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Abstract In this paper, we give non-existence theorems for Hopf hypersurfaces in com-
plex two-plane Grassmannians G2(C

m+2) with D-parallel normal Jacobi operator R̄N and
D-parallel structure Jacobi operator Rξ if the distribution D or D⊥ component of the Reeb
vector field is invariant by the shape operator, respectively.
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Introduction

The geometry of real hypersurfaces in complex projective space or in quaternionic projective
space is one of the interesting parts in the field of differential geometry. Until now, there
have been many characterizations for homogeneous hypersurfaces of type (A1), (A2), (B),
(C), (D) and (E) in complex projective space CPm , of type (A1),(A2) and (B) in quater-
nionic projective space HPm or of type (A) and (B) in complex two-plane Grassmannians
G2(C

m+2). Each corresponding geometric feature is classified and investigated by Berndt
and Suh [2,3], Kimura [9] and Martinez and Pérez [10], respectively.
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592 C. J. G. Machado et al.

Let (M̄, ḡ) be a Riemannian manifold. A vector field U along a geodesic γ in a Riemannian
manifold M̄ is said to be a Jacobi field if it satisfies a differential equation

∇̄2
γ̇ U + R̄(U (t), γ̇ (t))γ̇ (t) = 0,

where ∇̄γ̇ and R̄ respectively denote the covariant derivative of the vector field U along
the curve γ in M̄ and the curvature tensor of the Riemannian manifold (M̄, ḡ). Then this
equation is called the Jacobi equation.

The Jacobi operator R̄X for any tangent vector field X at x∈M̄ , is defined by

(R̄X Y )(x) = (R̄(Y, X)X)(x)

for any Y ∈ Tx M̄ , becomes a self adjoint endomorphism of the tangent bundle T M̄ of
M̄ . That is, the Jacobi operator satisfies R̄X∈End(Tx M̄) and is symmetric in the sense of
ḡ(R̄X Y, Z) = ḡ(R̄X Z , Y ) for any vector fields Y and Z on M̄ .

The almost contact structure vector fields {ξ1, ξ2, ξ3} are defined by ξi = −Ji N , i =
1, 2, 3, where {J1, J2, J3} denote a quaternionic Kähler structure of HPm and N a unit
normal field of M in HPm . In a quaternionic projective space HPm Pérez and Suh [11]
have classified real hypersurfaces in HPm with D⊥-parallel curvature tensor ∇ξi R = 0,
i = 1, 2, 3, where R denotes the curvature tensor of M in HPm and D⊥ a distribution
defined by D⊥ = Span {ξ1, ξ2, ξ3}. In such a case, they are congruent to a tube of radius π

4
over a totally geodesic HPk in HPm , 0 ≤ k ≤ m − 1.

Now let us consider such a parallelism related to the curvature tensor for hypersur-
faces in complex two-plane Grassmannians G2(C

m+2) which consists of all complex two-
dimensional linear subspaces in C

m+2. The ambient space G2(C
m+2) has a remarkable

geometric structure. It was known that the complex two-plane Grassmannians G2(C
m+2) is

the unique compact irreducible Riemannian symmetric space equipped with both a Kähler
structure J and a quaternionic Kähler structure J (see Berndt and Suh [2]). Induced from
such structures, some geometric characterizations for real hypersurfaces in G2(C

m+2) are
investigated by Berndt and one of the present authors (see [2,3,17,18]).

As one of the examples Berndt and Suh [2] considered two natural geometric conditions
for hypersurfaces in G2(C

m+2) that [ξ ] = Span {ξ} and D⊥ = Span {ξ1, ξ2, ξ3} are invariant
under the shape operator. By using such conditions and the result in Alekseevskii [1], they
have proved the following

Theorem A Let M be a connected real hypersurface in G2(C
m+2), m ≥ 3. Then both [ξ ]

and D⊥ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(C
m+1) in

G2(C
m+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic HPn

in G2(C
m+2).

The structure vector field ξ of a real hypersurface M in G2(C
m+2) is said to be a Reeb

vector field. If the Reeb vector field ξ of a real hypersurface M in G2(C
m+2) is invariant by

the shape operator, M is said to be a Hopf hypersurface. In such a case, the integral curves
of the Reeb vector field ξ are geodesics (see Berndt and Suh [3]).

In a paper due to Pérez et al. [4] we have introduced a notion of normal Jacobi operator
R̄N for hypersurfaces M in G2(C

m+2) in such a way that

R̄N X = R̄(X, N )N∈ End Tx M, x ∈ M,
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D-parallelism of complex two-plane Grassmannians 593

for any tangent vector field X on M , where R̄ denotes the curvature tensor of G2(C
m+2). The

normal Jacobi operator R̄N is parallel on the distribution D of M in G2(C
m+2) means that

the eigenspaces of the normal Jacobi operator R̄N are parallel along the distribution D of M ,
where D denotes the distribution orthogonal to the distribution D⊥ such that Tx M = D⊕D⊥,
x∈M . Here the eigenspaces of the normal Jacobi operator R̄N are said to be parallel along
the distribution D if they are invariant with respect to any parallel displacement along the
distribution D.

Related to such a normal curvature tensor R̄N , Jeong et al. [7] obtained a non-existence
theorem for Hopf hypersurfaces in G2(C

m+2) with parallel normal Jacobi operator. Motivated
by this fact, in such a paper, we consider more general notion of D-parallelism weaker than
the notion of parallel normal Jacobi operator.

