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Abstract

This work is concerned with Mathieu�s equation - a classical dif-
ferential equation, which has the form of a linear second-order or-
dinary di¤erential equation with Cosine-type periodic forcing of the
sti¤ness coe¢cient, and its di¤erent generalisations/extensions. These
extensions include: the e¤ects of linear viscous damping, geometric
nonlinearity, damping nonlinearity, fractional derivative terms, delay
terms, quasiperiodic excitation or elliptic-type excitation. The aim
is to provide a systematic overview of the methods to determine the
corresponding stability chart, its structure and features, and how it
di¤ers from that of the classical Mathieu�s equation.
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1 Introduction

Mathieu�s equation is one of the archetypical equations of Nonlinear Vibra-
tions Theory [1]. However, this equation is not only associated with this
�eld, but due to the tools and techniques needed for its quantitative analysis
and diverse applications, it appears also in Applied Mathematics [2]-[4] and
in many engineering �elds [5]-[7].
The form of Mathieu�s equation is very simple - it is a linear second-order

ordinary di¤erential equation, which di¤ers from the one corresponding to
a simple harmonic oscillator in the existence of a time-varying (periodic)
forcing of the sti¤ness coe¢cient as follows:

d2x

dt2
+ (� + � cos t) x = 0; (1)

where � and � are constant parameters, while x is a dependent variable (its
mechanical interpretation will be de�ned in Section 2.1) and t is time. So,
the simple harmonic oscillator is obtained for � = 0, and the sti¤ness pa-
rameter � corresponds then to the square of its natural frequency, i.e. !0
=
p
�. It is well-known that this oscillator performs free vibrations around

the stable equilibrium position x = 0. However, if the sti¤ness term contains
the parametric excitation, i.e. � 6= 0, the motion can stay bounded (this case
is referred to as stable) or the motion becomes unbounded (this case is re-
ferred to as unstable). The occurrence of one of these two outcomes depends
on the combination of the parameters � and �. When presented graphically,
this gives the so-called stability chart with regions of stability and regions
of instability (tongues) separated by the so-called transition curves, enabling
one to clearly determine the resulting behaviour and the stability property
mentioned.
Historically speaking, what is now termed �Mathieu�s equation� is at-

tributed to Mathieu�s investigations of vibrations in an elliptic drum from
1868 [8]. The extract from this work is presented in Appendix A. It is shown
therein how the derivation of Eq. (1) stems from the Helmholtz equation
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for the vibrations of a membrane with an elliptic boundary. Mathieu also
developed the power series expansion method, determining the mutual rela-
tionships between the sti¤ness parameter and the amplitude of parametric
excitation and the respective solutions of motion. These solutions are called
after him �Mathieu functions� and are presented in Appendix B. The rela-
tionships between the sti¤ness parameter and the amplitude of parametric
excitation can be presented graphically (but Mathieu did not do it at that
time) and represent the transition curves mentioned above.
A few subsequent important developments of Mathieu�s equation are

listed below [3]:
1878 Heine expresses the solution as an in�nite continued fraction [9].
1883 Floquet presents a generalized treatment of di¤erential equa-

tions with periodic coe¢cients [10].
1886 Hill expresses solution as an in�nite determinant [11].
1887 Lord Rayleigh (J.W. Strutt) applies Mathieu�s equation toMelde�s

problem (a tuning fork with an attached string) [12].
1908 Sieger presents the application to di¤raction of electromagnetic

waves by an elliptic cylinder [13].
1912 Whittaker expresses solution as an integral equation [14].
1915 Ince publishes the �rst of 18 papers on Mathieu functions, in-

cluding:
1927 Ince introduces the stability chart [15].
Note that the stability chart is sometimes called �Strutt diagram� or

�Strutt-Ince diagram�. However, Strutt�s work (M.J.O. Strutt, not to be
confused with Lord Rayleigh, who is J.W. Strutt) with this chart [16] was
published later than Ince�s. Thus, it was Ince who �rst presented it graphi-
cally and his �gure from [15] is redrawn and included in Appendix B.
The determination and description of the stability chart is the focus of

this work. Besides this, the aim is to show how its structure and features
change as the form given by Eq. (1) is modi�ed by additional or di¤erent
geometric, damping and excitation terms. This work is organized as follows.
First, a brief overview of mechanical models that are associated with classical
Mathieu�s equation are given in Section 2. In addition, certain mathematical
tools for its quantitative analysis are presented in Section 3, yielding the basic
structure and features of the stability chart. Section 4 is concerned with the
in�uence of geometric and damping nonlinearities on this stability chart (it
should be noted that Sections 2,3, and 4.1 and Appendix C are strongly based
on Rand�s online notes [1]). Section 5 deals with the in�uence of a delay term
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and Section 6 with the e¤ects of a fractional-derivative term. Sections 7 and
8 deal with the e¤ects of di¤erent types of excitation: quasiperiodic and
elliptic-type excitations.

2 Classical Mathieu�s equation: mechanical

models and applications

Generally speaking and related to nonlinear vibration problems, Mathieu�s
equation in its classical form (1) is associated with di¤erential equations de-
rived in two general cases [1]: Case 1 - in systems with periodic forcing, and
Case 2 - in stability studies of periodic motions in nonlinear autonomous
systems.

As illustrative example of Case 1 is a mathematical pendulum whose
support moves periodically in a vertical direction (Figure 1a). The governing
di¤erential equation is

d2x

dt2
+

�
g

L
� A

L
cos t

�
sin x = 0; (2)

where x is the generalised coordinate being the angle of de�ection, g is the
acceleration of gravity, L is the pendulum�s length, while the vertical motion
of the support is A cos t. Two equilibrium solutions exist: x = 0 or x = �.
In order to investigate their stability, one would linearize Eq. (2) about the
desired equilibrium, deriving an equation of the form of Eq. (1).
If the motion of the support is de�ned by A cos
t, the equation of motion

for small x has the form

d2x

dt2
+

�
!20 �

A
2

L
cos
t

�
x = 0; (3)

in which one can recognize two frequencies: the natural frequency !0 =
p
g=L

and the excitation frequency 
. However, by introducing � = 
t, one can
obtain the form given by Eq. (1) with � = g=(L
2), � = �A=L.
Moreover we can consider the case of the vertically forced inverted pen-

dulum by setting y = x � �, whereupon the small y di¤erential equation
becomes

d2y

dt2
�
�
!20 �

A
2

L
cos
t

�
y = 0; (4)
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Note that in this case the parameter � is negative, and hence the unforced
equilibrium y = 0, i.e. x = �, is unstable. Nevertheless we will show that the
equilibrium can be made stable by an appropriate choice of parameter values.
This remarkable example was evidently �rst considered by A. Stephenson in
1908 [17] and [18].
Additional examples that have the same governing equations are, for in-

stance: a frequency-modulated tuned circuit, the Paul trap for charged par-
ticles, stability of a �oating body, the mirror trap for neutral particles [7],
certain autoparametric vibration absorbers [19], stability of elastic systems
(bars, for example) under certain time-varying loading [20], asymmetric shaft
and bearings in rotor dynamics [21], torsional motions of a rotor in contact
with a stator [22], etc. Additional examples from other �elds include those
from aerospace engineering: for example, helicopter rotor blades in forward
�ight, attitude stability of satellites in elliptic orbits) and biology (for in-
stance, heart rhythms, membrane vibrations in the inner ear).
As an example of Case 2, one can consider a system called �the particle

in the plane� (Figure 1b), which was �rst studied in [23], [24]. It contains a
particle of unit mass which is constrained to move in the x-y plane, and is
restrained by two linear springs, each with spring constant k of 1=2. Each
of the two springs has unstretched length L. The anchor points of the two
springs are located on the x axis at x = 1 and x = �1. This autonomous
two-degree-of-freedom system has the following equations of motion [23]:

d2x

dt2
+ (x+ 1) f1 (x; y) + f2 (x; y) = 0; (5)

d2y

dt2
+ yf1 (x; y) + yf2 (x; y) = 0; (6)

f1 (x; y) =
1

2

0

@1� L
q�
(1 + x)2 + y2

�

1

A ; (7)

f2 (x; y) =
1

2

0

@1� L
q�
(1� x)2 + y2

�

1

A : (8)

This system exhibits an exact solution corresponding to a mode of vibration
in which the particle moves along the x axis, i.e.:

x = A cos t; y = 0 (9)
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In order to determine the stability of this motion, one must �rst derive the
equations of motion, then substitute x = A cos t + u; y = 0 + v, where
u and v are small deviations from the motion (9), and then linearize in u
and v. This results in two linear di¤erential equations on u and v. The u
equation turns out to be the simple harmonic oscillator, and cannot produce
instability. The v equation is [1]:

d2v

dt2
+

�
1� L� A2 cos2 t

1� A2 cos2 t

�
v = 0: (10)

Expanding (10) for small A and setting � = 2t, one obtains

d2v

d� 2
+

�
2� 2L� A2L

8
� A2L

8
cos � +O(A4)

�
v = 0; (11)

which is, to O(A4), in the form of Mathieu�s equation (1).

3 Classical Mathieu�s equation: analyses by

di¤erent approaches

This Section is divided into two subsections related to two forms of Mathieu�s
equation: undamped (Section 3.1) and linearly viscously damped (Section
3.2). The �rst subsection includes the presentation of several quantitative
techniques that one can use to solve it: a perturbation method, Floquet
theory in conjuction with numerical simulations and harmonic balancing.

3.1 Undamped case

3.1.1 Perturbation method

In order to �nd a general solution to Mathieu�s equation (1) for small �, one
can use the two variable expansion method [1], [25], [26]. Since Eq. (1) is
linear, there is no need to stretch time, and one can set � = t and � = �t,
yielding

@2x

@�2
+ 2�

@2x

@�@�
+ �2

@2x

@�2
+ (� + � cos �) x = 0: (12)
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Next, x is expanded into a power series as follows:

x(�; �) = x0(�; �) + �x1(�; �) + � � � : (13)

Substituting Eq. (13) into Eq. (12), neglecting terms of O(�2), and collecting
terms of the same power of � gives:

@2x0

@�2
+ � x0 = 0; (14)

@2x1

@�2
+ � x1 = �2 @

2x0
@�@�

� x0 cos �: (15)

Having the form of the equation of motion of a simple harmonic oscillator,
the general solution to Eq. (14) is taken in the form:

x0(�; �) = A(�) cos
p
� � +B(�) sin

p
� �; (16)

but note that the amplitudes vary with slow time �. Substituting Eq. (16)
into Eq. (15), one derives:

@2x1

@�2
+ � x1 = 2

p
�
dA

d�
sin
p
� � � 2

p
�
dB

d�
cos
p
� �

�A cos
p
� � cos � �B sin

p
� � cos �: (17)

Using identities for products of two trig functions, this becomes

@2x1

@�2
+ � x1 = 2

p
�
dA

d�
sin
p
� � � 2

p
�
dB

d�
cos
p
� �

�A
2

�
cos(

p
� + 1)� + cos(

p
� � 1)�

�

�B
2

�
sin(

p
� + 1)� + sin(

p
� � 1)�

�
: (18)

For a general value of �, the �rst and second term on the right-hand side
represent resonance terms and would cause unboundedness of the solution.
The removal of resonance terms gives the trivial slow �ow:

dA

d�
= 0;

dB

d�
= 0: (19)
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This means that for general �, the cos t driving term in Mathieu�s equation
(1) has no e¤ect. However, if we choose � = 1

4
, Eq. (18) becomes

@2x1

@�2
+
1

4
x1 =

dA

d�
sin

�

2
� dB

d�
cos

�

2

�A
2

�
cos

3�

2
+ cos

�

2

�

�B
2

�
sin
3�

2
� sin �

2

�
: (20)

Now, there are additional resonance terms and their removal yields the fol-
lowing slow �ow:

dA

d�
= �B

2
;

dB

d�
= �A

2
) d2A

d�2
=
A

4
: (21)

It can be concluded that A(�) and B(�) grow exponentially, and, thus, the
parameter value � = 1

4
causes instability. This corresponds to a 2:1 subhar-

monic resonance in which the driving frequency is twice the natural frequency.

