j → ∞, where µνj stands for the restriction of µνj

at time t = 0, and the convergence holds weakly in the space of Borel measures
on H1−ε. Now (5.27) easily follows from Lemma 1.2.17, where πn is the orthog-
onal projection Pn : H → H to the vector span of the first n eigenfunctions of
the Stokes operator L; see Section 2.1.5.
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Let us prove (5.28). It follows from (5.27) that the family {µνj} is tight
in H2−δ for any δ > 0, and by Prokhorov’s theorem, there is no loss of generality
in assuming that µνj

→ µ in the weak topology of H2−δ. Using (5.6) and
applying again Lemma 1.2.17, we derive inequality (5.28).

We now prove (5.26). It follows from (5.3) that, for any R > 0, we have

∫

BV (R)

‖u‖21µνj
(du) +

∫

Bc
V (R)

‖u‖21µνj
(du) =

B0

2
.

Using (2.157), for any δ > 0 we can choose R = Rδ > 0 so large that the second
term on the left-hand side is smaller than δ uniformly in j. On the other hand,
for any fixed R > 0, the first term converges to a similar integral for µ. These
two observations combined with Fatou’s lemma immediately imply that

B0

2
− ε ≤

∫

BV (Rε)

‖u‖21µνj
(du) ≤

∫

H

‖u‖21µνj
(du) ≤ B0

2
.

Since ε > 0 is arbitrary, we obtain the required inequality.

Exercise 5.2.4. Prove inequality (5.29). Hint: Use the fact that the functionals
taking u ∈ V to |u(x)| and |∇u(x)| are measurable on V , and apply Fatou’s
lemma.

Proof of Theorem 5.2.2. We first prove the tightness of the family {µν}. To
this end, it suffices to show that its restriction to any finite interval J = [0, n]
is tight in C(J ;H1−ε)∩L2(J ;H2−ε). To simplify the formulas, we assume that
J = [0, 1], and with a slight abuse of notation, denote the restriction of measures
to J by the same symbol.

We fix some constants ε > 0 and α ∈ (1/4, 1/2) and introduce the functional
spaces 4

X = L2(J ;V 2) ∩
(
H1(J ;H) +Wα,4(J ;V )

)
= X1 + X2,

Y = L2(J ;H2−ε) ∩ C(J ;H1−ε)

where we set

X1 = L2(J ;V 2) ∩H1(J ;H), X2 = L2(J ;V 2) ∩Wα,4(J ;V ).

Let us note that we have a compact embedding X ⊂ Y. Indeed, it follows
from Theorem 5.1 and 5.2 in [Lio69, Chapter I] that X1 and X2 are compactly
embedded in L2(J ;H2−ε). Furthermore, in view of Theorem 3.1 in [LM72],
we have a continuous embedding X1 ⊂ C(J ;V ), whence it follows that the
embedding X1 ⊂ C(J,H1−ε) is compact. Finally, by Lemma II.2.4 of [Kry02],

4Recall that if B1 and B2 are Banach spaces embedded into a topological vector space L,
then their sum B1 + B2 is defined as the vector space of those elements u ∈ L that are
representable in the form u = u1 + u2, where ui ∈ Bi. It is a Banach space with respect
to the norm ‖u‖ = inf(‖u1‖B1 + ‖u2‖B2 ), where the infimum is taken over all pairs (u1, u2)
whose sum is equal to u.
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we have a continuous embedding Wα,4(J ;V ) ⊂ Cα− 1
4 (J ;V ), whence it follows

that X2 is also compactly embedded in C(J ;V ).
Let us denote by uν(t, x) a stationary solution for (5.1) on J whose law

coincides with µν . The tightness of {µν} in Y will be established if we prove
that

E ‖uν‖2X ≤ C1, (5.30)

where C1 > 0 is a constant not depending on ν. To this end, we first note that,
in view of (5.5), we have

E

∫ 1

0

|Luν(t)|22 =
B1

2
. (5.31)

Equation (5.1) implies that

uν(t) = u1ν(t) + u2ν(t) + ζν(t),

where we set ζν =
√
ν ζ,

u(1)ν (t) = uν(0) −
∫ t

0

Luν(s) ds, u(2)ν (t) = −
∫ t

0

B(uν(s)) ds.

It follows from (5.31) that

E
∥∥u(1)ν

∥∥2
H1(J;H)

≤ C2. (5.32)

We now need the following properties of the nonlinear term B(u).

Exercise 5.2.5. For any p ∈ [1, 2), the bilinear map (u, v) 7→ B(u, v) satisfies the
following inequalities:

|B(u, v)|2 ≤ C
(
|u|2‖u‖2

)1/2‖v‖1 for u ∈ H2, v ∈ H1, (5.33)

‖B(u, v)‖1 ≤ C ‖u‖2‖v‖2 for u ∈ H2, v ∈ H2, (5.34)

|B(u, v)|p ≤ Cp ‖u‖1‖v‖1 for u ∈ H1, v ∈ H1. (5.35)

Combining (5.33), (5.31) and (5.6), we see that

E
∥∥u(2)ν

∥∥2
H1(J;H)

≤ C3 E

∫ 1

0

∥∥u(2)ν

∥∥3
1

∥∥u(2)ν

∥∥
2
dt ≤ C4 (5.36)

Furthermore, since for a centred Gaussian random variable ξ with variance σ2

we have E ξ4 = 3σ4, then

E

(∑

s∈Z
2
0

csβ
2
s (t)

)2

=
∑

s,s′∈Z
2
0

cscs′ E
(
β2
s (t)β2

s′(t)
)

≤
∑

s,s′∈Z
2
0

cscs′ Eβ
4
s (t) = 3t2

(∑

s∈Z
2
0

cs

)2

,

E

(∑

s∈Z
2
0

cs|βs(t) − βs(r)|2
)2

≤ 3(t− r)2
(∑

s∈Z
2
0

cs

)2

,
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where cs ∈ R are arbitrary constants. It follows that

E

∫ 1

0

‖ζ‖41dt = E

∫ 1

0

(∑

s∈Z
2
0

αsb
2
sβ

2
s (t)

)2

dt ≤ C5B
2
1,

E

∫ 1

0

∫ 1

0

‖ζ(t) − ζ(r)‖41
|t− r|1+4α

drdt ≤ C6B
2
1.

Combining these inequalities with (5.32) – (5.36), we arrive at (5.30).

We now prove assertions (i) and (ii). As before, it suffices to consider the
restrictions of the measures and of the corresponding processes to the inter-
val J = [0, 1]. It is easy5 to see that all needed properties of the process u(t)
can be reformulated in terms of its law µ. For instance, the energy and enstro-
phy of u are random constants if and only if the image of µ under the mapping

w 7→
(
|w|22, |∇w|22

)
, Y → C(J ;R2),

is concentrated on the space of constant vector functions. Thus, it suffices to
establish assertions (i) and (ii) for any particular choice of the process u.

Now let µ be a limiting measure for the family {µν} as ν → 0+ in the
sense of weak convergence in the space Y. Relation (5.30) and Lemma 1.2.17
with f(u(·)) =

∫
J
‖u‖22 dt and πn(u(·)) = Pn (where Pn is the projection from

Section 2.1.5) imply that µ(L2(J ;V 2)) = 1.
By Skorokhod’s embedding theorem (see Theorem 11.7.2 in [Dud02]), there

is a sequence of stationary processes ũνj
(t, x) with νj → 0+ and an Y-valued

random variable u(t, x) that are defined on the same probability space (Ω,F ,P)
and satisfy the properties

D(ũνj ) = µνj
, D(u) = µ, (5.37)

P
{
ũνj

→ u in Y as j → ∞
}

= 1. (5.38)

As µ(L2(J ;V 2)) = 1, then u ∈ L2(J ;V 2) almost surely. Since ũνj is a stationary
process, so is u.

Let us prove that almost every trajectory of u satisfies the Euler equa-
tion (5.24). Indeed, since µνj

is the law of a stationary solution for (5.1),
the process uνj

can be written as

uνj
(t) = uνj

(0) −
∫ t

0

(
νjLuνj

+B(uνj
)
)
ds+

√
νj ζj(t), (5.39)

where ζj is a V -valued spatially regular white noise distributed as ζ. Since the
random sequence {√νj ζj} ⊂ C(J ;H) goes to zero in probability, passing to a
subsequence, we can assume that

P
{√

νj ζj → 0 in C(J ;H) as j → ∞
}

= 1. (5.40)

5It is not straightforward that the space defined by (5.23) is a Borel subset of C(R+;H1−ε)∩
L2(R+;H2−ε). The verification of this property is the content of Exercise 5.2.6.
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Finally, since E‖uνj‖2L2(J,H2) ≤ C (see (5.31)), passing again to a subsequence,
we see that

P
{
νjLuνj

→ 0 in L2(J ;H) as j → ∞
}

= 1. (5.41)

Let us denote by Ω∗ the intersection of the events in the left-hand sides of (5.38),
(5.40) and (5.41). Then P(Ω∗) = 1, and for any ω ∈ Ω∗, we can pass to the
limit in relation (5.39) as j → ∞, regarding it as an equality in L1(J × T2).
This results in the relation

u(t) = u(0) −
∫ t

0

B(u) ds, t ∈ J,

which is equivalent to (5.24).
We now prove some further regularity properties for u. It follows from (5.34)

and (5.35) that

∫ 1

0

‖B(u)‖1 ≤ C8

∫ 1

0

‖u‖22dt, ess sup
t∈J

|B(u)|p ≤ C9 ess sup
t∈J

‖u‖21.

Since u ∈ L2(J ;V 2) ∩ C(J ;V ) with probability 1, we conclude that the right-
hand sides in the above inequalities are almost surely finite. Combining this
with Eq. (5.24), we see that u ∈W 1,1(J ;V ) ∩W 1,∞(J ;Lp).

It remains to prove that the energy and enstrophy are random constants.
Let us fix any ω ∈ Ω for which u ∈ L2(J ;V 2) ∩W 1,1(J, V ). Then the function
t 7→ |∇u(t)|2 is absolutely continuous, and in view of (5.24) and Lemma 2.1.16,
for almost all t ∈ J we have

d

dt
|∇u(t)|2 = 2 〈∇u̇(t),∇u(t)〉 = −2 〈B(u(t)),∆u(t)〉 = 0.

This implies that |∇u(t)|22 does not depend on t. A similar argument shows that
|u(t)|2 is also independent of time. The proof of the theorem is complete.

Exercise 5.2.6. Prove that the space defined by (5.23) is a Borel subset of the
spaces C(R+;Hs−1) and L2

loc(R+;Hs) with s ≤ 2. Hint: It suffices to consider
the restrictions to finite intervals and to show that the closed balls are Borel
subsets. This can be done by describing balls with the help of some countable
system of inequalities for functionals.

In Theorem 5.2.2, we showed that the energy and enstrophy of a limiting
process are random constants. The proof of this fact was based on some well-
known properties of the flow for the homogeneous Euler equations. It turns out
that the regularity we obtained for the limiting measure is sufficient to derive
an entire family of integrals of motions.

Exercise 5.2.7. Under the hypotheses of Theorem 5.2.2, show that if g : R → R

is a continuous function with at most a polynomial growth at infinity, then the
expression

〈
g(curlu(t))

〉
= (2π)−2

∫

T2

g(curlu(t, x)) dx (5.42)
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defines a random constant not depending on time. Hint: In the case of regular
solutions of the Euler equations, quantity (5.42) is preserved. This fact follows
immediately from the observation that the vorticity satisfies a transport equa-
tion defined by the vector field u(t, x). Prove that a similar argument applies in
our case, on condition that g is a C1-function with a bounded derivative, and
then use a standard regularisation procedure to treat the general situation.

We now construct a topological space X ⊂ V in which the Euler equation is
well posed and any limit point of stationary distributions {µν} is an invariant
measure for the corresponding flow. Let us note that if µ is a limiting measure
obtained in Corollary 5.2.3, then for µ-almost every initial function u0 ∈ V
the Euler equation (5.24) has a global solution belonging to space (5.23). The
following exercise shows that the constructed solution is unique.

Exercise 5.2.8. Let u1 and u2 be two solutions of (5.24) that belong to the
space L2(J ;V 2) ∩ C(J ;V ), where J = [0, T ] is a finite interval. Assume that
u1(τ) = u2(τ) for some τ ∈ J . Show that u1 and u2 coincide. Hint: The proof
can be carried out with the help of an argument due to Yudovich [Jud63] (see
also [Che98]).

Let us introduce the Fréchet space K = L2
loc(R;V 2)∩W 1,1

loc (R;V ) and denote
by KE the set of curves u ∈ K that satisfy the Euler equation (5.24) on the real
line R. We note that KE is a closed subset of K and provide it with the distance
induced from K. Then K becomes a Polish space. Clearly, the restriction of a
function u ∈ K to any interval J ⊂ R belongs to the space L2(J ;V 2)∩C(J ;V ).
Therefore, by Exercise 5.2.8, if u1, u2 ∈ KE are such that u1(0) = u2(0), then
u1 = u2.

Let π : K → V be the linear continuous operator that takes u to u(0) and
let πE be its restriction to KE . What has been said above implies that πE is
an injective mapping. Let us denote by X its image and endow it with the
induced distance.6 Thus, X is a complete metric space embedded in V and
homeomorphic to KE . The very definition of X implies that for any u0 ∈ X
the function π−1

E (u0) ∈ KE is the unique solution of the Euler equation (5.24)
supplemented with the initial condition

u(0) = u0, (5.43)

Moreover, this solution continuously depends on u0. Thus, we can define a
group of homeomorphisms St : X → X such that {Stu0, t ∈ R} is a unique
global solution of (5.24), (5.43). The mapping πE conjugates any St with the
time shift θt : KE ∋ u(·) 7→ u(· + t). The following theorem establishes some
further properties of X and St.

Theorem 5.2.9. (i) The space V 3 is continuously embedded in X.

(ii) For any u0 ∈ X, the curve {Stu0, t ∈ R} ⊂ X is continuous.

(iii) For any u ∈ KE and any bounded continuous function g : R → R, the
integral (5.42) is independent of time, as is the L2-norm |u(t)|2.

6In other words, distX(πE(u), πE(v)) = distKE
(u, v) for all u, v ∈ KE .
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(iv) Under the hypotheses of Theorem 5.2.2, any limit point of the family {µν}
as ν → 0+ is concentrated on X and is an invariant measure for St.

Proof. (i) It is well known that the 2D Euler equations are well posed in the
space V 3, and the corresponding solutions belong to C(R;V 3); e.g., see Chap-
ter 17 in [Tay97]. Using the equation and properties of the nonlinear term, it
is straightforward to see that any solution u with an initial condition from V 3

satisfies the inclusion u̇ ∈ C(R;V 2), whence we conclude that u ∈ KE . This
means that V 3 ⊂ X.

(ii) This follows from the fact that the shifts θt are continuous homeomor-
phisms of KE .

(iii) We confine ourselves to the sketch of the proof, leaving the details to
the reader as an exercise. It suffices to show that, for any time-dependent vector
filed u ∈ KE , the Cauchy problem

ẏ = u(t, y), y(s) = y0, s ∈ R, y0 ∈ T2, (5.44)

is well posed, and the corresponding flow U(t, s) : T2 → T2 that takes y0 to y(t)
preserves the Lebesgue measure on T2. Indeed, if these properties are estab-
lished, then the classical argument of the theory of first-order linear PDE’s show
that (curlu)(t, x) = (curlu)(0, U(0, t)x). Combining this with the measure-
preserving property of U , for any function g ∈ Cb(R) we obtain

∫

T2

g
(
curlu(t, x)

)
dx =

∫

T2

g
(
curlu(0, U(0, t)x

)
dx =

∫

T2

g
(
curlu(0, x)

)
dx.

We now prove the above-mentioned result on problem (5.44). It is well known
that any function from the unit ball in H2 possesses the modulus of continuity
σ(r) = r| log r|. It follows that any time-dependent vector field u ∈ K has a mod-
ulus of continuity in x that has the form ϕ(t)σ(r), where ϕ ∈ L2

loc(R). Thus, by
Osgood’s criterion (see Corollary 6.2 in Chapter III of [Har64]), problem (5.44)
is well posed. The fact that the corresponding flow preserves the Lebesgue
measure would follows from the relation divx u ≡ 0 if the vector field u was C1-
smooth. In our situation, it suffices to approximate it by regular divergence-free
vector field and to pass to the limit.

(iv) Let µ ∈ P(H) be a limit point of the family {µν}. Then there is a
subsequence νj → 0+ such that µνj → µ as j → ∞. Let {uj} be a sequence
of stationary solutions of the Navier–Stokes system (5.1) with ν = νj that
are defined throughout the real line and distributed at any fixed time as µνj

and let µj be the law of the process uj . Analogues of Theorem 5.2.2 and
Corollary 5.2.3 for the real line imply that µj converges weakly to the law of a
stationary process u(t) whose almost every trajectory belongs to the set KE . It
follows from what has been said that D

(
u(t)

)
= µ for any t ∈ R and µ(X) = 1.

Furthermore, with probability 1, we have

St

(
u(0)

)
= u(t) for all t ∈ R,
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whence we conclude that µ is an invariant measure for St. The proof of the
theorem is complete.

Remark 5.2.10. It is an interesting open question to decide whether X is a vector
subspace of V . We believe that it is not the case, though we cannot prove this
fact.

We proved that the group of homeomorphisms St : X → X possesses an
invariant measure µ, which was obtained as an inviscid limit of stationary dis-
tributions for Navier–Stokes system. Let us define the space Y = P(R) × R+

with the natural metric on the product space (where P(R) is endowed with the
dual-Lipschitz distance) and consider the mapping

Ψ : X → Y, u 7→
(
(curlu)∗(dx), |u|2

)
,

where dx = (2π)−2dx is the normalised Lebesgue measure on the torus T2.
Using the continuity of the embedding X ⊂ V , it is straightforward to see
that Ψ is continuous. Furthermore, assertion (iii) of Theorem 5.2.9 implies that
Ψ(Stu0) is constant for any u0 ∈ X. In other words, we have Ψ ◦ St = Ψ
for any t ∈ R. Thus, denoting by Xb the pre-image7 of b ∈ Y under Ψ and
endowing it with the topology induced from X, we see that St : Xb → Xb is
a homeomorphism for all t ∈ R. Let us set λ = Ψ∗(µ). The following result is
an immediate consequence of a disintegration theorem for probability measures;
see Sections III.70–73 in [DM78].

Theorem 5.2.11. There is a random probability measure {λb , b ∈ Y } on the
space X such that the following properties hold.

(i) We have λb(Xb) = 1 for all b ∈ Y and

µ
(
A ∩ Ψ−1(B)

)
=

∫

B

λb(A)λ(db) for any A ∈ B(X), B ∈ B(Y ).

(ii) For λ-almost every b ∈ Y , the measure λb is invariant for the dynamical
system St : Xb → Xb .

Proof. Assertion (i) is just a reformulation of the disintegration theorem, and
we confine ourselves to the proof of (ii). The relation Ψ ◦ St = Ψ implies that
St(Ψ

−1(B)) = Ψ−1(B) for any Borel subset B ⊂ Y . Since (St)∗µ = µ, we have

∫

B

λb
(
St(A)

)
λ(db) =

∫

B

λb(A)λ(db) for any A ∈ B(X), B ∈ B(Y ).

It follows that (St)∗λb = λb for any t ∈ R and λ-almost every b ∈ Y . Combining
this with the continuity of St in time, we arrive at the required result.

7Note that Xb is a closed subset of X, since it is the pre-image of a closed set under a
continuous mapping.
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5.2.2 Estimates for the densities of the energy and enstro-

phy

The balance relations established in Theorem 5.1.1 and Proposition 5.1.3 give
infinitely many identities for stationary measures of the Navier–Stokes sys-
tem (5.1). Unfortunately, the convergence established in Theorem 5.2.2 is not
strong enough to pass to the limit in those relations and to obtain similar in-
formation for the accumulation points of the family of stationary distributions,
even though both sides of relation (5.12) are well defined for a limit process u
and any bounded continuous function g. Instead, in this section we prove that
the concept of local time, combined with relation (5.5), enables one to get some
qualitative properties of the energy and enstrophy functionals in the limiting
stationary regimes. Namely, we establish the following result.

Theorem 5.2.12. Let B1 < ∞ and let {µν , ν > 0} be a family of stationary
measures for (5.1). Then the following properties hold for any limit point µ0 of
the family {µν} in the sense of weak convergence of measures on H.

(i) Let bs 6= 0 for at least two indices in Z2
0. Then µ0 has no atom at zero.

Moreover, there is a constant C > 0 not depending on {bs} such that

µ0

(
BH(δ)

)
≤ C γ−1

√
B1 δ for all δ > 0, (5.45)

where we set γ = inf{B0 − b2s, s ∈ Z2
0}.

(ii) Let bs 6= 0 for all s ∈ Z2
0. Then there is an increasing continuous func-

tion p(r), vanishing at r = 0 and depending only on the sequence {bs},
such that

µ0

(
{u ∈ H : |u|2 ∈ Γ}

)
+ µ0

(
{u ∈ H : |∇u|2 ∈ Γ}

)
≤ p

(
ℓ(Γ)

)
(5.46)

for any Borel subset Γ ⊂ R, where ℓ stands for the Lebesgue measure on R.

Before presenting a proof of this result, we outline its main idea. We claim
that it suffices to establish inequalities (5.45) and (5.46) for any measure of the
family {µν} with some universal constant C and function p. Indeed, consider,
for instance, the case of the second inequality. It follows from (1.29) that in-
equality (5.46) remains true for any limiting measure µ0 and any open subset
Γ ⊂ R. Now recall that the Lebesgue measure is regular:

ℓ(Γ) = inf{ℓ(G) : G ⊃ Γ, G is open}.

Combining this relation with the continuity of p, we conclude that (5.46) is true
for any Borel set Γ ⊂ R.

The proof of inequalities (5.45) and (5.46) for the measures of the fam-
ily {µν} is based on an application of some properties of the local times for
Itô processes. If we were just interested in absolute continuity of the law for
the components 〈u, es〉 under a measure µν with a fixed ν > 0, then it would
be sufficient to remark that the corresponding stationary process 〈uν(t), es〉 is
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an Itô process with a non-zero constant diffusion, and the required assertion
would follow immediately from a well-known technique involving the concept
of local time (see Step 2 in the proof below) or from Krylov’s estimate (see
Theorem 7.9.1). In our situation, the estimates must be uniform in ν > 0, and
diffusion terms in the equations satisfied by |uν(t)|22 and |∇uν(t)|22 are not sep-
arated from zero. This difficulty will be overcome with the help of a thorough
study of the local times for the processes in question.

Proof of Theorem 5.2.12. As was mentioned above, it suffices to find a con-
stant C > 0 and a function p with the properties stated in the theorem such
that (5.45) and (5.46) hold for any measure µ′ of the family {µν}. This will
be done in several steps. In what follows, we denote by u(t, x) a stationary
solution for (5.1) whose law coincides with µ′ and write us(t) = 〈u(t), es〉 for its
components in the Hilbert basis {es, s ∈ Z2

0}.

Step 1. We first show that, for any real-valued function g ∈ C2(R) whose
second derivative has at most a polynomial growth at infinity and for any Borel
subset Γ ⊂ R, we have

E

∫

Γ

I(a,∞)

(
g(|u|22)

)(
g′(|u|22)

(
B0

2 − |∇u|22
)

+ g′′(|u|22)
∑

s∈Z
2
0

b2su
2
s

)
da

+
∑

s∈Z
2
0

b2s E
(
IΓ
(
g(|u|22)

)(
g′(|u|22)us

)2)
= 0. (5.47)

Indeed, let us fix any function g ∈ C2(R) and consider the process f(t) =
g(|u(t)|22). By Itô’s formula, we have

f(t) = f(0) + ν

∫ t

0

A(s) ds+ 2
√
ν
∑

s∈Z
2
0

bs

∫ t

0

g′(|u|22)usdβs,

where we set

A(t) = 2

(
g′(|u|22)

(
B0

2 − |∇u|22
)

+ g′′(|u|22)
∑

s∈Z
2
0

b2su
2
s

)
.

Let Λt(a) be the local time for f . Then, in view of relation (7.42) with h = IΓ,
we have

2

∫

Γ

Λt(a) da = 4ν
∑

s∈Z
2
0

b2s

∫ t

0

IΓ(f(r))
(
g′(|u|22)us

)2
dr.

Taking the mean value and using the stationarity of u, we derive

∫

Γ

(
EΛt(a)

)
da = 2νt

∑

s∈Z
2
0

b2s E
(
IΓ(f)

(
g′(|u|22)us

)2)
.
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On the other hand, taking the mean value in (7.45) and using again the sta-
tionarity of u, we obtain

EΛt(a) = −νtE
(
I(a,∞)(f(0))A(0))

)
.

The last two equalities and the definition of the drift A imply the required
relation (5.47).

Step 2. We now prove that (cf. (5.45))

µ′({u ∈ H : 0 < |u|2 ≤ δ}
)
≤ C γ−1

√
B1δ for any δ > 0. (5.48)

Let us apply relation (5.47) in which Γ = [α, β] with α > 0 and g ∈ C2(R) is a
function that coincides with

√
x for x ≥ α and vanishes for x ≤ 0. This results

in

E

∫ β

α

I(a,∞)

(
|u|2

)(B0 − 2|∇u|22
4|u|2

− 1

4|u|32
∑

s∈Z
2
0

b2su
2
s

)
da

+
1

4

∑

s∈Z
2
0

b2s E
(
I[α,β]

(
|u|2

)
|u|−2

2 u2s

)
= 0.

It follows that

E

∫ β

α

I(a,∞)(|u|2)

|u|32

(
B0|u|22 −

∑

s∈Z
2
0

b2su
2
s

)
da ≤ 2 (β − α)E

( |∇u|22
|u|2

)
. (5.49)

Now note that

B0|u|22 −
∑

s∈Z
2
0

b2su
2
s =

∑

s∈Z
2
0

(B0 − b2s)u2s ≥ γ|u|22,

E

( |∇u|22
|u|2

)
≤ C1E |Lu|2 ≤ C1

√
B1,

where we used interpolation and inequality (5.27). Substituting these estimates
into (5.49) and passing to the limit as α→ 0+, we derive

E

∫ β

0

I(a,∞)(|u|2)|u|−1
2 da ≤ C1γ

−1
√
B1 β. (5.50)

We now fix a constant δ > 0 and note that the left-hand side of (5.50) can be
minorised by

E

∫ β

0

I(a,δ](|u|2)|u|−1
2 da ≥ δ−1E

∫ β

0

I(a,δ](|u|2) da

= δ−1

∫ β

0

P
(
{a < |u|2 ≤ δ) da.



222 CHAPTER 5. INVISCID LIMIT

Substituting this inequality into (5.50), we obtain

1

β

∫ β

0

P
(
{a < |u|2 ≤ δ) da ≤ C1γ

−1
√
B1 δ.

Passing to the limit as β → 0+, we arrive at the required inequality (5.48).

Step 3. In view of (5.48), inequality (5.45) will be established if we prove
that µ′ has no atom at zero. To this end, we could apply the local time technique
used in Step 1 to a one-dimensional projection of u. However, the following proof
based on Krylov’s estimate for Itô processes is simpler.

Let us fix an index s ∈ Z2
0 such that bs 6= 0. The stationary process us(t)

satisfies the equation

us(t) = us(0) +

∫ t

0

v(r) dr +
√
ν bsβs(t),

where we set v(t) = 〈−νLu − B(u), es〉. Since |u|2 ≥ |us|, it suffices to show
that P = P{us(0) = 0} = 0. By Theorem 7.9.1 with d = 1 and f = I(−ε,ε), we
have √

ν bsP{|us(0)| < ε} ≤ Cε for any ε > 0,

whence it follows that P = 0.

Step 4. It remains to establish (5.46). We shall confine ourselves to the proof
of the fact that the first term on the left-hand side can be bounded by p(ℓ(Γ).
A similar argument shows that the same is true for the second term.

Applying relation (5.47) with g(x) = x, we obtain

E

(
IΓ
(
|u|22

) ∑

s∈Z
2
0

b2su
2
s

)
≤

∫

Γ

E

(
I(a,∞)

(
|u|22

)
|∇u|22

)
da ≤ 1

2B0ℓ(Γ), (5.51)

where we used (5.3) to get the second inequality. We wish to estimate the left-
hand side of this inequality from below. To this end, note that if |u|2 ≥ δ and
|Lu|2 ≤ δ−1/2, then for any integer N ≥ 1 we have

∑

s∈Z
2
0

b2su
2
s ≥ b2N

∑

0<|s|≤N

u2s = b2N

(
|u|22 −

∑

|s|>N

u2s

)

≥ b2N

(
|u|22 −N−4|Lu|22

)
≥ b2N

(
δ2 −N−4δ−1

)
,

where bN = min{bs, |s| ≤ N}. Choosing N = N(δ) sufficiently large, we find an
increasing function ε(δ) > 0 going to zero with δ such that

∑

s∈Z
2
0

b2su
2
s ≥ ε(δ) for |u|2 ≥ δ, ‖u‖2 ≤ δ−1/2. (5.52)

Define now the event Gδ = {|u(0)|2 ≤ δ or |Lu(0)|2 ≥
√
δ} and note that,

in view of (5.5), (5.45), and Chebyshev’s inequality, we have

P(Gδ) ≤ P{|u|2 ≤ δ} + P{|Lu|2 ≥
√
δ} ≤ C5δ.
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Combining this with (5.51) and (5.52), we write

P{|u|22 ∈ Γ} = P
(
{|u|22 ∈ Γ} ∩Gδ

)
+ P

(
{|u|22 ∈ Γ} ∩Gc

δ

)

≤ C5δ + ε(δ)−1E

(
IΓ
(
|u|22

) ∑

s∈Z
2
0

b2su
2
s

)

≤ C5δ + C6ε(δ)
−1ℓ(Γ).