In Sect. 3, we consider a real hypersurface M in G2(C
m+2) with D-parallel normal Jacobi

operator, that is, ∇X R̄N = 0, for all X ∈ D, where ∇, R̄ and N respectively denote the induced
Riemannian connection on M , the curvature tensor of the ambient space G2(C

m+2) and a
unit normal vector of M in G2(C

m+2).
In Sect. 4, we prove a non-existence theorem for hypersurfaces in G2(C

m+2), m ≥ 3,
with D- parallel normal Jacobi operator as follows:

Theorem 1 There do not exist any connected Hopf hypersurfaces in G2(C
m+2), m ≥ 3,

with D-parallel normal Jacobi operator if the distribution D or D⊥ component of the Reeb
vector field is invariant by the shape operator.

On the other hand, Jeong et al. [5] obtained a non-existence theorem for Hopf hyper-
surfaces in G2(C

m+2) with parallel structure Jacobi operator. Moreover, in a paper Pérez
et al. [14] have given a classification of hypersurfaces in complex projective space CPm

with D-parallel structure Jacobi operator. So, in Sect. 4, we also consider hypersurfaces with
D- parallel structure Jacobi operator, that is, ∇X Rξ = 0 for all X ∈ D in complex two-plane
Grassmannians G2(C

m+2).
For any tangent vector field X on M in G2(C

m+2), we calculate the structure Jacobi
operator Rξ in such a way that

Rξ (X) = R(X, ξ)ξ

= X − η(X)ξ −
3∑

ν=1

{
ην(X)ξν − η(X)ην(ξ)ξν

+ 3g(φν X, ξ)φνξ + ην(ξ)φνφX
} + αAX − η(AX)Aξ,

where α denotes the function defined by g(Aξ, ξ). The structure Jacobi operator Rξ is parallel
on the distribution D of M in G2(C

m+2) means that the eigenspaces of the structure Jacobi
operator Rξ are parallel along the distribution D of M . Here the eigenspaces of the structure
Jacobi operator Rξ are said to be parallel along the distribution D if they are invariant with
respect to any parallel displacement along the distribution D (see [5,6]).

Then in Sect. 4, we prove another non-existence theorem for Hopf hypersurfaces in
G2(C

m+2), m ≥ 3 , with D-parallel structure Jacobi operator as follows:

Theorem 2 There do not exist any connected Hopf hypersurfaces in G2(C
m+2), m ≥ 3,

with D-parallel structure Jacobi operator if the distribution D or D⊥ component of the Reeb
vector field is invariant by the shape operator.
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594 C. J. G. Machado et al.

1 Riemannian geometry of G2(C
m+2)

In this section, we summarize basic material about G2(C
m+2), for details we refer to Berndt

and Suh [2,3], and Suh et al. [16–18].
By G2(C

m+2), we denote the set of all complex two-dimensional linear subspaces in
C

m+2. The special unitary group G = SU (m + 2) acts transitively on G2(C
m+2) with

stabilizer isomorphic to K = S(U (2)×U (m)) ⊂ G. Then G2(C
m+2) can be identified with

the homogeneous space G/K , which we equip with the unique analytic structure for which
the natural action of G on G2(C

m+2) becomes analytic. Denote by g and k the Lie algebra
of G and K , respectively, and by m the orthogonal complement of k in g with respect to the
Cartan-Killing form B of g. Then g = k ⊕m is an Ad(K )-invariant reductive decomposition
of g.

We put o = eK and identify ToG2(C
m+2) with m in the usual manner. Since B is negative

definite on g, its negative restricted to m × m yields a positive definite inner product on m.
By Ad(K )-invariance of B this inner product can be extended to a G-invariant Riemannian
metric ḡ on G2(C

m+2).
In this way, G2(C

m+2) becomes a Riemannian homogeneous space, even a Riemannian
symmetric space. For computational reasons, we normalize ḡ such that the maximal sec-
tional curvature of (G2(C

m+2), ḡ) is eight. When m = 1, G2(C
3) is isometric to the two-

dimensional complex projective space CP2 with constant holomorphic sectional curvature
eight. When m = 2, we note that the isomorphism Spin(6) 	 SU (4) yields an isometry
between G2(C

4) and the real Grassmann manifold G+
2 (R6) of oriented two-dimensional

linear subspaces of R
6. In this paper, we will assume m ≥ 3.

The Lie algebra k has the direct sum decomposition k = su(m) ⊕ su(2) ⊕ R, where R

is the center of k. Viewing k as the holonomy algebra of G2(C
m+2), the center R induces a

Kähler structure J and the su(2)-part a quaternionic Kähler structure J on G2(C
m+2).

If J1 is any almost Hermitian structure in J, then J J1 = J1 J , and J J1 is a symmet-
ric endomorphism with (J J1)

2 = I and tr(J J1) = 0. This fact will be used frequently
throughout this paper.

A canonical local basis J1, J2, J3 of J consists of three local almost Hermitian structures
Jν in J such that Jν Jν+1 = Jν+2 = −Jν+1 Jν , where the index is taken modulo three. Since
J is parallel with respect to the Riemannian connection ∇̄ of (G2(C

m+2), ḡ), there exist for
any canonical local basis J1, J2, J3 of J three local one-forms q1, q2, q3 such that

∇̄X Jν = qν+2(X)Jν+1 − qν+1(X)Jν+2 (1.1)

for all vector fields X on G2(C
m+2).