This may be generalized by �detuning� the resonance, that is, by expand-
ing � in a power series in � [1]:

� =
1

4
+ �1�+ �2�

2 + � � � : (22)

Now Eq. (15) gets an additional term:

@2x1

@�2
+
1

4
x1 = �2

@2x0
@�@�

� x0 cos � � �1x0; (23)

which results in the following additional terms in the slow �ow Eqs. (21):

dA

d�
=

�
�1 �

1

2

�
B;

dB

d�
= �

�
�1 +

1

2

�
A ) d2A

d�2
+

�
�21 �

1

4

�
A = 0:

(24)
It is seen now that A(�) and B(�) will be sine and cosine functions of slow

time � if �21 �
1

4
> 0, that is, if either �1 >

1

2
or �1 < �1

2
. Thus, the
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following two curves in the �-� plane represent stability changes, and are
called transition curves as noted in the Introduction:

� =
1

4
� �

2
+O(�2): (25)

These two transition curves emanate from the point � = 1

4
on the � axis and

de�ne a region of instability called a tongue (Figure 2a) as also noted in the
Introduction. Inside the tongue, for small �, x grows in time (Figure 2b), so
this region is labelled by U (unstable). Equations (16) and (24) imply that
outside the tongue (but not in or near another resonance tongue), x is the
sum of terms each of which is the product of two periodic (sinusoidal) func-
tions with generally incommensurate frequencies, that is, x is a quasiperiodic
function of t (Figure 2c) and this region is labelled by S (stable).

3.1.2 Floquet theory and numerical approach

This section is concerned with the application of Floquet theory - the general
theory of linear di¤erential equations with periodic coe¢cients, to Mathieu�s
equation (1) [1]. When using perturbation analysis, the parameter � is as-
sumed to be small (� << 1), while this assumption is not required and large
values of epsilon can be used in this approach.
First, Mathieu�s equation (1) is represented in a generalization form,

called Hill�s equation:

d2x

dt2
+ f(t) x = 0; f(t+ T ) = f(t): (26)

Here x and f are scalars, and f(t) represents a general periodic function with
period T . Thus, in the case of Eq. (1), one has f(t) = �+ � cos t and T = 2�.

By de�ning x1 = x and x2 =
dx

dt
, Eq. (26) can be written as a system of

two �rst order ordinary di¤erential equations:

d

dt

�
x1
x2

�
=

�
0 1

�f(t) 0

� �
x1
x2

�
: (27)

Next, a fundamental solution matrix out of two solution vectors,

�
x11(t)
x12(t)

�

and

�
x21(t)
x22(t)

�
is constructed, satisfying the initial conditions:

�
x11(0)
x12(0)

�
=

�
1
0

�
;

�
x21(0)
x22(0)

�
=

�
0
1

�
: (28)
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The matrix C is the evaluation of the fundamental solution matrix at time
T :

C =

�
x11(T ) x21(T )
x12(T ) x22(T )

�
: (29)

From Floquet theory [1], it is known that stability is determined by the
eigenvalues (characteristic multipliers) of C:

�2 � (trC)�+ detC = 0; (30)

where trC and detC are the trace and determinant of C. Now Eq. (26) has
the special property that detC=1. This may be shown by de�ning W (the
Wronskian) as:

W (t) = detC = x11(t) x22(t)� x12(t) x21(t): (31)

Taking the time derivative of W and using Eq. (27) gives that
dW

dt
= 0,

which implies that W (t) = constant = W (0) = 1. Thus, Eq. (30) can be
written down as:

�2 � (trC)�+ 1 = 0: (32)

Its solutions are:

�1;2 =
trC �

p
trC2 � 4
2

: (33)

Floquet theory [1] showed that instability results if either eigenvalue has
modulus larger than unity. Thus, if jtrCj > 2, then Eq. (33) gives real
roots. But the product of the roots is unity, so if one root has modulus less
than unity, the other has modulus greater than unity, with the result that
this case is unstable and corresponds to exponential growth in time. On the
other hand, if jtrCj < 2, then Eq. (33) gives a pair of complex conjugate
roots. But since their product must be unity, they must both lie on the unit
circle, with the result that this case is stable. Note that the stability here
is neutral stability not asymptotic stability, since Eq. (26) has no damping.
This case corresponds to quasiperiodic behavior in time.

So, the transition from stable to unstable corresponds to those parameter
values which give jtrCj = 2. From Eq. (33), if trC = 2 then �1;2 = 1; 1 and
this corresponds to a periodic solution with period T . On the other hand, if
trC = �2 then �1;2 = �1;�1. This corresponds to a periodic solution with
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period 2T . This analysis gives the important result that on the transition
curves in parameter space between stable and unstable, there exist periodic
motions of period T or 2T .

The theory presented in this section can be used as a practical numerical
procedure for determining stability of Eq. (26). One needs to begin by
numerically integrating the ordinary di¤erential equation for the two initial
conditions (28); carry each numerical integration out to time t = T and so
obtain trC = x11(T ) + x22(T ); then, jtrCj > 2 is unstable, while jtrCj < 2
is stable. Note that this approach allows one to draw conclusions about
large time behavior after numerically integrating for only one forcing period.
Without Floquet theory, one would have to numerically integrate out to large
time in order to determine if a solution was growing unbounded, especially for
systems which are close to a transition curve, in which case the asymptotic
growth is very slow.
A stability chart of Mathieu�s equation with several tongues obtained by

using numerical integration in conjunction with Floquet theory is shown in
Figure 3. Note that there are stable regions in the negative half-plane � < 0.
By choosing parameters so that the system lies in one of these stable regions
for negative �, we may stabilize an equilibrium which is unstable in the
unforced system. An example is the periodically forced inverted pendulum
discussed in Eq. (4).

3.1.3 Harmonic balancing

The transition curves (25) found earlier in Section 3.1.1 cover the �rst tongue
only. The question that naturally arises is [1]: Why did the perturbation
method miss the other tongues of instability? It was because the perturbation
method was truncated, neglecting terms of O(�2). The other tongues of
instability turn out to emerge at higher order truncations in the various
perturbation methods (two variable expansion, averaging, Lie transforms,
normal forms, even regular perturbations). In all cases these methods deliver
an expression for a particular transition curve in the form of a power series
expansion:

� =
n2

4
+ �1�+ �2�

2 + � � � : (34)
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Since the period of the forcing function in Eq. (1) is T = 2�, one may apply
the result obtained in the previous section to conclude that on the transition
curves in the �-� parameter plane there exist solutions of period 2� or 4�.
This motivates us to look for such a solution in the form of a Fourier series
[1]:

x(t) =

1X

n=0

an cos
nt

2
+ bn sin

nt

2
: (35)

This series represents a general periodic function with period 4�, and in-
cludes functions with period 2� as a special case (when aodd and bodd are
zero). Substituting Eq. (35) into Mathieu�s equation (1), simplifying the
trig and collecting terms with the same angular frequency (a procedure called
harmonic balancing), gives four sets of algebraic equations on the coe¢cients
aeven; beven; aodd and bodd. Each set is homogeneous and of in�nite order,
so for a nontrivial solution the determinants must vanish. This gives four
in�nite determinants (called Hill�s determinants) [1]:

aeven :

��������

� �=2 0 0
� � � 1 �=2 0 � � �
0 �=2 � � 4 �=2

� � �

��������
= 0; (36)

beven :

��������

� � 1 �=2 0 0
�=2 � � 4 �=2 0 � � �
0 �=2 � � 9 �=2

� � �

��������
= 0; (37)

aodd :

��������

� � 1=4 + �=2 �=2 0 0
�=2 � � 9=4 �=2 0 � � �
0 �=2 � � 25=4 �=2

� � �

��������
= 0; (38)

bodd :

��������

� � 1=4� �=2 �=2 0 0
�=2 � � 9=4 �=2 0 � � �
0 �=2 � � 25=4 �=2

� � �

��������
= 0: (39)
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In all four determinants the typical row is of the form:

� � � 0 �=2 � � n2=4 �=2 0 � � � ; (40)

(except for the �rst one or two rows).

Each of these four determinants represents a functional relationship be-
tween � and �, which plots as a set of transition curves in the �-� plane. By
setting � = 0 in these determinants it is easy to see where the associated
curves intersect the � axis. The transition curves obtained from the aeven
and beven determinants intersect the � axis at � = n2, n = 0; 1; 2; � � � , while
those obtained from the aodd and bodd determinants intersect the � axis at

� =
(2n+ 1)2

4
, n = 0; 1; 2; � � � . For � > 0, each of these points on the �

axis gives rise to two transition curves, one coming from the associated a
determinant, and the other from the b determinant. Thus, there is a tongue
of instability emanating from each of the following points on the � axis:

� =
n2

4
; n = 0; 1; 2; 3; � � � : (41)

The n = 0 case is an exception as only one transition curve emanates from
it, as a comparison of Eq. (36) with Eq. (37) will show.

Let us now substitute Eq. (34) for n = 1 into the aodd determinant (38).
Expanding a 3 � 3 truncation of Eq. (38), one can get (using computer
algebra):

��
3

8
� � �

2

2
+
13 �2

8
+
�2 �

2
� 17 � �

4
+
225 �

32
+�3� 35 �2

4
+
259 �

16
� 225
64

= 0: (42)

Substituting Eq. (34) with n = 1 into Eq. (42) and collecting terms gives:

(12 �1 + 6) �+

�
24 �2 � 16 �21 � 8 �1 + 3

�
�2

2
+ � � � : (43)

Requiring the coe¢cients of � and �2 in Eq. (43) to vanish gives:

�1 = �
1

2
; �2 = �

1

8
: (44)

This process can be continued to any order of truncation. The expansions of
the �rst nine transition curves obtained in this way are given in Appendix
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C. The transition curves are also plotted in Figure 3 as the red thick lines
and clearly match the numerical solution for the values of � shown.
Note that the procedure presented above is concerned with Eq. (1). How-

ever, if one would rather stick to the equation of motion that contains the
natural and excitation frequency as in Eq. (3), the procedure presented can
be generalized by relating !0 to n
=2 (i.e. !