This inequality immediately implies the required result.

Exercise 5.2.13. Prove that the second term on the left-hand side of (5.46) can
be bounded by p(ℓ(Γ)). Hint: A relation similar to (5.47) holds for the process
g(|∇u|22). To see this, it suffices to repeat the arguments used in Step 1 of the
above proof.

5.2.3 Further properties of the limiting measures

In the previous subsection, we have shown that the limiting measures of the
family of stationary distributions for (5.1) possess some non-degeneracy prop-
erties. Indeed, Theorem 5.2.12 implies, in particular, that the image of such
a measure under the energy and enstrophy functionals has no atoms. In this
section, we combine balance relations with Krylov’s estimate for Itô diffusions
to show that a similar assertion is true for a large class of multidimensional
functionals.

Let f1, . . . , fd : R → R be real-analytic functions whose second derivatives
have at most a polynomial growth at infinity and are bounded from below:

f ′′k (z) ≥ −C for z ∈ R, k = 1, . . . , d. (5.53)

These hypotheses are satisfied, for instance, if the functions fk are trigonometric
polynomials or polynomials of even degree with positive leading coefficients.
Since H1(T2) is continuous embedded in Lp(T2) for any p <∞, we can consider
the map F : V 2 → Rd defined by

F (u) =
(
F1(u), . . . , Fd(u)

)
, Fk(u) =

∫

T2

fk(curlu(x)) dx.

Assume the the functions f ′k are independent modulo constants, that is, if
c1f

′
1 + · · · + cdf

′
d ≡ const, then all ck vanish. The following theorem gives some

information on the distribution of F under any limiting point of the family of
stationary measures for (5.1).

Theorem 5.2.14. Let bs = b−s 6= 0 for all s ∈ Z2
0, let B2 < ∞, and let

functions f1, . . . , fd be as above. Then there is an increasing continuous function
p(r) vanishing at r = 0 such that for any limiting point µ of the family {µν},
as ν → 0, in the sense of weak convergence on H and any Borel subset Γ ∈ Rd,
we have 8

F∗(µ)(Γ) ≤ p
(
ℓ(Γ)

)
. (5.54)

8Recall that, by (5.27), any limiting point µ is concentrated on the space V 2.
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Before proving this result, we establish a corollary showing that the limiting
measures are not concentrated on subsets of low dimension. Its formulation uses
the concept of Hausdorff dimension (e. g., see Section X.1 of the book [BV92]).

Corollary 5.2.15. Under the hypotheses of Proposition 5.1.3, let X ⊂ H be
a closed subset whose intersection with any compact set K ⊂ V 2 has finite
Hausdorff dimension with respect to the metric of V 2 and let µ be a limiting point
of {µν}, as ν → 0, in the sense of weak convergence on H. Then µ(X) = 0.

Proof. We shall only outline the proof, leaving it to the reader to fill in the
details. We know that µ is concentrated on V 2. By Ulam’s theorem (see Sec-
tion 1.2.1), any Borel measure on a Polish space is regular, and therefore we can
find an increasing sequence of compact subsets Kn ⊂ V 2 such that µ(Kn) → 1
as n→ ∞. Hence, it suffices to show that µ(Kn ∩X) = 0 for any n ≥ 1. Thus,
we can assume from the very beginning that X is a compact subset in V 2 of
finite Hausdorff dimension.

Let us take an integer d ≥ 1 larger than Hausdorff’s dimension of X and
consider any map F : V 2 → Rd satisfying the hypotheses of Theorem 5.2.14. It
is easy to see that F is uniformly Lipschitz continuous on any compact subset
of V 2. Combining this with the definition of the Hausdorff dimension, we see
that the compact set F (X) ⊂ Rd has zero Lebesgue measure. Inequality (5.54)
with Γ = F (X) now implies that µ(X) = 0.

Proof of Theorem 5.2.14. It suffices to prove that inequality (5.54) holds for
any measure µν with a function p not depending on ν. Let us fix a stationary
solution u(t) distributed as µν and define the stochastic process y(t) = F (u(t)).
The first and second derivatives of the mapping F : V 2 → Rd have the form

F ′(u;h) =

(∫

T2

f ′k
(
curlu(x)

)
curlh(x) dx, k = 1, . . . , d

)
,

F ′′(u;h, h) =

(∫

T2

f ′′k
(
curlu(x)

)(
curlh(x)

)2
dx, k = 1, . . . , d

)
.

Combining these relations with estimates (2.162), Corollary 7.7.6, and Eq. (5.8)
for the vorticity v = curlu, we prove that y(t) is an Itô process whose compo-
nents are representable in the form (cf. proof of Proposition 5.1.3)

yk(t) = yk(0) +

∫ t

0

Ak(r) dr +
∑

s∈Z
2
0

∫ t

0

Bks(r) dβs, k = 1, . . . , d, (5.55)

where we set

Ak(t) =

∫

T2

f ′k(v(t, x))∆v(t, x) dx+
1

2

∑

s∈Z
2
0

b2s

∫

T2

f ′′k (v(t, x))ϕ2
s(x) dx

=

∫

T2

f ′′k (v(t, x))
(
−|∇v|2 + B1

8π2

)
dx,

Bks(t) = bs

∫

T2

f ′k(v(t, x))ϕs(x) dx.
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We now apply Krylov’s estimate (7.46) with f = IΓ to the process y. In view
of stationarity of y, Ak, and Bks, this results in

E
(
(detσ0)1/d IΓ(y(0))

)
≤ Cdℓ(Γ)1/d E |A(0)|, (5.56)

where A = (A1, . . . , Ad), and σt stands for the d×d diffusion matrix BB∗ (that
is, σkl

t =
∑

sBks(t)Bls(t)). Next, we estimate E |A(0)| and detσ0 from above
and below, respectively.

It follows from (5.53) that |f ′′k (z)| ≤ f ′′k (z) + 2C for all z ∈ R. Therefore,

E |Ak(0)| ≤ E

∫

T2

|f ′′k (v(t, x))| ·
∣∣−|∇v|2 + B1

8π2

∣∣ dx

≤ E

∫

T2

(
f ′′k (v(t, x)) + 2C

)(
|∇v|2 + B1

8π2

)
dx.

The balance relation (5.17) with g = f ′′k implies that

E

∫

T2

f ′′k
(
v(t, x)

)
|∇v(t, x)|2dx = C E

∫

T2

f ′′k
(
v(t, x)

)
dx.

Combining this with the above inequality, we derive

E |Ak(0)| ≤ C1E

∫

T2

(
|f ′′k (v(t, x))| + |∇v(t, x)|2 + 1

)
dx.

Recalling that f ′′k has at most a polynomial growth at infinity and invoking
estimates (5.5) and (5.6), we obtain

E |Ak(0)| ≤ C2 for k = 1, . . . , d, (5.57)

where C2 > 0 is a constant depending only on the sequence {bs}.

To estimate from below the quantity detσ0, we need an auxiliary lemma
established at the end of this section. Recall that Ḣm(T2) stands for the
space of functions in Hm(T2) with zero mean value. We abbreviate f ′(w) =
(f ′1(w), . . . , f ′d(w)) and define a function D : Ḣ1(T2) → R by the relation
D
(
w(·)

)
= detσ(f ′ ◦ w). Here for a vector function g : T2 → Rd we denote

by σ(g) a d× d matrix with the entries

σkl(g) =
∑

s∈Z
2
0

b2s

∫

T2

gk(x)ϕs(x) dx

∫

T2

gl(x)ϕs(x) dx;

cf. definition of the diffusion matrix σt.

Lemma 5.2.16. For any functions f1, . . . , fd satisfying the hypotheses of The-
orem 5.2.14, there is r < 1 such that D(w) admits a continuous extension to
the space Ḣr = Ḣr(T2) and there does not vanish outside the origin.
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Let us note that detσ0 = D(v(0)). For any δ > 0, we introduce the event
Qδ = {v(0) ∈ Oδ}, where Oδ = {w ∈ Ḣ1(T2) : ‖w‖1 ≤ δ−1, ‖w‖r ≥ δ}, and r
denotes the constant constructed in the above lemma. Since the embedding
Ḣ1(T2) ⊂ Ḣr(T2) is compact, Oδ is a compact subset of Ḣr(T2) not containing
zero. Lemma 5.2.16 implies that there D(w) ≥ c3(δ) > 0. It follows that

detσ0 ≥ c3(δ) for ω ∈ Qc
δ.

Combining this with (5.56) and (5.57), we obtain

P{y(0) ∈ Γ} ≤ E
(
IQδ

IΓ(y(0))
)

+ P(Qc
δ)

≤
(
c3(δ)

)−1/d
E
(
(detσ0)1/d IΓ(y(0))

)
+ P(Qc

δ)

≤ C4(δ) ℓ(Γ)1/d + P(Qc
δ). (5.58)

Let us show that the second term in the right-hand side goes to zero with δ.
Indeed, we have

P(Qc
δ) ≤ P{‖v(0)‖1 ≥ δ−1} + P{‖v(0)‖r ≥ δ})

≤ P{‖u(0)‖2 ≥ δ−1} + P{|u(0)|2 ≥ δ},

where we used the inequalities

‖ curlu‖1 ≤ ‖u‖2, ‖ curlu‖r ≥ | curlu|2 ≥ |u|2.

It follows from (5.5) and (5.45) that P(Qc
δ) → 0 as δ → 0. Combining this

with (5.58), we arrive at the required inequality (5.54).

Proof of Lemma 5.2.16. The conditions imposed on fk implies that

|f ′k(z)| + |f ′′k (z)| ≤ C1(1 + |z|)q for all z ∈ R,

where q ≥ 1 is a constant. Let r < 1 be such that Ḣr is continuously embedded
into L2q(T2). By the Cauchy–Schwarz inequality,

|σkl(g)| ≤
(∑

s∈Z
2
0

b2s|ϕs|22
)
|gk|2|gl|2 ≤ C5B1|g|22.

Therefore D is continuous as the composition of the continuous maps

w 7→ g = f ′(w(x)), Ḣr(T2) → L2(T2;Rd),

g 7→ detσ(g), L2(T2;Rd) → R.

We now prove that D(w) 6= 0 for w ∈ Ḣr\{0}. It is an elementary exercise in
linear algebra to show that if H is a Hilbert space and B : H → Rd is a surjective
continuous operator, then the application BB∗ : Rd → Rd is an isomorphism.
Let us denote by L̇2(T2) the space of L2 functions with zero mean value and
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define a family of continuous operators B(w) : L̇2(T2) → Rd by the relation (cf.
the relation for the first derivative of F )

B(w)ξ =

(∑

s∈Z
2
0

|s|−1bs〈ξ, ϕs〉
∫

T2

f ′k
(
w(x)

)
ϕs(x) dx, k = 1, . . . , d

)
.

It is straightforward to check that

Bks(w) = bs

∫

T2

f ′k(w(x))ϕs(x) dx, 1 ≤ k ≤ d, s ∈ Z2
0,

are the matrix entries of the operator B(w) with respect to the orthonormal
basis {|s|−1ϕs, s ∈ Z2

0}. Therefore σ(f ′(w)) = B(w)B∗(w). It follows that the
application σ(w) : Rd → Rd is an isomorphism and its matrix is nonsingular
for those w ∈ Ḣr for which B(w) is surjective. Hence, the required assertion
will be established if we show that B(w) is surjective for any non-zero function
w ∈ Ḣr.

Suppose that B(w) is not surjective. Then there exists a non-zero vector
c = (c1, . . . , cd) ∈ Rd such that

〈c, B(w)ξ〉 =

d∑

k=1

ck
∑

s∈Z
2
0

|s|−1bs〈ξ, ϕs〉
∫

T2

f ′k
(
w(x)

)
ϕs(x) dx = 0

for any ξ ∈ L̇2(T2). That is,

∑

s∈Z
2
0

|s|−1bs〈ξ, ϕs〉
∫

T2

h
(
w(x)

)
ϕs(x) dx = 0 for any ξ ∈ L̇2(T2),

where h(w) = c1f
′
1(w) + · · · + cdf

′
d(w). Choosing ξ = ϕs with s varying in Z2

0

and recalling that the numbers bs are non-zero, we get

∫

T2

h
(
w(x)

)
ξ(x) dx = 0 for any ξ ∈ C∞(T2) with zero mean value.

Therefore there exists a constant C = Cw such that h(w(x)) = C almost every-
where, whence we conclude that

w(x) ∈ NC for almost every x ∈ T2, (5.59)

where NC = {z ∈ R : h(z) = C}. Recalling that f ′1, . . . , f
′
d are analytic functions

linearly independent modulo constants, we see that NC is a discrete9 subset
of R. Combining (5.59) with Lemma 7.15.1, we see that the function w must be
a constant almost everywhere. Since the mean value of w is zero, we conclude
that w ≡ 0.

9Recall that a subset of R is said to be discrete if it has no finite accumulation points.
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5.2.4 Other scalings

We have studied so far the inviscid limit of stationary measures for the Navier–
Stokes equations in the case when the random perturbation is white in time and
has an amplitude proportional to

√
ν. A natural question is to find out what

happens for white noise perturbations of different size. In this section, we prove
that the scaling we studied is the only one for which a nontrivial limit exists.

Let us consider the equation (cf. (5.1))

∂tu+ νLu+B(u) = νaη(t, x), (5.60)

where a ∈ R is a constant, and η is a regular white noise.

Theorem 5.2.17. Let {µν , ν > 0} be a family of stationary measures for (5.60).
Then the following assertions hold.

(i) Let a > 1/2. Then {µν} converges weakly on V 2 to the Dirac measure δ0
as ν → 0+.

(ii) Let a < 1/2. Then {µν} has no accumulation points in the sense of weak
convergence on H as ν → 0+.

Proof. We first assume that a > 1/2. By (2.161), we have
∫

H

|Lu|22µν(du) =
ν2a−1B1

2
. (5.61)

Let f ∈ Lb(V
2) be an arbitrary function such that ‖f‖L ≤ 1. Then, applying

the Cauchy–Schwarz inequality and using (5.61), we derive
∣∣∣∣
∫

H

f(u)µν(du) − f(0)

∣∣∣∣ ≤
∫

H

‖u‖2µν(du) ≤ C1ν
a−1/2.

Recalling assertion (ii) of Theorem 1.2.15, we conclude that µν → δ0 weakly
on V .

We now assume that a < 1/2. Let uν(t) be a stationary solution for (5.60)
whose law coincides with µν . We fix a constant b > 0 and consider the random
process vν(t) = νbuν(νbt). It is a matter of direct verification to show that vν
is a stationary solution of the equation

∂tv + ν1+bLv +B(v) = νa+
3b
2 ∂tζ̃ , (5.62)

where ζ̃(t) = ν−
b
2 ζ(νbt). Using the scaling properties of the Brownian motion,

it is easy to see that ζ̃ is a process with the same distribution as ζ. Choosing
b = 1

2 − a, we conclude from (5.62) that vν satisfies Eq. (5.1), in which ζ and ν

are replaced by ζ̃ and ν̃ = ν1+b, respectively.
To prove that {µν} has no accumulation points as ν → 0+, we argue

by contradiction: suppose that {µνj
} converges weakly on H for some se-

quence νj → 0+. Then, by Prokhorov’s theorem, for any ε > 0 there is R > 0
such that

µνj

(
BH(R)c

)
= P{|uνj

(0)|2 > R} ≤ ε for all j ≥ 1.



5.2. LIMITING MEASURES 229

Recalling the definition of vν , we see that

P{|vνj
(0)|2 > νbjR} = P{|uνj

(0)|2 > R} ≤ ε for all j ≥ 1,

whence it follows that the law of vνj
(0) converges weakly to the Dirac measure δ0

as j → ∞. On the other hand, by Theorem 5.2.2 and Corollary 5.2.3, the
accumulation points of the family of stationary measures for (5.1) are non-
degenerate in the sense that they are not concentrated at zero (see (5.25)).
Since the law of vνj (0) is a stationary measure for (5.1) with ν = ν1+b

j , we
arrive at a contradiction. The proof of the theorem is complete.

Exercise 5.2.18. Prove that the process vν defined in the above proof satis-
fies (5.62). Hint: Rewrite Eq. (5.1) in the form

u(t) = u(0) −
∫ t

0

(
νLu+B(u)

)
ds+

√
ν ζ(t), t ≥ 0,

and make a suitable change of the time variable.

Remark 5.2.19. If in Eq. (5.1) we replace the viscous term νLu with a hypervis-
cous one of the form νLmu, m > 1, then still the equation has a unique station-
ary measure µm

ν , and there exist limits along sequences µm
0 = limνj→0 µ

m
νj

. For

the same reason as in Section 5.2.1, we have Eµm
0
‖u‖2m = 1

2B0 and Eµm
0
‖u‖2m+1 ≤

1
2B1. As Eµ0‖u‖21 = 1

2B0, then the non-degeneracy property of Corollary 5.2.15
implies that Eµ0

‖u‖2m > 1
2B0. So the measure µm

0 differs from µ0 (it is smoother).
That is, introducing in Eq. (5.1) a hyperviscosity, we change the limiting, as
ν → 0, distributions of velocity and vorticity.

5.2.5 Kicked Navier–Stokes system

We now discuss the existence of an inviscid limit for the kicked Navier–Stokes
system on T2 with a random force proportional to

√
ν (cf. (3.74)):

u̇+ νLu+B(u) =
√
ν

∞∑

k=1

ηkδ(t− k). (5.63)

Here {ηk} is a sequence of i.i.d. random variables satisfying the hypotheses
imposed in Section 3.2.4. We assume, in addition, that

Eξsk = 0 for all s ∈ Z2
0, B1 =

∑

s∈Z
2
0

|s|2b2s <∞,

and introduce the quantities

D0 =
∑

s∈Z
2
0

b2s E ξ
2
sk, D1 =

∑

s∈Z
2
0

b2s|s|2 E ξ2sk.
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Exercise 5.2.20. Let u(t), t ≥ 0, be a stationary solution for the Markov semi-
group associated with (5.63). Prove that

∫ k

k−1

|∇u(t)|22dt =
D0

2
,

∫ k

k−1

|Lu(t)|22dt =
D1

2
for any k ≥ 1.

Let C(R+ \ Z+;V ) be the space of V -valued functions on R+ that are con-
tinuous on each interval Ik = [k − 1, k) with k ≥ 1 and have a limit as t→ k−.
This space is endowed with the family of seminorms

‖u‖C(Ik;V ) = sup
t∈Ik

‖u(t)‖1, k ≥ 1.

It is easily seen that C(R+ \Z+;V ) is a Fréchet space. The following result can
be proved with the help of the argument used to establish Theorem 5.2.2; we
leave its proof to the reader as an exercise.

Theorem 5.2.21. Under the above hypotheses, let {µν , ν > 0} be any fam-
ily of stationary measures for the discrete-time Markov semigroup associated
with (5.63) and let {µν} be the corresponding family of measures on the space
of trajectories. Then for any ε > 0 the family {µν} is tight in C(R+ \Z+;V )∩
L2
loc(R+;H2−ε). Moreover, if µ is a limiting point for {µν} and u(t, x) is a

random process whose law coincides with µ, then the following properties hold.

(i) Almost every realisation of u(t, x) belongs to space

L2
loc(R+;V 2) ∩W 1,1

loc (R+;V ) ∩W 1,∞
loc (R+;Lp),

for any p ∈ [1, 2), and satisfies the Euler equation (5.24).

(ii) The process u(t, x) is 1-periodic in time. Moreover, the functions |u(t)|2
and |∇u(t)|2, as well as quantities (5.42), are time-independent random
constants.

(iii) We have the relations

E |∇u(t)|22 =
D0

2
for all t ≥ 0,

E |∇u(t)|m2 ≤ Cm for all t ≥ 0, m ≥ 1,
∫ k

k−1

‖u(t)‖22 ≤ D1

2
for all k ≥ 1,

where Cm > 0 are some constants not depending on the limiting measure.

The investigation of the inviscid limit was based essentially on the existence
of two “good” integrals of motion for the limiting equation. In the case of
Navier–Stokes equations, they are given by the energy and enstrophy. The
additional set of infinitely many integrals given by the functions of vorticity
enabled us to study further properties of the limiting measures, such as the
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existence of density for finite dimensional functionals. A similar analysis can
be carried out for other problems possessing those properties, e.g., the damped-
driven Korteweg–de Vries equation. Moreover, due to complete integrability
of the latter, it is possible to prove uniqueness of the limiting measure and to
describe it as a stationary measure for a non-local stochastic PDE; see [KP08,
Kuk10a, Kuk12].

5.2.6 Inviscid limit for the complex Ginzburg–Landau

equation

The complex Ginzburg–Landau equation is an example for which we know the
existence of only two integrals of motion, and this turns out to be sufficient to
draw some nontrivial conclusions. They are, however, less complete than those
obtained in the case of the Navier–Stokes system. We now briefly discuss the
corresponding results.

Let us consider the following problem in a bounded domain Q ⊂ Rd, d ≤ 4,
with a smooth boundary ∂Q:

u̇− (ν + i)∆u+ iλ|u|2u =
√
ν η(t, x), u

∣∣
∂Q

= 0. (5.64)

Here ν and λ are positive parameters and η is a white noise force of the
form (2.66), where {ej} stands for a complete set of normalised real eigenfunc-
tions for the Dirichlet Laplacian with eigenvalues αj , {βj = β+

j + iβ−
j } is a se-

quence of independent standard complex-valued Brownian motions, and {bj} ⊂
R is a sequence In this case, as was mentioned in Section 3.5.5, the Cauchy prob-
lem for (5.64) is well posed in the space H1

0 (Q;C), and almost every trajectory
of solutions belongs to the space

L2
loc(R+;H2) ∩

(
W

1, 43
loc (R+;L

4
3 ) +Wα,4

loc (R+;H1)
)
,

where α ∈ ( 1
4 ,

1
2 ) is an arbitrary constant. Moreover, using the Bogolyubov–

Krylov argument, one can prove that Eq. (5.64) has a stationary measure µν for
any ν > 0; cf. Sections 2.5. Let {µν} be the corresponding family of measures
on the space of trajectories.

Using essentially the same argument as in Sections 5.2.1 and 5.2.2, one can
prove the following assertions.

Tightness. The family {µν} is tight in H2−ε and {µν} is tight in the space

L2
loc(R+;H2−ε) ∩ C(R+;H− d

4−ε).

Limiting process. Any limiting measure µ for the family {µν} is concentrated

on the space L2
loc(R+;H2)∩W

4
3

loc(R+;L
4
3 ), and µ-almost every curve v(t)

of that space satisfies the nonlinear Schrödinger equation

v̇ − i∆v + iλ|v|2v = 0.
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Moreover, the quantities

H0(u) =
1

2

∫

D

|u(x)|2dx, H1(u) =

∫

D

(1

2
|∇u(x)|2 +

λ

4
|u(x)|4

)
dx

are preserved along any such trajectory, and their mean values admit some
explicit bounds in terms of the coefficients bj .

Non-degeneracy. Suppose that all numbers bj are non-zero. Then the laws
of H0(u) and H1(u) with respect to any limit point of the family {µν}
possess densities against the Labesgue measure on the real line.

We refer the reader to the papers [KS04b, Shi11b] for an exact statement of
the above results and their proofs and to [Kuk12] for some related results.

5.3 Relevance of the results for physics

Results of this chapter form a beginning of a rigorous mathematical theory of the
space-periodic 2D turbulence in fluid stirred by a random force. Namely, here we
study periodic flows of 2D fluid with high Reynolds numbers and finite energy.
We are concerned with their stationary measures (i.e., the statistical equilibria).
Denoting by µν the unique stationary measure for fluid with viscosity ν, we show
that if µν has a nontrivial limit as ν → 0, then the force must be proportional
to

√
ν. Accordingly, we take the force of the form10 “

√
ν times a random

force η(t, x) independent of ν”:

∂tu+ νLu+B(u) =
√
ν η(t, x), η =

∑

s∈Z2\0
bsβ̇s(t)es(x). (5.65)

Here {es(x)} is the usual trigonometric basis of the L2-space of periodic solenoi-
dal vector fields with zero mean value (see (2.29)), β̇s(t) are standard indepen-
dent white noises, and bs are real numbers such that

B0 =
∑

b2s <∞, B1 =
∑

|s|2b2s <∞.

In this case, when ν → 0, the energy of the fluid stays of order one, while its
Reynolds number grows like ν−1.

Equation (5.65) has a unique stationary measure µν . The latter has limits
as ν goes to zero along sequences, µ0 = limνj→0 µνj

. We do not know if the
limiting measure µ0 is unique, but each µ0 has a number of universal properties.

(i) The measure µ0 is supported by the space H2, µ0(H2) = 1, and

Eµ0
‖u‖22 ≤ 1

2B1 <∞. (5.66)

It is space homogeneous if so is the force.

10Note that the Navier–Stokes equations with viscosity ν and a random force νaη(t, x) with
any a ∈ R reduces to (5.65) by suitable scaling of ν, u, and t; see Section 5.2.4.
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(ii) The µ0-averaged enstrophy 1
2Eµ0

∫
| curlu|2 dx equals 1

4B0, while the
µ0-averaged energy Eµ0

∫
|u|2dx has explicit lower and upper bounds. The ran-

dom variables exp(κ|u(x)|) and exp(κ| curlu(x)|1/2) are µ0-integrable for any x,
where the constant κ > 0 does not depend on µ0.

(iii) µ0 is an invariant measure for the free 2D Euler equation.

(iv) It is genuinely infinite-dimensional. Namely, µ0(K) = 0 if K is a finite-
dimensional set.

(v) It is µ0-unlikely that the energy E = 1
2

∫
|u|2dx of the fluid is very small

or very large. That is,

µ0{E(u) ≤ δ} ≤ C
√
δ, µ0{E(u) ≥ δ−1} ≤ Ce−cδ−1

for all δ > 0,

where c and C are independent of µ0.

(vi) The stationary measures µν , ν > 0, satisfy infinitely many explicit alge-
braical relations. These relations are independent of ν and depend only on two
scalar characteristics B0 and B1 of the random force. We cannot pass to the
limit in these relations to show that they remain true for µ0, but we use them
to study µ0; e.g., to derive the second assertion in (ii).

In Remark 5.2.19, we explained that the limiting measure(s) µ0 will change
if in Eq. (5.65) we replace the viscosity νLu with a hyperviscosity νLmu, m > 1.

Note that (iii) agrees with the belief (which goes back at least to On-
sager [Ons49]) that the 2D Euler equation describes certain classes of 2D tur-
bulence. Unfortunately, the equation does this in an implicit way since Euler-
invariant measures form a large class and we do not know how to single out
from it the measure µ0. Also note that (vi) indicates certain universality of the
space-periodic 2D turbulence. Various universalities of 2D turbulence are often
suggested in physical literature.

For k ≥ 1 denote by Ek the density of energy at a wave-number k. That is,
for u(x) =

∑
s∈Z

2
0
uses(x) we define

Ek = (2C)−1
∑

k−C≤|s|<k+C

1
2 Eµ0 |us|2,

where C ≥ 1 is of order one and we are the most interested in large k. Then

Eµ0
‖u‖2m ∼

∫ ∞

1

Ekk
2m dk ∀m. (5.67)

The function k 7→ Ek is called the energy spectrum of turbulence. Making bold
assumption that Ek ∼ k−r for some r, we get from (i) that r ≥ 5. We neglect
the weak logarithmic divergence of the integral in (5.67) which occurs when
r = 5 (to remove the divergence one may correct the anzats for Ek by a suitable
logarithmic factor). The exponent r = 5 is distinguished due to relation (5.66),
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which follows from the conservation of enstrophy in the 2D Euler equation. We
conjecture that µ0(H2+δ) = 0 for positive δ and that

Eµ0‖u‖22+δ = ∞ ∀ δ > 0.

Then
Ek ∼ k−5 for k ≫ 1, (5.68)

modulo a possible logarithmic correction. This relation implies that periodic
2D turbulence exhibit a direct cascade of energy : even though the force η(t, x)
in (5.65) is concentrated in low modes (and has a non-significant smooth com-
ponent in high modes to guarantee the non-degeneracy), the energy spectrum
decays only as k−5.