The Riemannian curvature tensor R̄ of G2(C
m+2) is locally given by

R̄(X, Y )Z = ḡ(Y, Z)X − ḡ(X, Z)Y + ḡ(JY, Z)J X

−ḡ(J X, Z)JY − 2ḡ(J X, Y )J Z

+
3∑

ν=1

{ḡ(JνY, Z)Jν X − ḡ(Jν X, Z)JνY

−2ḡ(Jν X, Y )Jν Z}

+
3∑

ν=1

{ḡ(Jν JY, Z)Jν J X − ḡ(Jν J X, Z)Jν JY }, (1.2)

where {J1, J2, J3} denotes a canonical local basis of J.
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D-parallelism of complex two-plane Grassmannians 595

2 Some fundamental formulas

In this section, we derive some basic formulae from the Codazzi equation for a real hyper-
surface in G2(C

m+2) (see [2,3,15–17]).
Let M be a real hypersurface of G2(C

m+2), that is, a hypersurface of G2(C
m+2) with real

codimension one. The induced Riemannian metric on M will be denoted by g, and ∇ denotes
the Riemannian connection of (M, g). Let N be a local unit normal field of M and A the
shape operator of M with respect to N . The Kähler structure J of G2(C

m+2) induces on M an
almost contact metric structure (φ, ξ, η, g). Furthermore, let J1, J2, J3 be a canonical local
basis of J. Then each Jν induces an almost contact metric structure (φν, ξν, ην, g) on M .
Using the above expression (1.2) for the curvature tensor R̄, the Gauss and Codazzi equations
are respectively given by

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y

+g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ

+
3∑

ν=1

{g(φνY, Z)φν X − g(φν X, Z)φνY − 2g(φν X, Y )φν Z}

+
3∑

ν=1

{g(φνφY, Z)φνφX − g(φνφX, Z)φνφY }

−
3∑

ν=1

{η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY }

−
3∑

ν=1

{η(X)g(φνφY, Z) − η(Y )g(φνφX, Z)}ξν

+ g(AY, Z)AX − g(AX, Z)AY

and

(∇X A)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{
ην(X)φνY − ην(Y )φν X − 2g(φν X, Y )ξν

}

+
3∑

ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}

+
3∑

ν=1

{
η(X)ην(φY ) − η(Y )ην(φX)

}
ξν

where R denotes the curvature tensor of a real hypersurface M in G2(C
m+2).

The following identities can be proved in a straightforward method and will be used
frequently in subsequent calculations:

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φξν = φνξ, ην(φX) = η(φν X),

φνφν+1 X = φν+2 X + ην+1(X)ξν,

φν+1φν X = −φν+2 X + ην(X)ξν+1. (2.1)
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596 C. J. G. Machado et al.

Now let us put

J X = φX + η(X)N , Jν X = φν X + ην(X)N (2.2)

for any tangent vector X of M in G2(C
m+2), where N denotes a normal vector of M in

G2(C
m+2). Then from this and the formulas (1.1) and (2.1), we have that

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇X ξ = φ AX, (2.3)

∇X ξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φν AX, (2.4)

(∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX

−g(AX, Y )ξν . (2.5)

Summing up these formulas, we find the following

∇X (φνξ) = (∇Xφν)ξ + φν(∇X ξ)

= qν+2(X)φν+1ξ − qν+1(X)φν+2ξ + φνφ AX

−g(AX, ξ)ξν + η(ξν)AX. (2.6)

Moreover, from J Jν = Jν J , ν = 1, 2, 3, it follows that

φφν X = φνφX + ην(X)ξ − η(X)ξν . (2.7)

3 D-parallelism of the normal Jacobi operator

Now let us consider a real hypersurface M in G2(C
m+2) with D-parallel normal Jacobi

operator R̄N , that is, ∇X R̄N = 0 for any vector field X ∈ D .
Then first of all, we obtained the normal Jacobi operator R̄N , which is given by

R̄N (X) = R̄(X, N )N

= X + 3η(X)ξ + 3
3∑

ν=1

ην(X)ξν

−
3∑

ν=1

{
ην(ξ)(φνφX − η(X)ξν) − ην(φX)φνξ

}
.

Of course, by (2.7) the normal Jacobi operator R̄N is a symmetric endomorphism of Tx M ,
x∈M (see [4]).

Now let us consider a covariant derivative of the normal Jacobi operator R̄N along any
direction X of Tx M , x∈M . Then it is given by

(∇X R̄N )Y = ∇X (R̄N Y ) − R̄N (∇X Y )

= 3g(φ AX, Y )ξ + 3η(Y )φ AX

+3
3∑

ν=1

{
g(φν AX, Y )ξν + ην(Y )φν AX

}

−
3∑

ν=1

[
2ην(φ AX)(φνφY − η(Y )ξν) − g(φν AX, φY )φνξ

−η(Y )ην(AX)φνξ − ην(φY )(φνφ AX − g(AX, ξ)ξν)

]
(3.1)
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D-parallelism of complex two-plane Grassmannians 597

for any tangent vector fields X and Y on M in G2(C
m+2)(see [7]).

Bearing in mind that φξ = 0 and writing ξ = η(X0)X0 + η(ξ1)ξ1, it follows:

0 = φξ

= φ(η(X0)X0 + η(ξ1)ξ1)

= η(X0)φX0 + η(ξ1)φ1(η(X0)X0 + η(ξ1)ξ1)

= η(X0)φX0 + η(X0)η(ξ1)φ1 X0

= η(X0)(φX0 + η(ξ1)φ1 X0).