2
0 to (n
=2)

2) starting from Eq.
(1) instead of relating � to n2=4.

3.2 The case with linear viscous damping

In this section we investigate the e¤ect that damping has on the transition
curves of Mathieu�s equation by applying the two variable expansion method
to the following equation, known as the damped Mathieu equation [1]:

d2x

dt2
+ c

dx

dt
+ (� + � cos t) x = 0: (45)

In order to apply the perturbation method, the damping coe¢cient c is also
rescaled to be O(�):

c = ��: (46)

The same algorithm used earlier in Section 3.1.1, is also utilized here so that
Eq. (45) becomes:

@2x

@�2
+ 2�

@2x

@�@�
+ �2

@2x

@�2
+ ��

�
@x

@�
+ �

@x

@�

�
+ (� + � cos �) x = 0: (47)

Now, x is expanded as in Eq. (13) and � as in Eq. (22). As a result, Eq.
(23) gets an additional term:

@2x1

@�2
+
1

4
x1 = �2

@2x0
@�@�

� x0 cos � � �1x0 � �
@x0
@�

; (48)

which results in two additional terms appearing in the slow �ow Eqs. (24):

dA

d�
= ��

2
A+

�
�1 �

1

2

�
B;

dB

d�
= �

�
�1 +

1

2

�
A� �

2
B: (49)

Equations (49) represent a linear constant coe¢cient system which may
be solved by assuming a solution in the form A(�) = A0 exp(��), B(�) =
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B0 exp(��). For nontrivial constants A0 and B0, the following determinant
must vanish:

������

��
2
� � �1

2
+ �1

�1

2
� �1 ��

2
� �

������
= 0 ) � = ��

2
�
r

��21 +
1

4
: (50)

For the transition between stable and unstable, one should set � = 0, deriving
the following value for �1:

�1 = �
p
1� �2

2
: (51)

This gives the following expressions for the n = 1 transition curves:

� =
1

4
� �

p
1� �2

2
+O(�2) =

1

4
�
p
�2 � c2

2
+O(�2): (52)

Equation (52) predicts that for a given value of c there is a minimum value
of � which is required for instability to occur. The n = 1 tongue, which for
c = 0 emanates from the � axis, becomes detached from the � axis for c > 0.
Figure 4a contains the transition curves (52) for the �rst tongue both for
the undamped and damped case - it is clearly seen how the tongue shifts
up due to the existence of linear viscous damping. In order to determine
the transition curves for other regions, one can use the same approach, but
substitute Eq. (34) into Eq. (47).
The stability chart of the damped Mathieu equation (45) is obtained

numerically based on Floquet theory and presented in Figure 4b. It enables
one to compare it with the undamped case for several instability tongues.
Note that in this case, one of the characteristic multipliers is always located
within the unit circle and both characteristic multipliers can never cross the
unit circle at the same time. The system can be asymptotically stable with
j�2j � j�1j < 1. Thus, in the damped Mathieu equation (45), cyclic-fold
or period-doubling bifurcations may occur. The transition curves of the odd
regions (�rst, second) are associated with period-doubling bifurcations, while
the transition curves of the even regions are related to cyclic-fold bifurcations
[27].
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4 Mathieu�s equation with nonlinearities

4.1 Geometric nonlinearity

It is shown in Figure 2 that an unbounded solution to Mathieu�s equation
(1) can result from resonances between the forcing frequency and the oscilla-
tor�s unforced natural frequency. However, nonlinear systems do not exhibit
unbounded behavior. The di¤erence lies in the fact that Mathieu�s equation
is linear. The e¤ects of nonlinearity can be explained as follows: as the res-
onance causes the amplitude of the motion to increase, the relation between
period and amplitude (which is a characteristic e¤ect of nonlinearity - see,
for example, [28]) causes the resonance to detune, decreasing its tendency to
produce large motions.

A more realistic model can be obtained by including nonlinear terms
in Mathieu�s equation. For example, in the case of the vertically driven
pendulum (Figure 1a), after expanding sin x from Eq. (2) in a Taylor series,
one can derive [1]:

d2x

dt2
+

�
g

L
� A!2

L
cos!t

��
x� x3

6
+ � � �

�
= 0: (53)

Now if we rescale time by � = !t and set � =
g

!2L
and � =

A

L
, we get:

d2x

d� 2
+ (� � � cos �)

�
x� x3

6
+ � � �

�
= 0: (54)

Next, if we scale x by x =
p
� y and neglect terms of O(�2), we obtain:

d2y

d� 2
+ (� � � cos �) y � �

�

6
y3 +O(�2) = 0: (55)

Motivated by this example, in this section we study the following nonlinear
Mathieu equation:

d2x

dt2
+ (� + � cos t) x+ ��x3 = 0: (56)

This can be referred to as the Mathieu-Du¢ng equation as it contains a cubic
nonlinear term, which is associated with the Du¢ng equation [29].
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One can once again use the two variable expansion method to treat this
equation. Using the same setup that we did earlier in Section 3, Eq. (56)
becomes:

@2x

@�2
+ 2�

@2x

@�@�
+ �2

@2x

@�2
+ (� + � cos �) x+ ��x3 = 0: (57)

Expanding x as in Eq. (13) and � as in Eq. (22), and one �nds that Eq. (23)
gets an additional term:

@2x1

@�2
+
1

4
x1 = �2

@2x0
@�@�

� x0 cos � � �1x0 � �x30; (58)

where x0 is of the form:

x0(�; �) = A(�) cos
�

2
+B(�) sin

�

2
: (59)

Removal of resonant terms in Eq. (58) results in the appearance of some
additional cubic terms in the slow �ow Eqs. (24):

dA

d�
=

�
�1 �

1

2

�
B+

3�

4
B(A2+B2);

dB

d�
= �

�
�1 +

1

2

�
A�3�

4
A(A2+B2):

(60)
In order to solve these equations, one can turn to polar coordinates in the
A-B phase plane, introducing:

A = R cos �; B = R sin �: (61)

Equations (61) and (59) give now the following alternate expression for x0:

x0(�; �) = R(�) cos

�
�

2
� �(�)

�
: (62)

Substituting Eq. (61) into the slow �ow (60) gives:

dR

d�
= �R

2
sin 2�;

d�

d�
= ��1 �

cos 2�

2
� 3�
4
R2: (63)

Equilibria of the slow �ow (63) are considered now. From Eq. (62), a solution
in which R and � are constant in slow time � represents a periodic motion of
the nonlinear Mathieu equation (56) which has one-half the frequency of the
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forcing function, that is, such a motion is a 2:1 subharmonic motion. Such
slow �ow equilibria satisfy the equations:

�R
2
sin 2� = 0; � �1 �

cos 2�

2
� 3�
4
R2 = 0: (64)

Ignoring the trivial solution R = 0, the �rst Eq. of (64) requires sin 2� = 0

or � = 0;
�

2
; � or

3�

2
. Solving the second Eq. of (64) for R2, one can get:

R2 = � 4

3�

�
cos 2�

2
+ �1

�
: (65)

For a nontrivial real solution one requires that R2 > 0. Let us assume that
the nonlinearity parameter � > 0, which corresponds to the case of hardening
Du¢ng nonlinearity [29]. Then in the case of � = 0 or �, cos 2� = 1 and

nontrivial equilibria exist only for �1 < �
1

2
. On the other hand, for � =

�

2
or

3�

2
, cos 2� = �1 and nontrivial equilibria require �1 <

1

2
. These cases with

di¤erent equilibria are illustrated in Figure 5a. Since �1 = �
1

2
corresponds to

transition curves for the stability of the trivial solution, the analysis predicts
that bifurcations occur as one crosses the transition curves in the �-� plane.
That is, imagine quasistatically decreasing the parameter � while � is kept
�xed, and moving through the n = 1 tongue emanating from the point

� =
1

4
on the � axis. As � decreases across the right transition curve, the

trivial solution x = 0 becomes unstable and simultaneously a stable 2:1
subharmonic motion is born. This motion grows in amplitude as � continues
to decrease. When the left transition curve is crossed, the trivial solution
becomes stable again, and an unstable 2:1 subharmonic is born. This scenario
can be pictured as involving two pitchfork bifurcations, which is illustrated
in Figure 5b.
If the nonlinearity parameter � < 0, a similar sequence of bifurcations

occurs, except in this case the subharmonic motions are born as � increases
quasistatically through the n = 1 tongue.
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4.2 Damping nonlinearity

This section is concerned with quadratically damped Mathieu�s equation:

d2x

dt2
+
dx

dt

����
dx

dt

����+ (� + � cos t) x = 0: (66)

This equation of motion governs the dynamics of a cable towed by a subma-
rine, and its derivation and physical interpretations are given in [30].
Equation (66) admits the exact solution x = 0, and its stability is gov-

erned by the classical Mathieu equation (1). Although the linear theory
predicts that inside its tongues the motion will be unbounded, the existence
of the nonlinear term in Eq. (66) causes the resonance to detune as the am-
plitude of x grows. As a result, a periodic motion having �nite amplitude is
created inside the tongues, at least for small �.
So, for small values of the parameter �, the method of averaging can be

used to obtain approximate expressions for periodic solutions to the nonlinear
equation (66). Inside the �rst tongue, a detuning parameter is introduced as
follows

� =
1

4
+ ��1; (67)

and a solution is assumed in the form

x(t) = R cos

�
t

2
+  

�
; (68)

where R and  are slowly varying in time t. The method of averaging gives
the following expressions for them, and this corresponds to stable periodic
motion:

R =
3�

4

q
1� 4�21;  =

1

2
cos�1 (�2�1) : (69)

This result states that there is an attractive period-2 subharmonic motion
inside the �rst tongue for small �.
Let us not carry out this analysis for the second tongue. In this case, it

is necessary to include terms of order �2 and the detuning takes the form

� = 1 + ��1 + "2�2: (70)

Equation (66) becomes
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�x+ x = ��G1 � �2G2; (71)

G1 = �1x+ x cos t+ _x2sgn( _x); (72)

G2 = �2x: (73)

For �=0, Eq. (71) has the solution

x(t) = R cos (t+  ) ; (74)

_x(t) = �R sin (t+  ) : (75)

This solution is the basis for the variation of parameters, which yields to the
following slow �ow equations

_R = �G1 sin (t+  ) + �2G2 sin (t+  ) ; (76)

R _ = �G1 cos (t+  ) + �2G2 cos (t+  ) : (77)

Further, a near identity transformation is introduced in the form

R = a+ �W1 (a;  ; t) + �2V1 (a;  ; t) + :::; (78)

 =  + �W2 (a;  ; t) + �2V2 (a;  ; t) + :::; (79)

where W1, W2, V1 and V2 are called generating functions chosen to make the
transformed equations on a and new  as simple as possible.
In order to deal with the signum function in Eq. (72), it is expanded into

a Fourier sine series

sgn(sin (t+  )) =
4

�

1X

n=1

1

2n� 1 sin [(2n� 1) (t+  )] : (80)