It is interesting to compare our results and predictions with those of the
heuristic theory of 2D turbulence originated by Batchelor [Bat82] (pp. 186–
187), [Bat69] and Kraichnan [Kra67], and called below the BK theory. That
theory is based on the assumption that the rate of dissipation of enstrophy
νEµν

‖ curlu‖21 converges to a finite non-zero limit ǫ as ν → 0. Since ‖ curlu‖1 =
‖u‖2 for divergence-free vector fields, then for the space-periodic 2D turbulence
we have ǫ = 0 ·Eµν‖u‖22 which vanishes by (5.66). So the assumption fails. The
explanation for this is simple: for the BK theory to hold, the 2D flow of the fluid
should be not 2π-periodic, but 2πL-periodic, where N ∋ L→ ∞ (it is not quite
clear what relation should be imposed on ν−1 and L when both of them go to
infinity). The force η(t, x) remains essentially the same: most of its energy is
supported by modes es(x), where s is an integer of order one, while other modes
es′(x), s′ ∈ (Z/L)2, carry a tiny proportion of the energy, just to make the force
non-degenerate with respect to the period 2πL. In this large-volume setup the
force η enters the right-hand side of the Navier–Stokes equations without any
scaling factor, so the equations take the form

∂tu+ νLu+B(u) = η(t, x). (5.69)

The BK theory predicts that for ν ≪ 1 and L ≫ 1 the energy spectrum Ek

behaves as follows:

Ek ∼ k−3, 1 ≪ k ≪ k+, (5.70)

Ek ∼ k−5/3, k− ≪ k ≪ 1, (5.71)

where k+ → ∞ and k− → 0 as ν → 0 and L → ∞. The theory also specifies
ǫ-dependent factors in front of k−3 and k−5/3 which we do not discuss. The
asymptotics (5.70) differs from what we have in the space-periodic 2D turbu-
lence, where the assumption Ek ∼ k−r implies that r ≥ 5 and we predict that
r = 5. Presumably, this happens since the 2π-periodic boundary conditions,
imposed on the fluid, regularise it and make the direct cascade of energy weaker
than the BK-cascade (5.70). 11

11When asked if his theory of turbulence applies to 3D periodic flows, A.N. Kolmogorov
said that he is not certain in that, since periodic flows may be “too regular” (we are thankful
to A.V. Fursikov and M. I. Vishik for this recollection).
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Relation (5.71), known as the inverse cascade of energy, has no analogy in
the space-periodic turbulence, where k ≥ 1. Some experts in turbulence believe
that for limits (5.70) and (5.71) to exist when ν → 0 and L → ∞, the right-
hand side of Eq. (5.69) has to be modified by the friction term −τu (sometimes
called the Ekman damping in honor of Swedish oceanologist V. W. Ekman).
The parameter τ has to be sent to zero with ν and L−1 (again, relation between
these three quantities is not clear). See [Ber00] for an advanced version of the
corresponding argument and see [BV11] for a detailed discussion.

So, in difference with the BK theory, the theory of space-periodic 2D turbu-
lence, presented in this section, has a rigorous component (i) – (vi). It gives rise
to a direct cascade of energy with an exponent ≥ 5, which is predicted to be five,
and differs from the BK-exponent 3 in (5.70). Further rigorous development of
this theory by means of modern mathematical tools (including those presented
in this book) seems to us more feasible than rigorous justification of the BK
theory.

Notes and comments

The existence of an inviscid limit of stationary measures (see Theorems 5.2.2
and 5.2.21) was proved by Kuksin [Kuk04]. The balance relations described
in Section 5.1.2 were established by Kuksin and Penrose [KP05]. The co-area
form of the balance relations (see Exercise 5.1.5), pointwise exponential esti-
mates of Section 5.1.3, and the properties of the limiting measures described in
Sections 5.2.1 – 5.2.4 were obtained by Kuksin [Kuk06b, Kuk08, Kuk07]. The in-
viscid limit for the complex Ginzburg–Landau equation was studied by Kuksin
and Shirikyan [KS04b], and the local time technique used in Section 5.2.2 is
taken from [Shi11b]. We refer the reader to the review papers [Kuk07, Kuk10b]
for further references and a discussion of the inviscid limit for damped/driven
integrable PDE’s.
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Chapter 6

Miscellanies

This chapter is mostly devoted to the 3D Navier–Stokes equations with random
perturbations. We begin with the problem in thin domains and state a result on
the convergence of the unique stationary distribution to a unique measure which
is invariant under the flow of the limiting 2D Navier–Stokes system. We next
turn to the 3D problem in an arbitrary bounded domain or a torus. We describe
two different approaches for constructing Markov processes whose trajectories
are concentrated on weak solutions of the Navier–Stokes system and investi-
gate the large-time asymptotics of their trajectories. Finally, we discuss some
qualitative properties of solutions in the case of perturbations of low dimension.
Almost all the results of this chapter are presented without proofs.

6.1 3D Navier–Stokes system in thin domains

In this section, we present a result that justifies the study of 2D Navier–Stokes
equations in the context of hydrodynamical turbulence. Namely, we study the
3D Navier–Stokes system in a thin domain and prove that, roughly speaking,
if the domain is sufficiently thin, then the problem in question has a unique
stationary measure, which attracts exponentially all solutions in a large ball and
converges to a limiting measure invariant under the 2D dynamics. Moreover,
when the width of the domain shrinks to zero, the law of a 3D solution converges
to that of a 2D solution uniformly in time. The accurate formulation of these
results requires some preliminaries from the theory of Navier–Stokes equations
in thin domains. They are discussed in the first subsection. We next turn to
the large-time asymptotics of solutions and the limiting behaviour of stationary
measures and solutions.

237
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6.1.1 Preliminaries on the Cauchy problem

Let Qε = T2 × (0, ε) ⊂ R3, where T2 stands for the two-dimensional torus 1

and ε > 0 is a small parameter. We denote by x = (x1, x2, x3) the space
variable, so that (x1, x2) varies in T2 while x3 belongs to the interval (0, ε).
Consider the 3D Navier–Stokes system

u̇+ 〈u,∇〉u− ν∆u+ ∇p = η(t, x), div u = 0, x ∈ Qε, (6.1)

where u = (u1, u2, u3) and p are unknown velocity field and pressure, and η de-
notes a random kick force of the form (2.65). Equations (6.1) are supplemented
with the free boundary conditions in the vertical direction x3:

u3 = ∂3ui = 0 for x3 = 0 and ε, (6.2)

where i = 1, 2. As in the 2D case with periodic or Dirichlet boundary conditions,
problem (6.1), (6.2) can be reduced to an evolution equation in an appropriate
functional space. Namely, denote by V 2

ε the space of divergence-free vector
fields u ∈ H2(Qε;R

3) that satisfy the boundary conditions (6.2) and whose first
and second components have zero mean value on Qε. Let Hε and Vε be the
closures of V 2

ε in the spaces L2(Qε) and H1(Qε), respectively, and let Πε be the
orthogonal projection in L2(Qε) to the closed subspace Hε. The space Hε is
endowed with the usual L2 norm | · |ε, and Vε is an Hilbert space with respect to
the norm ‖u‖ε = |∇u|ε, due to Poincaré’s and Friedrichs’ inequalities. Applying
formally Πε to the first relation in (6.1), we get the nonlocal equation

u̇+ νLεu+Bε(u) = Πεη(t, x). (6.3)

Here Lε is the Stokes operator in Hε given on its domain V 2
ε by Lεu = −Πε∆u

and Bε(u) = Bε(u, u), where Bε : Vε → V ∗
ε is a quadratic mapping defined

for u, v ∈ V 2
ε by the relation Bε(u, v) = Πε

(
〈u,∇〉v

)
. Introduce the following

orthogonal projections in L2(Qε;R
3):

Mεu =

(
ε−1

∫ ε

0

u1(x′, y) dy, ε−1

∫ ε

0

u2(x′, y) dy, 0

)
, Nε = Id −Mε,

where x′ = (x1, x2). It is straightforward to check that these projections also
are continuous and orthogonal in Vε, and their images are closed subspaces in
both cases. Furthermore, recall that the spaces H and V were introduced at the
end of Section 2.1.5 and note that they can be identified with the images of Mε

in Hε and Vε, respectively, by associating to each element (u1, u2) the vector
function (u1, u2, 0). The following result due to Raugel and Sell [RS93] (see also
the paper [TZ96] by Temam and Ziane) enables one to construct global in time
solutions of the homogeneous equation for initial data in a large ball, provided
that ε > 0 is sufficiently small.

1To simplify the presentation, we assume that the sides of the torus are equal. However,
all the results remain true in the case of an arbitrary ratio of the sides.
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Theorem 6.1.1. Let R : (0, 1] → R+ be an arbitrary function such that

lim
ε→0+

εθR(ε) = 0 for some θ ∈
(
0, 12

)
. (6.4)

Then there is ε0 > 0 depending on R(·) such that, for any initial function
uε0 ∈ Vε satisfying the inequality ‖uε0‖ε ≤ R(ε), Eq. (6.3) has a unique solution

uε ∈ C(R+;Vε) ∩ L2
loc(R+;V 2

ε )

issued from uε0 at time t = 0. Moreover, if Mεu
ε
0 → v0 as ε → 0 weakly in H,

then for any T > 0 we have

lim
ε→0

Mεu
ε = v in C(0, T ;H) ∩ L2(0, T ;V ), (6.5)

where v(t, x) is the solution of the 2D Navier–Stokes equation (2.19) with f ≡ 0
issued from v0.

6.1.2 Large-time asymptotics of solutions

We first describe the random kick forces we are dealing with. For simplicity, we
shall assume that η(t, ·) belongs to the image of the projection Πε for all t ≥ 0,
so that we can omit Πε from the right-hand side of (6.3). As was explained in
Section 2.3, the Navier–Stokes system (6.1) with the random kick force (2.65)
is equivalent to the discrete-time dynamical system

uk = Sε
T (uk−1) + ηk, (6.6)

where uk = u(kT ), Sε
t denotes the resolving operator for the homogeneous

problem (see Theorem 6.1.1), and the solutions are normalised by the condition
of right-continuity at the points of the form kT . In the 3D case, there is an
additional problem related to the fact that St may not be defined for all t ≥ 0.
However, it is possible to construct large subsets of Vε on which the RDS (6.6)
is well defined. Namely, for given positive functions a(ε) and b(ε), we set

Bε = {u ∈ Vε : ‖Mεu‖ε ≤ a(ε), ‖Nεu‖ε ≤ b(ε)}.

The following result is established in [CK08a] (see Proposition 4.1).

Proposition 6.1.2. Let a(ε) and b(ε) be two positive functions such that (6.4)
holds for R(ε) = a(ε) + b(ε) and

lim
ε→0

√
ε b2(ε)

a(ε)
= 0. (6.7)

Then for any T0 > 0 there are positive constants ε0 and c0 such that if

P
{
‖Mεηk‖ε ≤ c0a(ε), ‖Nεηk‖ε ≤ c0b(ε), k ≥ 1

}
= 1, (6.8)

then the RDS (6.6) is well defined on the set Bε for any T ≥ T0 and ε ≤ ε0.
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This proposition enables one to define a family of Markov chains on Bε as-
sociated with (6.6). We denote by P ε

k (u,Γ) its transition function and by Pk(ε)
and P∗

k(ε) the corresponding Markov operators.

We now turn to the question of large-time behaviour of trajectories for (6.6)
under some additional hypotheses on the kicks ηk. To formulate them, let us
introduce a special orthogonal basis in the space Vε. The Stokes operator Lε is
self-adjoint and has a compact resolvent, so the spaces Hε and Vε decompose
into the direct sum of one-dimensional orthogonal subspaces spanned by the
eigenfunctions of Lε. Moreover, since the Stokes operator preserves the direct
decomposition Vε = MεVε ⊕NεVε, its eigenfunctions must belong to these sub-
spaces, and it is easy to see that those belonging to MεVε are also eigenfunctions
for the Stokes operator L on the 2D torus T2 and are independent of ε. We
denote them by ej and write λj for the corresponding eigenvalues. As for the
eigenvectors belonging to NεVε, they do depend on ε and will be denoted by eεj .
We normalise the eigenfunctions by the condition

‖ej‖ε = ‖eεj‖ε =
√
ε for all j ≥ 1, (6.9)

whence it follows, in particular, that the norm in V of ej considered as a vector
field on T2 is equal to 1.

We shall assume that the kicks ηk entering the random force η of the
form (2.65) can be written as

ηk(x) = ηεk(x) =

∞∑

j=1

bjξjkej(x) +

∞∑

j=1

djζjke
ε
j(x), (6.10)

where bj and dj are non-negative numbers such that

B =
∞∑

j=1

b2j <∞, D =

∞∑

j=1

d2j <∞,

and {ξjk} and {ζjk} are two independent sequences of independent random vari-
ables whose laws possess densities pj(r) and qj(r) with respect to the Lebesgue
measure on the real line. Furthermore, the functions pj and qj have bounded to-
tal variation and their supports are subsets of [−1, 1] containing the point r = 0.
Note that, in view of (6.9), the Vε-norm of the kicks satisfies the inequality

‖ηk‖2ε ≤
∞∑

j=1

(
b2j‖ej‖2ε + d2j‖eεj‖2ε

)
= ε(B + D).

Thus, by Proposition 6.1.2, the RDS (6.6) with the above hypotheses on ηk is
well defined on Bε, provided that the functions a and b are minorised C

√
ε with

a large constant C > 0 and satisfy relations (6.4) and (6.7) in which R = a+ b.

Theorem 6.1.3. Let the above-mentioned hypotheses on ηk be satisfied and
let a(ε) and b(ε) be two functions such that (6.7) holds and

C1

√
ε ≤ a(ε) ≤ C2

√
ε
(
ln 1

ε

)σ
, C1

√
ε ≤ b(ε) ≤ C2

(
ln 1

ε

)σ/2
,
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where 0 ≤ σ < 1
2 and C1 > 0 is sufficiently large. Then there is a constant ε0 > 0

and an integer N ≥ 1 not depending on ε such that the following assertions are
true for 0 < ε ≤ ε0, provided that

bj 6= 0 for j = 1, . . . , N : (6.11)

Existence and uniqueness. The RDS (6.6) has a unique stationary mea-
sure µε.

Exponential mixing. There are positive constants αε and Cε such that for
any λ ∈ P(Bε) we have

‖P∗
k(ε)λ− µε‖∗L ≤ Cεe

−αεk for k ≥ 0,

where ‖ · ‖∗L stands for the dual-Lipschitz norm on P(Vε).

We refer the reader to Section 5 in [CK08a] for a proof of this result. Note
also that if the random force η is more regular in x, then the stationary mea-
sure is supported by a space of smoother functions and the convergence to it
holds in a stronger norm. Furthermore, under some additional assumptions, the
constants αε and Cε may be chosen to be independent of ε.

6.1.3 The limit ε → 0

We now turn to the main result of this section. Recall that the 2D Navier–
Stokes system on the torus T2 perturbed by a random force of the form (2.65)
gives rise to a Markov chain in the space H; see Section 2.3. In view of The-
orem 3.2.9, if the kicks have the form (6.10) with dj = 0 for all j ≥ 1 and
the non-degeneracy condition 6.11 is fulfilled, then the Markov chain has a
unique stationary measure µ. The following theorem established Chueshov and
Kuksin [CK08a] shows that the averaged horizontal component of the unique
stationary measure for (6.6) can be approximated by µ.

Theorem 6.1.4. Under the hypotheses of Theorem 6.1.3, if (6.11) holds with
a sufficiently large N , then

(Mε)∗µε → µ as ε→ 0, (6.12)

where the convergence holds in the weak topology of P(H). If, in addition,∑
j λ

2
jb

2
j <∞, then (6.12) holds in the weak topology of P(V 2−δ) for any δ > 0.

Theorem 6.1.4 enables one to strengthen convergence (6.5) for solutions
of (6.1), showing that it holds uniformly in time for an appropriate topology.
Namely, we have the following result (cf. Corollary 4.3.2).

Corollary 6.1.5. Under the hypotheses of Theorem 6.1.4, let {uε0} ∈ Vε be a
family of initial functions such that ‖uε0‖ε ≤ C

√
ε for some constant C > 0 and

Mεu
ε
0 → v0 weakly in H, where v0 ∈ V . Let uε(t) be a solution of (6.1), (6.2)



242 CHAPTER 6. MISCELLANIES

issued from uε0 and let v(t) be a solution of Eq. (2.76) with h ≡ 0 on T2 such
that v(0) = v0. Then

sup
t≥0

∥∥D
(
Mεu

ε(t)
)
−D(v(t))

∥∥∗
L
→ 0 as ε→ 0, (6.13)

where ‖ · ‖∗L stands for the dual-Lipschitz distance over H.

We note that the condition ‖uε0‖ε ≤ C
√
ε is not a smallness assumption

for uε0 since it signifies not that the vector field uε0(x) is small, but that the
volume of the domain Qε is of order ε. A proof of the above results can be
found in Section 5.3 of [CK08a]. Let us also mention that convergence (6.13)
holds for the dual-Lipschitz distance over V 2−δ if the coefficients bj satisfy the
additional decay condition of Theorem 6.1.4.

For the 3D stochastic Navier–Stokes system in Qε with a white in time ran-
dom force η(t, x), the argument of this section does not work, because Proposi-
tion 6.1.2 is no longer true, as domains of the form Bε are not invariant for the
corresponding RDS. However, if we smooth out the stochastic system (6.1) by
replacing there the bilinear term B(u) with B((I − α∆)−1u, u), where α > 0
is arbitrary, then we get a well-posed stochastic PDE, and the corresponding
RDS converges weakly to trajectories of (6.1) as α → 0+. An analogue of
Theorem 6.1.3 is valid for this system with any positive α, and an analogue of
convergence (6.12) holds true as α→ 0+ and ε→ 0 (in any order); see [CK08b].

Relevance of the results for physics

The results of this section show that, in the thin domain T2 × (0, ε), non-
isotropic 3D turbulence described by the Navier–Stokes system with a not to
big vertical component may be well approximated by the 2D turbulence in T2.
The same results holds also for the non-isotropic 3D turbulence in the thin
spherical layer S2 × (0, ε).

Figure 6.1: Motion of the atmosphere above Madeira island. On the scales of
order the island’s size, the motion clearly looks two-dimensional; cf. Figure 1
and Section 6.1.

Figure 6.2: Jupiter Red Spot. This is a huge 2D structure in the Jovian at-
mosphere (twice bigger than the Earth), persistent for more than 180 years.
It is believed that the motion inside the spot is driven by the 2D turbulence,
cf. Figure 1.

6.2 Ergodicity and Markov selection

The aim of this section is to discuss some results on 3D stochastic Navier–Stokes
equations. Since the corresponding results are rather technical and certainly
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far from their final form, to make them more transparent, we begin with the
case of stochastic differential equations in Rd (SDE). We use a simple example
to explain informally two fundamental results: martingale problem and Markov
selection. We next turn to 3D Navier–Stokes equations and discuss two different
approaches for constructing Markov processes concentrated on solutions and
proving a mixing property in the total variation distance.

6.2.1 Finite-dimensional stochastic differential equations

Let us consider the SDE

dxt = b(xt)dt+ dwt, xt ∈ Rd, (6.14)

where b : Rd → Rd is a continuous function and wt is an Rd-valued standard
Brownian motion. If b is globally Lipschitz continuous, then for any x ∈ Rd

Eq. (6.14) has a unique solution defined on the positive half-line and satisfying
the initial condition

x0 = x, (6.15)

and the family of all solutions form a Markov process (xt,Px) in Rd with the
transition function Pt(x,Γ) = Px{xt ∈ Γ}. Itô’s formula implies that if f is a
C2-smooth function with bounded derivatives, then

f(xt) = f(x0) +

∫ t

0

Lf(xr) dr +

∫ t

0

〈∇f(xr), dwr〉, (6.16)

where we set

L =
1

2
∆ + 〈b(x),∇〉.

The operator L is called the generator corresponding to the SDE (6.14). Let us
denote by Ft the filtration associated with the Markov process and apply the
condition expectation Ex(· | Fs) to (6.16). Recalling that the stochastic integral
defines a martingale, we obtain

Ex

(
f(xt) −

∫ t

0

Lf(xr) dr
∣∣∣Fs

)
= f(x) + Ex

(∫ t

0

〈∇f(xr), dwr〉
∣∣∣Fs

)

= f(x) +

∫ s

0

〈∇f(xr), dwr〉

= f(xs) −
∫ s

0

Lf(xr) dr,

where the equality holds with Px-probability 1. Hence, we see that the process

Mf
t = f(xt) −

∫ t

0

Lf(xr) dr, t ≥ 0, (6.17)

is a martingale with respect to the filtration Ft and the probability Px, with
an arbitrary x ∈ Rd. The following proposition shows that the latter condition
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is sufficient for the existence of a weak solution for (6.14), (6.15). Let Ω be
the Fréchet space C(R+;Rd) with its Borel σ-algebra and let {xt(ω)}t≥0 be the
canonical process.

Proposition 6.2.1. Let b : Rd → Rd be a bounded continuous function and
let P be a probability measure on Ω such that Mf

t is a continuous martingale
with respect to P for any C2-function f with bounded derivatives. Then the
process xt − x0 −

∫ t

0
b(xr) dr is an Rd-valued standard Brownian motion. In

particular, problem (6.14), (6.15) has a weak solution defined on R+.

We refer the reader to Section 5.4.B of the book [KS91] for the proof of a
more general result. In what follows, any probability measure P satisfying the
hypotheses of Proposition 6.2.1 is called a solution of the martingale problem
associated with L. What has been said above implies that problem (6.14), (6.15)
has a weak solution associated with an initial measure µ ∈ P(Rd) if and only if
the martingale problem associated with its generator L has a solution P whose
restriction at t = 0 coincides with µ. Moreover, the uniqueness of the law for
a weak solution is equivalent to the uniqueness of a solution for the martingale
problem with a given initial measure. We now study a sufficient condition for
the latter property.

Let P be a solution of the martingale problem associated with L, let xt
be the canonical process, and let wt be the Brownian motion constructed in
Proposition 6.2.1. Let u(t, x) be an arbitrary function having continuous partial
derivatives ∂jt ∂

α
x u for 2j + |α| ≤ 2 that are bounded in the strip [0, T ] × Rd for

some T > 0. Then, applying Itô’s formula to the process yt = u(T − t, xt), we
derive

yt − y0 =

∫ t

0

(
−∂tu+ Lu

)
(T − r, xr) dr +

∫ t

0

〈u(T − r, xr), dwr〉.

Assuming now that u is the solution2 of the Cauchy problem for Kolmogorov’s
backward equation

∂tu = Lu, u(0, x) = f(x), x ∈ Rd, t > 0, (6.18)

where f ∈ C∞
0 (Rd) is a given function, we see that the process yt is a martingale

under P. In particular, taking the expectation with respect to P, we obtain

Eu(T − t, xt) = E yt = E y0 = Eu(T, x0) for any t ∈ [0, T ].

Setting t = T , we see that

E f(yT ) = Eu(0, xT ) = E f(xT ) = Eu(T, x0).

The right-hand side of this relation depends only on the function f and the
law of the restriction of P at time t = 0. Since C∞

0 (Rd) is a determining

2Solutions with the above-mentioned regularity exist, for instance, if b is Hölder continuous;
see Chapter 8 of [Kry96].
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family for the Borel measures on Rd, we conclude that the law of xT under
a solution of the martingale problem depends only on the initial law P|t=0.
Further analysis shows that the law of the canonical process {xt} under P also
depends only on P|t=0, provided that problem (6.18) has a solution satisfying
the above-mentioned boundedness condition for any T > 0. More precisely, we
have the following result due to Stroock and Varadhan; see Sections 5.4.E of
the book [KS91].

Theorem 6.2.2. Let b : Rd → Rd be a continuous function such that for any
f ∈ C∞

0 (Rd) problem (6.18) has a solution u(t, x) whose derivatives ∂jt ∂
α
x u with

2j + |α| ≤ 2 are bounded in the strip [0, T ] ×Rd for any T > 0. Then for every
x ∈ Rd the martingale problem associated with L has at most one solution P

such that P|t=0 = δx.

It is a “natural” idea to try to apply the above approach to 3D Navier–Stokes
equations, for which well-posedness is not known to hold. Unfortunately, the ex-
isting methods do not allow one to construct a sufficiently regular solution for the
infinite-dimensional analogue of problem (6.18), and the possibility of carrying
out the Stroock–Varadhan program for 3D Navier–Stokes equations is unclear.
Nevertheless, one can prove that Kolmogorov’s equation possesses a solution
with weak regularity properties, and this turns out to be sufficient for building
a Markov family concentrated on trajectories of Navier–Stokes equations. This
approach, together with an investigation of mixing properties, was realised by
Da Prato, Debussche, and Odasso in the series of papers [DD03, DO06, Oda07]
and is presented briefly in Section 6.2.2.

We now turn to the case in which the uniqueness of the law for the SDE (6.14)
is unknown. In this situation, Krylov [Kry73] suggested a general scheme for
constructing a Markov selection—a family of strong Markov processes concen-
trated on martingale solutions of (6.14). We now describe his approach follow-
ing essentially the presentation in [SV79] and confining ourselves to the Markov
property. The strong Markov property of the selection is more delicate and will
not be discussed here.

As before, we assume that b(x) is a bounded continuous function and denote
by L the generator corresponding to (6.14). Given s ≥ 0 and x ∈ Rd, we shall
say that a probability measure P on the canonical space Ω is a solution of the
martingale solution for L starting from (s, x) if P{xt = x for 0 ≤ t ≤ s} = 1

and the process Mf
t defined by (6.17) is a martingale after time s for any

f ∈ C∞
0 (Rd). Let us denote by C(s, x) the set of all solutions to the martingale

problem for L starting from (s, x). Thus, C(s, x) is a subset in the space P(Ω),
which is endowed with the dual-Lipschitz distance and the topology of weak
convergence. We shall write C(x) instead of C(0, x). Since the drift coefficient b
does not depend on time, it is clear that C(s, x) can be obtained from the set C(x)
by “shifting” it to the half-line [s,+∞) and “gluing” to the resulting measure
the Dirac mass at the function equal to x for 0 ≤ t ≤ s. To formulate accurately
this and some other properties of C(s, x), we need the following lemma, whose
proof in a more general setting can be found in [SV79] (see Section 6.1).
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Lemma 6.2.3. Let s ≥ 0 and let Qω : Ω → P(Ω) be a random probability
measure such that Q·(Γ) is Fs-measurable for any Γ ∈ B(Ω) and

Qω

(
{xt = ω(s) for 0 ≤ t ≤ s}

)
= 1 for all ω ∈ Ω.

Then for any P ∈ P(Ω) there is a unique measure P ⊗s Q· ∈ P(Ω) such that

(P ⊗s Q·)(B) = P (B), (6.19)

(P ⊗s Q·)(B ∩ Γ) =

∫

B

Qω(Γ)P (dω) (6.20)

for any B ∈ Fs and Γ ∈ F+
s , where F+

s stands for the σ-algebra generated by
the canonical process on [s,+∞).

In other words, if Qω is a random probability measure that is measurable
with respect to Fs and whose restriction to Fs coincides with the Dirac mass at
the function identically equal to ω(s) on the interval [0, s], then there is a unique
measure in P(Ω) such that its restriction to Fs coincides with P (see (6.19)) and
the restriction to F+

s of its regular conditional probability given Fs coincides
with Qω|F+

s
(see (6.20)). Note also that the uniqueness is a straightforward

consequence of relation (6.20), the monotone class technique, and the fact that F
is generated by the π-system of the sets of the form B ∩ Γ with B ∈ Fs and
Γ ∈ F+

s .

The time-independence of b imply that if P ∈ C(s, x) for some s > 0, then
(θs)∗P ∈ C(x), where θs stands for the shift operator on Ω. Conversely, if P ∈
C(x), then δx⊗s ((θ−s)∗P ) ∈ C(s, x), where δx is the Dirac mass at the function
identically equal to x and, with a slight abuse of notation, we denote by (θ−s)∗P
the measure defined by ((θ−s)∗P )(Γ) = P (θsΓ). That is, the mapping

P 7→ δx ⊗s ((θ−s)∗P ) ∈ C(s, x)

defines a bijection between C(x) and C(s, x).
The proposition below establishes some further properties of the sets C(s, x).

It is the first of the two key ingredients for the construction of a Markov selection
for (6.14).

Proposition 6.2.4. The family {C(s, x), s ≥ 0, x ∈ Rd} possesses the following
properties.

(a) The set C(s, x) is compact in P(Ω) for any s ≥ 0 and x ∈ Rd.

(b) The mapping (s, x) 7→ C(s, x) is lower-semicontinuous. That is, if sn → s,
xn → x, Pn ∈ C(sn, xn), and Pn → P in P(Ω), then P ∈ C(s, x). In
particular, the mapping (s, x) 7→ C(s, x) defines a random compact set
in P(Ω), with the underlying space R+ × Rd.

(c) Let P ∈ C(x) and let Ps(ω,Γ) be the regular conditional probability of P
given Fs. Then there is a P -null set N ∈ Fs such that 3

δω(s) ⊗s Ps(ω, ·) ∈ C(s, ω(s)) for ω /∈ N. (6.21)

3Note that the second factor Ps(ω, ·) in the product ⊗s of (6.21) is considered as a constant
measure.
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(d) Let P ∈ C(x) and let Q· : Ω → P(Ω) be an Fs-measurable function such
that δω(s) ⊗s Qω(s) ∈ C(s, ω(s)) for all ω ∈ Ω. Then P ⊗s Q· ∈ C(x).

We do not give a proof of this proposition, leaving it to the reader as an
exercise or referring to [SV79, Lemma 12.2.1] for a more general result. Let us,
however, clarify informally the meaning of properties (a) – (d) and give some
hints for their proof.

The compactness of C(s, x) is almost obvious because, due to the bounded-
ness of b, any measure in C(s, x) is concentrated on a set of functions whose
C1-norm is bounded with high probability on any finite interval. The lower-
semicontinuity of C(s, x) means essentially that the limit of a sequence of solu-
tions is again a solution. Since the noise is additive, this property is a straightfor-
ward consequence of Skorohod’s embedding theorem. Property (c) says, roughly
speaking, that if {yt(ω), t ≥ 0} is a weak solution of (6.14) starting from (0, x),
then its restriction to the half-line [s,+∞) is a weak solution of (6.14) start-
ing from (s, ys(ω)). Finally, property (d) is a formalisation of the claim that if
we cut a solution starting from (0, x) at a time s and then continue it as an-
other solution, then the resulting process is again a solution starting from (0, x),
provided that the two solutions agree at time s.