Lemma 3.1 If we suppose ξ = η(X0)X0 + η(ξ1)ξ1 being η(X0) and η(ξ1) nonnull, then
φX0 = −η(ξ1)φ1 X0.

Lemma 3.2 Let M be a Hopf hypersurface in G2(C
m+2), m ≥ 3, with D-parallel normal

Jacobi operator. If the distribution D or D⊥ component of the Reeb vector field is invariant
by the shape operator, then the Reeb vector field ξ belongs to either the distribution D or the
distribution D⊥.

Proof When the function α = g(Aξ, ξ) identically vanishes, it can be verified directly by
Pérez and Suh [12].

Now it remains to show the case when the function α is non-vanishing. Let us assume
that ξ = η(X0)X0 + η(ξ1)ξ1 for some unit X0 ∈ D, non-zero functions η(X0) and η(ξ1).
By putting X = X0 and Y = X0 in (3.1), we have

0 = (∇X0 R̄N )X0

= 3g(φ AX0, X0)ξ + 3η(X0)φ AX0

+3
3∑

ν=1

{
g(φν AX0, X0)ξν + ην(X0)φν AX0

}

−
3∑

ν=1

[
2ην(φ AX0)(φνφX0 − η(X0)ξν) − g(φν AX0, φX0)φνξ

−η(X0)ην(AX0)φνξ − ην(φX0)(φνφ AX0 − g(AX0, ξ)ξν)

]
. (3.2)

Since M is Hopf and the distributions D or D⊥ component of the Reeb vector field are
invariant by the shape operator, we obtain

AX0 = αX0, Aξ1 = αξ1.

Substituting these formulas into (3.2) gives

0 = 3αη(X0)φX0 +
3∑

ν=1

αg(φν X0, φX0)φνξ.
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Thus

g((∇X0 R̄N )X0, φX0)

= 3αη(X0)η1
2(ξ) + α

3∑

ν=1

g(φν X0, φX0)g(φνξ, φX0)

= 3αη(X0)η1
2(ξ) + α

3∑

ν=1

g(φν X0, φX0)(−ην(ξ)η(X0))

= 3αη(X0)η1
2(ξ) − αg(φ1 X0, φX0)(η1(ξ)η(X0))

= 3αη(X0)η
2(ξ1) + αη2(ξ1)η(X0)

= 4αη2(ξ1)η(X0).

From this, together with the assumption, it makes a contradiction. This means η(X0) = 0 or
η(ξ1) = 0, that is, the Reeb vector ξ belongs to either the distribution D or the distribution
D⊥. 
�

Now we will prove our Theorem 1 in the introduction. That is, a non-existence of Hopf
hypersurfaces in G2(C

m+2) with D-parallel normal Jacobi operator R̄N will be proved in
this section. In order to do this, we need some lemmas as follows:

Lemma 3.3 Let M be a Hopf real hypersurface in G2(C
m+2), m ≥ 3, with D-parallel

normal Jacobi operator and ξ ∈ D⊥. Then g(AD, D⊥) = 0.

Proof Assume that ξ is tangent to D⊥. Then the unit normal N is a singular tangent vector
of G2(C

m+2) of type J N ∈ JN . So there exists an almost Hermitian structure J1 ∈ J such
that J N = J1 N . Then we have

ξ = ξ1, φξ2 = −ξ3, φξ3 = ξ2, φD ⊂ D.

Using (3.1), we consider 0 = (∇X R̄N )ξ for any X ∈ D. Then we get

0 = (∇X R̄N )ξ

= 3φ AX + 3
3∑

ν=1

{
g(φν AX, ξ)ξν + ην(ξ)φν AX

}

−
3∑

ν=1

[
2ην(φ AX)(−ξν) − ην(AX)φνξ

]

= 3φ AX + 3g(φ2 AX, ξ1)ξ2 + 3g(φ3 AX, ξ1)ξ3 + 3φ1 AX

+2η2(φ AX)ξ2 + 2η3(φ AX)ξ3 + η2(AX)φ2ξ + η3(AX)φ3ξ

= 3φ AX + 3η3(AX)ξ2 − 3η2(AX)ξ3 + 3φ1 AX

+2η3(AX)ξ2 − 2η2(AX)ξ3 − η2(AX)ξ3 + η3(AX)ξ2

= 3φ AX + 6η3(AX)ξ2 − 6η2(AX)ξ3 + 3φ1 AX.

Taking its scalar product with ξ2 and with ξ3 respectively gives

0 = 3g(φ AX, ξ2) + 6η3(AX) + 3g(φ1 AX, ξ2)

= 3g(AX, ξ3) + 6η3(AX) − 3g(AX, ξ3)

= 6η3(AX),

and
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D-parallelism of complex two-plane Grassmannians 599

0 = 3g(φ AX, ξ3) − 6η2(AX) + 3g(φ1 AX, ξ3)

= −3g(AX, ξ2) − 6η2(AX) + 3g(AX, ξ2)

= −6η2(AX).

This gives a complete proof of our Lemma. 
�
Lemma 3.4 Under the same assumptions as in Lemma 3.3, if ξ ∈ D, then g(AD, D⊥) = 0.

Proof In this case, we have

0 = (∇X R̄N )ξ

= 3φ AX + 3
3∑

ν=1

g(φν AX, ξ)ξν + 2
3∑

ν=1

ην(φ AX)ξν +
3∑

ν=1

ην(AX)φνξ

= 3φ AX + 5
3∑

ν=1

ην(φ AX)ξν +
3∑

ν=1

ην(AX)φνξ .