Carrying out the averaging, the slow equations are found to be

_a = ��4a
2

3�
+ �2

�
�a
8
sin 2 � a2�1

3�

�
; (81)

_ = �
�1
2
+ �2

�
�1
8
cos 2 +

�2
2
� �21
8
� Qa2

�2
� 1

12

�
; (82)
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where Q is a constant that depends on the order of truncation of the Fourier
series. Numerical results indicate that Q converges to a value near 1.05261.
However, its precise value is not of importance as it appears in a higher
order term in the slow �ow equations. Based on the previous equations, the
following �xed points are obtained:

a = �� �
32

q
5 + 48�2 � 144�22; (83)

 =
1

2
cos�1

�
2

3
(6�2 � 1)

�
: (84)

These expressions describe two �xed points. Unlike in the �rst order aver-
aging near the �rst tongue, the amplitude of the limit cycles in this second
tongue depend on the value of the parameter �.
In [31], numerical investigations of the quadratically damped Mathieu

equation (66) are accomplished by generating a Poincaré map corresponding
to a surface of section t = 0 mod 2�. A variety of periodic motions are
observed, depending upon the location in the �-� parameter plane. Figure 6
shows schematically the di¤erent Poincaré map portraits that are exhibited
by Eq. (66). Outside the instability regions, the origin is always stable, as
indicated by a lone spiral to the origin. Inside the instability regions, the
origin is unstable, as indicated by a saddle-like x at the origin. Inside the
2:1 region the two spiral singularities in the Poincaré map represent a single
period 4� motion, whereas in the 1:1 region they represent two period 2� mo-
tions. As the 2:1 region is exited above point P into the region marked R1,
a subcritical pitchfork bifurcation occurs. In this case, the origin becomes
stable and an unstable 2:1 subharmonic periodic motion is created. As re-
gion R1 is exited into region R2, the 1:1 transition curve is crossed, and the
expected supercritical pitchfork bifurcation curve takes place at the origin.
The origin once more becomes unstable, while two stable period 2� motions
are born out of the origin. The most interesting feature displayed in Figure
6 corresponds to what happens when one moves from either of regions R1
or R2 downward across the nearly-straight line bifurcation curve emanating
from point P. In this case the two coexisting outermost periodic orbits - the
stable and unstable period 4� orbits - coalesce and are destroyed in a saddle-
node bifurcation. It is seen that this saddle-node bifurcation does not take
place at the origin. An analytic approximation for this curve on which this
secondary bifurcation takes place is obtained in [31]. This involved perturb-
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ing directly o¤ of Mathieu�s equation and using Mathieu functions instead
of the usual sines and cosines. An interesting feature of this method is its
semi-analytical nature. Because Mathieu functions do not have closed-form
representations that are easy to manipulate, the method needed to be ex-
ecuted semi-analytically, that is, certain integrals had to be evaluated by
numerical quadrature. When combined with Padé approximants, the per-
turbation method recovered an acceptable approximation to the secondary
bifurcation curve in a neighborhood of point P.

5 Mathieu�s equation with delay

In this section we consider a delayed Mathieu equation. Adding a delay
to a di¤erential equation increases the dimensionality of the system, which
makes the investigations of delay di¤erential equations (DDEs) with analyt-
ical methods challenging. In a DDE, the state variables depend not only on
the present time but also on a previous time. In this section we �rst �nd the
stability charts of the delayed linear Mathieu equation using the two vari-
able method, and then we consider Hopf bifurcation in a delayed nonlinear
Mathieu equation.

5.1 Delayed linear Mathieu�s equation

The delayed linear Mathieu equation under consideration is given by

�x+ � � _x+ (� + � � cos t) x = b x(t� �); (85)

where � is delay and b = �� is the corresponding constant coe¢cient in front
of the delayed term.
The objective here is to determine the stability chart that corresponds

to the 2:1 parametric resonance, which emanates from � = 1=4. Hence, this
value is perturbed o¤ as follows:

� =
1

4
+ � �1: (86)

The two variable expansion method is to be used further. The solution is,
thus, assumed to depend on two time variables: x(�; �), where � = t and
� = �t. Then, one has

xd = x(t� �) = x(� � � ; � � ��): (87)

22

A
cc

ep
te

d
 M

an
u
sc

ri
p
t 
N

o
t 
C

o
p
ye

d
it
ed

A
cc

ep
te

d
 M

an
u
sc

ri
p
t 
N

o
t 
C

o
p
ye

d
it
ed

Applied Mechanics Reviews. Received August 07, 2017; 

Accepted manuscript posted January 31, 2018. doi:10.1115/1.4039144 

Copyright (c) 2018 by ASME

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 02/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Dropping terms of O(�2), Eq. (85) becomes

@2x

@�2
+ 2�

@2x

@�@�
+ ��

@x

@�
+ (� + � � cos �) x = � � x(� � � ; � � ��): (88)

Expanding x in a power series in �, x = x0 + �x1 + O(�2), and collecting
terms, one can obtain

@2x0

@�2
+
1

4
x0 = 0; (89)

@2x1

@�2
+
1

4
x1 = �2

@2x0
@�@�

�� @x0
@�
��1 x0��x0 cos �+� x0(��� ; ����): (90)

The solution of Eq. (89) can be expressed as:

x0(�; �) = A(�) cos
�

2
+B(�) sin

�

2
: (91)

Equation (90) requires the term x0(� � � ; � � ��) to be determined:

x0(� � � ; � � ��) = Ad cos
(� � �)

2
+Bd sin

(� � �)

2
; (92)

where Ad = A(� � ��) and Bd = B(� � ��).
Substituting Eq. (91) and (92) into Eq. (90) and eliminating resonant

terms, the following is derived for the slow �ow:

dA

d�
= ��

2
A+

h
��
2
+ �1

i
B � � Ad sin

�

2
� � Bd cos

�

2
; (93)

dB

d�
=

h
��
2
� �1

i
A� �

2
B + � Ad cos

�

2
� � Bd sin

�

2
: (94)

Equations (93), (94) are a linear constant coe¢cient system which may be
solved by assuming a solution in the form

A = p exp(��); B = q exp(��); Ad = p exp(������); Bd = q exp(������);
(95)
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where p and q are constants. After substituting them into Eqs. (95), one can
derive:
�

��� � sin �
2
exp(�� � �) �� cos �

2
exp(�� � �) + �1 � �

2

� cos �
2
exp(�� � �)� �1 � �

2
��� � sin �

2
exp(�� � �)

� �
p
q

�
=

�
0
0

�
:

(96)
For a nontrivial solution (p; q), we require the determinant to vanish, which
yields:

�2+2 � sin
�

2
� exp(�� � �)�2 � �1 cos

�

2
exp(�� � �)+�2 exp(�2 � ��)+�21�

�2

4
= 0:

(97)
For the transition between stability and instability, we set � = 0, giving the
following value for �1:

�1 = � cos
�

2
� 1
2

r

�2 �
�
�+ 2 � sin

�

2

�2
: (98)

This further gives the following expression for the transition curves of the 2:1
resonance tongue:

� =
1

4
+ � � cos

�

2
� �

2

r

�2 �
�
�+ 2 � sin

�

2

�2
: (99)

The delay term in Eq. (85) produces an e¤ective damping e¤ect [32], where
the instability tongue detaches from the � axis as in the case of a linearly
viscously damped Mathieu equation (� = 0). Figure 7a shows a three di-
mensional plot of the �rst tongue in the parameter space (�; � ; �) for the
undamped case � = 0. Figure 7b also has a form of a three-dimensional sta-
bility chart in the parameter space (�; b; �) of the delayed undamped Mathieu
equation with � = 2�, which is redrawn based on the one obtained in [33]
by utilizing the method of exponential multipliers. The shaded triangles are
stable and represent the intersections of the regions outside the instability
tongues with the planes � = 0 and � = 2.
Numerical techniques for stability analysis of DDEs using in�nite dimen-

sional Floquet theory have also been developed, where the Floquet transition
matrix becomes a compact in�nite dimensional monodromy operator. A ba-
sis of expansion is chosen and the operator is then approximated in a �nite
number of dimensions as a square matrix whose eigenvalues or Floquet multi-
pliers determine the stability of the DDE. Such techniques include temporal
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�nite element analysis (TFEA) and Chebyshev polynomial expansion [34].
In contrast to perturbation methods, these techniques do not require the pa-
rameters to be small. The TFEA method consists of using �nite elements
in time, arranged so that the position and velocity at the beginning and end
of each element is matched to the corresponding values one period earlier.
The solution on each element is written as a linear combination of polyno-
mials (trial functions). In the Chebyshev polynomial expansion method, the
DDE is written in the form of an integral equation, and the state vector,
the periodic coe¢cients and the initial function are all expressed as shifted
Chebyshev polynomials. The method results in a �nite-dimensional operator
that relates the Chebyshev coe¢cient vector in a given time interval to that
in the previous interval.

5.2 Delayed nonlinear Mathieu�s equation

Now we show the e¤ect of adding delay to a nonlinear Mathieu equation, in
particular the occurrence of Hopf bifurcation in such a system. We consider
the following delayed nonlinear Mathieu equation:

�x+ (� + � � cos t) x+ � 
 x3 = � � x(t� �); (100)

and we investigate the occurrence of Hopf bifurcation using the two variable
expansion method. The solution at order �0 takes the form of Eq. (91).
Carrying out the method as in the previous section, we end up with the

following slow �ow:

dA

d�
=

�
3

4

 (A2 +B2)� �

2
+ �1

�
B � � Ad sin

�

2
� � Bd cos

�

2
; (101)

dB

d�
=

�
�3
4

 (A2 +B2)� �

2
� �1

�
A+ � Ad cos

�

2
� � Bd sin

�

2
:(102)

Hopf bifurcation occurs when the origin loses stability with birth of a limit
cycle. Therefore, to approximate the parameters causing Hopf bifurcation
we linearize Eqs. (101), (102) about the origin (0; 0), which gives the same
equations as (93), (94). We then proceed as in the previous section, and
we set � = i! for a Hopf bifurcation and use Euler�s formula exp(�i!��) =
cos (!��)� i sin (!��). Separating real and imaginary parts, we obtain
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�2
�
sin

�

2

�2
cos(2 � � !) + �2

�
cos

�

2

�2
cos (2 � � !) + 2 � ! sin

�

2
sin (� � !)

�2 �1 � cos
�

2
cos (� � !)� !2 � �2

4
+ �21 = 0; (103)

��2
�
sin

�

2

�2
sin(2 � � !)� �2

�
cos

�

2

�2
sin (2 � � !) + 2 �1 � cos

�

2
sin (� � !)