The second key ingredient for constructing a Markov selection is the following
theorem, which says that one can choose elements in C(x) that depend on x in
a measurable manner and satisfy the Markov propoerty.

Theorem 6.2.5. Let b : Rd → Rd be a bounded continuous function, let C(x) be
the set of solutions for martingale problem starting from (0, x), and let {xt}t≥0

be the canonical process on Ω. Then there exists a measurable mapping x 7→ Px

from Rd to P(Ω) such that Px ∈ C(x) for all x and (xt,Px) is a homogeneous
family of Markov processes.

We refer the reader to Krylov’s original paper [Kry73] or to Chapter 12 of
the book [SV79] for a proof of this theorem and some further results. Note that
the Markov process constructed in Theorem 6.2.5 may not satisfy the Feller
property. For instance, the one-dimensional equation ẋ = sgn(x)|x|1/2 has no
Feller selection; see Exercise 12.4.2 in [SV79]. Furthermore, not every selec-
tion x 7→ C(x) will produce a Markov family, as is easily seen by studying the
equation ẋ = |x|1/2.

The above scheme can be carried out in the case of 3D Navier–Stokes equa-
tions with additive noise. There is, however, a number of essential difficulties,
which result in that one can establish only almost sure Markov property. This
question, as well as the problem of mixing under a non-degeneracy assumption
on the noise, was analysed in the papers of Flandoli and Romito [FR08, Rom08]
and is discussed in Section 6.2.3.

6.2.2 Da Prato–Debussche–Odasso theorem

Let us consider the 3D Navier–Stokes equations with a white noise perturbation.
To simplify the presentation, we assume that the space variable x belongs to
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the 3D torus, even though most of the results in this and next subsections
remain valid for any bounded domain with smooth boundary. Projecting to the
space H, we get the equation

u̇+ νLu+B(u) = h(x) + ∂tζ(t, x), ζ(t, x) =
∑

s∈Z
3
0

bsβs(t)es(x), (6.22)

where h ∈ H is a deterministic function, bs ∈ R are some constants such that

B =
∑

s∈Z
3
0

b2s <∞, (6.23)

{βs} is a family of independent standard Brownian motions, and {es} is the
normalised trigonometric basis in H (in the 3D case); cf. Sections 2.1.4, 2.1.5,
and 2.4. Using the methods of the deterministic theory and treating the equa-
tion pathwise, one can prove the existence of a global weak solution for (6.22)
satisfying the initial condition

u(0, x) = u0(x), (6.24)

where u0 ∈ H is a given function. Indeed, denoting by z(t) a solution of the
stochastic Stokes equation (2.100) issued from zero and writing u = v + z, we
see that v must be a solution of problem (2.111), (2.112). The regularity of z
guaranteed by Proposition 2.4.2 turns out to be sufficient to prove the existence
of a weak solution v with probability 1. The resulting process u is a weak solution
of the original problem, and further analysis shows that an energy inequality
holds for it. We thus obtain the following result established in [BT73, VF88];
see also [CC92, FG95] for the case of a multiplicative noise.

Proposition 6.2.6. Under the above hypotheses on h and η, for any u0 ∈ H
there is a random process u : R+ → H whose almost every trajectory belongs to
the space

L∞
loc(R+;H) ∩ L2

loc(R+;V ) ∩ C(R+, V
−r) (6.25)

with any r > 0 and satisfies Eq. (2.99), where the equality holds in C(R+;V ∗).
Moreover,

E

(
|u(t)|22 + ν

∫ t

0

|∇u(s)|22ds
)

≤ |u0|22 +
(
B + C|h|22

)
t, t ≥ 0, (6.26)

where C > 0 is a constant depending only on ν.

The question of uniqueness of a weak solution remains open. However, under
strong non-degeneracy hypotheses on the noise, it is possible to construct a
Markov process concentrated on weak solutions of (6.22) and to prove for it
the property of exponential mixing. To state the corresponding results, we first
reformulate the above proposition on the existence of a solution in different
terms.
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For technical reasons, we consider solutions of weaker regularity than those
constructed in Proposition 6.2.6. Let us fix a small constant r > 0 and introduce
the Fréchet space (cf. (6.25)

Ω = L2
loc(R+;V 1−r) ∩ C(R+, V

−r), (6.27)

endowed with a natural metric. Let F be the Borel σ-algebra on Ω and let Ft

be the natural filtration on Ω. The law P of the weak solution for (6.22), (6.24)
constructed in Proposition 6.2.6 is a probability measure on (Ω,F) possessing
the following properties:

(i) P
(
{ω ∈ Ω : ω(0) = u0}

)
= 1;

(ii) The P-law of the process 4

Mt = ω(t) − ω(0) +

∫ t

0

(
νLω +B(ω)

)
ds− ht, t ≥ 0, (6.28)

coincides with that of ζ.

In what follows, any probability measure P on (Ω,F) satisfying these properties
is called a martingale solution for problem (6.22), (6.24). Similarly, a probability
measure P on (Ω,F) is called a stationary martingale solution for Eq. (6.22) if
the canonical process is stationary under P and property (ii) mentioned above
holds for it.

Let us assume that the coefficients of the random force ζ entering Eq. (6.22)
satisfy the inequality

c |s|−3+δ ≤ |bs| ≤ C |s|− 5
2−δ for all s ∈ Z3

0, (6.29)

where C, c, and δ are positive constants. This means, rouhgly speaking, that
the trajectories of ζ have regularity higher than H5/4, but lower than H3/2.
The following result shows that it is possible to construct a family of martingale
solutions which satisfy a Markov property.

Theorem 6.2.7. Let h ∈ V and let ζ be a random force for which (6.29)
holds. Then there is a measurable mapping u0 7→ Pu0

from V 2 to the space of
probability measures on (Ω,F) with the weak topology such that the following
properties hold.

(i) For any u0 ∈ V 2, the measure Pu0 is a martingale solution for (6.22),
(6.24) such that Pt(u0, V

2) = 1, where Pt(u0, ·) stands for the law of ω(t)
under Pu0

:

Pt(u0,Γ) = Pu0

{
ω(t) ∈ Γ

}
, Γ ∈ B(V −r). (6.30)

4It is easy to see that the trajectories of Mt belongs to C(R+;V −2) with P-probability 1.
Thus, the law of M is a probability measure on that space.
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(ii) For any u0 ∈ V 2 and t > 0, with Pu0-probability 1 we have

Pu0

{
ω(t+ ·) ∈ Γ | Ft

}
= Pω(t)(Γ), (6.31)

where Γ ∈ F is an arbitrary cylindrical set,

Γ = {ω ∈ Ω : ω(ti) ∈ Bi for i = 1, . . . , n},

with 0 ≤ t1 < · · · < tn and Bi ∈ B(V 2).

(iii) The function t 7→ Pt(u0, ·) from V 2 to P(V 2) is continuous in the weak
topology.

We refer the reader to the original work [DO06] for a proof, confining our-
selves to some comments on this result. Its formulation in [DO06] is slightly
different: weak solutions are constructed there on an abstract probability space
depending on the initial condition. Nevertheless, it is easy to see in the case
of an additive noise that the law of a weak solution for (6.22) considered as
a probability measure on the canonical space (6.27) is a martingale solution.
Thus, we consider a (measurable) mapping taking an initial condition u0 to
its law Pu0

. Property (i) means that, at any time t ≥ 0, the solution is H2

smooth. Note, however, that this property is not sufficient to ensure that the
trajectories lie in H2. Assertion (ii) is a weak form of the Markov property: in
relation (6.31), one can take only cylindrical subsets Γ that are defined with the
help of some Borel sets in V 2. 5 Finally, the last property means that the Markov
semigroup Pt associated with the transition function Pt(u0,Γ) is stochastically
continuous.

Once there is a Markov semigroup associated with the 3D Navier–Stokes
equations, a natural question is whether it is ergodic. The following theorem
gives a positive answer to it.

Theorem 6.2.8. Under the hypotheses of Theorem 6.2.7, the Markov semi-
group {Pt} constructed there is irreducible and possesses the strong Feller prop-
erty in V 2. In particular, it has a unique stationary distribution µ ∈ P(V 2),
and for any λ ∈ P(V 2) we have

‖P∗
tλ− µ‖var → 0 as t→ ∞, (6.32)

where ‖ · ‖var stands for the total variation norm in V 2. Furthermore, if ‖h‖1
is sufficiently small, then convergence (6.32) is exponentially fast for any mea-
sure λ with finite second moment on H.

The proof of the strong Feller and irreducibility properties can be found
in [DO06], while the exponential convergence in the total variation norm is es-
tablished in [Oda07]. In conclusion, let us note that Theorem 6.2.8 does not im-
ply uniqueness of a stationary distribution for the 3D Navier–Stokes equations,
since different Markov semigroups may have different stationary measures.

5The set G = GΓ ⊂ Ω on which (6.31) holds is a full-measure event depending a priori
on Γ, and we cannot rule out that the intersection of all GΓ, with Γ varying in F , is empty.
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6.2.3 Flandoli–Romito theorem

The results discussed in the foregoing subsection show that it is possible to con-
struct martingale solutions for the Navier–Stokes equations that satisfy a weak
form of the Markov property, provided that the spatially regular white noise
is sufficiently rough. A different approach inspired by Krylov’s paper [Kry73]
(see the discussion in Section 6.2.1) was taken by Flandoli and Romito, who
proved the existence of a (weak) Markov selection without any non-degeneracy
assumption on the noise. To formulate their results, we shall need some auxiliary
concepts.

Definition 6.2.9. Let X be a separable Banach space and let Ω = C(R+;X)
be the canonical space, which is endowed with its Borel σ-algebra F and the
natural filtration {Ft, t ≥ 0}. We shall say that a family of probability measures
{Pu, u ∈ X} possesses the a. s. Markov property if the mapping u 7→ Pu is
measurable from X to the space P(Ω) with the weak topology, and for any
u ∈ X there is a subset Tu ⊂ (0,+∞) of zero Lebesgue measure such that, with
Pu-probability 1, we have

Eu

(
f(ω(t)) | Fr

)
= Eω(r)f(ω(t− r)) for r /∈ Tu and all t ≥ r, (6.33)

where f : X → R is an arbitrary bounded measurable function and ω(t) stands
for the canonical process.

For the purposes of this section, we need a concept of a martingale solution
for (6.22) which is slightly different from (and is stronger than) that used in the
foregoing subsection. To simplify the presentation, we shall always assume that
h ≡ 0 and the coefficients bj satisfy (6.23). Let Ω be the Fréchet space defined
by (6.27) and endowed with its natural filtration and let z be a solution of the
Stokes equations that vanishes at t = 0 (see (2.101)).

Definition 6.2.10. A probability measure P on Ω is called a admissible mar-
tingale solution of (6.22) with an initial measure µ ∈ P(H) if it possesses the
following properties:

(i) The restriction of P to t = 0 coincides with µ and

P
(
L∞
loc(R+;H) ∩ L2

loc(R+, V )
)

= 1;

(ii) The law of process (6.28) with h ≡ 0 coincide with that of ζ;

(iii) There is a set T ⊂ (0,+∞) of zero Lebesgue measure such that

P
{
Et(v, z) ≤ Er(v, z)

}
= 1 for r /∈ T and all t ≥ r, (6.34)

where we set v(t) = ω(t) − z(t) and

Et(v) =
1

2
|v(t)|22 +

∫ t

0

(
ν|∇v|22 + 〈B(v + z, z), v〉

)
ds.
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In what follows, we call (6.34) the energy inequality for solutions of (6.22).
The main difference between admissible martingale solutions and the solutions
considered in the preceding section is that the former satisfy the energy inequal-
ity. This property is crucial for proving the following weak-strong uniqueness
result (see [Soh01] for the deterministic problem and [Shi07b] for the stochastic
case).

Proposition 6.2.11. Let P be an admissible martingale solution for (6.22)
issued from a point u0 ∈ V and let {u(t), t ∈ [0, T ]} be a random process with
continuous V -valued trajectories that satisfy (6.22) and coincide with u0 at t = 0
with probability 1. Then the restriction to [0, T ] of P coincides with the law
of {u(t), t ∈ [0, T ]}.

We now turn to the problem of a Markov selection among admissible martin-
gale solutions of (6.22). The following result established in [FR08, Theorem 4.1]
is an analogue of Theorem 6.2.5 in the case of Navier–Stokes equations.

Theorem 6.2.12. Assume that the coefficients bs satisfy (6.23). Then there
is family {Pu0

, u0 ∈ H} of measures on Ω possessing the a. s. Markov property
such that, for any u0 ∈ H, Pu0

is an admissible martingale solution for (6.22)
with the initial measure δu0 .

In what follows, any such family will be called a Markov selection for (6.22).
Theorem 6.2.12 is true without any non-degeneracy hypothesis on the noise.
In particular, it holds in the case ζ ≡ 0. If we assume that the noise is very
rough, then the Markov property will be true for any time s ≥ 0, and the
Markov family (ω(t),Pu0) will be ergodic. More precisely, let us assume that
the coefficients bs satisfy the inequality (cf. (6.29))

c|s|− 11
6 −δ ≤ |bs| ≤ C|s|− 11

6 −δ for all s ∈ Z3
0, (6.35)

where C > c > 0 are some constants. The following theorem is established
in [FR08, Rom08].

Theorem 6.2.13. Assume that (6.35) holds. Then there is θ ≥ 0 depending
on δ such that the assertions below hold for the Markov selection {Pu0 , u0 ∈ H}
constructed in Theorem 6.2.12.

Markov property. The family (ω(t),Pu0
) is a Markov process. That is, rela-

tion (6.33) holds for all t ≥ r ≥ 0 and any bounded measurable function
f : H → R.

Strong Feller property. The family (ω(t),Pu0) is strong Feller in the topology
of V 1+θ. That is, the function u0 7→ Pt(u0,Γ) is continuous on V 1+θ for
any Γ ∈ B(H).

Stationary distribution. There exists a unique stationary distribution µ for
(ω(t),Pu0

).
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Exponential mixing. Convergence (6.32) holds exponentially fast for any ini-
tial measure λ ∈ P(H) with finite second moment.

A striking consequence of the existence of a Markov selection is that the local
existence of a strong solution on an arbitrary small interval implies the global
existence, provided that the selection possesses the Feller property on V 1+θ with
θ > 0 and is irreducible. In particular, the result is true under the hypotheses
of Theorem 6.2.13.

Proposition 6.2.14. Let {Pu, u ∈ H} be an arbitrary Markov selection for the
3D Navier–Stokes equations (6.22) which possesses the following properties for
some θ ≥ 0.

Feller property. The Markov semigroup associated with Pu is Feller on V 1+θ.
That is, Ptf ∈ Cb(V

1+θ) for any f ∈ Cb(V
1+θ).

Irreducibility. For any t > 0 and u ∈ V 1+θ, we have Pt(u,G) > 0 for all open
subsets G ⊂ V 1+θ.

Let us assume that Eq. (6.22) possesses a martingale solution P on an inter-
val [0, τ ] such that P

(
C(0, τ ;V 1+θ)

)
= 1. Then, Pu

(
C(R+;V 1+θ)

)
= 1 for

any u ∈ V 1+θ. In particular, the stochastic Navier–Stokes equations (6.22) are
well-posed in V 1+θ.

Let us emphasise that no initial condition is imposed on P. So P|t=0 may be
any measure on V 1+θ, e.g., a Dirac mass at zero.

Sketch of the proof. We follow essentially the argument used by Flandoli and
Romito [FR08, Section 6.4]. To simplify formulas, we shall assume that θ = 0.
Let µ be the projection of P to time t = 0:

µ(Γ) = P
(
{ω ∈ Ω : ω(0) ∈ Γ}

)
, Γ ∈ B(H).

We define Pµ =
∫
H
Puµ(du) and note that Pµ is an admissible martingale so-

lution for (6.22) with the initial measure µ. By Proposition 6.2.11, we see that
the restriction of Pµ to [0, τ ] coincides with P. The Markov property of Pu now
implies that 6

1 = Pµ

(
C(0, τ ;V )

)
= EµPµ

{
C(0, τ ;V )

∣∣Fθ

}

= Eµ

{
IC(0,θ;V )Pω(θ)

(
C(0, τ − θ;V )

)}
,

where we set θ ∈ (0, τ) is an arbitrary point for which the Markov property
holds. Since the non-negative function under the second expectation above
does not exceed 1, we conclude that

Pω(θ)

(
C(0, τ − θ;V )

)
= 1 for Pµ-almost every ω ∈ Ω.

6With a slight abuse of notation, we use the same symbol for a measure on Ω and its
restriction to the interval [0, τ ].
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The irreducibility property implies that there is a dense subset A ⊂ V such that
Pv

(
C(0, τ −θ;V )

)
= 1 for any v ∈ A. We claim that this relation is true for any

v ∈ V . If this is established, then the Markov property will imply by iteration
that Pu

(
C(R+;V )

)
= 1 for any u ∈ V . Since a solution of the Navier–Stokes

system is unique in the class C(R+;V ), we conclude that it is well-posed in V .

We now prove Pv

(
C(0, θ1;V )

)
= 1 for any v ∈ V , where θ1 = τ − θ. For any

integer N ≥ 1, denote by QN (θ1) the set of all rational numbers 2−Np ∈ [0, θ1],
where p is integer. Then

C(0, θ1;V ) =

∞⋂

m=1

∞⋃

k=1

∞⋂

N=1

G(N, k,m), (6.36)

where we set

G(N, k,m) =
{
ω ∈ Ω : ‖ω(t) − ω(s)‖V ≤ 1

m for t, s ∈ QN (θ1), |t− s| ≤ 1
k

}
.

Note that each subset G(N, k,m) depends on the values of ω ∈ Ω at finitely
many points t1, . . . , tl ∈ [0, θ1], where l ≥ 1 is an integer, and can be represented
in the form

G(N, k,m) = {ω ∈ Ω : (ω(t1), . . . , ω(tl)) ∈ Γ(N, k,m)},

where Γ(N, k,m) is a closed set in the direct product of l copies of V .
Now let v ∈ V and let {vn} ⊂ A be a sequence converging to v in V . Then

Pvn

(
C(0, θ1;V )

)
= 1, whence it follows that

Pvn

(
G(N, k,m)

)
≥ 1 − εk for all m,n,N,

where εk → 0 as k → ∞. The Feller and Markov properties and the above
mentioned structure of G(N, k,m) imply that

Pv

(
G(N, k,m)

)
≥ lim sup

n→∞
Pvn

(
G(N, k,m)

)
≥ 1 − εk for all m,N.

Combining this with (6.36), we arrive at the required result, which completes
the proof of the proposition.

In conclusion, let us note the irreducibility condition of Proposition 6.2.14
implies that the noise η is non-zero, and therefore it cannot be satisfied for
the deterministic problem. On the other hand, the energy inequality (for ad-
missible martingale solutions) and the Feller property make sense also for the
deterministic Navier–Stokes system. The energy inequality is true for any solu-
tion obtained by a constructive procedure (such as Galerkin approximations or
regularisation of the nonlinear term), while the Feller property means, roughly
speaking, that any sequence of strong solutions converge to a strong solution,
provided that the initial conditions converge in V 1+θ. This is a very strong
property and would immediately imply global existence of a strong solution in
the deterministic case.
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6.3 Navier–Stokes equations with a very degen-

erate noise

The understanding of the 3D Navier–Stokes dynamics with a smooth stochastic
forcing is rather poor, and only some partial results showing its mixing character
are available. They are based on a detailed study of controllability properties
of the Navier–Stokes system. The counterparts of these results in the 2D case
are much more complete and have independent interest. In this section, we
first discuss some results for 2D Navier–Stokes equations and then turn to their
generalisations for the 3D case. We confine ourselves to the case of periodic
boundary conditions, even though some of the results remain true for other
geometries.

6.3.1 2D Navier–Stokes equations: controllability and mix-

ing properties

Let us consider controlled7 Navier–Stokes equations on a 2D torus :

u̇+ νLu+B(u) = h+ η(t). (6.37)

To simplify the presentation, we shall consider only the case of a square torus T2;
however, all the results are true for a rectangular torus. We assume that h ∈ H
is a given function and η(t) is a control taking values in a finite-dimensional
space E ⊂ V 2. Recall that St(u0, h + η) denotes the solution of (6.37) issued
from u0 ∈ H. We shall need the following two concepts of controllability.

Definition 6.3.1. We shall say that Eq. (6.37) is approximately controllable at
a time T > 0 by an E-valued control if for any u0, û ∈ H and any ε > 0 there
is η ∈ C∞(0, T ;E) such that

|ST (u0, h+ η) − û|2 < ε. (6.38)

We shall say that Eq. (6.37) is solidly controllable in projections at a time T > 0
by an E-valued control if for any u0 ∈ H, any R > 0, and any finite-dimensional
subspace F ⊂ H there is a compact set X ⊂ L2(0, T ;E) and a constant ε > 0
such that for any continuous mapping Φ : X → F satisfying the inequality
supξ∈X ‖Φ(ξ) − ST (u0, ξ)‖ ≤ ε we have

PFΦ(X) ⊃ BF (R), (6.39)

where PF : H → H denotes the orthogonal projection in H onto F .

Thus, when studying the controlled Navier–Stokes system (6.37), we assume
that the function η is at our disposal, and we try to make sure that at the final
time T the solutions possess some particular properties.

7The meaning of this term is clarified below.
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To formulate the main result on controllability, we introduce some notations.
Given a finite-dimensional subspace G ⊂ V 2, we denote by E(G) the largest
vector space in V 2 whose elements can be represented in the form

η1 = η −
N∑

j=1

B(ζj),

where η, ζ1, . . . , ζN ∈ G and N is an integer depending on η1. Let us define an
increasing sequence {Ek} of subspaces in V 2 by the rule

E0 = E, Ek = E(Ek−1) for k ≥ 1,

and denote by E∞ the union of Ek, k ≥ 1. We shall say that E is saturating
if E∞ is dense inH. The following result is due to Agrachev and Sarychev [AS05,
AS06].

Theorem 6.3.2. Let h ∈ H and let E ⊂ V 2 be a saturating subspace. Then
for any T > 0 Eq. (6.37) is approximately controllable and solidly controllable
at time T by an E-valued control.

A necessary and sufficient condition for a subspace to be saturating can be
found in [AS06, Theorem 4]. In particular, if E contains the basis vectors e(s1,s2)
with |s1| ∨ |s2| ≤ 1, then it is saturating.

We now fixe T > 0 and assume that the external force η in (6.37) is a
random process on [0, T ] whose trajectories belong to L2(0, T ;E) almost surely.
In this case, the dynamics of (6.37) is well defined because we can apply the
corresponding deterministic result to any realisation of η (see Theorem 2.1.13).
We wish to investigate qualitative properties of solutions for (6.37) at time T .
To this end, we impose the following decomposability assumption on the law of η.
Let λ be the law of the process η regarded as a random variable in L2(0, T ;E).

Definition 6.3.3. We shall say that λ is decomposable if there is an orthonormal
basis in L2(0, T ;E) such that the measure λ can be written as the direct product
of its projections to the straight lines spanned by the basis vectors.

Given a decomposable measure λ, we shall denote by λj its projection to the
straight line spanned by the jth basis vector. Thus, we can write λ = ⊗∞

j=1λj .
Combining controllability properties of the Navier–Stokes system with a re-
sult on the image of probability measures under analytic mappings, Agrachev,
Kuksin, Sarychev, and Shirikyan [AKSS07] established the following theorem.

Theorem 6.3.4. Let T > 0, let h ∈ H, let E ⊂ V 2 be a finite-dimensional
subspace, and let η be a random process whose law λ is a decomposable measure
in L2(0, T ;E) such that the support of λ coincides with the entire space, the
second moment m2(λ) is finite, and the one-dimensional projections λj possess
continuous densities with respect to the Lebesgue measure. Then for any u0 ∈ H
the solution u(t, u0) of (6.37) issued from u0 possesses the following properties.

Non-degeneracy. The support of the law of u(T ;u0) coincides with H.
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Regularity. For any finite-dimensional subspace F ⊂ H, the law of PFu(T ;u0)
possesses a density with respect to the Lebesgue measure and continuously
depends on u0 ∈ H in the total variation norm.

Note that a similar result is true when the random perturbation η is a spa-
tially regular white noise or a kick force. In this case, the above properties can
be reformulated in terms of the transition function Pt(u,Γ). Namely, the non-
degeneracy is equivalent to the relation suppPt(u, ·) = H, while the regularity
means that the finite-dimensional projections of Pt(u, ·) are absolutely continu-
ous with respect to the Lebesgue measure and continuously depend on u in the
total variation norm. These properties implies, in particular, that if µ is a sta-
tionary measure, then its support coincides with H and any finite-dimensional
projection is absolutely continuous.

6.3.2 3D Navier–Stokes equations with a degenerate noise

The Cauchy problem for the Navier–Stokes system is not known to be well
posed in the 3D case. Nevertheless, the control problem still makes sense,
and an analogue of Theorem 6.3.2 is true. We shall not give here an exact
formulation, referring the reader to the papers [Shi06a, Shi07a]. Theorem 6.3.4
can be extended partially to the 3D case, and we now describe the corresponding
result.

To this end, we first introduce the concept of an admissible weak solution
for 3D Navier–Stokes equation; cf. Definition 6.2.10. We consider Eq. (6.37)
on the 3D torus, assuming that h ∈ H is a deterministic function and η is a
spatially regular white noise defined on a filtered probability space (Ω,F ,Ft,P)
satisfying the usual hypotheses; see Section 1.2.1.

Definition 6.3.5. We shall say that a random process u(t) is an admissible
solution for (6.37) if it can be written in the form u(t) = z(t) + v(t), where z is
the solution of the stochastic Stokes equation constructed in Proposition 2.4.2
and v is a random process satisfying the following properties.

(i) The process v is adapted to the filtration Ft, and its almost every trajec-
tory belongs to the space L∞

loc(R+;H)∩L2
loc(R+;V ) and satisfies Eq. (2.111).

(ii) The following energy inequality holds for all t ≥ 0 with probability 1:

1

2
|v(t)|22 + ν

∫ t

0

|∇v|22ds+

∫ t

0

(
B(v + z, z)

)
ds ≤ 1

2
|v(0)|22 +

∫ t

0

(h, v) ds.

We shall say that ũ is an admissible weak solution for (6.37) if there is a spatially
regular white noise η̃ distributed as η such that ũ is an admissible solution for
Eq. (6.37) with η replaced by η̃.

A proof of the existence of an admissible weak solution for (6.37) can be
found in [VF88, CG94, FG95]. Moreover, it is proved in [VF88, FG95] that
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one can construct an admissible weak solution with a time-independent law µ
satisfying the condition

m2(µ) =

∫

H

‖u‖2V µ(du) <∞.

In this case, we call µ a stationary measure for (6.37). Given two measures µ1

and µ2 on a Polish spaceX, we write µ1 ≤ µ2 if µ1(Γ) ≤ µ2(Γ) for any Γ ∈ B(X).
The following result is proved by Shirikyan [Shi07b].

Theorem 6.3.6. Let h ∈ H and let η be a spatially regular white noise of the
form (2.66). Then there is an integer N ≥ 1 not depending on ν such that if
bj 6= 0 for 1 ≤ j ≤ N , then the following two assertions hold for any stationary
measure µ for (6.37) that satisfies the inequality m2(µ) ≤ m, where m > 0 is a
constant.

Non-degeneracy. For any ball Q ⊂ V there is a constant p = p(Q,m) > 0
such that µ(B) ≥ p(Q,m).

Weak regularity. Let F ⊂ H be a finite-dimensional subspace and let µF be
the projection of µ to F . Then there is a function ρF ∈ C∞(F ) depending
only on m such that µF ≥ ρF ℓF , where ℓF stands for the Lebesgue measure
on F .

In conclusion, let us mention that the non-degeneracy property remains true
in the case of a bounded domain, provided that the noise is non-zero in all
Fourier modes. This result was established by Flandoli [Fla97].
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Appendix

7.1 Monotone class theorem

Let Ω be a set and let M be a family of subsets of Ω. We shall say that M is
a monotone class if it contains Ω and possesses the following properties:

• if A,B ∈ M and A ∩B = ∅, then A ∪B ∈ M;

• if A,B ∈ M and A ⊂ B, then B \A ∈ M;

• if Ai ∈ M for i = 1, 2 . . . , and A1 ⊂ A2 ⊂ · · · , then
⋃

iAi ∈ M.

It is clear that any σ-algebra is a monotone class, but not vice versa. The follow-
ing well-known theorem gives a sufficient condition ensuring that the minimal
monotone class containing a family of subsets coincides with the σ-algebra gen-
erated by that family. Recall that a family C of subsets of Ω is called a π-system
if A ∩B ∈ C for any A,B ∈ C.

Theorem 7.1.1. Let Ω be a set and let C be a π-system of subsets of Ω. Then
the minimal monotone class containing C coincides with the σ-algebra generated
by C.
Proof. It suffices to show that the minimal monotone class M containing C is a
σ-algebra. This will be established if we prove that the intersection of any two
sets in M is also an element of M.

Let us fix an arbitrary set A ∈ C and define the family

MA = {B ∈ M : A ∩B ∈ M}.

It is clear that MA is a monotone class and MA ⊃ C. Therefore, by the
definition of M, we must have MA ⊃ M. We have thus shown that, for any
A ∈ C and B ∈ M, the intersection A ∩B belongs to M.