Taking its scalar product with φiξ , i = 1, 2, 3, we have

0 = g((∇X R̄N )ξ, φiξ)

= 3g(φ AX, φiξ) + 5
3∑

ν=1

ην(φ AX)g(ξν, φiξ) +
3∑

ν=1

ην(AX)g(φνξ, φiξ)

= 3g(φ AX, φiξ) + ηi (AX)

= −3g(AX, φφiξ) + ηi (AX)

= 3g(AX, ξi ) + ηi (AX)

= 4ηi (AX).

This gives a complete proof of our Lemma. 
�
Then by Lemmas 3.3 and 3.4, together with Theorem A, we know that any real hypersur-

faces M in G2(C
m+2) with D-parallel normal Jacobi operator are locally congruent to real

hypersurfaces of type (A) or type (B). Then in order to give a complete proof of Theorem 1,
in Sect. 4, we will check whether the normal Jacobi operator R̄N of real hypersurfaces of
type (A) or type (B) in G2(C

m+2) is D-parallel or not.

4 D-parallelism of the structure Jacobi operator

In this section, we consider a real hypersurface M in G2(C
m+2) with D-parallel structure

Jacobi operator Rξ , that is, ∇X Rξ = 0 for any vector field X ∈ D.

Then first of all, we obtained the structure Jacobi operator Rξ , which is given by

Rξ (X) = R(X, ξ)ξ

= X − η(X)ξ −
3∑

ν=1

{
ην(X)ξν − η(X)ην(ξ)ξν

+ 3g(φν X, ξ)φνξ + ην(ξ)φνφX
} + αAX − η(AX)Aξ.

Of course, the structure Jacobi operator Rξ is a symmetric endomorphism of Tx M , x∈M
(see [5]).
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Now let us consider a covariant derivative of the structure Jacobi operator Rξ along any
direction X of Tx M , x∈M . Then it is given by

(∇X Rξ )Y = −g(φ AX, Y )ξ − η(Y )φ AX

−
3∑

ν=1

[
g(φν AX, Y )ξν − 2η(Y )ην(φ AX)ξν + ην(Y )φν AX

+3
{

g(φν AX, φY )φνξ + η(Y )ην(AX)φνξ + ην(φY )
(
φνφ AX

−η(AX)ξν

)} + 4ην(ξ)
(
ην(φY )AX − g(AX, Y )φνξ

) + 2ην(φ AX)φνφY
]

+η
(
(∇X A) ξ

)
AY + 2η(Aφ AX)AY + η(Aξ)(∇X A)Y − η

(
(∇X A)Y

)
Aξ

−g(AY, φ AX)Aξ − η(AY )(∇X A)ξ − η(AY )Aφ AX (4.1)

for any tangent vector fields X and Y on M in G2(C
m+2)(see [5]).

The following Lemma 4.1 [3] will be used in the proof of our Lemmas.

Lemma 4.1 If M is a connected orientable real hypersurface in G2(C
m+2) with geodesic

Reeb flow, then

αg((Aφ + φ A)X, Y ) − 2g(Aφ AX, Y ) + 2g(φX, Y )

= 2
3∑

ν=1

{
ην(X)ην(φY ) − ην(Y )ην(φX) − g(φν X, Y )ην(ξ)

−2η(X)ην(φY )ην(ξ) + 2η(Y )ην(φX)ην(ξ)
}
.

Lemma 4.2 Let M be a Hopf hypersurface in G2(C
m+2), m ≥ 3, with D-parallel structure

Jacobi operator. If the distribution D or D⊥ component of the Reeb vector field is invariant
by the shape operator, then the Reeb vector field ξ belongs to either the distribution D or the
distribution D⊥.

Proof When the function α = g(Aξ, ξ) identically vanishes, it can be verified directly by
Pérez and Suh [12].

Now it remains to show the case when the function α is non-vanishing. Let us assume that
ξ = η(X0)X0 + η(ξ1)ξ1 for some unit X0 ∈ D, non-zero functions η(X0) and η(ξ1). Taking
X = X0 in Lemma 4.1 and using AX = αX0 and φX0 = −η(ξ1)φ1 X0 it follows

αAφX0 + α2φX0 − 2αAφX0 + 2φX0 = −2η1(ξ)φ1 X0 + 4η2(X0)η1(ξ)φ1 X0

which gives

AφX0 = α2 + 4η2(X0)

α
φX0 .

123



D-parallelism of complex two-plane Grassmannians 601

As (∇X Rξ )Y = 0 taking X ∈ D for X = X0 and Y = ξ in (4.1), we get

0 = (∇X0 Rξ )ξ

= −φ AX0 − αAφ AX0 − αη1(ξ)φ1 X0 + 4αη1(ξ)η(X0)φ1ξ

= −αφX0 − α2 AφX0 − αη1(ξ)φ1 X0 + 4αη1(ξ)η2(X0)φ1 X0

= −αφX0 − α2 AφX0 + αφX0 − 4αη2(X0)φX0

= −α{α2 + 4η2(X0)}φX0 − 4αη2(X0)φX0

= −α3φX0 − 4αη2(X0)φX0 − 4αη2(X0)φX0

= (−α3 − 8αη2(X0))φX0.

From this, taking its scalar product with φX0, we have

0 = g((∇X0 Rξ )ξ, φX0)

= (−α3 − 8αη2(X0))g(φX0, φX0)

= (−α3 − 8αη2(X0))η
2
1(ξ),

where

g(φX0, φX0) = −g(φ2 X0, X0) = 1 − η2(X0) = η2
1(ξ).