+2 � ! sin
�

2
cos (� � !) = 0: (104)

In this analysis we do not approximate the delayed variable such that:

Ad = A(� � ��) � A(�) +O(�); Bd = B(� � ��) � B(�) +O(�);

as in many authors� work (see, for example, Morrison [32], Atay [35], Wirkus
[36]), which results in the slow �ow being ODEs rather than DDEs. It is
argued that such a step is justi�ed if the product �� is small. Here instead
we retain the delayed variables Ad; Bd in the slow �ows Eqs. (93), (94) and
Eqs. (101), (102), as in [37]. Next, the two characteristic Eqs. (103), (104)
are solved for the pair (!,�). A perturbation schema is used by setting

!cr =

NX

n=0

�n !n = !0 + � !1 + �2 !2 + : : : ; (105)

� cr =
NX

n=0

�n �n = � 0 + � � 1 + �2 � 2 + : : : : (106)

After inserting Eqs. (105), (106) into Eqs. (103), (104), and Taylor expanding
the trig functions with respect to the small parameter � << 1, the terms of
equal order of � are equated together to obtain the values of !n and �n which
are given in Appendix D. For the order zero in �, the expressions of !0 and
� 0 are as follows:

!0 =

p
(2 � � � + 2 �1) (2 � + � + 2 �1)

2
; (107)

� 0 = 2 �; (108)

and the value of � 0 corresponds to the critical time delay obtained if the
delayed variables Ad and Bd are replaced by A and B resulting in an ODE

26

A
cc

ep
te

d
 M

an
u
sc

ri
p
t 
N

o
t 
C

o
p
ye

d
it
ed

A
cc

ep
te

d
 M

an
u
sc

ri
p
t 
N

o
t 
C

o
p
ye

d
it
ed

Applied Mechanics Reviews. Received August 07, 2017; 

Accepted manuscript posted January 31, 2018. doi:10.1115/1.4039144 

Copyright (c) 2018 by ASME

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 02/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



slow �ow, see [32]. Figure 8 shows the Hopf bifurcation curve, Eq. (106), up
to order �3 for the �xed parameters � = 0:05,� = 3=5,� = 1. Adding delay
to a nonlinear Mathieu equation results in creating a limit cycle for some
delay parameter values.
The delayed Mathieu equation has application to the dynamics of the

Synchrotron, a circular particle accelerator [38]. As a group of electrons
(called a �bunch") rotates around the accelerator, it leaves an electrical dis-
turbance behind it. The delay term in the governing di¤erential equation
comes from the force on the bunch as it passes through its position one cycle
earlier.

6 Fractional Mathieu�s equation

This section is concerned with the Mathieu equation that contains a fractional
derivative term D�x and has the form [39]:

�x+ cD�x+ (� + � cos t) x = 0: (109)

The term D�x is the order � derivative of x, where 0 < � < 1. As this para-
meter � varies from 0 to 1, the fractional derivative term actually combines
the e¤ects of sti¤ness and damping into a single term. Its mathematical
de�nition includes the following integral presentation [39], [40]:

D�x =
1

� (1� �)

d

dt

Z t

0

(t� u)�� x (u) du; (110)

where � is the Euler Gamma function. This expression can be simpli�ed by
taking v = t�u, giving

D�x =
1

� (1� �)

d

dt

Z t

0

v��x (t� v) dv: (111)

Carrying out the di¤erentiation under the integral sign and adopting x(0) = 0
[40], the �nal formula that will be used subsequently is derived:

D�x =
1

� (1� �)

Z t

0

v��x0 (t� v) dv: (112)

To obtain approximate expressions for transition curves in the fractional
Mathieu equation (109), harmonic balancing is used. From Floquet theory
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it is known that on the transition curves there exist periodic solutions to Eq.
(109) with period � or 2�. Thus, in order to obtain an approximation for
the �rst transition curves, we posit a truncated Fourier series:

x (t) = A cos
t

2
+B sin

t

2
: (113)

One can present the integral from Eq. (112) as follows:

Z t

0

v��x0 (t� v) dv =
1

2
cos

t

2

Z t

0

�
B cos

v

2
+ A sin

v

2

�
dv +

1

2
sin

t

2

Z t

0

�
B sin

v

2
� A cos

v

2

�
dv (114)

=
1

2�
cos

t

2
(BIc + AIs) +

1

2�
sin

t

2
(BIs� AIc) ;(115)

where

Ic =

Z t=2

0

w�� coswdw; Is =

Z t=2

0

w�� sinwdw: (116)

These can be evaluated in the limit t!1:

Ic = � (1� �) sin
��

2
; Is = � (1� �) cos

��

2
: (117)

Thus, restricting attention to the large t limit, the following expression for
the fractional derivative (109) is derived:

D�x =
1

2�
cos

t

2

�
B sin

��

2
+ A sin

��

2

�
+
1

2�
sin

t

2

�
B sin

��

2
� A sin

��

2

�
:

(118)
Substituting Eqs. (113) and (118) into Eq. (109), collecting the terms as in
harmonic balancing, equating to zero coe¢cients of sin t

2
and cos t

2
, and elim-

inating A and B from the resulting two equations, the following expression
for the �rst transition curves are obtained:

� =
1

4
� c

2�
cos

��

2
�

q
22��2 � 4c2 sin2 ��

2

2�+1
: (119)
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As a check, one substitutes � = 1 in Eq. (119), in which case the fractional
derivative in Eq. (109) becomes an ordinary �rst derivative and we obtain
the damped Mathieu equation (45), while Eq. (119) simpli�es to Eq. (52).
The expression for the transition curve (119) indicates that a change in

the order � of the fractional derivative a¤ects the shape and location of the
transition curves: it moves it along the horizontal axis as the overall sti¤ness
coe¢cient changes; it also lifts it up as in the case of linear viscous damping
(Figure 9).
It is of interest to �nd the location of the lowest point on the transition

curve, which represents the minimum quantity of forcing amplitude necessary
to produce instability. Let us refer to this minimum value of �, for a given
value of �, as �min. Di¤erentiating Eq. (119), one can �nd this value to be:

�min = c
sin ��

2

2��1
; (120)

which is plotted in Figure 10. The greatest e¤ect is observed where this curve
achieves its maximum, which is obtained for

�� =
2

�
arctan

�

2 ln 2
� 0:735; (121)

yielding �� � 1:099c. Figure 10 also implies that when � lies in the range (0.5,
1), the values for �min are all greater than the corresponding minimum for
the linearly viscously damped Mathieu equation. Thus, the damping e¤ect
of the fractional derivative term for 0.5 < � < 1, is greater than that of the
linearly viscously damped Mathieu equation.
In [41], one more fractional term is added to the Mathieu equation (109) -

a fractional delay derivative termD�x (t� �), so that the governing equation
has the form

�x (t) + c D�x (t) + (� + � cos t) x (t) = b D�x (t� �) ; (122)

where � > 0 is the time delay, 0 < � < 1 and 0 < � < 1 are fractional orders
of x(t) and its delayed value, while b and c are real constants. Using the
algorithm presented above, one can derive the following expression for the
�rst transition curves [41]:

� =
1

4
� c

2�
cos

��

2
+
b

2�
cos

�� � �

2
�

s
1

4
�2 �

�
c

2�
sin

��

2
� b

2�
sin
�� � �

2

�2
:

(123)
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This equation reduces to (119) for b = 0 and to (99) for � =1 and � = 0.
Given the number of the system parameters, one can use them to a¤ect

appropriately the shape and location of the transition curves. A minimum
of forcing amplitude necessary to produce instability is now given by �min =��21��c sin ��

2
� 21��b sin ����

2

��. The greatest e¤ect of the fractional order �
on it (when other parameters are �xed) occurs for the value that might be
expressed as

�� � 0:735 + �

�
; (124)

where � should be such that �� < 1.
Figure 11 illustrates these �ndings in terms of the �rst transition curves

plotted for the cases related to Eqs. (123) and (124). Two cases shown for
di¤erent system parameters illustrate that the delay can put down (Figure
11a) but also can lift up the transition curves (Figure 11b).

7 Quasiperiodic Mathieu�s equation

In this section we consider the quasiperiodic Mathieu equation:

�x + (� + � cos t + � cos!t) x = 0: (125)

For a given set of parameters (�; !; �), Eq. (125) is said to be stable (S) if all
solutions are bounded, and unstable (U) otherwise.

As a �rst approximation we may think of the instabilities occurring in
Eq. (125) as consisting of the union of the instabilities of each of the two
equations:

�x + (� + � cos t) x = 0; (126)

and
�x + (� + � cos!t) x = 0: (127)

See Figure 12 where ! is �xed and � and � are varied. We may also plot the
same results by �xing � and varying ! and �, as shown in Figure 13.
The approximate nature of this scheme for obtaining the stability chart

of Eq. (125) is revealed by comparing with the results of direct numerical
integration. In [42], [44], Eq. (125) was numerically integrated forward in
time from arbitrarily chosen initial conditions at t = 0 up to t = 20; 000.
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At each step the amplitude
p
x(t)2 + _x(t)2 was computed and a motion was

judged to be unstable if its amplitude became greater than a million times
its initial value for any t between 0 and 20,000, and stable otherwise. This
results in Figure 14a.

Figure 14b shows an enlargement of Figure 14a around � = 0:25, ! = 1,
and Figure 14c shows an enlargement of Figure 14a around � = 0:25, ! = 0:1.

Figures 14a-c refer to Eq. (125) with � = 0:1. To see the e¤ect of chang-
ing �, Figures 15a-e show regions of the stability chart for varying values of
�. Note that Figures 15a-c, which correspond to � = 0.01, 0.05 and 0.1, lie in
the region of Figure 15d which is bounded by thick straight lines. The reason
for this is that as � increases, the black (stable) regions disappear, so we show
a larger region of the parameter space for �=0.5 and �=1, otherwise there
would be very little to show (it would be almost all white). These �gures
show the complexity and fractal nature of the stability regions for the qua-
siperiodic Mathieu equation (125). There have been numerous papers which
have used perturbation methods to examine the structure of the stability
charts in the neighborhood of various resonances. For example, the nature
of the stability chart near � = 0:25; ! = 1, see Figure 14b, involves a 2:2:1
resonance and has been studied in [45], [46]. The diagram near � = 0:25,
! = 0:5, see Figure 14a, involves a 2:1:1 resonance and has been studied in
[43]. The region near � = 0:25, ! = 0, see Figure 14a, was studied in [42], [44].