We now fix A ∈ M and consider the family MA. Repeating literally the
above argument, we can show that MA ⊃ M. This completes the proof of the
lemma.

259
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The following two results provide important applications of the monotone
class technique.

Corollary 7.1.2. Let (Ω,F) be a measurable space and let C ⊂ F be a π-system
generating the σ-algebra F . Suppose that µ1 and µ2 are two probability measures
on (Ω,F) such that

µ1(Γ) = µ2(Γ) for any Γ ∈ C. (7.1)

Then µ1 = µ2.

Proof. The σ-additivity of measures imply that if (7.1) holds, then µ1 and µ2 are
equal on the minimal monotone class M containing C. In view of Theorem 7.1.1,
the σ-algebra F coincides with M.

Corollary 7.1.3. Let X be a Polish space with its Borel σ-algebra B(X). Then
there is a countable family {fj , j ≥ 1} of bounded Lipschitz functions such that
any two measures µ1, µ2 ∈ P(X) satisfying the following relation are equal:

(fj , µ1) = (fj , µ2) for any j ≥ 1. (7.2)

Proof. For any closed subset F ⊂ X, there is a sequence of Lipschitz func-
tions {gk} such that 0 ≤ gk ≤ 1 and {gk} converges pointwise to the indicator
function of F . For instance, we can take

gk(u) =
distX(u,G1/k)

distX(u,G1/k) + distX(u, F )
,

where Gε stands for the complement of the ε-neighbourhood for F . Now note
that if (gk, µ1) = (gk, µ2) for all k, then passing to the limit as k → ∞, we
obtain µ1(F ) = µ2(F ).

Let C ⊂ F be a countable π-system of closed subsets that generates F . For
any F ∈ C, we can construct a sequence {gk} that satisfies the above properties.
Taking the union of all such sequences, we obtain a countable family {fj} such
that, for any two measures µ1, µ2 ∈ P(X) satisfying (7.2), we have

µ1(F ) = µ2(F ) for any F ∈ C.

Since C is a π-system generating F , we see that µ1 = µ2.

7.2 Standard measurable spaces

Recall that two measurable spaces (Ωi,Fi), i = 1, 2, are said to be isomorphic if
there is a bijective map f : Ω1 → Ω2 such that f(Γ) ∈ F2 if and only if Γ ∈ F1.

Definition 7.2.1. Let (Ω,F) be a measurable space. We shall say that (Ω,F)
is a standard measurable space if it is isomorphic to one of the following Polish
spaces endowed with their Borel σ-algebras:
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• the finite set {1, . . . , N} with the discrete topology;

• the set of positive integers N with the discrete topology;

• the closed interval [0, 1] with its standard metric.

A proof of the following theorem can be found in [Dud02] (see Chapter 13).

Theorem 7.2.2. Any Polish space endowed with its Borel σ-algebra is a stan-
dard measurable space.

An important property of a standard measurable space is that its σ-algebra
is countably generated . Namely, we have the following result.

Proposition 7.2.3. Let (Ω,F) be a standard measurable space. Then there
is a π-system C ⊂ F that is at most countable and generates the σ-algebra F .
Moreover, if Ω is a Polish space endowed with its Borel σ-algebra, then there is
a π-system C of closed subsets that satisfies the above properties.

Proof. We shall confine ourselves to the proof of the assertion concerning the
Polish spaces, because the first part of the theorem follows from it and the
definition of a standard measurable space. Let {ωj} ⊂ Ω be a countable dense
subset and let C0 be the countable family of all closed balls centred at ωj with
rational radii. We claim that the family C of all finite intersections of the
elements in C0 satisfies the required properties. Indeed, the construction implies
that C is an at most countable π-system. Furthermore, any open set in Ω can
be represented as a countable union of the elements of C0. It follows that the
Borel σ-algebra is the minimal one that contains C.

7.3 Projection theorem

Let (Ω,F) be a measurable space and let X be a Polish space endowed with
its Borel σ-algebra B(X). Consider the measurable space (Ω ×X,F ⊗ B(X)),
and the natural projection ΠΩ : Ω ×X → Ω. It is well known that the image
under ΠΩ of a measurable subset of Ω ×X does not necessarily belong1 to F .
Recall that a subset A ⊂ Ω is said to be universally measurable if it belongs
to the completion of F with respect to any probability measure on (Ω,F). A
proof of the following result can be found in [CV77] (see Theorem III.23).

Theorem 7.3.1. (projection theorem) For any set A ∈ F ⊗ B(X), its pro-
jection ΠΩ(A) is universally measurable.

As an immediate consequence of the above theorem, we establish the follow-
ing result (see Chapter 2 in [Cra02]). Recall that a function g : Ω → R is said
to be universally measurable if so is the set {ω ∈ Ω : g(ω) > a} for any a ∈ R.

1This property is not true even in the case when Ω is the closed interval [0, 1], so that the
map ΠΩ is continuous.
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Corollary 7.3.2. Let f : Ω × X → R be a measurable function. Then the
functions

f(ω) = sup
u∈X

f(ω, u), f(ω) = inf
u∈X

f(ω, u)

are universally measurable.

Proof. Note that

{ω ∈ Ω : f(ω) > a} = {ω ∈ Ω : f(ω, u) > a for some u ∈ X} = ΠΩ(A),

where we set
A = {(ω, u) ∈ Ω ×X : f(ω, u) > a}.

It remains to note that the set A belongs to F ⊗B(X), and therefore, by Theo-
rem 7.3.1, its projection is universally measurable. The universal measurability
of f can be established by a similar argument.

7.4 Gaussian random variables

Let us recall that a one-dimensional normal distribution N(m,σ), with mean
value m ∈ R and variance σ2 > 0, is given by its density against the Lebesgue
measure:

pm,σ(x) =
1√
2πσ

e−
(x−m)2

2σ2 , x ∈ R.

In the case σ = 0, the normal distribution N(m, 0) coincides with the Dirac
measure concentrated at x = m. The distribution function of N(0, σ) is denoted
by Φσ:

Φσ(x) =
1

σ
√

2π

∫ x

−∞
e−y2/2σ2

dy.

Recall that the characteristic function of a measure µ ∈ P(R) is defined as
ϕµ(t) =

∫
R
eitxµ(dx). A measure µ is a normal distribution N(m,σ) if and only

if its characteristic function is given by

ϕm,σ(t) = exp(imt− σ2t2/2), t ∈ R. (7.3)

Let X be a separable Banach space and let X∗ be its dual space. A prob-
ability measure µ on (X,B(X)) is said to be Gaussian if ℓ∗(µ) has a normal
distribution for any ℓ ∈ X∗. A Gaussian measure µ is said to be centred if the
mean value of ℓ∗(µ) is zero for any ℓ ∈ X∗. An X-valued random variable is
said to be Gaussian if its distribution is a Gaussian probability measure. A
comprehensive study of Gaussian measures on topological vector spaces can be
found in [Bog98]. The following proposition establishes some simple properties
that were used in the main text.

Proposition 7.4.1. (i) Let X be a separable Banach space and let {µn} be
a sequence of Gaussian measures that converges weakly to µ ∈ P(X).
Then µ is a Gaussian measure.
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(ii) A finite linear combination of independent Gaussian random variables is
also Gaussian.

Proof. (i) It suffices to consider the one-dimensional case. Let us denote by mn

and σn the mean value and the variance for µn. Then the characteristic function
of µn is given by ϕµn

(t) = exp(imnt−σ2
nt

2/2). Furthermore, since µn converges
weakly to µ, the corresponding characteristic functions must converge pointwise.
It follows that the sequences {mn} and {σn} have some limits m ∈ R and σ ≥ 0,
respectively, and the characteristic function of µ coincides with (7.3). We thus
conclude that µ is a normal distribution on R.

(ii) This property is a straightforward consequence of the fact that the char-
acteristic function of the sum of independent random variables is equal to the
product of the corresponding characteristic functions.

We now consider an important example of a Gaussian random variable.
Let β(t) be a standard Brownian motion. For a constant γ ∈ R, we define the
stochastic process

z(t) =

∫ t

0

eγ(t−s)dβ(s), t ∈ [0, 1].

It is straightforward to see that almost every trajectory of z belongs to the space
Ċ(0, 1) of real-valued continuous functions on [0, 1] vanishing at zero.

Proposition 7.4.2. The process {z(t), 0 ≤ t ≤ 1} regarded as a random vari-
able with range in Ċ(0, 1) has a centred Gaussian distribution whose support
coincides with the entire space.

Sketch of the proof. To prove that z is a centred Gaussian random variable,
we need to show that if ℓ : Ċ(0, 1) → R is a continuous linear functional,
then ℓ(z) has a normal distribution with zero mean value. By the Riesz theorem
(e.g., see Theorem 7.4.1 in [Dud02]), there is a function of bounded variation
ϕ : [0, 1] → R such that

ℓ(g) =

∫ 1

0

g(t)dϕ(t) for any g ∈ Ċ(0, 1).

It follows that

ℓ(z) =

∫ 1

0

(∫ t

0

eγ(t−s)dβ(s)

)
dϕ(t).

We wish to change the order of integration. To this end, we use the following
lemma whose proof is left to the reader as an exercise.

Lemma 7.4.3. Let β be a standard Brownian motion, let f : [0, 1]× [0, 1] → R

be a continuously differentiable function, and let ϕ : [0, 1] → R be a function of
bounded variation. Then, with probability 1, we have

∫ 1

0

(∫ t

0

f(t, s)dβ(s)

)
dϕ(t) =

∫ 1

0

(∫ 1

s

f(t, s)dϕ(t)

)
dβ(s). (7.4)



264 CHAPTER 7. APPENDIX

Relation (7.4) implies that

ℓ(z) =

∫ 1

0

h(s)dβ(s), h(s) = e−γs

∫ 1

s

eγtdϕ(t).

The mean value of a stochastic integral is always zero. Thus, the required
assertion will be proved if we show that the stochastic integral of any square-
integrable deterministic function h has a normal distribution.

If h is a piecewise constant function equal to ck on [tk−1, tk), k = 1, . . . , N ,
then

∫ 1

0

h(s)dβ(s) =
N∑

k=1

ck
(
β(tk) − β(tk−1)

)
.

Assertion (ii) of Proposition 7.4.1 implies that this random variable has a normal
distribution. In the general case, it suffices to approximate h by piecewise
constant functions and to use assertion (i) of Proposition 7.4.1.

We now prove that the support of the distribution for {z(t), 0 ≤ t ≤ 1}
coincides with the space Ċ(0, 1). To this end, it suffices to show that for any
function g ∈ C1(0, 1) vanishing at zero and any ε > 0 we have

P

{
sup

0≤t≤1
|z(t) − g(t)| < ε

}
> 0. (7.5)

Let f ∈ C1(0, 1) be a function vanishing at zero such that

g(t) =

∫ t

0

eγ(t−s)f ′(s) ds.

Integrating by parts, we can write

|z(t) − g(t)| ≤ |β(t) − f(t)| + |γ|
∫ t

0

eγ(t−s)|β(s) − f(s)| ds.

It follows that if

ω ∈ Aδ :=
{

sup
0≤t≤1

|β(t) − f(t)| < δ
}
,

then |z(t) − g(t)| ≤ δ(1 + e|γ|) for any t ∈ [0, 1]. Hence, the required inequal-
ity (7.5) will be established if we show that P(Aδ) > 0 for any δ > 0. This
property is an immediate consequence of the fact that the support of the law
for {β(t), 0 ≤ t ≤ 1} is the space Ċ(0, 1).

Exercise 7.4.4. Prove Lemma 7.4.3. Hint: If ϕ is continuously differentiable,
then (7.4) is obvious. In the general case, construct a sequence of C1-functions
with uniformly bounded variations that converges pointwise to ϕ and apply
Helly’s first theorem (see [KF75]).
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7.5 Weak convergence of random measures

Measurable isomorphisms between Polish spaces (see Section 7.2) need not to
preserve the topology. In particular, the properties of continuity of functions
and of weak convergence of measures are not invariant under such isomorphisms.
The following result shows that any Polish space is homeomorphic to a subset
of a compact metric space.

Theorem 7.5.1. Let X be a Polish space. Then there is a metric d on X
such that the topology defined by d coincides with the original one and (X, d) is
relatively compact, that is, the completion X of (X, d) is compact. Moreover,
B(X) is formed by intersections with X of the sets from B(X).

Proof. For the first assertion, see Theorem 2.8.2 in [Dud02]. To prove the sec-
ond, denote by C the intersections with X of the sets from B(X). This is a
σ-algebra. Denote by i : X → X the natural embedding. For any closed set
F ⊂ X, we have i−1

(
i(F )

)
= F . That is, the σ-algebra C contains all closed

sets. So it equals B(X).

The well-known Alexandrov theorem says that if a sequence of measures {µk}
on a Polish space X is such that (f, µk) converges for any bounded continu-
ous function f : X → R, then the sequence {µk} weakly converges to a limit
(see [Ale43] or the corollary of Theorem 1 in [GS80, Section VI.1])). The fol-
lowing theorem due to Berti, Pratelli, and Rigo [BPR06] establishes a similar
result for random probability measures.

Theorem 7.5.2. Let (Ω,F ,P) be a probability space and let {µk
ω, ω ∈ Ω} be a

sequence of random probability measures on a Polish space X, endowed with the
Borel σ-algebra, such that the sequence {(f, µk

ω)} converges almost surely 2 for
any f ∈ Cb(X). Then there is a random probability measure {µω} such that

µk
ω → µω as k → ∞ for almost every ω ∈ Ω. (7.6)

Proof. Step 1. In view of Theorem 7.5.1, there is no loss of generality in assum-
ing that X is a subset of a compact metric space Y such that Γ ∩ X ∈ B(X)
for any Γ ∈ B(Y ). Let us define a sequence of random measures on Y by the
relation

µ̂k
ω(Γ) = µk

ω(Γ ∩X), Γ ∈ B(Y ).

Since Y is compact, for any ω ∈ Ω there is a sequence kn → ∞ and a measure
µ̂ω ∈ P(Y ) such that µ̂k

ω → µ̂ω. It is well known that the space Cb(Y ) is

separable (see Exercise 1.2.4 or Corollary 11.2.5 in [Dud02]). Let {f̂j} be a
dense sequence in Cb(Y ). Then a sequence of measures νk ∈ P(Y ) converges

weakly to ν ∈ P(Y ) if and only if (f̂j , νk) → (f̂j , ν) as k → ∞ for any j ≥ 1.

Let us denote by fj the restriction of f̂j to X, and let Ω0 be the set of ω ∈ Ω
for which the sequence {(fj , µ

k
ω)}k≥1 converges for any j ≥ 1. By assumption,

2We emphasise that the set of convergence may depend on f .



266 CHAPTER 7. APPENDIX

we have P(Ω0) = 1. Since

(f̂j , µ̂
k
ω) = (fj , µ

k
ω) for any j, k ≥ 1,

we conclude that

µ̂k
ω → µ̂ω as k → ∞ for any ω ∈ Ω0. (7.7)

Suppose we have constructed C ⊂ X and a full-measure set Ω1 ⊂ Ω0 such that
C ∈ B(Y ) and

µ̂ω(C) = 1 for ω ∈ Ω1. (7.8)

In this case, setting

µω =

{
µ̂ω(· ∩X) for ω ∈ Ω1,
γ otherwise,

where γ ∈ P(X) is an arbitrary measure, we see that (7.7) implies (7.6).

Step 2. To prove (7.8), note that, by the Lebesgue theorem on dominated
convergence, for any f ∈ Cb(X), the sequence E (f, µk

ω) converges. By Alexan-
drov’s theorem, it follows that the measures Eµk

· converge weakly in P(X). On
the other hand, in view of (7.7), we have E µ̂k

· → Eµ· as k → ∞.
Let us fix any constant ε > 0 and use Prokhorov’s compactness criterion to

find a compact set Cε ⊂ X such that

Eµk
· (Cε) ≥ 1 − ε for any k ≥ 1.

Since Cε is closed in Y , we obtain

E µ̂·(X) ≥ E µ̂·(Cε) ≥ lim sup
k→∞

E µ̂k
· (Cε) = lim sup

k→∞
Eµk

· (Cε) ≥ 1 − ε.

Recalling that ε > 0 was arbitrary and defining C = ∪nC1/n, we conclude that
E µ̂·(C) = 1, whence follows (7.8). The proof is complete.

7.6 Gelfand triple and Yosida approximation

Let H and V be two separable real Hilbert 3 spaces such that V is continu-
ously and densely embedded into H. We denote by (·, ·)H and (·, ·)V the scalar
products in H and V , respectively, and by ‖ · ‖H and ‖ · ‖V the corresponding
norms. The space H can be regarded as a dense subspace of the dual space V ∗.
Indeed, each element u ∈ H defines a continuous linear functional ℓu : V → R

by the relation
〈ℓu, v〉 = (u, v)H for v ∈ V , (7.9)

where 〈·, ·〉 stands for the pairing between a Hilbert space and its dual. Since
the embedding V ⊂ H is continuous, we have

‖ℓu‖V ∗ = sup
‖v‖V ≤1

∣∣(u, v)H
∣∣ ≤ C ‖u‖H .

3The construction below also applies if V is a reflexive Banach space.
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Furthermore, if u1 6= u2, then ℓu1 6= ℓu2 , because V is dense in H. Finally, to
show that H is dense in V ∗, assume that f : V ∗ → R is a continuous linear
functional vanishing on H. Then

〈f, ℓu〉 = 〈ℓu, vf 〉 = (u, vf )H = 0 for any u ∈ H, (7.10)

where vf ∈ V is the element corresponding to f in the natural isomorphism
between V ∗∗ and V . Relation (7.10) implies that vf = 0 and, hence, f = 0.

Thus, we have dense and continuous embeddings

V ⊂ H ⊂ V ∗. (7.11)

In what follows, any separable Hilbert spaces satisfying these conditions are
called a Gelfand triple and H is called a rigged Hilbert space.

We now describe a general construction, called Yosida approximation, that
enables one to approach the elements of H and V ∗ by those of V in a regular way.
By the Riesz representation theorem, there is a unique isometry L : V → V ∗

such that
〈Lu, v〉 = 〈Lv, u〉 = (u, v)V for any u, v ∈ V . (7.12)

Proposition 7.6.1. The operator I + εL taking v ∈ V to v + εLv ∈ V ∗ is
invertible for any ε > 0, and its inverse is continuous. Moreover, for X = H,V ,
or V ∗ and u ∈ X, we have

‖(I + εL)−1u‖X ≤ ‖u‖X for ε > 0, (7.13)

(I + εL)−1u→ u in X as ε→ 0+. (7.14)

Proof. Relations (7.9) and (7.12) imply that

〈(I + εL)u, u〉 = ‖u‖2H + ε ‖u‖2V for any u ∈ V , (7.15)

and therefore the operator I + εL is injective. To prove that it is surjective, we
fix f ∈ V ∗ and consider the equation (I+εL)u = f for u ∈ V . In view of (7.12),
it is equivalent to

(u, v)ε := (u, v)H + ε (u, v)V = 〈f, v〉 for any v ∈ V . (7.16)

Endowing the space V with the new scalar product (·, ·)ε, we can use the Riesz
representation theorem to find, for any ε > 0, a unique element uε ∈ V sat-
isfying (7.16). Thus, I + εL is a bijection of V onto V ∗. The Banach inverse
mapping theorem implies that (I + εL)−1 : V ∗ → V is continuous.

We now prove (7.13) and (7.14) for X = H; the proof in the two other cases
is similar. Let u ∈ H and uε = (I + εL)−1u. Then (I + εL)uε = u. Applying
both sides of this relation to uε and using (7.15), we obtain

‖uε‖2H + ε ‖uε‖2V = 〈u, uε〉 = (u, uε)H ≤ ‖u‖H ‖uε‖H ,

whence (7.13) follows immediately. To prove convergence (7.14), we first note
that it suffices to consider the case in which u ∈ V ; the general case can be
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treated by a standard approximation argument combined with (7.13). Let u ∈ V
and let

δε := (I + εL)−1u− u = −ε(I + εL)−1Lu.

Setting g = Lu and gε = (I + εL)−1g and using again relation (7.15), we derive

‖gε‖2H + ε ‖gε‖2V = 〈g, gε〉 ≤ ‖g‖V ∗ ‖gε‖V ≤ 1

4ε
‖g‖2V ∗ + ε ‖gε‖2V ,

whence it follows that

‖gε‖2H ≤ 1

4ε
‖g‖2V ∗ .

Recalling the definition of δε, we obtain

‖δε‖H = ε ‖gε‖H ≤
√
ε

2
‖g‖V ∗ → 0 as ε→ 0+.

This completes the proof of the proposition.

Exercise 7.6.2. Prove (7.13) and (7.14) for X = V and X = V ∗. Hint: To
prove (7.13), apply both sides of the relation (I+εL)uε = u regarded as elements
of V ∗ to Luε and L−1uε. To establish (7.14), modify the argument used in the
above proof.

7.7 Itô formula in Hilbert spaces

Let (Ω,F ,P) be a complete probability space with a right-continuous filtration
{Ft, t ≥ 0}. We assume that Ft is augmented with respect to (F ,P), that is, the
σ-algebra Ft contains all P-null sets of F . Let H be a separable Hilbert space,
let {ut, t ≥ 0} be a random process in H, and let {βj(t), j ≥ 1} be a sequence
of independent standard Brownian motions. We assume that all these processes
are defined on (Ω,F ,P) and are Ft-adapted, and that almost all trajectories
of ut are continuous in time.

Definition 7.7.1. We shall say that {ut} is an Itô process in H with constant
diffusion if it can be represented in the form

ut = u0 +

∫ t

0

fsds+
∞∑

j=1

βj(t)gj , t ≥ 0, (7.17)

where the equality holds almost surely, {gj} ⊂ H is a sequence satisfying the
condition ∞∑

j=1

‖gj‖2H <∞, (7.18)

and ft is an Ft-progressively measurable H-valued process such that

P

{∫ T

0

‖ft‖Hdt <∞ for any T > 0

}
= 1. (7.19)
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Before formulating a first result, we make some comments on the above
definition. Conditions (7.18) and (7.19) ensure that the right-hand side of (7.17)
makes sense. Indeed, the integral is almost surely finite due to (7.19), and the
series converges in L2(Ω;H) for any fixed t > 0, because

E

∥∥∥∥
n∑

j=m

βj(t)gj

∥∥∥∥
2

H

= E

n∑

j=m

‖gj‖2Hβ2
j (t) = t

n∑

j=m

‖gj‖2H → 0 as m,n→ ∞.

Moreover, the Doob–Kolmogorov inequality (7.55) implies that

P

{
sup

0≤t≤T

∥∥∥
∞∑

j=m

βj(t)gj

∥∥∥
H
> ε

}
≤ ε−2T

∞∑

j=m

‖gj‖2H → 0 as m→ ∞,

and therefore the series on the right-hand side of (7.17) converges in probabil-
ity in the space C(0, T ;H). It defines an H-valued process whose almost all
trajectories are continuous in time.

Theorem 7.7.2. Let J = [0, T ], let H be a separable real Hilbert space, let
F : J ×H → R be a twice continuously differentiable function that is bounded
and uniformly continuous together with its derivatives, and let {ut, t ≥ 0} be an
Itô process in H with constant diffusion. Then

F (t, ut) = F (0, u0) +

∫ t

0

A(s) ds+

∞∑

j=1

∫ t

0

Bj(s)dβj(s), t ∈ J, (7.20)

where we set

A(t) = (∂tF )(t, ut) + (∂uF )(t, ut; ft) +
1

2

∞∑

j=1

(∂2uF )(t, ut; gj), (7.21)

Bj(t) = (∂uF )(t, ut; gj), (7.22)

and (∂uF )(u; v) and (∂2uF )(u; v) denote the values of the first and second deriva-
tives of F with respect to u at a point v ∈ H.

This result can be established by literal repetition of the derivation of Itô’s
formula in the finite-dimensional case. A detailed proof of a more general result
can be found in [DZ92].

Exercise 7.7.3. Show that all the terms on the right-hand side of (7.20) are
almost surely continuous functions of time.

As in the case of finite-dimensional Itô processes, relation (7.20) remains
valid for a more general class of functionals. Namely, let us assume that F (t, u)
is twice continuously differentiable on R+ ×H, and F is uniformly continuous,
together with its derivatives, on any bounded subset of R+ ×H. In this case,
relation (7.20) holds in the following sense. Let us introduce the stopping times 4

τn = inf
{
t ≥ 0 : ‖ut‖H > n

}
, (7.23)

4Note that, since the trajectories of ut are continuous, the stopping times τn go to +∞ for
almost all ω.
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where the infimum of an empty set is equal to +∞. Then

F (t ∧ τn, ut∧τn) = F (0, u0) +

∫ t∧τn

0

A(s) ds+

∞∑

j=1

∫ t∧τn

0

Bj(s)dβj(s), t ≥ 0.

(7.24)
It is not difficult to see that all the terms on the right-hand side of (7.24) make
sense. We refer the reader to [Kry02, Chapter III] and [DZ92] for a justification
of (7.24) in the finite- and infinite-dimensional cases, respectively.

The above version of Itô’s formula is not applicable to study solutions of
nonlinear stochastic PDE’s. Indeed, these solutions are random processes in a
function space and Itô processes in some bigger space, while very often one needs
to study the behaviour of functionals defined on the former space. In literature,
there are versions of Itô’s formula that apply to some nonlinear PDE’s (e.g.,
see [Roz90]). However, they are not flexible enough to treat all the situations
encountered in this book.

Below we suggest a version of Itô formula sufficient for our purposes. To
state the result, we assume that H is a rigged Hilbert space. More precisely, let
V ⊂ H ⊂ V ∗ be a Gelfand triple and let {ut, t ≥ 0} be an H-valued random
process. We assume that it satisfies the following hypothesis.

Condition 7.7.4. Almost all trajectories of {ut} are continuous with range
in H and locally square integrable with range in V . Moreover, {ut} is an Itô
process in V ∗ (rather than in H) with constant diffusion (see Definition 7.7.1)
such that gj ∈ H for any j ≥ 1, inequality (7.18) holds, and (7.19) is replaced
by the stronger condition

P

{∫ T

0

‖ft‖2V ∗dt <∞
}

= 1. (7.25)

Note that, due to (7.18), the diffusion term in (7.17) is a continuous H-valued
function of t ≥ 0 for almost all ω ∈ Ω. Combining this with the continuity of ut,
we see that the integral

∫ t

0
fsds is also continuous with range in H. However, it

is not absolutely continuous in general, and the function ft is locally (square)
integrable only with range in V ∗.

Theorem 7.7.5. Let F : R+ × H → R be a twice continuously differen-
tiable function that is uniformly continuous, together with its derivatives, on
any bounded subset of R+ ×H. Assume also that F satisfies the following two
conditions.

(i) For any T > 0 there is a positive continuous function KT (r), r ≥ 0, such
that 5

∣∣(∂uF )(t, u; v)
∣∣ ≤ KT

(
‖u‖H

)
‖u‖V ‖v‖V ∗ for t ∈ [0, T ], u ∈ V , v ∈ V ∗.

(7.26)

5Inequality (7.26) implies that the derivative (∂uF )(t, u) defined initially on H admits a
continuous extension to V ∗ for any u ∈ V .
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(ii) For any sequence {wk} ⊂ V converging to w ∈ V in the topology of V and
any t ∈ R+ and v ∈ V ∗, we have

(∂uF )(t, wk; v) → (∂uF )(t, w; v) as k → ∞.

Then for an arbitrary random process {ut, t ≥ 0} satisfying Condition 7.7.4
relation (7.24) holds for almost every ω ∈ Ω.

Before proving this result, let us show that all the terms on the right-hand
side of (7.24) make sense and for almost every ω ∈ Ω are continuous in time.
Indeed, approximating ft by piecewise constant functions and using (7.26), we
easily show that (∂uF )(t, ut; ft) is a measurable function of (t, ω). Moreover, it
follows from (7.21), (7.25), and (7.26) that

|A(t)| ≤ C1 +KT (RT )‖ut‖V ‖ft‖V ∗ + C2

∞∑

j=1

‖gj‖2H ≤ C3

(
1 + ‖ut‖2V + ‖ft‖2V ∗

)
,

where RT = sup{‖ut‖H , 0 ≤ t ≤ T} and Ci are almost surely finite random
constants. Hence, the function A is locally square integrable in time for almost
all ω ∈ Ω, and its integral is continuous in time. Furthermore, if ‖ut‖H ≤ n,
then |Bj(t)| ≤ C4(n)‖gj‖H for any j ≥ 1, whence it follows that

E

∣∣∣∣
∞∑

j=1

∫ t∧τn

0

Bj(s) dβj(s)

∣∣∣∣
2

≤ C2
4 (n) t

∞∑

j=1

‖gj‖2H <∞.

Thus, for any T > 0, the series on the right-hand side of (7.24) converges
in L2(Ω) uniformly with respect to t ∈ [0, T ]. Moreover, by the Doob–Kolmogorov
inequality (7.55), for any ε > 0 we have

P

{
sup

0≤t≤T

∣∣∣∣
∞∑

j=m

∫ t∧τn

0

Bj(s) dβj(s)

∣∣∣∣ ≥ ε

}
≤ ε−2C2

4 (n)T

∞∑

j=m

‖gj‖2H → 0

as m→ ∞, whence we conclude that the series of (7.24) converges in probability
in the space C(0, T ) for any T > 0, and its limit is almost surely continuous in
time.