Thus

−α3 − 8αη2(X0) = 0.

From this, we get

η2(X0) = −α2

8
.

This makes a contradiction, so the result follows. 
�
Moreover, in order to prove our theorem, we need the following

Lemma 4.3 Let M be a Hopf hypersurface in G2(C
m+2), m ≥ 3, with D-parallel structure

Jacobi operator and ξ ∈ D⊥. Then g(AD, D⊥) = 0.

Proof First we get

0 = (∇X Rξ )ξ

= −φ AX − αAφ AX − 2η3(AX)ξ2 + 2η2(AX)ξ3 − φ1 AX (4.2)

if X ∈ D.
When the function α = g(Aξ, ξ) identically vanishes, it can be verified by (4.2). In fact,

by taking its scalar product with ξ2 and ξ3 in (4.2), respectively, we have g(AD, D⊥) = 0.
Now it remains to show the case when the function α is non-vanishing. Taking its scalar

product with ξ2

αg(Aφ AX, ξ2) + 2η3(AX) = 0.

On the other hand, from Lemma 4.1

2g(Aφ AX, ξ2) = αg(AφX, ξ2) + 2η3(AX).
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Therefore 0 = α2g(AφX, ξ2) + (α2 + 4)η3(AX). Thus

g(AφX, ξ2) = −α2 + 4

α2 η3(AX). (4.3)

If we change X by φX

− α2g(AX, ξ2) + (α2 + 4)η3(AφX) = 0 (4.4)

and taking its scalar product with ξ3 from (4.2) we have

αg(Aφ AX, ξ3) − 2η2(AX) = 0.

From Lemma 4.1, we get

2g(Aφ AX, ξ3) = αg(AφX, ξ3) − αη2(AX),

which yields

0 = α2g(AφX, ξ3) − (α2 + 4)η2(AX).

Thus

g(AφX, ξ3) = α2 + 4

α2 η2(AX). (4.5)

Now changing X by φX

α2g(AX, ξ3) + (α2 + 4)η2(AφX) = 0. (4.6)

By applying (4.5) to (4.4), we have the following

0 =
(

−α2 + (α2 + 4)2

α2

)
η2(AX),

which gives (8α2 + 16)η2(AX) = 0, that is, η2(AX) = 0 for any X ∈ D.
Moreover, by applying (4.3) to (4.6), we have

0 =
(

−α2 + (α2 + 4)2

α2

)
η3(AX).

Similarly η3(AX) = 0 for any X ∈ D. Thus we have g(AD, D⊥) = 0. 
�
Lemma 4.4 Let M be a Hopf hypersurface in G2(C

m+2), m ≥ 3, with D-parallel structure
Jacobi operator and ξ ∈ D. Then g(AD, D⊥) = 0.

Proof As now 0 = g((∇X Rξ )Y, ξ) with ξ ∈ D it follows

0 = −g(φ AX, Y ) −
3∑

ν=1

[
ην(Y )g(φν AX, ξ) + 3ην(φY )g(φνφ AX, ξ)

+2ην(φ AX)g(φνφY, ξ)
]

− αg(AY, φ AX) (4.7)

for any tangent vector fields X and Y on M in G2(C
m+2).

Put the subset D0 of D as D0 = {X ∈ D| X⊥ξ, φ1ξ, φ2ξ, φ3ξ }. Then the tangent vector
space Tx M for any point x ∈ M is decomposed as

Tx M = D ⊕ D⊥ = [ξ ] ⊕ [φ1ξ, φ2ξ, φ3ξ ] ⊕ D0 ⊕ D⊥,
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where [φ1ξ, φ2ξ, φ3ξ ] denotes a subspace of the distribution D spanned by the vectors
{φ1ξ, φ2ξ, φ3ξ}.

In order to show that g(AX, ξμ) = 0 for any X ∈ D and μ = 1, 2, 3, first we consider
for X = ξ . Then we have g(Aξ, ξμ) = αg(ξ, ξμ) = 0 for any μ = 1, 2, 3.

Next, we consider the case that X ∈ [φ1ξ, φ2ξ, φ3ξ ]. Put X = φνξ, ν = 1, 2, 3. Since
η(ξν) = 0 for any ν = 1, 2, 3, we see that g(∇ξμξ, ξν) = −g(ξ,∇ξμξν) for any μ = 1, 2, 3.
Thus we have

g(Aφνξ, ξμ) = g(φξν, Aξμ)

= −g(ξν, φ Aξμ)

= −g(ξν,∇ξμξ)

= g(∇ξμξν, ξ)

= g(qν+2(ξμ)ξν+1 − qν+1(ξμ)ξν+2 + φν Aξμ, ξ)

= g(φν Aξμ, ξ)

= −g(Aφνξ, ξμ) .

Consequently we have

g(Aφνξ, ξμ) = 0

for μ, ν = 1, 2, 3.
Finally, we consider the case that any X ∈ D0. To avoid confusion, we put X = X0 ∈ D0,

where the distribution D0 is defined by

D0 = {X ∈ D| X⊥ξ, φ1ξ, φ2ξ, φ3ξ}.
By putting X = X0 ∈ D0 and Y = ξi , i = 1, 2, 3 in (4.6), we have

0 = −g(φ AX0, ξi ) −
3∑

ν=1

[
ην(ξi )g(φν AX0, ξ) + 3ην(φξi )g(φνφ AX0, ξ)

+2ην(φ AX0)g(φνφξi , ξ)
]

− αg(Aξi , φ AX0)

= −αg(Aξi , φ AX0),

where in the second equality, we have used ην(φξi ) = 0 and

g(φνφ, ξ) = −g(φξi , φνξ) = g(φ2ξi , ξν) = −δiν .