In contrast to these results obtained by perturbation methods, a recent
paper by Sharma and Sinha [47] has used an approximate numerical approach
based on Floquet theory. Although there is no Floquet theory for quasi-
periodic systems, these authors have replaced the quasi-periodic system with
a periodic system which has a large principal period, and then used Floquet
theory on the resulting periodic system.
In all of these studies of Eq. (125), instability means unboundedness

as time t goes to in�nity. This is because Eq. (125) is linear. The e¤ect
of adding nonlinear terms to Eq. (125) was considered in [48], where the
following nonlinear quasiperiodic Mathieu equation was studied:

�x + (� + � cos t + � cos!t) x+ �x3 = 0: (128)

In [48] a perturbation scheme using Jacobi elliptic functions was combined
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with KAM theory to determine the global behavior of Eq. (128)

8 Mathieu�s equation with elliptic-type exci-

tation

Let us consider a pendulum from Case 1 discussed in Section 2. Instead of
prescribing the motion of its support, it is assumed that its acceleration is
Acn(
t jm), where A, 
, m are constants. The corresponding equation for
small oscillations has the form

�x+ (� + � cn (t jm)) x = 0; (129)

where � = g= (L
2) and � = A= (L
2). So, it is seen now that the parametric
excitation existing in Eq. (129) has the form of the Jacobi elliptic function,
which is a periodic two-argument function: the coe¢cient in front of t in
the �rst argument is equal to unity, which means that the frequency of the
elliptic function is unity; the constant m appearing in the second argument
represents the so-called elliptic parameter [49]-[52].
This type of excitation can be considered as a generalisation of the Cosine

excitation in the classical Mathieu equation (1). Namely, when m = 0 the
Jacobi cn function transforms into the Cosine function: cn(t jm) = cos t [50].
Previous investigations have been concerned with other types of elliptic-type
functions. For example, Lamé�s equation includes a square of the Jacobi sn
function as a periodically varying coe¢cient in front of a linear term. Its
origin is in the theory of the potential of an ellipsoid [2], [4]. This equation is
characterized by the fact that under some condition related to the amplitude
of the parametric excitation, coexistence [1] can take place, which means
that an in�nite number of possible tongues of instability does not occur. It
is interesting that Lamé�s equation can be transformed into Incé�s equation
which has time-varying inertial, damping and sti¤ness coe¢cients that are
expressed in terms of trigonometric functions. Generalizations of Lame�s
equation comprise [2]: the Hermite elliptic equation, whose damping term
contains all three basic Jacobi functions (sn, cn and dn) and the Picard
elliptic equation, which has a similar damping term as the Hermite elliptic
equation, but its sti¤ness term is constant.
Let us go back to the elliptic excitation and its form in Eq. (129) and

de�ne the values of the elliptic parameter m that will be considered. Three
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cases can be distinguished [53] (indicated subsequently by the corresponding
index): Case I corresponds to mI< 0; Case II includes the domain 0 < mII <
1 (this case was also analysed in [54]); Case III encompasses mIII > 1. Note
that the value m = 1 is not of interest here as the cn elliptic function turns
then into the hyperbolic secant (the inverse of hyperbolic cosine), which is
not periodic.
To provide some interpretation of the elliptic-type excitation given for

Cases I-III, its Fourier series expansion is used [49]:

cn (t jm) = 2�

K
p
m

�NX

N=1

qN�1=2

1 + q2N�1
cos
�
(2N � 1) �

2K
t
�
; (130)

with K being the complete elliptic integral of the �rst kind, while K 0 is
its associated complete elliptic integral of the �rst kind. Note that, by the
de�nition [49], K depends on the elliptic parameter as follows

K � K (m) =

Z �=2

0

d�
p
1�m sin2 �

; (131)

while K 0 = K (1�m).
The function q in Eq. (130) is the so-called Nome, de�ned as a function

of K and K 0:

q = exp

�
��K

0

K

�
; (132)

Equation (130) yields the conclusion that the elliptic-type excitation can be
interpreted as a multi-cosine excitation whose harmonics have their ampli-
tudes and frequencies coupled through the parameter m.
The expansion (130) holds both for m = mI and m=mII, and it can be

represented also as follows:

cn (t jmI,II ) =

�NX

N=1

CN cos

�
(2N � 1) �

2KI,II

t

�
; (133)

CN =
2�

KI,II
p
mI,II

q
N�1=2
I,II

1 + q2N�1I,II

; (134)

where KI = K (mI), KII = K (mII), qI = q (K 0
I; KI) and qII = q (K 0

II; KII)
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To deal with a real square root which occurs for negative values of the
elliptic parameter, i.e. for m = mI, Eq. (133) can also be presented as

cn (t jmI ) =

�NX

N=1

CIN cos

�
(2N � 1) �

2KI

t

�
; (135)

CIN =
2�

KI

p�mI

(�1)N�1 (�q̂I)N�1=2

1 + q̂2N�1I

; (136)

q̂I = � exp

0

@�
�K 0

�
1

1�mI

�

p
1�mIK (mI)

1

A : (137)

Equations (133) and (135) show clearly that both series expansions en-
compass odd harmonics, with the frequency and their amplitudes depending
on m. In Case I, the coe¢cients of harmonics have an alternating sign, while
in Case II they are all positive. The corresponding period can be calculated
from Eq. (133) as:

T
I,I I
=

2�
�

2K
I,I I

= 4K
I,I I
� 4K (mI,II) ; (138)

which is the well-known period of the Jacobi cn function for such parameter
values [49].
Case III, corresponding to mIII >1, can be examined by transforming the

cn function into the dn elliptic function as follows [49]

cn (t jmIII ) = dn

�p
mIIIt

����
1

mIII

�
: (139)

This can be further expressed as the following Fourier series

dn

�p
mIIIt

����
1

mIII

�
= D0 +

�NX

N=1

DN cos

�
N
�
p
mIII

KIII

t

�
; (140)

D0 =
�

2KIII

; DN =
2�

KIII

qNIII
1 + q2NIII

; (141)

where
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KIII � K

�
1

mIII

�
; (142)

and qIII = q (K 0
III; KIII).

The series representation given by Eq. (140) implies that this type of
excitation includes both odd and even harmonics. It oscillates around the
o¤set �= (2KIII), which increases as mIII increases and tends to unity when
mIII !1.
The period corresponding to Case III is

TIII �
2�

�
p
mI I I

KI I I

=
2KIIIp
mIII

=
2K
�

1

mI I I

�

p
mIII

: (143)

Using Eqs. (138) and (143), the period of the cn elliptic excitation is plotted
in Figure 16N as a function of the elliptic parameter m. When m tends to
minus in�nity or in�nity, the period tends to zero. When m =0, the period
has the well-known value 2�, as cn(t j0) = cos t [49], [51], [52].
The next objective is to investigate the stability of the trivial equilibrium

solution x = 0, i.e. to determine stability charts in the �-� plane of the
equation of motion (129) and the e¤ects of the elliptic parameter on the
stability chart. The associated transition curves can be obtained from the
fact that the unperturbed linear oscillator has a solution of period 2�=

p
�,

which should correspond to the solutions of the excited oscillator where the
period of excitation is T , i.e. 2�=

p
�0 = 2T=n, n = 1; 2; 3; ::: The excitation

in the classical Mathieu equation is harmonic with the period T =2�, and
the zero points are given by �0 = n2=4 (see Section 3.1.3). Following the
same approach in Case I and II, the period of the excitation is given by Eq.
(138), so that the zero-points are

�0I,II =
�2n2

16K2
I,II

: (144)

In Case III, the period is given by Eq. (143), and the zero-points are de�ned
by

�0III =
�2n2mIII

4K2
III

: (145)
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Numerically obtained stability charts found by applying the Floquet the-
ory (see Section 3.1.2) corresponding to mI = �0:5, mII = 0:5 and mIII = 1:5
are presented in Figure 17. These numerical results are labelled as shaded
areas. Comparing Figures 17a-c to the stability chart of the Mathieu equa-
tion shown in Figure 3, it is seen that both the location, shape and size of
the instability tongues change with m: for m < 0, the instability tongues
are relocated to the right; for 0<m < 1, the instability tongues are relocated
to the left, i.e. to smaller values of �; for m > 1, they are more profoundly
relocated to higher values of � as well as inclined to the left.
The next task is to determine the analytical expression for the transition

curves. Harmonic balancing is to be utilized for this purpose. First, the
cn elliptic function is replaced by the corresponding Fourier series in the
equation of motion. So, in Case I and II, the series given by Eq. (133) is
used in Eq. (129), yielding

�x+

 

� + �

�NX

N=1

CN cos

�
(2N � 1) �

2K
I,I I

t

�!

x = 0: (146)

The solution for motion is assumed in the form that includes a set of har-
monics

x (t) =

�NX

n=0

an cos
�
n
�

T
t
�
+ bn sin

�
n
�

T
t
�
: (147)

Substituting the solution (147) with the period TI,II (138) into Eq. (146)
and applying harmonic balancing as explained in Section 3.1.3, four sets of
algebraic equations with respect to the coe¢cients aI,IIeven, aI,IIodd, bI,IIeven and
bI,IIodd are derived. For a nontrivial solution, the corresponding determinants
must vanish, leading to the so-called Hill�s determinants, which are given in
Appendix E.
In Case III, the series (140) is used in Eq. (129)

�x+

 

� + � D0 + �

�NX

N=1

Dn cos

�
N
�
p
mIII

KIII

t

�!

x = 0: (148)

Applying the same procedure related to harmonic balancing of Eq. (148)
with the solution (147) and the period (143), Hill�s determinants for aIIIeven,
aIIIodd, bIIIeven and bIIIodd are derived. They are also included in Appendix
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E. This Case II was also studied in [54] by introducing a new time in the
form of the Jacobi amplitude, transforming the original equation into the
equation with time-varying coe¢cients, all of which are expressed in terms
of trigonometric functions. Harmonic balancing is then applied and Hill�s
determinant derived.
By using the determinants derived in this approach, transition curves are

plotted in Figure 17Na-c for di¤erent values of the parameter m for all three
Cases considered. These results are labelled by red solid lines, and represent
the boundaries of the shaded numerically obtained instability regions, which
con�rms their accuracy.
The Hill�s determinant aI,IIeven- bI,IIodd given in Appendix E can be used to

derive analytical expressions for transition curves in the form � = �0 (m) +
��1 (m) + �2�2 (m) [53]. Considering the case ~N = 10 and truncating all
the determinants to the dimension 3�3, the following expressions for the
zero-transition curve and two subsequent pairs are obtained [53]:

� = �
2K2

I,IIC
2
1

�2
�2; (149)

� =
�2

16K2
I,II

� C1
2
"�

K2
I,II (3C

2
1 + C22)

6�2
�2; (150)

� =
�2

16K2
I,II

+
C1
2
��

K2
I,II (3C

2
1 + C22)

6�2
�2; (151)

� =
�2

4K2
I,II

�
K2
I,II(C1 � C2)

2

3�2
�2; (152)

� =
�2

4K2
I,II

+
K2
I,II (5C

2
1 � 2C1C2 � C22)

3�2
�2: (153)

Setting � = 0, one can easily recognized that they all emanate from the
exact locations given by Eqs. (144) and (145). These results are further
used to get a more detailed overview on how the stability charts change
with the elliptic parameter -5 � m � 5. Using these results, an animation
(Animation 1) is created, which is given as Supplementary Material to this
article. It illustrates clearly that for m < 1, the instability regions move
towards lower values of � and become more dense when m approaches unity.
This conclusion is also given in [54] for 0<m < 1. In the case m > 1, the
instability tongues are oblique and shift towards higher values of �, becoming
less dense as m increases.
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9 Discussions and conclusions