Proof of Theorem 7.7.5. Both left- and right-hand sides of (7.24) are continuous
functions of time for almost all ω ∈ Ω. Therefore, if we show that, for any fixed
t ≥ 0, the equality in (7.24) holds almost surely, then a standard argument
based on continuity will imply that (7.24) takes place for all t ≥ 0 outside a
universal P-null set.

Let us fix a constant ε > 0 and define the vectors gεj = (I + εL)−1gj and the

processes uεt = (I + εL)−1ut and fεt = (I + εL)−1ft, where L : V → V ∗ is the
operator satisfying (7.12). It follows from Proposition 7.6.1 that {uεt} is an Itô
process in H with constant diffusion. So, Itô’s formula (7.24) holds for it:

F (t ∧ τ εn, uεt∧τε
n
) = F (0, uε0) +

∫ t∧τε
n

0

Aε(s) ds+

∞∑

j=1

∫ t∧τε
n

0

Bε
j (s)dβj(s), t ≥ 0,

(7.27)
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where τ εn = inf
{
t ≥ 0 : ‖uεt‖H > n

}
, and the processes Aε and Bε

j are defined by
relations (7.21) and (7.22), where ut, ft, and gj are replaced by uεt , f

ε
t , and gεj ,

respectively. We wish to pass to the limit in (7.27) as ε→ 0+.

Step 1. Proposition 7.6.1 and the continuity of trajectories of ut imply that,
for almost all ω ∈ Ω, we have

τ εn ≥ τn for ε > 0, τεn → τn as ε→ 0+. (7.28)

Since F is a continuous function of its arguments, we conclude that for any
s ≥ 0 and almost all ω, we have

F (s ∧ τ εn, uεs∧τε
n
) → F (s ∧ τn, us∧τn) as ε→ 0+. (7.29)

It follows that we can pass to the limit in the left-hand side and the first term
of the right-hand side of (7.27).

Step 2. We now study the first integral in (7.27). In view of Proposition 7.6.1,
for almost all ω, we have

sup
0≤t≤T

∣∣(∂tF )(t, uεt ) − (∂tF )(t, ut)
∣∣ → 0 as ε→ 0+, (7.30)

sup
0≤t≤T

∣∣(∂2uF )(t, uεt ; g
ε
j ) − (∂2uF )(t, ut; gj)

∣∣ ≤ C5(ε) ‖gj‖2H + C6‖gεj − gj‖2H ,

(7.31)

where C5(ε) is a random constant going to zero as ε → 0+. Proposition 7.6.1,
inequality (7.18), and Lebesgue’s theorem on dominated convergence imply that

∞∑

j=1

‖gεj − gj‖2H → 0 as ε→ 0+. (7.32)

Combining this with (7.31) and (7.28), we see that

∞∑

j=1

∣∣∣∣
∫ t∧τε

n

0

(∂2uF )(s, uεs; g
ε
j ) ds−

∫ t∧τn

0

(∂2uF )(s, us; gj) ds

∣∣∣∣ → 0 a. s. as ε→ 0+.

Furthermore, it follows from inequality (7.26) that

∣∣(∂uF )(t, uεt ; f
ε
t ) − (∂uF )(t, ut; ft)

∣∣

≤ C7‖uεt‖V ‖fεt − ft‖V ∗ +
∣∣(∂uF )(t, uεt ; ft) − (∂uF )(t, ut; ft)

∣∣.

In view of (7.25) and Proposition 7.6.1, for any T > 0, we have

∫ T

0

‖uεs‖V ‖fεs − fs‖V ∗ds ≤
(∫ T

0

‖uεs‖2V ds
)1/2(∫ T

0

‖fεs − fs‖2V ∗ds

)1/2

→ 0

as ε → 0+. Using the Lebesgue theorem on dominated convergence and prop-
erty (ii) of the function F , we derive

∫ t∧τn

0

∣∣(∂uF )(t, uεt ; ft) − (∂uF )(t, ut; ft)
∣∣ ds→ 0 as ε→ 0+.
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Finally, it follows from (7.28) and Proposition 7.6.1 that

∫ t∧τε
n

t∧τn

∣∣(∂uF )(s, uεs; f
ε
s )
∣∣ ds ≤ C8(n)

∫ t∧τε
n

t∧τn

‖us‖V ‖fs‖V ∗ds→ 0 as ε→ 0+.

Combining all what has been said above, we obtain

∫ t∧τε
n

0

Aε(s) ds→
∫ t∧τn

0

A(s) ds as ε→ 0+ for almost all ω ∈ Ω. (7.33)

Step 3. It remains to study the sum on the right-hand side of (7.27). By
Itô’s isometry, we have

E

∣∣∣∣
∫ t∧τε

n

t∧τn

Bε
j (s)dβj(s)

∣∣∣∣
2

≤
∫ t

0

E I[τn,τε
n]

(s)
∣∣Bε

j (s)
∣∣2ds

≤ C9(n)‖gεj‖2H E |t ∧ τ εn − t ∧ τn|.
Combining this with (7.28) and inequality (7.13) with X = H, and using the
Lebesgue theorem on dominate convergence, we obtain

E

∣∣∣∣
∞∑

j=1

∫ t∧τε
n

t∧τn

Bε
j (s)dβj(s)

∣∣∣∣
2

≤ C9(n)
(
E |t ∧ τ εn − t ∧ τn|

) ∞∑

j=1

‖gj‖2H → 0 (7.34)

as ε→ 0+. Furthermore, since ∂uF is uniformly continuous on bounded subsets,
we have

sup
0≤s≤t∧τn

|Bε
j (s) −Bj(s)| ≤ ‖gj‖H sup

0≤s≤t∧τn

‖(∂uF )(s, uεs) − (∂uF )(s, us)‖L(H,R)

+ ‖gεj − gj‖H sup
0≤s≤t∧τn

‖(∂uF )(s, us)‖L(H,R)

= C10(n, ε)‖gj‖H + C11(n)‖gεj − gj‖H ,
where C10(n, ε) is a random constant going to zero as ε→ 0+. It follows that

E

∣∣∣∣
∞∑

j=1

∫ t∧τn

0

(
Bε

j (s) −Bj(s)
)
dβj

∣∣∣∣
2

=

∞∑

j=1

∫ t

0

E I[0,t∧τn](s)
∣∣Bε

j (s) −Bj(s)
∣∣2ds

≤ 2C2
10(n, ε)

∞∑

j=1

‖gj‖2H + 2C2
11(n)

∞∑

j=1

‖gεj − gj‖2H .

In view of (7.32), the right-hand side of this inequality goes to zero as ε→ 0+.
Combining this with (7.34), we find a sequence εk → 0+ such that, for almost
all ω ∈ Ω,

∞∑

j=1

∫ t∧τε
n

0

Bε
j (s)dβj(s) →

∞∑

j=1

∫ t∧τn

0

Bj(s)dβj(s) as ε = εk → 0+. (7.35)

Comparing (7.29), (7.33), and (7.35) and passing to the limit as ε = εk → 0+ in
relation (7.27), we obtain (7.24). The proof of Theorem 7.7.5 is complete.



274 CHAPTER 7. APPENDIX

Corollary 7.7.6. Suppose that the conditions of Theorem 7.7.5 are satisfied,
and ∞∑

j=1

E

∫ t

0

|Bj(s)|2ds <∞ for any t ≥ 0. (7.36)

Then the sum of stochastic integrals

Mt =

∞∑

j=1

∫ t

0

Bj(s) dβj(s), t ≥ 0,

defines a square-integrable martingale with almost surely continuous trajectories,
and with probability 1, we have

F (t, ut) = F (u0) +

∫ t

0

A(s) ds+Mt, t ≥ 0. (7.37)

Proof. The fact that (7.36) is a square-integrable martingale with continuous
trajectories is a standard assertion in the theory of Itô’s integral; e.g., see Chap-
ter 3 in [Øks03]. When proving (7.37), as in the case of Theorem 7.7.5, it suffices
to show that the equality holds almost surely for any fixed t ≥ 0. We wish to
pass to the limit in (7.24) as n → ∞. Since τn → ∞ as n → ∞ and ut is
continuous in time with range in H, for almost every ω ∈ Ω we have

F (t ∧ τn, ut∧τn) → F (t, ut) as n→ ∞. (7.38)

Furthermore, it follows from (7.18) and (7.21) that A(·) is a continuous function
of time, and therefore,

∫ t∧τn

0

A(s) ds→
∫ t

0

A(s) ds with probability 1 as n→ ∞. (7.39)

Finally, condition (7.36) and Itô’s isometry (see [Øks03]) imply that

εn = E

∣∣∣∣
∞∑

j=1

∫ t∧τn

0

Bj(s) dβj(s) −
∞∑

j=1

∫ t

0

Bj(s) dβj(s)

∣∣∣∣
2

= E

∫ t

0

∞∑

j=1

∣∣I[0,t∧τn](s) − 1
∣∣2|Bj(s)|2 ds.

Applying the Lebesgue theorem on dominated convergence, we see that εn → 0
as n→ ∞. Combining this with (7.38) and (7.39), we arrive at (7.37).

7.8 Local time for continuous Itô processes

In this section, we discuss distributions of convex functionals evaluated on one-
dimensional Itô processes. Recall that a function f : R → R is said to be convex
if

f(αx+ (1 − α)y) ≤ αf(x) + (1 − α)f(y) for any x, y ∈ R, α ∈ [0, 1]
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It is well known that a convex function has left- and right-hand derivatives ∂−f
and ∂+f at any point x ∈ R. Furthermore, theses derivatives are non-decreasing
functions, they satisfy the inequality ∂−f(x) ≤ ∂+f(x) for any x ∈ R, and the
equality breaks on a set which is at most countable. Finally, the second deriva-
tive ∂2f(x) in the sense of distributions is a positive measure, which satisfies
the relation

µf

(
[a, b)

)
= ∂−f(b) − ∂+f(a) for all a < b.

The following result is a straightforward consequence of Theorem 7.1 in [KS91,
Chapter 3].

Theorem 7.8.1. Let (Ω,F ,P) be a probability space with filtration Ft, t ≥ 0,
let {βj} be a sequence of independent Brownian motions with respect to Ft, and
let yt be a scalar Itô process of the form

yt = y0 +

∫ t

0

xsds+

∞∑

j=1

∫ t

0

θjsdβj(s), (7.40)

where xt and θ
j
t are Ft-adapted processes such that

E

∫ t

0

(
|xs| +

∞∑

j=1

∣∣θjs
∣∣2
)
ds <∞ for any t > 0. (7.41)

Then there is a random field Λt(a, ω), t ≥ 0, a ∈ R, ω ∈ Ω, such that the
following properties hold.

(i) The mapping (t, a, ω) 7→ Λt(a, ω) is measurable, and for any a ∈ R the
process t 7→ Λt(a, ω) is Ft-adapted, continuous and non-decreasing. More-
over, for every t ≥ 0 and almost every ω ∈ Ω the function a 7→ Λt(a, ω) is
right-continuous.

(ii) For any non-negative Borel-measurable function g : R → R, with probabil-
ity 1 we have

∫ t

0

g(ys)

( ∞∑

j=1

|θjs|2
)
ds = 2

∫ ∞

−∞
g(a)Λt(a, ω)da, t ≥ 0. (7.42)

(iii) For any convex function f : R → R, with probability 1 we have

f(yt) = f(y0) +

∞∑

j=1

∫ t

0

∂−f(ys)θ
j
sdβj

+

∫ t

0

∂−f(ys)xsds+

∫ ∞

−∞
Λt(a, ω)∂2f(da), t ≥ 0. (7.43)
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The random field Λt(a, ω) constructed in the above theorem is called a local
time for yt, and relation (7.43) is usually referred to as the change of variable
formula. This is an analogue of Itô’s formula (7.20) for one-dimensional pro-
cesses and non-smooth convex functionals. Let us comment on properties (ii)
and (iii). Taking g(x) = I[α,β](x) in (7.42), we obtain

∫ t

0

I[α,β](ys)

( ∞∑

j=1

|θjs|2
)
ds = 2

∫ β

α

Λt(a, ω) da. (7.44)

Assuming that the quadratic variation of the diffusion term is bounded from
above and separated from zero, we see that

ℓ
(
{s ∈ [0, t] : α ≤ ys ≤ β}

)
∼

∫ β

α

Λt(a, ω) da.

Thus, one can say roughly that Λt(a, ω) measures the fraction of time spent by
the process ys, 0 ≤ s ≤ t, in the vicinity of a.

Furthermore, relation (7.43) enables one to find an explicit formula for Λt(a, ω).
Indeed, taking f(x) = (x− a)+ = max(0, x− a), we obtain

(yt−a)+ = (y0−a)+ +

∞∑

j=1

∫ t

0

I[a,+∞)(ys)θ
j
sdβj +

∫ t

0

I[a,+∞)(ys)xsds+Λt(a, ω).

(7.45)

7.9 Krylov’s estimate

There is no analogue of the concept of local time for multidimensional Itô pro-
cesses, so a multidimensional version of formula (7.44) is not available. In many
cases, however, it is possible to get rather sharp estimates for a process’ law,
using Itô’s formula and martingales inequalities. This type of results were ob-
tained by Krylov; see [Kry74, Kry86] and the book [Kry80]. In Chapter 5, we use
a simplified version of such an estimate. Namely, consider a d-dimensional Itô
process written in the form (7.40), where xt and θjt are adapted d-dimensional
processes satisfying condition (7.41), and βj are independent Brownian motions.

We shall denote by θjkt , k = 1 . . . , d, the components of the vector function θjt
and by σt the diffusion, which is a d× d symmetric matrix with the entries

σkl
t =

∞∑

j=1

θjkt θ
jl
t , k, l = 1, . . . , d.

Note that σt is non-negative for any t ≥ 0. To simplify the presentation, we
shall assume that yt is a stationary process; this is the situation considered in
Chapter 5.
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Theorem 7.9.1. Under the above hypotheses, there is a constant Cd > 0 de-
pending only on the dimension d such that, for any bounded measurable function
f : Rd → R, we have

E

∫ 1

0

(
detσt

)1/d
f(xt) dt ≤ Cd|f |d E

∫ 1

0

|xs| ds, (7.46)

where |f |d stands for the Ld norm of f .

Proof. A standard argument based on the monotone class theorem and Fatou’s
lemma shows that it suffices to establish inequality (7.46) for smooth func-
tions f ≥ 0 with compact support. The general idea of the proof is rather
simple: we first apply Itô’s formula to the stationary semimartinagale ψ(yt)
and derive an identity for it and then, choosing a particular function ψ, we
obtain an expression minorised by the left-hand side of (7.46).

Let ψ : Rd → R be a twice continuously differentiable function with bounded
derivatives. By Itô’s formula, we have

ψ(yt) = ψ(y0) +

∫ t

0

(
(∇ψ(ys), dys) +

1

2

d∑

k,l=1

σkl
s (∂k∂lψ)(ys) ds

)
.

Taking the mean value, using the stationarity of yt, and setting t = 1, we get

2E

∫ 1

0

(∇ψ(ys), xs) ds+ E

∫ 1

0

d∑

k,l=1

σkl
s (∂k∂lψ)(ys) ds = 0. (7.47)

We now need the following proposition, whose proof 6 can be found in [Kry87]
(see Theorem III.2.3).

Proposition 7.9.2. For any λ > 0 and any non-negative function f ∈ C∞
0 (Rd)

there is a function ψ ∈ C2(Rd) with bounded derivatives such that

d∑

k,l=1

akl(∂k∂lψ)(x) − λ(Tr a)ψ(x) +
(
det a

)1/d
f(x) ≤ 0, (7.48)

|∇ψ(x)| ≤ λ1/2ψ(x), ψ(x) ≤ Adλ
−1/2|f |1, (7.49)

where a = (akl) is an arbitrary non-negative symmetric d × d matrix, Ad is a
constant depending only on d, and the inequalities hold for all x ∈ Rd.

Let us take for ψ in (7.47) the function constructed in Proposition 7.9.2.
Recalling that σt is a non-negative matrix for any t ≥ 0 and taking into ac-
count (7.48), we derive

E

∫ 1

0

(
detσt

)1/d
f(ys) ds ≤ 2E

∫ 1

0

(∇ψ(ys), xs) ds+ λE

∫ 1

0

ψ(ys)
(
Trσs

)
ds.

(7.50)

6Note that Proposition 7.9.2 is obvious for d = 1. In this case, it suffices to take for ψ the
unique bounded solution of the equation ψ′′ − ψ + f = 0.
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Using inequalities (7.49), we see that the right-hand side of (7.50) can be esti-
mated from above by

C1|f |1E
∫ 1

0

|xs| ds+ C2

√
λ|f |1E

∫ 1

0

Trσsds,

where C1 and C2 are some constants depending only on d. Substituting this
expression into (7.50) and passing to the limit as λ → 0+, we arrive at the
required inequality (7.46).

7.10 Girsanov theorem

In this section, we deal with processes defined on a complete probability space
(Ω,F ,P) with a right-continuous filtration {Ft, t ≥ 0}. The following result is
a simple consequence of Girsanov’s theorem (see [Øks03]).

Theorem 7.10.1. Let y be an RN -valued process of the form

y(t) =

N∑

j=1

bjβj(t)ej , t ≥ 0,

where {ej} is an orthonormal basis in RN , βj are independent standard Brow-
nian motions, and bj > 0 are some constants. Let ỹ be another process given
by

ỹ(t) = y(t) +

∫ t

0

a(s) ds,

where a = (a1, . . . , aN ) is a progressively measurable process such that

E exp

(
C

∫ ∞

0

|a(t)|2dt
)
<∞ for any C > 0. (7.51)

Then the distributions of the processes y and ỹ regarded as random variables in
C(R+,R

N ) satisfy the inequality

‖D(y) −D(ỹ)‖var ≤
1

2

((
E exp

{
6

∫ ∞

0

N∑

j=1

b−2
j |aj(t)|2dt

})1/2

− 1

)1/2

. (7.52)

Proof. Let us consider an exponential supermartingale Mt corresponding to the
stochastic integral ξt = −

∫ t

0

∑N
j=1 b

−1
j aj(t)dβj(t). That is,

Mt(ω) = exp

(
−
∫ t

0

N∑

j=1

b−1
j aj(t)dβj(t) −

1

2

∫ t

0

N∑

j=1

b−2
j |aj(t)|2dt

)
, t ≥ 0.

By Girsanov’s theorem (see Theorem 8.6.5 in [Øks03]), condition (7.51) implies
that this is a martingale. So EMt = EM0 = 1 for each t ≥ 0. Since Mt ≥ 0, by
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the convergence theorem of Section 7.11, there exists a limit limt→∞Mt = M ,
and EM = 1. Let us consider the probability measure Q = M(ω)P on the
space (Ω,F). Due to Girsanov’s theorem (see [Øks03]), the P-law of y coincides
with the Q-law of ỹ. That is, D(y) = y∗(P) = ỹ∗(Q) and D(ỹ) = ỹ∗(P). By
Exercise 1.2.13 (i), the left-hand side of (7.52) can be estimated by ‖P−Q‖var.
Proposition 1.2.7 implies that the latter quantity does not exceed

1

2
E |M − 1| ≤ 1

2

(
EM2 − 1

)1/2
. (7.53)

To estimate the right-hand side, let us note that

EM2
t = E e2ξt−〈ξ〉t ≤

(
E e4ξt−8〈ξ〉t)1/2(E e6〈ξ〉t

)1/2 ≤
(
E e6〈ξ〉t

)1/2

for any t ≥ 0, where we used that exp(4ξt − 8〈ξ〉t) is the exponential super-
martingale corresponding to ξt. By the above inequality and the monotone
convergence theorem, we have EM2 ≤ (E e6〈ξ〉∞)1/2. Substituting this inequal-
ity into (7.53), we arrive at the required result.

7.11 Martingales, submartingales, and supermar-

tingales

The results of this section are valid for both discrete and continuous time pro-
cesses. To simplify the presentation, we mostly restrict ourselves to the case of
continuous time. We assume that the corresponding processes are continuous
in t for a.e. ω since in the main text we do not use discontinuous processes.

Let (Ω,F ,Ft,P) be a filtered probability space satisfying the usual hypothe-
ses. Recall that a (continuous) random process {ξt, t ≥ 0} valued in a Hilbert
space H is called a martingale with respect to {Ft} if it is adapted to Ft, each
random variable ξt is integrable, and for t ≥ s ≥ 0 we have E (ξt | Fs) = ξs with
probability 1. A martingale {ξt} is said to be square integrable if E‖ξt‖2 < ∞
for any t ≥ 0. A quadratic variation of an H-valued square-integrable martin-
gale {ξt} is a real-valued random process 〈ξ〉t adapted to {Ft} such that 〈ξ〉0 = 0
almost surely, almost every trajectory of 〈ξ〉t is non-decreasing, and the process
‖ξt‖2H − 〈ξ〉t is a real-valued martingale.

Important examples of continuous martingales are given by stochastic in-
tegrals. Namely, consider a Hilbert space K with an orthonormal basis {ej},
standard independent Ft-adapted Brownian motions {βj(t)}, and an Ft-adapted
process Bt valued in L(K,H) such that

E

∫ T

0

‖Bt‖2HSdt <∞ for any T > 0.

Here ‖C‖HS stands for the Hilbert–Schmidt norm of an operator C ∈ L(K,H)
(that is, ‖C‖2HS =

∑
j ‖Cej‖2). Then the stochastic integral

ξt =

∫ t

0

∞∑

j=1

Btejdβj(t) (7.54)
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is a continuous square-integrable martingale in H; see Section 5.2 in [DZ96].
Moreover, its quadratic variation is given by

〈ξ〉t =

∫ t

0

‖Bs‖2HSds.

Example 7.11.1. The H-valued process ζ(t) defined in (2.98) can be written in
the form (7.54), where K = H and B is an operator in H such that Bej = bjej
for any j ≥ 1. In this case, ‖B‖2HS = B and 〈ζ〉t = Bt.

A continuous random process {Mt, t ≥ 0} in R is called a submartingale (or
supermartingale) with respect to {Ft} if it is integrable and adapted to Ft, and
for all t ≥ s ≥ 0 we have

E (Mt | Fs) ≥Ms (or E (Mt | Fs) ≤Ms).

If ξt is a martingale in H and f : H → R is a continuous convex function,
then f(ξt) is a submartingale, while −f(ξt) is a supermartingale; see [DZ92].

We now formulate without proof several results on martingales, submartin-
gales and supermartingales.

Doob–Kolmogorov inequality. Let {Mt, 0 ≤ t ≤ T} be a non-negative sub-
martingale. Then

P
{

sup
0≤t≤T

Mt > c
}
≤ 1

c
EMT . (7.55)

In particular, if ξt is an H-valued martingale, then (7.55) is true with
Mt = ‖ξt‖pH for any p ≥ 1.

Doob’s moment inequality. Let {Mt, t ≥ 0} be a non-negative submartin-
gale. Then, for any p ∈ (1,∞), we have

E

(
sup
t≥0

Mp
t

)
≤

( p

p− 1

)p

lim
t→∞

EMp
t ; (7.56)

A similar inequality is true on any finite interval [0, T ], in which case the
supremum should be taken over t ∈ [0, T ] and the limit of EMp

t should
be replaced by EMp

T .

Exponential supermartingale. Let {ξt, t ≥ 0} be a martingale whose quad-
ratic variation 〈ξ〉t is a. s. finite for all t ≥ 0 and let ζt := ξt− 1

2 〈ξ〉t. Then
the process exp(ζt) is a supermartingale, and we have the inequality

P

{
sup
t≥0

ζt ≥ c
}
≤ e−c for any c > 0. (7.57)

A similar result holds on a finite interval [0, T ], in which case the supremum
should be taken over t ∈ [0, T ].
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Doob’s optional sampling theorem. Let {ξt, t ≥ 0} be a submartingale and
let σ ≤ τ be two almost surely finite stopping times for the filtration {Ft}.
Then E ξσ = E ξτ .

A proof of (7.55) and (7.56) can be found in Section III.3 of [Kry02]. The
fact that the process exp ζt is a supermartingale is established in [RY99, Sec-
tion 4.3], and (7.57) is the classical supermartingale inequaity; see [Kry02, The-
orem III.6.11] or [Mey66, Theorem VI.T1]. Finally, Doob’s optional sampling
theorem is proved in Section 1.3.C of [KS91].

The assertion below is a special case of a more general theorem due to
Doob. Its proof can be found in [Dud02]; see Theorems 10.5.1 and 10.5.4 and
Corollary 10.5.2.

Convergence theorem. Let {Mk, k ≥ 0} be a real-valued martingale such
that supk≥0 E |Mk| <∞. Then there is an integrable random variable M∞
such that

Mk →M∞ almost surely, E |Mk −M∞| → 0 as k → ∞.

7.12 Limit theorems for discrete-time martin-

gales

Let (Ω,F ,P) be a probability space, let {Fk, k ≥ 0} be a discrete-time filtration
on it, and let {Mk, k ≥ 1} be a martingale with respect to Fk. The following
theorem establishes a strong law of large numbers. Its proof can be found
in [Fel71]; see Theorem 3 in Section VII.9.

Theorem 7.12.1. Let {Mk, k ≥ 1} be a zero-mean square-integrable martingale
and let {ck} be an increasing sequence going to +∞ such that

∞∑

k=1

c−2
k EX2

k <∞,

where Xk = Mk −Mk−1 and M0 = 0. Then

P
{
c−1
k Mk → 0 as k → ∞

}
= 1.

We now turn to the law of iterated logarithm (LIL). Given a square integrable
martingale {Mk}, define its conditional variance by the formula

V 2
k =

k∑

l=1

E
(
X2

l |Fl−1

)
. (7.58)

The following result on the LIL for martingales with identically distributed
increments is due to Heyde [Hey73].
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Theorem 7.12.2. Let a zero-mean martingale {Mk} be such that the martin-
gale differences Xk are identically distributed, EX2

1 = σ2 > 0, and

k−1V 2
k → σ2 in probability as k → ∞. (7.59)

Then for almost every ω ∈ Ω we have

lim sup
k→∞

Mk√
2k ln ln k

= σ, lim inf
k→∞

Mk√
2k ln ln k

= −σ. (7.60)

Finally, let us discuss the central limit theorem (CLT). We define

s2k = EM2
k =

k∑

l=1

EX2
l .

In what follows, we assume that

EX2
k → σ2 as k → ∞, (7.61)

s−2
k Vk → σ2 in probability as k → ∞, (7.62)

where σ ≥ 0 is a constant, and that the martingale differences Xk satisfy Lin-
deberg’s condition, that is,

s−2
n

n∑

k=1

E
(
X2

k I{|Xk|>εsn}
)
→ 0 as n→ ∞, (7.63)

where ε > 0 is arbitrary. Note that, if σ > 0, then s2k ∼ kσ2 as k → ∞, and
Lindeberg’s condition holds if and only if, for any ε > 0,

n−1
n∑

k=1

E
(
X2

k I{|Xk|>ε
√
n}
)
→ 0 as n→ ∞. (7.64)

This condition is not very restrictive. For instance, it holds if EX4
k ≤ C < ∞

for all k ≥ 1. Indeed, using Schwarz’s and Chebyshev’s inequalities, we derive

E
(
X2

k I|Xk|>ε
√
n

)
≤

(
EX4

k

)1/2
Pu{|Xk| > ε

√
n}1/2

≤ ε−2n−1 EX4
k ≤ Cε−2n−1,

whence it follows that (7.63) holds. The following theorem due to Brown [Bro71]
establishes the CLT for martingales.

Theorem 7.12.3. Let {Mk} be a zero-mean martingale such that the martin-
gale differences Xk satisfy (7.61), (7.62) with some σ ≥ 0 and (7.63). Then

D
(
k−1/2Mk

)
→ N(0, σ) as k → ∞.

That is (see Lemma 1.2.16 ),

lim
k→∞

P{k−1/2Mk ≤ x} = Φσ(x) for any x ∈ R.
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7.13 Martingale approximation for Markov pro-

cesses

Let X be a separable Banach space and let (ut,Pu) be a continuous-time Markov
process in X defined on a measurable space (Ω,F) with filtration {Ft, t ≥ 0}.
We denote by Pt(u,Γ) the transition function for (ut,Pu) and by Pt and P∗

t the
corresponding Markov semigroups (see Section 1.3.3). Given a weight function w
(see Section 3.3.1) and a constant γ ∈ (0, 1], we denote by Cγ(X,w) the space
of continuous functions f : X → R for which

|f |w,γ = sup
u∈X

|f(u)|
w(‖u‖)

+ sup
0<‖u−v‖X≤1

|f(u) − f(v)|
‖u− v‖γ

(
w(‖u‖X) + w(‖v‖X)

) <∞.

This is a subspace of the space of Hölder-continuous functions on X.

Definition 7.13.1. A Markov process (ut,Pu) is said to be uniformly mixing
for the class Cγ(X,w) if it has a unique stationary distribution µ ∈ P(X), and
for any f ∈ Cγ(X,w), we have 7

∣∣Ptf(u) − (f, µ)
∣∣ ≤ α(t)|f |w,γw1(‖u‖X), t ≥ 0, (7.65)

where α is a non-increasing integrable function on R+, w1 is a weight function,
and both of them do not depend on f .

The exercise below shows that an analogue of inequality (7.65) is true for
random initial conditions.