So we consider the two cases, that is, α = 0 or g(Aφ AX0, ξi ) = 0.

CASE 1. α = 0.
By putting X = X0 ∈ D0 and Y = φξi , i = 1, 2, 3 in (4.7), we have

0 = −g(φ AX0, φξi ) −
3∑

ν=1

[
ην(φξ i )g(φν AX0, ξ) + 3ην(φφξi )g(φνφ AX0, ξ)

+2ην(φ AX0)g(φνφφξi , ξ)
]
.

From this, we obtain the following

0 = −g(AX0, ξi ) + 3g(φiφ AX0, ξ) (4.8)
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because

g(φ AX0, φξi ) = g(AX0, ξi ),

ην(φξ i ) = 0,

ην(φφξi ) = −ην(ξi ),

and

g(φνφφξi , ξ) = 0.

From (4.8), by using g(φiφ AX0, ξ) = −g(AX0, ξi ) we have

0 = −4g(AX0, ξi ).

So this yields

g(AX0, ξi ) = 0, i = 1, 2, 3

for any X0 ∈ D0.
CASE 2. g(Aφ AX0, ξi ) = 0.
Taking X = X0 ∈ D0 and Y = ξi , i = 1, 2, 3 in Lemma 4.1 and using ξ ∈ D it follows

0 = αg(AφX0, ξi ) + αg(φ AX0, ξi ) − 2g(Aφ AX0, ξi )

for any X0 ∈ D0.

And we knew that g(φ AX0, ξi ) = 0 and g(Aφ AX0, ξi ) = 0.

So we have

αg(AφX0, ξi ) = 0.

Thus we consider the two cases that α = 0 or g(AφX0, ξi ) = 0.

SUBCASE 2-1. α = 0.
By the result of CASE 1, we have

g(AX0, ξi ) = 0, i = 1, 2, 3

for any X0 ∈ D0.
SUBCASE 2-2. g(AφX0, ξi ) = 0.
If X0 ∈ D0, then φX0 ∈ D0. So let us replace X0 by φX0 in this case. Then we have

0 = g(Aφ2 X0, ξi )

= g(A(−X0 + η(X0)ξ), ξi )

= −g(AX0, ξi )

for any X0 ∈ D0 and i = 1, 2, 3.
This gives a complete proof of our Lemma. 
�
Then by Lemmas 4.3 and 4.4, together with Theorem A, we know that any real hypersur-

faces M in G2(C
m+2) with D-parallel structure Jacobi operator are locally congruent to real

hypersurfaces of type (A) or type (B). Then in order to give a complete proof of Theorem 2,
in this section we will check whether the normal Jacobi operator Rξ of real hypersurfaces of
type (A) or type (B) in G2(C

m+2) is D-parallel or not.
Now including the result in Sect. 3 related to the normal Jacobi operator R̄N , we want to

check whether real hypersurfaces of type (A) or of type (B) mentioned in Theorem A could
satisfy ∇D R̄N = 0 or ∇D Rξ = 0.

In order to do this, we introduce a proposition due to Berndt and Suh [2] as follows:
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Proposition A Let M be a connected real hypersurface of G2(C
m+2). Suppose that AD ⊂

D, Aξ = αξ , and ξ is tangent to D⊥. Let J1 ∈ J be the almost Hermitian structure such
that J N = J1 N. Then M has three (if r = π/2

√
8) or four (otherwise) distinct constant

principal curvatures

α = √
8 cot(

√
8r) , β = √

2 cot(
√

2r) , λ = −√
2 tan(

√
2r), μ = 0

with some r ∈ (0, π/
√

8). The corresponding multiplicities are

m(α) = 1 , m(β) = 2 , m(λ) = 2m − 2 = m(μ),

and the corresponding eigenspaces we have

Tα = Rξ = RJ N = Rξ1,

Tβ = C
⊥ξ = C

⊥N = Rξ2 ⊕ Rξ3,

Tλ = {X |X⊥Hξ, J X = J1 X},
Tμ = {X |X⊥Hξ, J X = −J1 X},

where Rξ , Cξ and Hξ respectively denotes real, complex and quaternionic span of the
structure vector ξ and C

⊥ξ denotes the orthogonal complement of Cξ in Hξ .

First, let us check ∇D R̄N = 0 on the distribution D for ξ ∈ D⊥. By taking ξ ∈ D⊥ and
X ∈ D, we get

(∇X R̄N )ξ = 3φ AX + 6η3(AX)ξ2 − 6η2(AX)ξ3 + 3φ1 AX.

From Proposition A if Xi ∈ Tλ we have

(∇Xi R̄N )ξ = 3φ AXi + 3φ1 AXi = 3λφXi + 3λφ1 Xi = 6λφXi .