This tutorial review article has been concerned with one of the archetypi-
cal equations of Nonlinear Vibrations Theory - Mathieu�s equation and its
stability chart. This classical equation corresponds to a linear second-order
ordinary di¤erential equation, whose sti¤ness coe¢cient contains a constant
term � and a time-varying (periodic) forcing � cos t. Depending on the com-
bination of this constant term � and the forcing amplitude �, the motion can
stay bounded (this case is referred to as stable) or unbounded (this case is
referred to as unstable). The corresponding graphical presentation in the �-�
plane has the form of the so-called stability chart with regions of stability and
regions of instability (tongues) separated by pairs of transition curves, along
which the response has a periodic character. It has been shown how these
transition curves and the points from which they emanate can be obtained in
several di¤erent ways: by using a perturbation method, Floquet theory and
harmonic balancing. It has also been shown how periodic responses along
the transition curves can be expressed in terms of Mathieu�s functions.
This article has also presented some historical facts about early inves-

tigations of Mathieu�s equation, rederiving and redrawing some of the key
�ndings, including the very �rst stability chart as done by Ince [15].
The subsequent analyses have been concerned with various extensions or

generalizations of Mathieu�s equation in terms of geometric, damping terms,
delays, fractional and excitation terms as well as the di¤erences between the
resulting stability charts and their characteristics with respect to the one for
classical Mathieu�s equation. First, it has been demonstrated that linear vis-
cous damping lifts up the tongue and that there is a certain minimal forcing
amplitude needed for instability to occur. Then, two cases of nonlinearity in
Mathieu�s equation have been dealt with: geometric nonlinearity and damp-
ing nonlinearity. In general, the existence of the nonlinear term causes the
resonance to detune as the amplitude grows, resulting in a periodic motion
with �nite amplitude inside the tongues, at least for small �. The former
nonlinear case examined is related to the hardening cubic type nonlinearity
and it has been shown that two pitchfork bifurcations appear associated with
the �rst tongue: when the parameter � is quasistatically decreased across the
right transition curve while � is kept �xed, the trivial solution becomes un-
stable and simultaneously a stable 2:1 subharmonic motion is born; when
the left transition curve is crossed, the trivial solution becomes stable again,
and an unstable 2:1 subharmonic is born. In case of softening nonlinearity,
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a similar sequence of bifurcations takes place, but the subharmonic motions
are born as � increases quasistatically through the �rst tongue. The second
case with nonlinearity has been concerned with quadratic damping. The �rst
order averaging carried out has given that there is an attractive period-2 sub-
harmonic motion inside the �rst tongue for small �. However, the amplitude
of the limit cycles in this second tongue has been found to depend on the
value of the parameter �. Numerical investigations have revealed the exis-
tence of di¤erent Poincaré map portraits in the part of the stability chart
investigated: outside the �rst instability regions, the origin is always stable;
inside the instability regions, the origin is unstable; inside the 2:1 region the
two spiral singularities exist in the Poincaré map representing a single period
4� motion, whereas in the 1:1 region they represent two period 2� motions;
in certain parts, supercritical pitchfork bifurcations have been detected to
occur, among which is the case of two coexisting outermost periodic orbits -
the stable and unstable period 4� orbits - coalescing and being destroyed in
a saddle-node bifurcation, which does not take place at the origin.
It has been found that the delay term in Mathieu�s equation produces an

e¤ective damping e¤ect where the �rst instability tongue detaches from the
� axis as in the case of a linearly viscously damped Mathieu equation. In
case Mathieu�s equation contains cubic geometric nonlinearity, adding delay
results in creating a limit cycle for some delay parameter values.
Fractional Mathieu�s equation has also been considered. As the fractional

derivative term actually combines the e¤ects of sti¤ness and damping into
a single term, it has been shown that as a result the �rst tongue shifts
along the horizontal axis in the stability chart and it also lifts up. The
minimum quantity of forcing amplitude necessary to produce instability has
been obtained. It has been found that the damping e¤ect of the fractional
derivative term between 0.5 and unity is greater than that of the linearly
viscously damped Mathieu equation. In addition, one more fractional term
has been added to the Mathieu equation - a fractional delay derivative term.
The expression for the �rst transition curves has been derived as well as the
fractional order having the greatest e¤ect on a minimum of forcing amplitude
necessary to produce instability. This value of the fractional order depends
on the time delay.
Another case of interest has been Mathieu�s equation with quasiperiodic

forcing, which di¤ers from the classical Mathieu�s equation in the existence
of the additional parametric forcing of frequency !. As a �rst approxima-
tion, the instabilities occurring have been seen as consisting of the union of
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the instabilities in two separate equations: classical Mathieu�s equation and
the one having forcing of frequency !. Numerical simulations carried out
for changeable � have shown the complexity of the corresponding stability
regions, and also their fractal nature.
Finally, the time-varying (periodic) forcing � cos t has been replaced by

elliptic-type forcing cn(t jm), where m is the elliptic parameter. For m = 0,
this type of forcing simpli�es to the cosine one, but in other cases, it can
be considered as a periodic multi-cosine excitation whose period and the
content change with the elliptic parameter. It has been demonstrated how the
content of such multi-cosine excitation changes with the elliptic parameter.
These results have been further used to get a detailed overview on how the
stability charts change with the elliptic parameter. It has been illustrated
that for m < 1, the instability regions shift towards lower values of � and
become more dense whenm approaches unity. Depending whetherm < 0, or
0<m < 1 the points on the horizontal axis from which the tongues emanate
are located on di¤erent sides with respect to those in classical Mathieu�s
equation. In the case m > 1, the instability tongues are oblique and move
towards higher values of �, becoming less dense as m increases.
Besides giving the overview of the structure and characteristics of stability

charts for all these cases, this tutorial review article has also presented a
variety of analytical, semi-analytical and numerical approaches to treat them.
The reader might want to try to apply/extend them to some other cases which
are the combinations of the cases presented herein.
Last but not least, this very �rst collection of the stability charts of di¤er-

ent forms of Mathieu�s equation can also have a practical purpose, enabling
practitioners to design their system starting from a desirable stability chart
and then choosing the system components needed to accomplish it.
NOTE: Although the authors did not explicitly examine symmetry prop-

erties of the di¤erent forms of the Mathieu equations and the reduced versions
of them obtained in the analyses, it is mentioned that the in�uence of these
properties on the bifurcations of solutions considered in this study may be
worth looking into, in future work.
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Appendix A: Extract fromMathieu�s study on vibra-
tions of an elliptic membrane
The system under consideration in Mathieu�s work from 1868 [8] was an

elliptic membrane. The ellipse is centered in the x-y plane and its foci are
located at x = ��. Its oscillations in the vertical w directions depend on the
position and time, i.e. w = w(x; y; t) and are governed by the wave equation

m2

�
@2w

@x2
+
@2w

@y2

�
=
@2w

@t2
; (A.1)

where the constant m depends on the tension force per unit length at the
boundary and the mass per unit area.
Separating the variables

w(x; y; t) = u(x; y)v(t); (A.2)

where v(t) = sin (2�mt), the wave equation yields

1

u

�
@2u

@x2
+
@2u

@y2

�
=
1

u
52 u =

1

m2v

d2v

dt2
= �4�2: (A.3)

Now, one can recognize the two-dimensional Helmholtz equation for the dis-
placement u with 52standing for the Laplacian in two dimensions.
As the membrane is elliptic, it is convenient to further use elliptic coor-

dinates. They are introduced in the form

x = � cos� cosh �; y = � sin� sinh �: (A.4)

Converting the Laplacian into the elliptic coordinates, one can derive

@2u

@x2
+
@2u

@y2
+4�2u =

1

�2
�
cosh2 � � cos2 �

�
�
@2u

@�2
+
@2u

@�2

�
+4�2u = 0; (A.5)

and then write this equation down as

@2u

@�2
+
@2u

@�2
+ 4�2�2

�
cosh2 � � cos2 �

�
u = 0: (A.6)

Separating the variables by assuming u (�; �) = P (�)Q (�), one can now
derive the following equation
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1

P

d2P

d�2
� 2�2�2 cos 2� = 1

Q

d2Q

d�2
+ 2�2�2 cosh 2� = �R; (A.7)

where R is a constant.
The equation in P can be expressed as:

d2P

d�2
+
�
R� 2h2 cos 2�

�
P = 0; (A.8)

where h2 = �2�2.
The equation of this form is named after Mathieu as �Mathieu�s equation�.

Introducing t = 2� and using P � x, � = R=4, � = �h2=2, it gets an
alternative form, which is the starting equation of this article, Eq. (1).

Appendix B: Mathieu functions
This Appendix contains the method that Mathieu developed to �nd so-

lutions of Eq. (A.8), composing them as expansions about h2 = 0. So, by
setting h2 = 0 into Eq. (A.8), it is easy to identify the following solutions:

cn (�) = cosn�; R = n2; n = 0; 1; 2; :::; (B.1)

sn (�) = sinn�; R = n2; n = 1; 2; :::: (B.2)

To treat the case when h2 6= 0, we �rst set n = 1, assuming:

P
�
h2; �

�
= cos� + c1 (�)h

2 + c2 (�)h
4 + c3 (�)h

6 + :::; (B.3)

R
�
h2
�
= 1 + d1h

2 + d2h
4 + d3h

6 + :::; (B.4)

where ci (�) and di are to be determined under the condition that P is an
even and periodic function of � with period 2�, like cos�. So, substituting
these expressions into Eq. (A.8) and grouping the terms next to the same
power of h, one can derive

c001 (�) + c1 (�) = cos 3�� (d1 � 1) cos�; (B.5)

c002 (�) + c2 (�) = 2c1 (�) cos 2�� d2 cos�� d1c1 (�) ; (B.6)
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where the primes denote derivatives with respect to �. A periodic solution is
sought. However, the last term on the right-hand side of Eq. (B.5) will yield
a particular integral growing unboundedly in time and should be removed.
This can be achieved by choosing d1 = 1. Solving further Eq. (B.5) gives

c1 (�) = �
1

8
cos 3�: (B.7)

Proceeding in the same way with Eq. (B.6), one �nds d2 = �1=8 and

c2 (�) = �
1

64
cos 3� +

1

192
cos 5�: (B.8)

This process can be further continued to determine other terms in these
power series expansions. The solution denoted by ce1 is obtained in this way,
while the corresponding R (h2), Eq. (B.4), is labelled by a1. These solutions
are

ce1
�
h2; �

�
= cos�� 1

8
h2 cos 3� +

1

64
h4
�
� cos 3� + 1

3
cos 5�

�
�

1

512
h6
�
1

3
cos 3�� 4

9
cos 5� +

1

18
cos 7�

�
+ :::; (B.9)

a1
�
h2
�
= 1 + h2 � 1

8
h4 � 1

64
h6 � 1

1536
h8 � 11

36864
h10 + :::: (B.10)

Using the same algorithm, one can construct an (h
2) and the respective solu-

tions cen (h
2; �), which are called cosine-elliptic functions and correspond to

n = 0; 2; 3; :::. The solutions with even n have period � and those of odd n
have period 2�. Note that Mathieu functions are included into contemporary
symbolic software packages (such as Wolfram Mathematica) and can be used
without need to type their de�nitions/expansions.
Mathieu functions that correspond to sinn�, Eq. (B.2), are called sine-

elliptic functions and are labelled by sen (h
2; �). The expansions for se1 and

the respective R (h2) � b1 have the form
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se1
�
h2; �

�
= sin�� 1

8
h2 sin 3� +

1

64
h4
�
sin 3� +

1

3
sin 5�

�
�

1

512
h6
�
1

3
sin 3� +

4

9
sin 5� +

1

18
sin 7�

�
+ ::: (B.11)

b1
�
h2
�
= 1� h2 � 1

8
h4 +

1

64
h6 � 1

1536
h8 � 11

36864
h10 + :::: (B.12)

The sine-elliptic solutions have period � if n is even and period 2� if n is
odd.
One can use the relationships between R and h2 de�ned by an (h

2) and
bn (h

2) and plot them. Mathieu did not do it, but Ince did plot it [15], and his
�gure is given as Figure B.1. Note that Ince�s notation from [15] is slightly
di¤erent than Mathieu�s [8]: a � R and q � �h2=8, i.e. his starting equation
was:

d2y

dx2
+ (a+ 16q cos 2x) y = 0: (B.13)

Asymptotic expansions of periodic Mathieu functions valid for large values

of q=h2, were derived by Dingle and Müller [55].