Exercise 7.13.2. Let (ut,Pu) be a Markov process in X that is uniformly mixing
for the class Cγ(X,w) and let λ ∈ P(X) be a measure such that

(w1, λ) :=

∫

X

w1(‖u‖X)λ(du) <∞, (7.66)

where w1 is the function from (7.65). Show that, for any f ∈ Cγ(X,w), we have

∣∣Eλf(ut) − (f, µ)
∣∣ ≤ α(t)|f |w,γ(w1, λ), t ≥ 0. (7.67)

Hint: Integrate (7.65) with respect to λ(du).

The following construction due to Gordin [Gor69] is very useful when study-
ing limit theorems for stochastic processes. In the context of uniformly mixing
Markov processes, it enables one to reduce the problem to the case of martin-
gales.

Let us take any function f ∈ Cγ(X,w) with (f, µ) = 0 and a measure
λ ∈ P(X) and set

Mλ
t =

∫ ∞

0

(
Eλ(f(us) | Ft) − Eλ(f(us) | F0)

)
ds, t ≥ 0, (7.68)

7We assume, in particular, that any function f ∈ Cγ(X,w) is integrable with respect to µ.
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where Eλ stands for the mean value with respect to the measure Pλ defined by

Pλ(Γ) =

∫

Ω

Pu(Γ)λ(du), Γ ∈ F .

Proposition 7.13.3. Let (ut,Pu) be a Markov process in X uniformly mixing
for the class Cγ(X,w). Assume, in addition, that

Euw1(‖ut‖X) ≤ C
(
1 + w1(‖u‖X)

)
for any t ≥ 0, u ∈ X, (7.69)

where C > 0 is independent of t ≥ 0 and u ∈ X. Then, for any measure
λ ∈ P(X) satisfying (7.66) and any function f ∈ Cγ(X,w) with zero mean
value, the process {Mλ

t , t ≥ 0} is well defined and forms a zero-mean martingale
with respect to the filtration {Ft} and the probability Pλ. Moreover, we have,
with Pλ-probability 1,

∫ t

0

f(us) ds = Mλ
t − g(ut) + g(u0), t ≥ 0, (7.70)

where g(v) =
∫∞
0

Psf(v) ds.

Proof. To simplify notations, we shall write Mt instead of Mλ
t . We first show

that

Eλ|Mt| ≤
(
|f |, µ

)
t+ C1

(
1 + (w1, λ)

)
, (7.71)

where C1 > 0 is a constant not depending on λ and t ≥ 0. Indeed, the Markov
property and inequality (7.67) imply that, with Pλ-probability 1, we have

∣∣Eλ(f(us) | Ft)
∣∣ ≤

∣∣Ps−tf(ut)
∣∣ ≤ α(s− t)|f |w,γw1(‖ut‖X), s ≥ t. (7.72)

Integrating (7.69) with respect to λ(du), we see that

Eλw1(‖ut‖X) ≤ C
(
1 + (w1, λ)

)
for any t ≥ 0. (7.73)

Taking the mean value Eλ of inequality (7.72) and using (7.73), for s ≥ t we
obtain

Eλ

∣∣Eλ(f(us) | Ft)
∣∣ ≤ Cα(s− t)|f |w,γ

(
1 + (w1, λ)

)
. (7.74)

On the other hand, since us is Ft-measurable for t ≥ s, inequality (7.67) with f
replaced by |f | implies that

Eλ

∣∣Eλ(f(us) | Ft)
∣∣ = Eλ|f(us)| ≤

(
|f |, µ

)
+ α(s)|f |w,γ(w1, λ), s ≤ t.

Combining this with (7.74) and using the fact that
∫∞
0
α(t) dt < ∞, we obtain

the required inequality (7.71).
The fact that Mt is a martingale can be checked easily by applying the con-

ditional expectation Eλ( · | Fr) to Mt with t ≥ r. Furthermore, it is straightfor-
ward to check that EλMt = 0 for all t ≥ 0. Thus, it remains to establish (7.70).
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To this end, we use the Markov property and write

Mt =

∫ t

0

f(us) ds+

∫ ∞

t

Eλ(f(us) | Ft) ds−
∫ ∞

0

Eλ(f(us) | F0) ds

=

∫ t

0

f(us) ds+

∫ ∞

t

(Ps−tf)(ut) ds−
∫ ∞

0

(Psf)(u0) ds.

This implies the required relation (7.70).

7.14 Generalised Poincaré inequality

Proposition 7.14.1. For any integer d ≥ 1 there is a constant Cd > 0 such
that, for any p ≥ 1, we have

∫

Td

|u|2pdx ≤ Cd

∫

Td

∣∣∇
(
|u|2p

)∣∣2dx = Cd p
2

∫

Td

|u|2(p−1)|∇u|2dx, (7.75)

where u ∈ H1(Td) is an arbitrary function with zero mean value for which the
right-hand side is finite.

Proof. We argue 8 by contradiction. If (7.75) does not hold, then we can con-
struct a sequence of functions uk ∈ H1(Td) with zero mean value and some
constants pk ≥ 1 such that 9

∫

Td

|uk|2pkdx = (2π)d, p2k

∫

Td

|uk|2(pk−1)|∇uk|2dx ≤ k−1, k ≥ 1. (7.76)

Let us set vk = |uk|pk−1uk. Then inequalities (7.76) imply that
∫

Td

|vk|2dx = (2π)d,

∫

Td

|∇vk|2dx ≤ k−1, k ≥ 1. (7.77)

Thus, {vk} is a bounded sequence in H1. Since the embedding H1 ⊂ L2 is
compact (see (1.5)), there is no loss of generality in assuming that vk → v in L2,
where v is a function in H1. Moreover, it follows from the second inequality
in (7.77) that ∇v = 0 almost everywhere, and therefore v ≡ C. On the other
hand, the first relation in (7.77) implies that |v|22 = (2π)d, whence it follows
that C = 1. We have thus shown that

∫

Td

∣∣|uk|pk−1uk − 1
∣∣2dx→ 0 as k → ∞.

Combining this with the elementary inequality |y−1| ≤ 2
∣∣|y|p−1y−1

∣∣, valid for
any y ∈ R and p ≥ 1, we see that uk → 1 in L2. This contradicts the fact that
the mean value of uk is zero.

8We thank S. Brandle and M. Struwe for communicating us this proof.
9The case in which the L2pk norm of uk is infinite can easily be treated by truncation.

Namely, it suffices to consider the sequence ũk = ϕ(uk/Nk), where Nk is sufficiently large,
and ϕ : R → R is a function such that ϕ(r) = r for |r| ≤ 1 and ϕ(r) = sgn(r) for |r| > 1.
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7.15 Functions in Sobolev spaces with a discrete

essential range

Let (X,F) be a measurable spaces, let µ be a positive measure on it, let Y
be a Polish space endowed with its Borel σ-algebra, and let f : X → Y be a
measurable map. The essential range of f is defined as the set of points y ∈ Y
such that µ(f−1(O)) > 0 for any open set O ⊂ Y containing y. In other words,
the essential range of f is the support of the measure f∗(µ).

It is an obvious fact that that if D ⊂ Rd is a connected open set, then a
continuous function f : D → R with a discrete essential range must be constant.
The following lemma shows that a similar result is true for functions in a Sobolev
space of order r > 1/2. Its stronger versions can be found in [HKL90, BD95,
BBM00]. For the reader’s convenience, we shall give a proof of the lemma,
following the argument in [BD95].

Lemma 7.15.1. If u ∈ Hr(T2) with r > 1
2 and the essential range of u is a

discrete subset of R, then u = C almost everywhere.

Proof. For i = 1, 2, denote by Ti the one-dimensional torus R/2πZ, Ti = {xi}.
Then T2 = T1 × T2. It follows immediately from the definition of the Sobolev
norm that ∫ 2π

0

‖u(x1, ·)‖2Hr(T2)
dx1 ≤ ‖u‖2r.

Hence, there exists a full measure set A ⊂ T1 such that u(x1, ·) ∈ Hr(T2)
for x1 ∈ A. Since Hr(T2) ⊂ C(T2) and the essential range of u is a discrete
subset, Fubini’s theorem implies that, for almost every x1 ∈ A, the essential
range of u(x1, ·) is a discrete subset. It follows that, for almost every x1 ∈ T1,
the function u(x1, ·) is constant almost everywhere. Similarly, for almost every
x2 ∈ T2, the function u(·, x2) is constant almost everywhere.

For x = (x1, x2) and y = (y1, y2), we now write

|u(x) − u(y)| ≤ |u(x1, x2) − u(x1, y2)| + |u(x1, y2) − u(y1, y2)|.

Taking into account what has been said above and applying Fubini’s theorem,
we see that ∫∫

T2×T2

|u(x) − u(y)| dxdy = 0.

It follows that u(x)− u(y) = 0 almost everywhere on T2 ×T2. Let B ⊂ T2 be a
subset of full measure such that, for x ∈ B, we have u(x) = u(y) almost every-
where in y. Integrating this relation in y, we conclude that u(x) =

∫
T2 u(y) dy

for x ∈ B. This completes the proof of the lemma.
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Solutions to some exercises

Exercise 1.2.4. (i) Let us assume that X is compact and prove that Cb(X) is sepa-
rable. Using relation (1.19) and taking into account inequality (1.20), it is easy to
approximate each continuous function f : X → R by bounded Lipschitz functions.
Therefore, it suffices to construct countably many continuous functions whose finite
linear combinations are dense in the unit ball of Lb(X) for the norm ‖ · ‖∞. Let us
fix ε > 0 and denote by {x1, . . . , xn} ⊂ X an ε-net in X and by {ϕk}

n
k=1 ⊂ Cb(X)

a partition of unity subordinate to the covering of X by the balls BX(xk, 2ε). In
this case, if f is an element of the unit ball in Lb(X), then the norm of the function
f −

∑

k f(xk)ϕk does not exceed 2ε.

Conversely, let us assume that X is not compact and prove that Cb(X) is not
separable. Indeed, since X is not compact, there is ε > 0 and a sequence {xk} ⊂ X
such that distX(xk, xm) ≥ 2ε > 0. Let ϕk ∈ Cb(X) be such that suppϕk ⊂ BX(xk, ε)
and ϕk(xk) = 1. Then the infinite linear combinations of the form

∑

k ckϕk with
ck = ±1 form an uncountable family of functions such that the distance between any
two functions is equal to 2.

(ii) Let us denote by ϕα(x) a function equal to 0 for x < α and to 1 for x ≥ α and
define ψα(x) =

∫ x

0
ϕdy. Then the family {ψα, 0 < α < 1} ⊂ Lb(X) is uncountable and

the distance in Lb(X) between any of its two elements is equal to 1.

Exercise 1.2.10. Let us denote by ‖µ1 − µ2‖
′
var the right-hand side of (1.26). Since

Cb(X) ⊂ L∞(X), it follows from (1.13) that ‖µ1 − µ2‖var ≤ ‖µ1 − µ2‖
′
var. To prove

the converse inequality, we use a simple approximation argument. Namely, let us fix
an arbitrary ε > 0 and chose a function f ∈ L∞(X) with ‖f‖∞ ≤ 1 such that

‖µ1 − µ2‖
′
var ≤

1

2

(

(f, µ1)− (f, µ2)
)

+ ε.

We now choose a finitely many disjoint subsets Γk ∈ B(X) and real constants ck such
that |ck| ≤ 1 and

∣

∣f(x) −
∑

k ckIΓk (x)
∣

∣ ≤ ε for all x ∈ X. Combining this with the

287
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above inequality and using (1.22), we derive

‖µ1 − µ2‖
′
var ≤

1

2

∑

k

ck
(

µ1(Γk)− µ2(Γk)
)

+ 3ε

≤
1

2

∑

k∈Λ+

(

µ1(Γk)− µ2(Γk)
)

+
1

2

∑

k∈Λ−

(

µ2(Γk)− µ1(Γk)
)

+ 3ε

≤
1

2

(

µ1(Γ
+)− µ2(Γ

+)
)

+
1

2

(

µ2(Γ
−)− µ1(Γ

−)
)

+ 3ε

≤ ‖µ1 − µ2‖var + 3ε,

where Λ± stands for the set of indices k such that ±ck > 0 and ±(µ1(Γk)−µ2(Γk)) > 0,
and Γ± is the union of Γk with k ∈ Λ±. Since ε > 0 was arbitrary, we arrive at the
required inequality.

Exercise 1.2.12. We first recall that if a sequence of functions {fn} converges in the
space L1(X,m) to a limit f , then there is a subsequence {fnk} that converges to f
almost surely. Thus, given a bounded measurable function f : X → R and a con-
stant ε > 0, it suffices to construct fε such that ‖f−fε‖L1(X,m) ≤ ε and |f(x)| ≤ ‖f‖∞
for all x ∈ X. A simple approximation argument shows that it suffices to consider
the case when f is the indicator function of a Borel set Γ. Let K ⊂ Γ be a com-
pact set and let G ⊃ Γ be an open set such that m(G \ K) ≤ ε. Then the function

fε(x) =
distX (x,G)

distX (x,K)+distX (x,G)
is continuous and satisfies the required inequality.

Exercise 1.2.13. We confine ourselves to the proof of (i). For any Γ ∈ F2, we have

|f∗(µ1)(Γ)− f∗(µ2)(Γ)| = |µ1(f
−1(Γ))− µ2(f

−1(Γ))| ≤ ‖µ1 − µ2‖var.

Since Γ was arbitrary, we arrive at the required inequality.

Exercise 1.2.18. (i) Let {xk} ⊂ X be an arbitrary dense sequence. We claim that
for any µ ∈ P(X) and ε > 0 there is sequence {ck} ⊂ R with finitely many non-zero
elements such that

∥

∥

∥
µ−

∑

k

ckδxk

∥

∥

∥

∗

L
≤ ε, (8.1)

where δy stands for the Dirac measure concentrated at y. This property immediately
implies the required result.

Let us fix µ ∈ P(X) and ε > 0 and choose a compact subset C ⊂ X such that
µ(X \ C) ≤ ε/2. We next cover C by finitely many disjoint subsets Bj with nonempty
interior and diameters ≤ ε/2. Choosing arbitrary points xkj ∈ Bj , for any function
f ∈ Lb(X) with norm ‖f‖L ≤ 1 we obtain
∣

∣

∣
(f, µ)−

∑

j

f(xkj )µ(Bj ∩ C)
∣

∣

∣
≤

∑

j

∣

∣

∣
(fIBj∩C , µ)− f(xkj )µ(Bj ∩ C)

∣

∣

∣
+ |(fIX\C , µ)

≤
∑

j

µ(Bj ∩ C) sup
x∈Bj∩C

|f(x)− f(xkj )|+ ε/2 ≤ ε,

where we used the fact f is Lipschitz continuous with a constant ≤ 1. Since f was
arbitrary, we arrive at inequality (8.1) in which ckj = µ(Bj ∩ C) and ck = 0 for the
other indices.

(ii) It is straightforward to see {δy, y ∈ R} is an uncountable subset P(R) such that
the distance between any two elements is equal to 1. This implies that the space P(R)
endowed with the total variation distance is not separable.
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Exercise 1.2.19. We need to show that

sup
‖f‖L≤1

∣

∣E (f(ζm)− f(ζ))
∣

∣ → 0 as m→ ∞. (8.2)

Let us take any function f ∈ Lb(X) with ‖f‖L ≤ 1 and write
∣

∣E (f(ζm)− f(ζ))
∣

∣ ≤ |E (f(ζm)− f(ζnm))|+ |E (f(ζ)− f(ζn))|+ |E (f(ζnm)− f(ζn))|

≤ sup
m≥1

E
(

distX(ζm, ζ
n
m) + distX(ζ, ζn)

)

+ ‖D(ζnm)−D(ζn)‖∗L.

The first term on the left-hand side can be made arbitrarily small by choosing n ≥ 1
while the second goes to zero, for any fixed n ≥ 1, as m→ ∞. Since f was arbitrary,
we arrive at the required assertion.

Exercise 1.2.22. Since ‖µ1 − µ2‖var = 1, by Corollary 1.2.11, there is a set A ∈ B(X)
for which µ1(A) = µ2(X \A) = 1. It follows that if ξ1 and ξ2 are independent, then

P{ξ1 6= ξ2} =

∫∫

{u1 6=u2}

µ1(du1)µ2(du2) =

∫

A

µ2(X \ {u1})µ(du1)

≥

∫

A

µ2(X \A)µ(du1) = 1.

Furthermore, it is straightforward to see that the random variables ξ1 and ξ2 condi-
tioned on the event N = {ξ1 6= ξ2} are independent.

Conversely, if (ξ1, ξ2) is a maximal coupling for (µ1, µ2), then P(N) = 1, and for
any Γ1,Γ2 ∈ B(X) we have

P{ξ1 ∈ Γ1, ξ2 ∈ Γ2} = P{ξ1 ∈ Γ1, ξ2 ∈ Γ2 |N}

= P{ξ1 ∈ Γ1 |N}P{ξ1 ∈ Γ1 |N}

= P{ξ1 ∈ Γ1}P{ξ1 ∈ Γ1},

whence we conclude that ξ1 and ξ2 are independent.

Exercise 1.2.23. Let us set

a = P(A1 |E) = P(A2 |E), b1 = P(A1 |N), b2 = P(A2 |N),

where E = {ξ1 = ξ2} and Ai = {ξi ∈ Γ}. Noting that P(E) + P(N) = 1, we can write

P{ξ1 ∈ Γ, ξ2 ∈ Γ} = P(A1A2) = P(A1A2 |E)P(E) + P(A1A2 |N)P(N)

= P(A1 |E)P(E) + P(A1 |N)P(A2 |N)P(N) = ax+ b1b2(1− x),

P{ξ1 ∈ Γ}P{ξ2 ∈ Γ} = P(A1)P(A2) =
(

ax+ b1(1− x)
)(

ax+ b2(1− x)
)

,

where x = P(E). We wish to show that the function

f(x) := ax+ b1b2(1− x)−
(

ax+ b1(1− x)
)(

ax+ b2(1− x)
)

is non-negative for x ∈ [0, 1]. Note that f is a quadratic function such that f(0) = 0
and f(1) = a− a2 ≥ 0 Therefore, the required property will be established if we show
that the coefficient in front of the linear term is non-negative. Thus, it suffices to prove
that

a+ b1b2 − a(b1 + b2) ≥ 0 for a, b1, b2 ∈ [0, 1].

This inequality can easily be checked.
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Exercise 1.2.27. Since convergence in the dual-Lipschitz metric is equivalent to the
weak convergence of measures (see Theorem 1.2.15), the corresponding topology on
the space P(X) is generated by the open sets of the form {µ ∈ P(X) : (f, µ) < a},
where f ∈ Cb(X) and a ∈ R. It follows that a function z 7→ µ(z, ·) from Z to P(X) is
measurable if and only if, for any f ∈ Cb(X), so is the function z 7→ (f, µ(z, ·)) acting
from Z to R.

Now let µ(z, ·) be a random probability measure and let f ∈ Cb(X). Approxi-
mating f by finite linear combinations of indicator functions, we see that (f, µ(z, ·))
is a pointwise limit of measurable functions of the form

∑

k ckµ(z,Γk). This obser-
vation immediately implies that (f, µ(z, ·)) is measurable. Conversely, if (f, µ(z, ·))
is measurable for any f ∈ Cb(X) and F ⊂ X is a closed subset, then approximat-
ing IF pointwise by continuous functions (see the proof of Corollary 7.1.3), we see that
µ(z, F ) = (IF , µ(z, ·)) is measurable. The measurability of µ(z,Γ) for an arbitrary
Γ ∈ B(X) follows by the monotone class technique.

Exercise 1.2.29. The fact that µ̂i(z, ·) and µ(z, ·) are random probability measures fol-
lows from their definition and the measurability of δ(z). To prove that δ is measurable,
recall that (see Proposition 1.2.7)

δ(z) = ‖µ1(z, ·)− µ2(z, ·)‖var =
1

2

∫

X

|ρ1(z, u)− ρ2(z, u)|mz(du),

where mz = 1
2
(µ1(z, ·) + µ2(z, ·)), and ρi(z, u) is the density of µi with respect to mz.

By a parameter version of the Radon–Nikodym theorem, the functions ρi can be
assumed to be measurable in (z, u). Thus, the required property will be established if
we show that (f(z, ·),mz) is measurable for any measurable function f : Z ×X → R

such that f(z, ·) ∈ L1(X,mz) for any z ∈ Z. A standard approximation argument
shows that it suffices to consider the case when f = IΓ, where Γ ∈ B(Z × X). The
claim is obvious for sets of the form Γ = Γ1 ×Γ2 with Γ1 ∈ B(Z) and Γ2 ∈ B(X). The
general case follows by the monotone class technique.

Exercise 1.2.30. Let us define measures µ̃i ∈ P(X × Y ) by the relation

µ̃i(A×B) = µi(A ∩ f−1(B)) for A ∈ B(X), B ∈ B(Y ).

Then (PY )∗µ̃i = f∗(µi), where PY : X × Y → Y denotes the natural projection,
and by the disintegration theorem, there are random probability measures µi(y, dx)
on X such that µ̃i(dx, dy) = f∗(µi)(dy)µi(y, dx), i = 1, 2. Now let (η1, η2) be a
maximal coupling for (f∗(µ1), f∗(µ2)) and let ζi(y, ·), i = 1, 2, be some X-valued
random variables independent of (η1, η2) such that D(ζi(y, ·)) = µi(y, ·) for any y ∈ Y .
Then the random variables ξi(ω) = ζi(ηi(ω), ω), i = 1, 2, satisfy the required property.
This proves assertion (i). To establish (ii), it suffices to use in the above argument
some parameter versions of the corresponding results.

Exercise 1.3.1. In view of (1.48), for any f ∈ L∞(X) and any B ∈ Fs, we have

Eu

(

f(ut+s)IB
)

= Eu

(

(Ptf)(us)IB
)

.

Integrating this relation with respect to Pλ(du), we obtain

Eλ

(

f(ut+s)IB
)

= Eλ

(

(Ptf)(us)IB
)

.

Since B ∈ Fs was arbitrary, we arrive at (1.48).
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When proving (1.49), we assume for simplicity that m = 2. It suffices to consider
the case when f(u1, u2) = IΓ1(u1)IΓ2(u2). Using (1.48), we write

Eλ{f(ut1+s, ut2+s) | Fs} = Eλ

(

IΓ1(ut1+s)Eλ{IΓ2(ut2+s) | Ft1+s} | Fs

)

= Eλ

(

IΓ1(ut1+s)Pt2−t1(ut1+s,Γ2) | Fs

)

= Pt1

(

IΓ1Pt2−t1(·,Γ2)
)

(us). (8.3)

On the other hand, using again the Markov property, we derive

Evf(ut1 , ut2) = Ev

(

IΓ1(ut1)IΓ2(ut2)
)

= Ev

(

IΓ1(ut1)Ev{IΓ2(ut2) | Ft1}
)

= Ev

(

IΓ1(ut1)Pt2−t1(ut1 ,Γ2)
)

= Pt1

(

IΓ1Pt2−t1(·,Γ2)
)

(v).

Taking v = us in this relation and comparing it with (8.3), we obtain the required
result.

Exercise 1.3.3. It is clear that P0 is the identity operator in Cb(X), and we shall prove
the semigroup property. A simple approximation argument shows that it suffices to
prove the relation

Pt(PsIΓ) = Pt+sIΓ for any Γ ∈ B(X).

However, sincePrIΓ(u) = Pr(u,Γ), the above equality coincides with the Kolmogorov–
Chapman relation. The proof of the claim concerning P∗

t is similar.
We now prove the duality relation. It suffices to consider the case f = IΓ. In this

situation, we have

(PtIΓ, µ) =

∫

X

Pt(u,Γ)µ(du) = P
∗
tµ(Γ) = (IΓ,P

∗
tµ).

Exercise 1.3.4. By definition, the Pv law of ut coincides with Pt(v, ·). It follows that

Pλ{ut ∈ Γ} =

∫

X

Pv{ut ∈ Γ}λ(dv) =

∫

X

Pt(v,Γ)λ(dv) = P
∗
tλ(Γ),

where Γ ∈ B(X) is an arbitrary set. To prove (1.51), we write

Eλf(ut) =

∫

Ω

f(ut)Pλ(dω) =

∫

X

f(v)(P∗
tλ)(dv) =

∫

X

Ptf(v)λ(dv),

where we used the duality relation of Exercise 1.3.3.

Exercise 1.3.9. We need to prove that {τ ≤ t}∩{τ ≤ s} belongs to Ft for any t, s ∈ T+.
This fact follows immediately from the definition of a stopping time.

Exercise 1.3.12. We confine our case to the case of a discrete time. It suffices to
establish relation (1.59) for indicator functions f = IB with a Borel set B of the form

B = {v = (vj , j ∈ Z+) : vj ∈ Bj for j = 0, . . . , n},

where Bj ∈ B(X). The case of an arbitrary Borel set B ⊂ XZ+ will follow by the
monotone class technique, and an approximation argument will yield relation (1.59)
for functions f satisfying the hypotheses of the exercise.
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Thus, we wish to prove that

Eu

(

I{τ<∞}

m
∏

j=0

IBj (uτ+j)
∣

∣

∣
Fτ

)

= I{τ<∞}

(

Ev

m
∏

j=0

IBj (uτ+j)

)
∣

∣

∣

∣

v=uτ

with Pu-probability 1. To this end, it suffices to show that

Eu

(

IΓ∩{τ<∞}

m
∏

j=0

IBj (uτ+j)

)

= Eu

(

IΓ∩{τ<∞} Euτ

m
∏

j=0

IBj (uj)

)

, (8.4)

where Γ ∈ Fτ is an arbitrary subset. Using (1.49) and (1.56), we write

Eu

(

IΓ∩{τ<∞}

m
∏

j=0

IBj (uτ+j)

)

=

∞
∑

n=0

Eu

(

IΓ∩{τ=n}

m
∏

j=0

IBj (un+j)

)

=

∞
∑

n=0

Eu

(

IΓ∩{τ=n}Eu

{ m
∏

j=0

IBj (un+j)
∣

∣

∣
Fn

})

=
∞
∑

n=0

Eu

(

IΓ∩{τ=n}Eun

m
∏

j=0

IBj (uj)

)

= Eu

(

IΓ∩{τ<∞}Euτ

m
∏

j=0

IBj (uj)

)

.

This completes the proof of (1.59) in the case of the discrete time.

Exercise 1.3.16. Since θs(ωj , j ∈ Z) = (ωj+s, j ∈ Z), the definition of Φ implies that
ϕθsω

t u depends only on ωs+1, . . . , ωs+t. It follows that F[p,q] is contained in the σ-
algebra generated by the cylindrical sets depending on ωp+1, . . . , ωq. On the other
hand, for any integer k satisfying the inequality p+1 ≤ k ≤ q the σ-algebra generated

by the random variables ϕ
θk−1ω

1 u = S(u) + ωk, u ∈ H, coincides with the cylindrical
sets defined by ωk. What has been said implies that F[p,q] coincides with the σ-algebra
of the sets of the form (1.65).

Exercise 1.3.17. To be precise, we assume that p and q are finite. Since the family of
those Γ ∈ F [p, q] for which θ−1

r (Γ) ∈ F[p+r,q+r] is a σ-algebra, it suffices to prove this
inclusion for any subset of the form

Γ = {ω ∈ Ω : ϕθsω
t u ∈ A}, A ∈ B(X),

where p, q, t, s, and u satisfy conditions (1.64). To this end, note that, by the group
property for θ, we have

θ−1
r (Γ) = {ω ∈ Ω : ϕ

θs(θrω)
t u ∈ A} = {ω ∈ Ω : ϕ

θs+rω
t u ∈ A},

whence we conclude that θ−1
r (Γ) ∈ F[p+r,q+r].

Exercise 1.3.19. It was proved in Exercise 1.3.16 that F− and F+ coincide with the
σ-algebras generated by the cylindrical sets depending on ωj with j ≤ 0 and j ≥ 1,
respectively. The required assertion follows now from the definition of the probabil-
ity P.
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Exercise 1.3.20. Let us note that, for any Γ+ ∈ F+ and Γ− ∈ F−, we have

P
(

θ−1
t (Γ+) ∩ θ−1

t (Γ−)
)

= P
(

θ−1
t (Γ+Γ−)

)

= P(Γ+Γ−)

= P(Γ+)P(Γ−) = P
(

θ−1
t (Γ+)

)

P
(

θ−1
t (Γ−)

)

.

Combining this relation with Exercise 1.3.17, we arrive at the required result.

Exercise 1.3.23. We need to show that if f ∈ Cb(X), then Ptf(u) is continuous in u.
Recall that

Ptf(u) =

∫

Ω

f(ϕω
t u)P(dω).

Since f is bounded and ϕω
t u is continuous in u, Lebesgue’s theorem on dominated

convergence implies the required result.

Exercise 1.3.24. Recall that Pk(u, ·) is the law of the trajectory issued from u. Since
the mapping ϕt is deterministic, we see that Pk(u, ·) is the Dirac measure concentrated
at ψk(u), where ψk is the kth iteration of ψ. It follows that

Pkf(u) = f
(

ψk(u)
)

, P
∗
kµ = µ

(

ψ−1
k (Γ)

)

.

Exercise 1.3.25. Using the group and cocycle properties, we write

Θt

(

Θs(ω, u)
)

= Θt(ωsω, ϕ
ω
s u) =

(

θt(θsω), ϕ
θsω
t (ϕω

s u)
)

= (θt+sω, ϕ
ω
t+su) = Θt+s(ω, u).

The fact that Θ0 is the identity operator is obvious.

Exercise 1.3.29. By Corollary 1.3.22, the law of ϕtu coincides with P∗
tµ. Since µ is a

stationary measure, we see that D(ϕtu) = µ for all t ∈ T+.