If (∇Xi R̄N )ξ = 0, then λ = 0 but λ = −√
2 tan(

√
2r) for some r ∈ (0, π/

√
8). Thus, in

this case, no real hypersurface satisfies our condition.
Next let us consider D-parallesm for the structure Jacobi operator Rξ for ξ ∈ D⊥ men-

tioned in the introduction. That is, let us assume that ∇D Rξ = 0 for ξ ∈ D⊥. This gives

(∇X Rξ )ξ = −φ AX − αAφ AX − 2η3(AX)ξ2 + 2η2(AX)ξ3 − φ1 AX

for X ∈ D. Bearing in mind Proposition A, taking Xi ∈ Tλ we have

(∇Xi Rξ )ξ = −φ AXi − αAφ AXi − 2η3(AXi )ξ2 + 2η2(AXi )ξ3 − φ1 AXi

= −λφXi − αλAφXi − λφ1 Xi

= −2λφXi − αλAφXi .

Let us see that if Xi ∈ Tλ then φXi ∈ Tλ.
Firstly, if Xi ∈ Tλ then Xi ⊥ Hξ = {ξ, N , ξ2, ξ3}. Thus φXi ⊥ Hξ . And if Xi ∈ Tλ then

φ(φXi ) = φ1(φXi ). In fact,

φ1φXi = φφ1 Xi − η1(Xi )ξ + η(Xi )ξ1 = φφ1 Xi = φ(φXi ).

So, as φXi ∈ Tλ we have

(∇Xi Rξ )ξ = −2λφXi − αλAφXi

= −2λφXi − αλ2φXi

= (−2λ − αλ2)φXi .
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If (∇Xi Rξ )ξ = 0 then 2λ + αλ2 = 0. This means either λ = 0 or 2 + αλ = 0 for some
r ∈ (0, π/

√
8). In the first case, λ = 0 for some r ∈ (0, π/

√
8), this gives a contradiction.

Now let us consider the latter case, αλ + 2 = 0, we obtain

0 =
[ (√

8 cot
(√

8r
)) (

−√
2 tan

(√
2r

)) ]
+ 2

= −4 cot
(√

8r
)

tan
(√

2r
)

+ 2

= 2tan2
(√

2r
)

.

Thus tan(
√

2r) = 0 for some r ∈ (0, π/
√

8), which gives a contradiction.
On the other hand, we recall a proposition due to Berndt and Suh [2] as follows:

Proposition B Let M be a connected real hypersurface of G2(C
m+2). Suppose that AD ⊂

D, Aξ = αξ , and ξ is tangent to D. Then the quaternionic dimension m of G2(C
m+2) is

even, say m = 2n, and M has five distinct constant principal curvatures

α = −2 tan(2r) , β = 2 cot(2r) , γ = 0 , λ = cot(r) , μ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1 , m(β) = 3 = m(γ ) , m(λ) = 4n − 4 = m(μ)

and the corresponding eigenspaces are

Tα = Rξ , Tβ = JJξ , Tγ = Jξ , Tλ , Tμ ,

where

Tλ ⊕ Tμ = (HCξ)⊥ , JTλ = Tλ , JTμ = Tμ , J Tλ = Tμ.

First let us consider D-parallelism for the normal Jacobi operator R̄N when the Reeb
vector field ξ∈D. By taking ξ ∈ D and any X ∈ D, we get

(∇X R̄N )ξ = 3φ AX + 5
3∑

ν=1

ην(φ AX)ξν +
3∑

ν=1

ην(AX)φνξ.

From Proposition B, taking Xi ∈ Tλ, we have

(∇Xi R̄N )ξ = 3φ AXi + 5
3∑

ν=1

ην(φ AXi )ξν +
3∑

ν=1

ην(AXi )φνξ

= 3φ AXi + 5
3∑

ν=1

ην(φ AXi )ξν

= 3λφXi + 5λ

3∑

ν=1

ην(φXi )ξν

= 3λφXi .

If now (∇Xi R̄N )ξ = 0 for Xi ∈ Tλ, then λ = 0 for some r ∈ (0, π/4) which gives a
contradiction.
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Next, let us consider D-parallelism for the structure Jacobi operator Rξ when the Reeb
vector field ξ ∈ D. By taking ξ ∈ D and any X ∈ D, we have

(∇X Rξ )ξ = −φ AX − αAφ AX −
3∑

ν=1

{
− ην(φ AX)ξν + 3ην(AX)φνξ

}
.

Bearing in mind Proposition B for Xi ∈ Tλ it follows

(∇Xi Rξ )ξ = −φ AXi − αAφ AXi −
3∑

ν=1

{
− ην(φ AXi )ξν + 3ην(AXi )φνξ

}

= −λφXi − αλAφXi .

If (∇Xi Rξ )ξ = 0, then we get

0 = λφXi + αλAφXi

= λφXi + αλμφXi

= (λ + αλμ)φXi .

Thus we have λ(1 + αμ) = 0. For the case where λ = 0, we can make a contradiction,
because λ = cot(r) never vanishing for some r ∈ (0, π/4). This yields

1 + αμ = 1 + (−2 tan(2r))(− tan(r)) = 1 + 2 tan(2r) tan(r) = 0

for some r ∈ (0, π/4), which gives 2
[

2 tan(r)

1−tan2(r)

]
tan(r) + 1 = 0. From this, we have

4tan2(r) = −(1 − tan2(r)) = −1 + tan2(r).

Then it follows

3tan2(r) = −1.

This gives a contradiction.
Summing up all the formulas mentioned in Sects. 3 and 4, we know that both normal

Jacobi operator R̄N and structure Jacobi operator Rξ for any hypersurfaces of type (A) or
type (B) in Theorem A cannot satisfy D-parallelism. From this, we complete the proof of
our Theorems 1 and 2 in the introduction.
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