AppendixC: Expressions for �rst nine transition curves
obtained by harmonic balancing
The expressions for the transition curves of Mathieu�s equation (A.8)

obtained by harmonic balancing are as follows [1]:

� = ��
2

2
+
7 �4

32
� 29 �

6

144
+
68687 �8

294912
� 123707 �10

409600
+
8022167579 �12

19110297600
+� � � ; (C.1)

� =
1

4
� �

2
� �2

8
+
�3

32
� �4

384
� 11 �

5

4608
+
49 �6

36864
� 55 �7

294912
� 83 �8

552960

+
12121 �9

117964800
� 114299 �10

6370099200
� 192151 �11

15288238080
+

83513957 �12

8561413324800
+ � � � ;

(C.2)
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� =
1

4
+

�

2
� �2

8
� �3

32
� �4

384
+
11 �5

4608
+
49 �6

36864
+

55 �7

294912
� 83 �8

552960

� 12121 �9

117964800
� 114299 �10

6370099200
+

192151 �11

15288238080
+

83513957 �12

8561413324800
+ � � � ;

(C.3)

� = 1� �2

12
+
5 �4

3456
� 289 �6

4976640
+

21391 �8

7166361600

� 2499767 �10

14447384985600
+

1046070973 �12

97086427103232000
+ � � � ; (C.4)

� = 1 +
5 �2

12
� 763 �

4

3456
+
1002401 �6

4976640
� 1669068401 �

8

7166361600

+
4363384401463 �10

14447384985600
� 40755179450909507 �

12

97086427103232000
+ � � � ; (C.5)

� =
9

4
+
�2

16
� �3

32
+
13 �4

5120
+
5 �5

2048
� 1961 �6

1474560
+

609 �7

3276800
+

4957199 �8

33030144000

� 872713 �9

8493465600
+

421511 �10

23488102400
+

16738435813 �11

1331775406080000
� 572669780189 �12

58706834227200000
+ � � � ;

(C.6)

� =
9

4
+
�2

16
+
�3

32
+
13 �4

5120
� 5 �5

2048
� 1961 �6

1474560
� 609 �7

3276800
+

4957199 �8

33030144000

+
872713 �9

8493465600
+

421511 �10

23488102400
� 16738435813 �11

1331775406080000
� 572669780189 �12

58706834227200000
+ � � � ;

(C.7)

� = 4 +
�2

30
+
433 �4

216000
� 5701 �6

170100000
� 112236997 �8

31352832000000

+
8417126443 �10

123451776000000000
+

2887659548698709 �12

265470699110400000000000
+ � � � ; (C.8)
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� = 4 +
�2

30
� 317 �4

216000
+

10049 �6

170100000
� 93824197 �8

31352832000000

+
21359366443 �10

123451776000000000
� 2860119307587541 �12

265470699110400000000000
+ � � � : (C.9)

Note that by using the substitutions � = R=4, � = �h2=2 to correlate Eqs.
(A.8) and (A.9), one can match Eqs. (C.2) and (C.3) with Ince�s solutions
(B.10) and (B.12).

Appendix D: Approximations to the parameters from
Section 5.2

!1 = 0; (D.1)

!2 = �
�1 �

2 � � 20
8!0

; (D.2)

!3 =
�1 �

2 � (� + �1) �
2
0

2!0
; (D.3)

� 1 = �2 (� + �1) � 0; (D.4)

� 2 = 4 (� + �1)
2 � 0; (D.5)

� 3 = 8 (� + �1)
3 � 0 �

�2

12
(� � 2 �1) � 30; (D.6)

� 4 = �16 (� + �1)
4 � 0 � 8 � (� + �1)

3 � 30 +
�2

3
(� + �1) (5 � � �1) �

3
0

� 4 �1 �
2 � (� + �1)

2

(2 � + 2 �1 � �) (2 � + 2 �1 + �)
� 30: (D.7)

Appendix E: Hill�s determinants obtained for Math-
ieu�s equation with elliptic-type excitation
Hill�s determinants for the Case I and II obtained for Mathieu�s equation

with elliptic-type excitation by harmonic balancing in Section 8 are:
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aI,IIeven :

������������

� �C1 0 �C2
�C1
2

� �2

4K2

I,I I
+ � �C1

2
+ �C2

2
0

0 �C1
2
+ �C2

2
� �2

K2

I,I I
+ � �C1

2
+ �C3

2
:::

�C2
2

0 �C1
2
+ �C3

2
� 9�2

4K2

I,I I
+ �

:::

������������

= 0; (E.1)

aI,IIodd :

����������

� �2

16K2

I,I I
+ � + �C1

2

�C1
2

�C2
2

�C1
2

� 9�2

16K2

I,I I
+ � + �C2

2

�C1
2

�C2
2

�C1
2

� 25�2

16K2

I,I I
+ � + �C3

2
:::

:::

����������

= 0;

(E.2)

bI,IIeven :

����������

� �2

4K2

I,I I
+ � �C1

2
� �C2

2
0

�C1
2
� �C2

2
� �2

K2

I,I I
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2
� �C3

2

0 �C1
2
� �C3

2
� 9�2

4K2

I,I I
+ � :::

:::

����������

= 0; (E.3)

bI,IIodd :

����������

� �2

16K2

I,I I
+ � � "C1

2

"C1
2

� "C2
2

"C1
2

� 9�2

16K2

I,I I
+ � � "C2

2

"C1
2

� "C2
2

"C1
2

� 25�2

16K2

I,I I
+ � � "C3

2
:::

:::

����������

= 0:

(E.4)
For Case III considered in Section 3.1, Hill�s determinants are

aIIIeven :

������������������

� + �D0 �D1 �D2 �D3

�D1
2

�mI I I�
2

K2

I I I
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+�D0 +
�D2
2

�D1
2
+ �D3

2

�D2
2
+ �D4

2

�D2
2

�D1
2
+ �D3

2

�4mI I I�
2

K2

I I I
+ �

+�D0 +
�D4
2

�D1
2
+ �D5

2
:::

�D3
2

�D2
2
+ �D4

2

�D1
2
+ �D5

2

�9mI I I�
2

K2

I I I
+ �

+�D0 +
�D6
2

:::

������������������

= 0;

(E.5)
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FIGURE CAPTIONS:
Figure 1. a) Mathematical pendulum whose support moves periodically

in a vertical direction; b) �The particle in the plane� problem.
Figure 2. a) Two transition curves of Mathieu�s equation for the �rst

region of instability called a tongue for an undamped case (solid line), Eq.
(25); b) Example of motion of Point P1 located inside the tongue; c) Example
of motion of Point P2 located outside the tongue.
Figure 3. A stability chart of classical Mathieu�s equation (1) obtained by

using numerical integration in conjunction with Floquet theory: grey region
= unstable (U), white region = stable (S). Red dotted line-transition curves
obtained by harmonic balancing, Eqs. (C.1)-(C.9).
Figure 4. a) Analytically obtained transition curves of Mathieu�s equation

for the �rst tongue for an undamped case (solid line), Eq. (25) and the case
with linear viscous damping (dashed line), Eq. (52); b) Numerically obtained
stability chart of damped of Mathieu�s equation, Eq. (45).
Figure 5. The �-� plane of Mathieu�s equation with cubic geometric non-

linearity, Eq. (56): a) existence of di¤erent equilibria; b) bifurcations.
Figure 6. Phase portraits of the Poincaré map in the di¤erent regions of

the parameter plane in a quadratically damped Mathieu equation, Eq. (66).
Figure 7. a) First instability tongue in the parameter space (�; � ; �), Eq.

(99), for � = 3=5; � = 1; � = 0; b) Three-dimensional stability chart in the
parameter space (�; b; �) of the delayed undamped Mathieu equation with
� = 2�, redrawn based on [33] (adapted from [32] with permission from The
Royal Society).
Figure 8. Hopf bifurcation curve, Eq. (106), for � = 0:05; � = 3=5; � = 1.

LC = limit cycle, No LC = no limit cycle.
Figure 9 First transition curves, Eq. (119) in the fractional Mathieu

equation, Eq. (109) for c = 0.1 and di¤erent values of �.
Figure 10. Plot of the minimum quantity of forcing amplitude �min=c, Eq.

(120) necessary to produce instability as a function of fractional derivative
order �.
Figure 11. First transition curves, Eq. (123) for the Mathieu equation

with two fractional terms and delay, Eq. (122) for b=c = 0.1, di¤erent values
of � , �� satisfying Eq. (124) and: a) � = 0.25; b) � = 0.75.
Figure 12. As a �rst approximation we may think of the instabilities

occurring in Eq. (125) as consisting of the union of the instabilities in Eqs.
(126) and (127).
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Figure 13. Same information as in Figure 12 plotted for �xed � with
varying ! and �.
Figure 14. a) Stability of Eq. (125) as determined directly from numerical

integration. � = 0:1; b) Enlargement of Figure 14a around � = 0:25; ! = 1.
� = 0:1; c) Enlargement of Figure 14a around � = 0:25; ! = 0:1. � = 0:1.
Black = stable, White = unstable.
Figure 15. Stability of Eq. (125) as determined directly from numerical

integration: a) � = 0:01;
b= � = 0:05; c) � = 0:1; d) � = 0:5 (Note that Figures 15a-c lie in the

region bounded by the thick straight lines in this part); e) � = 1. Black =
stable, White = unstable.
Figure 16. Period of the elliptic�type cn excitation as a function of the

elliptic parameter m for Cases I-III.
Figure 17. Stability charts of Eq. (129), where gray regions indicate

instability: a) m = �0:5; b) m = 0:5; c) m = 1:5. Results obtained by
means of the approximated equation of motion are labelled by red solid lines
(in all cases ~N=10).
Figure B.1. Stability chart redrawn based on a �gure from page 28 of

Ince�s paper [15].

Animation 1 (see Supplementary Material to this article). Stability charts
of Eq. (129) for di¤erent values of the elliptic parameter m.
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