Exercise 2.1.1. Any (real-valued) function u ∈ Hm
σ can be written as a Fourier series

u(x) =
∑

k∈Z2

uke
ikx, (8.5)

where uk ∈ C2, 〈uk, k〉 = 0, and ūk = u−k. It straightforward to see that the functions
defined by the truncated series

∑

|k|≤N uke
ikx belong to V and approximate u in the

Hm norm.

Exercise 2.1.14. Let us note that if u is a solution of the Navier–Stokes system (2.19),
then u̇ = −νLu−B(u)+Πf belongs to L2(0, T ;V ∗). Therefore, using (2.10) and (2.11),
we obtain

1

2

(

|u(t)|22 − |u0|
2
2

)

=

∫ t

0

〈−νLu−B(u) + Πf, u〉 ds =

∫ t

0

(

−ν|∇u(s)|22 + 〈f, u〉
)

ds.

This coincides with the required relation (2.39).
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Exercise 2.1.17. The fact that ψ is unique up to an additive constant is obvious. Let
us fix a function u ∈ H and consider its Fourier series (8.5). It is easy to see that the
coefficients uk can be written as uk = ckk

⊥, where k⊥ = (−k2, k1), c−k = −c̄k ∈ C,
and

‖u‖2m =
∑

k∈Z
2
0

(

1 + |k|2
)m

|k|2|ck|
2.

It follows that the function
ψ(x) = −i

∑

k∈Z
2
0

cke
ikx

is real-valued, belongs to H1(T2), and satisfies the required properties.

Exercise 2.1.23. Combining (2.39), (2.51), and the inequality 2|〈f, u〉| ≤ ‖f‖21 + ‖u‖21,
we derive

|u(0)|22 = |u(t)|22 + 2ν

∫ t

0

|∇u|22ds− 2

∫ t

0

〈f, u〉 ds

≤ e−α1t|u(0)|22 +

∫ t

0

(

C1‖u‖
2
1 + 2 ‖f‖2−1

)

ds.

This estimate readily implies the required inequality.

Exercise 2.1.26. Let u ∈ H be a solution of the Navier–Stokes system (2.19). Differ-
entiating the function ϕ(t) = t |L1/4u(t)|22 in time and using some standard estimates,
we get

ϕ′(t) = |L1/4u|22 + 2t〈L1/2u, u̇〉 = |L1/4u|22 − 2νt |L3/4u|22 + 2t 〈L1/2u,Πf −B(u)〉

≤ |L1/4u|22 −
3νt

2
|L3/4u|22 + C1ν

−1t |f |22 + C2t |L
3/4u|2|L

1/4u|2‖u‖1

≤ |L1/4u|22 − νt |L3/4u|22 + C1ν
−1t |f |22 + C2ν

−1t ‖u‖21|L
1/4u|22.

It follows that

∂t
(

t |L1/4u(t)|22
)

+ νt ‖u‖23
2
≤ ‖u‖21

2
+ C3ν

−1‖u‖21
(

t |L1/4u(t)|22
)

+ C3ν
−1t|f |22.

A simple argument based on Gronwall’s inequality and (2.24) now implies that

t ‖u(t)‖21
2
+

∫ t

0

s ‖u(s)‖23
2
ds ≤ C4(ν) exp

(

C4(ν)

∫ t

0

‖u‖21ds
)

(

|u0|
2
2 +

∫ t

0

|f(s)|22ds

)

.

(8.6)
Now let u1, u2 ∈ H be two solutions of (2.19). Their difference u = u1−u2 satisfies

Eq. (2.25). Multiplying it by 2tL1/2u in H and carrying out some transformations, we
derive

∂t
(

t |L1/4u(t)|22
)

+ νt ‖u‖23
2
≤ ‖u‖21

2
+ C1ν

−1t |f1 − f2|
2
2

+ C5t ‖u‖
4/3
3
2

|u|
2/3
2

(

|u1|2‖u1‖
2
3
2
+ |u2|2‖u2‖

2
3
2

)1/3

whence it follows that

t ‖u(t)‖21
2
≤

∫ t

0

(

‖u‖21
2
+ C1ν

−1s |f1 − f2|
2
2

)

ds

+ C6(ν)

∫ t

0

s|u|22
(

|u1|2‖u1‖
2
3
2
+ |u2|2‖u2‖

2
3
2

)

ds.
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The required inequality can now be derived by the same argument as in the proof of
Proposition 2.1.25.

Exercise 2.1.27. To prove the existence of a solution, we assume without loss of gen-
erality that g(0) = 0 and seek a solution in the form u = g + v. Then v must be a
solution of the problem

v̇ + νLv +B(v + g) = h, v(0) = u0. (8.7)

The existence of a solution for this problem can be established using the methods
similar to those in Section 2.1.5.

To prove the Lipschitz continuity, we assume again that g1(0) = g2(0) = 0. Rep-
resenting the solutions in the form ui = gi + vi, we see that vi must be a solution of
problem (8.7) with h ≡ 0 and u0 = ui(0). It follows that the difference v = v1 − v2
satisfies the equations

v̇ + νLv +B(v + g, u1) +B(u2, v + g) = 0, v(0) = u1(0)− u2(0),

where g = g1 − g2. Taking the scalar product in H of the first equation with 2v and
repeating essentially the scheme used in the proof of assertion (i) of Proposition 2.1.25,
we arrive at the required result.

Exercise 2.2.3. Let us set kε = [t0/ε] + 1. It follows from inequality (2.74) and the
independence of ηk that

P

{

sup
0≤t≤t0

|ζε(t)− ζ̃ε(t)|2 ≤ δ
}

≥ P
{

max{|ηk|2, 1 ≤ k ≤ kε} ≤ δ√
ε

}

≥

kε
∏

k=1

(

1− P
{

|ηk|2 >
δ√
ε

}

)

≥
(

1− C1(δ)ε
q/2)kε

≥ exp
(

−C2(δ)kεε
q/2).

Since kε ∼ 1/ε and q > 2, we see that the right-hand side of this inequality goes to 1
as ε→ 0.

Exercise 2.2.4. Theorem 8.2 of [Bil99] implies that

D(ζ̃nε ) → D(ζn) in P
(

C(0, t0;H)
)

as ε→ 0+,

where the process ζn is defined in the proof of Theorem 2.2.2 and ζ̃nε is a similar finite-
dimensional approximation for ζ̃ε. Combining this convergence with inequality (2.73),
its analogue for ζ̃ε, and Exercise 1.2.19, we arrive at the required result.

Exercise 2.4.4. Let us denote by {êj} an orthonormal basis in H composed of the
eigenfunction of the Stokes operator L. For any integer n ≥ 1, we denote by Pn the
orthogonal projection in H to the vector space spanned by êj , j = 1, . . . , n. Let us
consider the n-dimensional linear stochastic equation

żn + νLnzn = ∂tPnζ
n(t), (8.8)

where Ln = PnL and ζn(t) =
∑n

j=1 bj(t)βjej . In view of the well-known results
on existence and uniqueness of solutions for stochastic ODE’s (e.g., see Chapter 5
in [Øks03]), Eq. (8.8) has a unique solution zn satisfying the initial condition zn(0) = 0.
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It suffices to prove that there is a subsequence of {zn} that converges to z(t) almost
surely in the space XT = C(0, T ;H) ∩ L2(0, T ;V ) for any T > 0.

The proof of this fact is divided into two steps: we first derive some a priori
estimates for zn with the help of Itô’s formula and Doob’s moment inequality and
then, using a similar technique, we show that the difference zn − zm converges to zero
in an appropriate space and that the limiting function satisfies (2.103).

Step 1: A priori estimates. We claim that

E

(

sup
0≤t≤T

|zn(t)|
2
2 +

∫ T

0

‖zn(t)‖
2
1dt

)

≤ C(B, T ) ν−1, (8.9)

where the constant C(B, T ) does not depend on n. Indeed, by the finite-dimensional
Itô formula (see Chapter 4 in [Øks03]), we have

|zn(t)|
2
2 =

∫ t

0

(

−2ν |∇zn(s)|
2
2 +

n
∑

j=1

b2j |Pnej |
2
2

)

ds+ 2

∫ t

0

〈zn, dζ
n〉. (8.10)

Taking the mean value and using Friedrichs’ inequality, we obtain

sup
0≤t≤T

E |zn(t)|
2
2 + 2ν E

∫ T

0

‖zn‖
2
1dt ≤ C1(B, T ) for all n ≥ 1. (8.11)

Furthermore, in view of Doob’s moment inequality, we have

E sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

〈zn, dζ
n〉

∣

∣

∣

∣

2

≤ E

∫ T

0

n
∑

j=1

b2j (zn(t), ej)
2ds

≤ C2(B)E

∫ T

0

|zn(t)|
2
2dt ≤ C3(B, T ) ν

−1,

where we used (8.11) in the last inequality. Combining this with (8.10) and (8.11), we
arrive at (8.9).

Step 2: Convergence. We now prove that a subsequence of {zn} converges in XT

almost surely and that the limit function coincides with z. Let us fix some integers
m < n. The difference zmn = zn − zm vanishes at t = 0 and satisfies the equation

żmn + νPnLzmn = ∂tζmn(t), (8.12)

where we used the relation (Pn − Pm)Lzm = 0 and set

ζmn(t) =
m
∑

j=1

bjβj(t)(Pn − Pm)ej +
n
∑

j=m+1

bjβj(t)Pnej .

Applying Itô’s formula, we derive

|zmn(t)|
2
2 =

∫ t

0

(

−2ν |∇zmn(s)|
2
2 + Fmn

)

ds+ 2

∫ t

0

〈zmn, dζmn〉, (8.13)

where

Fmn =
m
∑

j=1

b2j |(Pn − Pm)ej |
2
2 +

n
∑

j=m+1

b2j |Pnej |
2
2.

Taking the mean value in (8.13), we see that (2.107) remains true. The proof can now
be completed by exactly the same argument as in the case of Proposition 2.4.2.
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Exercise 2.4.17. Let us set ΛN = {j ∈ Λ : j ≤ N}. Then

ζ̃N (t, x) =
∑

j∈ΛN

ω
(j)
t ej(x), t ∈ R,

is an H-valued process with continuous trajectories whose range is contained in the
vector span of ej , j ∈ ΛN . Let us denote by Ft, t ∈ R, the natural filtration on Ω
augmented1 with respect to (F ,P). The process ζ̃N is the sum of finitely many Brow-
nian motions and therefore is a zero-mean martingale with respect to Ft. By Doob’s
moment inequality, for any T > 0 and M < N we have

E

(

sup
|t|≤T

|ζ̃N (t)− ζ̃M (t)|22

)

≤ 4E |ζ̃N (T )− ζ̃M (T )|22 =
∑

j∈ΛN\ΛM

b2j .

Thus, the series (2.149) converges in L2
(

Ω, C(−T, T ;H)
)

for any T > 0 and defines an
H-valued process with continuous trajectories. Furthermore, since the laws of finite-
dimensional approximation for ζ and ζ̃|R+ coincide, this convergence implies that the
same is true for the limiting processes.

Exercise 2.4.18. The fact that θ is a group is obvious. Now note that the restriction
of θt to the space spanned by ej with j ∈ ΛN is the usual shift on the canonical
probability space of a finite-dimensional Brownian motion and therefore is measure
preserving. The monotone class technique now implies the required result.

Exercise 2.5.2. Let us set λ̄t = t−1
∫ t

0
Ps(u, ·) ds. We claim that the family {λ̄t, t ≥ 0}

is tight, so that the hypotheses of Theorem 2.5.1 are satisfied for the initial measure δu.
Let us fix ε > 0 and choose m ≥ 1 so large that Pt(u,K

c
m) ≤ ε/2 for t ≥ tm. On the

other hand, the time continuity of trajectories implies that the mapping t 7→ Pt(u, ·)
is continuous from R+ to the space P(X) endowed with the weak topology. Therefore
the image of the interval [0, tm] is compact in P(X), whence it follows that there is a
compact set K0 ⊂ X such that Pt(u,K

c
0) ≤ ε/2 for 0 ≤ t ≤ tm. Combining these two

inequalities, we see that λ̄t(K0 ∪Km) ≥ 1− ε for all t ∈ T+.

Exercise 2.5.9. Let us establish the uniqueness of a stationary measure. To this end,
it suffices to prove that if the right-hand side is sufficiently small, then the stochastic
Navier–Stokes system satisfies (1.75). To this end, we repeat the argument used in
the proof of inequality (2.54). Namely, if u0, v0 ∈ H are two initial functions and u, v
are the corresponding solutions, then their difference w = u− v satisfies the equation
(cf. (2.166))

ẇ + νLw +B(w, u) +B(v, w) = 0.

Taking the scalar product of this equation with 2w in H and carrying out some trans-
formations, we derive

∂t|w|
2
2 + (α1ν − C1ν

−1‖u‖21)|w|
2
2 ≤ 0.

Applying Gronwall’s inequality, we obtain

|w(t)|22 ≤ |u0 − v0|
2
2 exp

(

−α1νt/2
)

Ψ(t, u0), t ≥ 0,

1In other words, we take the σ-algebra generated by the random variables ω
(j)
s with s ≤ t

and j ∈ Λ and add zero-measure subsets of F .
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where we set

Ψ(t, u0) = exp

(

−
1

2
α1νt+ C1ν

−1

∫ t

0

‖u‖21ds

)

.

It follows from (2.130) that if |h|2 +B is sufficiently small, then

P

{

sup
t≥0

Ψ(t, u0) ≥ ρ
}

≤ exp(−δ ln ρ+ δ|u0|
2
2),

where δ > 0 is a small constant. We thus obtain inequality (1.75) with α(t) = e−α1νt/2

and ψu0,v0 = supt≥0 Ψ(t, u0). Further analysis based on inequalities (1.76) and (2.157)
enables one to prove exponential convergence to the unique stationary measure in the
dual-Lipschitz distance.

Exercise 3.5.7. The existence and uniqueness of a solution whose almost every trajec-
tory belongs to C(R \ Tω;H)∩L2

loc(R+;V ) is obvious, since we can treat the equation
pathwise (cf. the case of a random kick force considered in Section 2.3). Furthermore,
the existence of left- and right-hand limits at tk follows from the properties of solution
for deterministic Navier–Stokes system. To prove the Markov property, let us denote
by Ft the filtration generated by the random variables ζ(s) with 0 ≤ s ≤ t. It is
well known that the process ζ(t + s) − ζ(t), s ≥ 0, is independent of Ft; e.g. see
Problem 3.2 of Chapter 1 in [KS91] for the case of a Poisson process. The Markov
property can now be established by an argument similar to that used in the proof of
Proposition 1.3.21.

Exercise 3.5.9. Let us denote by Ft the filtration associated with the problem in ques-
tion, that is, the σ-algebra generated by the process

∫ t

0

η(s) ds =
∞
∑

k=1

ηk(x)H(t− τk),

where H(t) = 1 for t ≥ 0 and H(t) = 0 for t < 0. Since the indicator function I[0,τ1](t)
is Ft-measurable, for any initial measure λ ∈ P(H) and any s > 0 we have

Eλ

∫ τ1

0

f(ut+s) dt = Eλ

∫ ∞

0

I[0,τ1](t)f(ut+s) dt

= Eλ

∫ ∞

0

I[0,τ1](t)Eλ{f(ut+s) | Ft} dt

= Eλ

∫ ∞

0

I[0,τ1](t)(Psf)(ut) dt = Eλ

∫ τ1

0

(Psf)(ut) dt.

Therefore, setting c = (Eτ1)
−1 and using the definition of µ, for any f ∈ Cb(H) we

obtain

(Psf, µ) = cEµ̃

∫ τ1

0

(Psf)(ut) dt = cEµ̃

∫ s+τ1

s

f(ut) dt

= (f, µ) + cEµ̃

∫ s+τ1

τ1

f(ut) dt− cEµ̃

∫ s

0

f(ut) dt.

It remains to note that, due to the strong Markov property, the second and third terms
on the right-hand side coincide and, hence, P∗

sµ = µ for any s > 0.
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[App04] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge
University Press, Cambridge, 2004.

[Arn98] L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin,
1998.

[AS05] A. A. Agrachev and A. V. Sarychev, Navier–Stokes equations: con-
trollability by means of low modes forcing, J. Math. Fluid Mech. 7
(2005), no. 1, 108–152.

[AS06] , Controllability of 2D Euler and Navier–Stokes equations by
degenerate forcing, Comm. Math. Phys. 265 (2006), no. 3, 673–697.

[Bat69] G. K. Batchelor, Computation of the energy spectrum in homoge-
neous two-dimensional turbulence, Phys. Fluids Suppl. 11 (1969),
233–239.

[Bat82] , The Theory of Homogeneous Turbulence, Cambridge Uni-
versity Press, Cambridge, 1982.

[Bax89] P. Baxendale, Lyapunov exponents and relative entropy for a
stochastic flow of diffeomorphisms, Probab. Theory Related Fields
81 (1989), no. 4, 521–554.

[BBM00] J. Bourgain, H. Brezis, and P. Mironescu, Lifting in Sobolev spaces,
J. Anal. Math. 80 (2000), 37–86.

299



300 BIBLIOGRAPHY

[BD95] F. Bethuel and F. Demengel, Extensions for Sobolev mappings be-
tween manifolds, Calc. Var. Partial Differential Equations 3 (1995),
no. 4, 475–491.

[BD07] V. Barbu and G. Da Prato, Existence and ergodicity for the two-
dimensional stochastic magneto-hydrodynamics equations, Appl.
Math. Optim. 56 (2007), no. 2, 145–168.

[Ber00] D. Bernard, Influence of friction on the direct cascade of the 2d
forced turbulence, Europhys. Lett. 50 (2000), 333–339.
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Z̆. Vyčisl. Mat. i Mat. Fiz. 3 (1963), 1032–1066.

[KA82] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon
Press, Oxford, 1982.

[KB37] N. Kryloff and N. Bogoliouboff, La théorie générale de la mesure
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Notation and conventions

Z, R, C denote the sets of integer, real, and complex numbers, respectively.

Rn stands for the n-dimensional Euclidean space.

Zn is the set of integer vectors (s1, . . . , sn) and Zn
0 is the set of non-zero vectors

in Zn.

T stands for Z or R, T+ = {t ∈ T : t ≥ 0}, and T− = {t ∈ T : t ≤ 0}.

If Y ⊂ X is a subset, then Y c stands for the complement of Y in X.

The infimum over an empty subset of R is +∞. Given two real numbers a and b,
we denote by a ∨ b and a ∧ b their maximum and minimum, respectively.

We often deal with random forces decomposed in an orthonormal basis {ej} of
the space L2(Q;R2). We denote by bj the corresponding coefficients and always
assume that

B :=

∞∑

j=1

b2j <∞.

When {ej} is a basis formed of the eigenfunctions of the Stokes operator, we
set

Bk =
∑

j=1

αk
j b

2
j ,

where αj stands for the eigenvalue associated with ej . Note that B0 = B. In
case of the standard torus T2, the eigenfunctions (as well as the eigenvalues and
coefficients) are indexed by s ∈ Z2

0, and we obtain

Bk =
∑

s∈Z
2
0

|s|2kb2s.

Abstract spaces and functions

For an arbitrary set Y , we denote by IdY the identity operator on Y (which take
an element y ∈ Y to itself). If Γ ⊂ Y , then we write IΓ the indicator function
of Γ (equal to 1 on Γ and to zero otherwise).

If Ω is an arbitrary set and F is a σ-algebra on Ω, then (Ω,F) is called a
measurable space.

Let (Ωi,Fi), i = 1, 2, be measurable spaces and f : Ω1 → Ω2 be a mapping. We
say that f is measurable if f−1(Γ) ∈ F1 for any Γ ∈ F2. For any probability µ
on (Ω1,F1), we denote by f∗(µ) or f∗µ the image of µ under f , that is, a measure
on (Ω2,F2) defined by the relation f∗(µ)(Γ) = µ(f−1(Γ)) for Γ ∈ F2.

X denotes either a Polish space (that is, a separable complete metric space) or a
separable Banach space. We write distX and ‖ ·‖X for the corresponding metric
and norm. All Polish spaces are endowed with the Borel σ-algebra B = B(X)
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and are considered as measurable spaces. We denote by L∞(X) the space of real-
valued bounded measurable functions on X and by P(X) the set of probability
measures on (X,B(X)).

Cb(X) denotes the space of bounded continuous functions f : X → R endowed
with the norm

‖f‖∞ = sup
u∈X

|f(u)|.

Lb(X) stands for the space of functions f ∈ Cb(X) such that

Lip(f) := sup
u1,u2∈X

|f(u1) − f(u2)|
distX(u1, u2)

<∞.

This is a Banach space with respect to the norm ‖f‖L = ‖f‖∞ + Lip(f).

Cγ
b (X) denotes the space of functions f ∈ Cb(X) such that

|f |γ := ‖f‖∞ + sup
0<distX(u,v)≤1

|f(u) − f(v)|
distX(u, v)γ

<∞.

The canonical space on an interval J ⊂ R is defined as the space Ω = ΩX of
continuous functions ω : J → X endowed with the metric of uniform conver-
gence on bounded subintervals. We consider only two cases: J = R or J = R+.
The shift operator θs : Ω → Ω is given by (θsω)(t) = ω(s + t), t ∈ J , where
s ∈ R in the fist case and s ≥ 0 in the second. The canonical process on Ω is
defined by xt(ω) = ω(t) for t ∈ J .

Given a random process {ξt, t ≥ 0} valued in a Banach space, we denote
by τ(B) ≤ ∞ its first hitting time of a closed set B; that is, τ(B) = inf{t ≥ 0 :
ξt ∈ B}.

H stands for a separable Hilbert space with a scalar product (·, ·)H .

(Ω,F ,P) is a probability space. We often assume that it is complete, that is,
if A ∈ F and P(A) = 0, then any subset of A belongs to F . If, in addition,
{Ft, t ≥ 0} is a filtration on (Ω,F ,P), then unless otherwise stated, we assume
that Ft is right-continuous, and F0 contains all negligible sets of F .

BX(u, r) denotes the closed ball in X of radius r centred at u. If X is a Banach
space and u = 0, then we write BX(r).

If X is a Polish space, then X stands for the direct product X × X endowed
with the natural metric, and we write u = (u, u′) to denote elements of X .
Similarly, if B ⊂ X is a subset, then B stands for B × B. Finally, if (Ω,F)
is a measurable space, then we denote by (Ω,F) the direct product of its two
copies, that is, Ω = Ω × Ω and F = F ⊗ F .
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Functional spaces

Let Q be a domain in Rd or a manifold, let J ⊂ R be a closed interval, let
1 ≤ p ≤ ∞, and let X be a Banach space. We use the following functional
spaces.

C∞
b (Q;Rn) is the Fréchet space of infinitely smooth functions f : Q→ Rn that

are bounded together with all their derivatives.

Lp(Q;Rn) is the space of measurable functions f : Q→ Rn such that

|f |p :=

(∫

Q

|f(x)|p
)1/p

<∞.

In the case p = ∞, the above norm should be replaced by

|f |∞ := ess sup
x∈Q

|f(x)|.

Hs(Q;Rn) is the Sobolev space of order s ∈ R endowed with its standard
norm ‖ · ‖s.
L2
σ(T2;R2) denotes the space of functions u ∈ L2(T2;R2) such that div u = 0

in T2 and H is the space of those u ∈ L2
σ(T2;R2) for which 〈u〉 :=

∫
T2 u dx = 0.

If Q is a bounded domain with smooth boundary, then H = L2
σ(Q;R2) stands

for the space of functions u ∈ L2(Q;R2) such that div u = 0 in Q and 〈u,n〉 = 0
on ∂Q, where n is the outward unit normal to ∂Q.

In the case of a torus, we set V k = Hk(T2;R2) ∩H and write V = V 1. In the
case of a bounded domain, we define V = H1

0 (Q;R2)∩L2
σ(Q;R2). In both cases,

we denote by V ∗ the dual space of V with respect to the scalar product in L2.

Lp(J ;X) denotes the space of Borel-measurable functions u : J → X for which
‖u‖Lp(J;X) <∞; see page 4 for the definition of this norm.

C(J ;X) is the space of continuous functions on J endowed with the supremum
norm ‖u‖C(J;X) defined on page 4.

Measures and applications

A mapping F : X → Y between two Banach spaces is said to be locally Lipschitz
if for any R > 0 there is CR > 0 such that

‖F (u1) − F (u2)‖Y ≤ CR‖u1 − u2‖X for any u1, u2 ∈ BX(R).

L(X,Y ) denotes the space of continuous linear applications from X to Y . In
the case X = Y , we shall write L(X).

Given a measure µ on a Banach space X, we denote by mk(µ) its kth moment:

mk(µ) =

∫

X

‖u‖kXµ(du).

For any measurable space (Ω,F) and a point a ∈ Ω, we denote by δa the Dirac
measure concentrated at a, that is, δa(Γ) = 1 if Γ ∈ F contains a and δa(Γ) = 0
otherwise.
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Subject Index

π-system, 259
σ-algebra, 5

absorbing set, 32
adapted random process, 6, 60
admissible martingale solution, 251
Alexandrov theorem, 265
augmented filtration, 268

balance relations, 207
Bogolyubov–Krylov argument, 83
Borel σ-algebra, 6
Burgers equation, 105

Calderón–Zygmund theorem, 209
canonical process, 132, 315
canonical space, 315
central limit theorem, viii, 173
characteristic scales, 55
closed random set, 175
co-area form of balance relations, 208
compact random set, 175
complete σ-algebra, 6
complete probability space, 6
completion of a σ-algebra, 6
compound Poisson process, 57
conditional law, 18
countably generated σ-algebra, 261
coupling, 16
coupling operators, 113

Da Prato–Debussche–Odasso theo-
rem, 247

Dirac measure, 316
disintegration, 30
distribution function, 15, 19, 262
distribution of a random variable, 6
Dobrushin lemma, 16
Doob convergence theorem, 181, 281
Doob moment inequality, 57, 59, 69,

280, 296, 297
Doob optional sampling theorem, 73,

75, 129, 281

Doob–Kolmogorov inequality, 80, 269,
271, 280

dual-Lipschitz distance, 8

energy, 55
energy balance, 45, 73
energy inequality, 252
energy spectrum of turbulence, 233
enstrophy, 55
exponential mixing, 98, 101, 106, 140
exponential supermartingale, 280
extension of a Markov process, 103

Fatou lemma, 7
Feller property, 24
filtered probability space, 6
first hitting time, 315
Flandoli–Romito theorem, 251
Foiaş–Prodi inequality, 52
function of bounded variation, 119

Gelfand triple, 46, 266, 267

image of a measure, 5
interpolation, 3
Itô formula, 268

Kantorovich density, 20
Kantorovich distance, 9
Kantorovich functional, 20
Kantorovich–Rubinstein theorem, 21
Khas’minskii relation, 146
Kolmogorov inequality, 81
Kolmogorov–Chapman relation, 22,

29
Krylov estimate, 222, 225, 276

Ladyzhenskaya inequality, 4
law of a random variable, 6
law of iterated logarithm, 170
law of large numbers, 165
Lebesgue spaces, 1
Lebesgue theorem on dominated con-

vergence, 7
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Ledrappier–Le Jan–Crauel theorem,
179

Leray decomposition, 36
Leray projection, 37
Lindeberg condition, 282
Lipschitz domain, 1
local time, 274, 276
Lyapunov–Schmidt reduction, 149

Markov chain, 22
Markov invariant measures, 179
Markov process, 21
Markov property, 22, 28
Markov RDS, 28
Markov selection, 252
Markov semigroups, 22
martingale, 279
martingale approximation, 166, 283
martingale solution, 249
maximal coupling, 16, 98
measurable map, 5, 6
measurable Polish space, 6
measurable space, 5
measure-preserving group, 26
metric of uniform convergence on bounded

intervals, 5
minimum of two measures, 18
mixing, 103
mixing extension, 106
modified Skorokhod metric, 57
monotone class, 259
monotone convergence theorem, 7
mutually singular measures, 12

Navier–Stokes process, 50, 51

Polish space, 4, 6
portmanteau theorem, 14
probability space, 6
product of measurable spaces, 5
progressively measurable random pro-

cess, 6
projection theorem, 261
Prokhorov theorem, 13, 14, 84, 105,

195, 210, 212, 228, 266

quadratic variation, 279

random dynamical system, 26
random kick force, 56
random point attractor, 175
random probability measure, 18, 30
random process, 6
random variable, 6
rate of dissipation of energy, 55, 86
rate of dissipation of enstrophy, 55,

88
Reynolds number, 55
rigged Hilbert space, 267
Ruelle–Perron–Frobenius theorem, 150

smoothing property, 47
Sobolev embedding, 3
Sobolev space, 1, 2
spatially regular white noise, 56
squeezing property, 112
stationary measure, 23, 31, 61, 73
stationary solution, 23, 61, 73
Stokes operator, 38, 54
stopping time, 23
stream function, 47
strong Markov property, 23–25
submartingale, 280
supermartingale, 280

tight family of measures, 13
Tikhonov topology, 5
total variation distance, 8, 10
transition function, 21, 29
trigonometric basis, 43

Ulam theorem, 6, 12, 85, 224
uniformly mixing Markov process,

283
universality of white noise, 57, 79,
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universally measurable subset, 261
usual hypotheses, 6, 67

velocity correlation tensors, 143
vorticity, 55

weak convergence of measures, 13
weight functions, 122

Yosida approximation, 266
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