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Abstract. Effective retrieval of mathematical contents
from vast corpus of scientific documents demands
enhancement in the conventional indexing and searching
mechanisms. Indexing mechanism and the choice of
semantic similarity measures guide the results of Math
Information Retrieval system (MathIRs) to perfection.
Tokenization and formula unification are among the
distinguishing features of indexing mechanism, used
in MathIRs, which facilitate sub-formula and similarity
search. Besides, the scientific documents and the user
queries in MathIRs will contain math as well as text
contents and to match these contents we require three
important modules: Text-Text Similarity (TS), Math-Math
Similarity (MS) and Text-Math Similarity (TMS). In
this paper we have proposed MathIRs comprising
these important modules and a substitution tree based
mechanism for indexing mathematical expressions. We
have also presented experimental results for similarity
search and argued that proposal of MathIRs will ease
the task of scientific document retrieval.

Keywords. Natural language processing, information
retrieval, MathIRs, indexing.

1 Introduction

Tremendous increase in scientific documents
repositories and enormous amount of queries

intended for retrieving such documents, neces-
sitate the requirement of developing specialized
tools and techniques which could handle such
documents.
Scientific documents, unlike normal text doc-
uments, contain mathematical expressions and
formulas which posses different form and meaning
in different contexts. Several distinct appearing
math expressions may actually turn out to be
semantically similar and equally probable is the
other situation where a given expression may
resolve to several different interpretations in
different contexts. For instance, the mathematical
expression “h(x)” may get interpreted as function ‘h’
having ‘x’ as argument or a variable ‘h’ multiplied
to another variable ‘x’. Adding further, “(x +
y)1/2” and “

√
x+ y ” look syntactically different

but semantically they are the same. Process of
indexing takes care of such visual and semantic
ambiguities, present in mathematical expressions,
by using a universal canonical representation
for all the expressions followed by tokenization
and storing of tokens in the index database
to facilitate their retrieval on users’ demand.
In fact, the effective search for an expression
inside a document and the accuracy of retrieval
is determined by proficiency of the approach
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adopted for indexing and semantic similarity
measures used to compare query expression with
the mathematical expressions inside documents.
Thus, the task of mathematical information retrieval
boils down to designing an effective indexing
technique and similarity matching technique which
could supplement and escalate the searching
process.

Five major steps in indexing mathematical doc-
uments have been identified as: Preprocessing,
Canonicalization, Tokenization, Structural Unifica-
tion and Representation of Math for Indexing [23,
14]. However, these steps have undergone several
changes and some intermediate steps have also
been introduced as the indexing process has
evolved with time.

Measuring semantic similarity between sen-
tences or short texts is equally important for
MathIRs and finds its application in many
other natural language processing tasks such
as machine translation, opinion mining, text
summarization, and plagiarism detection. Need for
semantic similarity detection at a very early stage is
justified by the fact that the underlying documents
may contain synonym, hyponym or hypernym of
the query term rather than the exact query term.
Comparatively less number of relevant documents
will be retrieved, if semantic similarity between
query expression and the indexed terms of the
document is not detected by the searcher module.

Taking into account above facts and re-
quirements, we have proposed an enhanced
modular architecture for MathIRs which contains
separate modules for semantic similarity detection
between (text/math) contents in the query and
(text/math) contents inside documents. We have
also proposed an enhanced substitution tree
based indexing mechanism which is presumed
to overcome shortcomings of a similar indexing
technique [18].

Rest of the paper is organized as follows: Sec-
tion 2 describes past works on math information
retrieval in general and indexing in particular.
Section 3 briefs about semantic textual similarity.
Section 4 details proposed system architecture
for MathIRs and Section 5 describes features for
similarity modules used in MathIRs. Section 6
contains experimental results for similarity modules

and a comparison between winner score and
our system’s best score. Section 7 contains
detailed discussion on working principle of indexing
mechanism used in MathIRs and dataset and
query set description for MathIRs. Section 8
concludes the paper and points directions for future
research.

2 Related Work

Indexing of mathematical expressions, contained
inside scientific documents, was first attempted
using a substitution tree based method – node of
the tree referring to a substitution and the leaves of
the substitution tree referring to actual terms that
have been indexed [3]. Moving along a path in the
tree and applying substitution yields the indexed
term. Such an indexing method reduces memory
requirement, owing to the fact that we only need
to store the substitutions and not the actual terms.
It also promises paced indexing of terms and with
such an indexing method in hand, the task of
searching boils down to performing tree traversal
in depth first fashion.

A later work identified several areas in which nor-
malization is applicable for MathML1 documents
[8]. Documents converted to MathML usually
contained MathML and XML errors, important of
which include malformed tags, improper number
of attribute values and child counts. An error
correcting parser has been designed to address
these issues which produces well formed XML
documents by removing unrecognized elements,
illegal attribute values and inserts missing entities,
wherever required. Ambiguity in MathML docu-
ments has been further diminished by choosing
single canonical representation for mathematical
expressions and decimal numbers having multiple
popular representation conventions.

An enhancement to the full text search engines
to facilitate search for mathematical content, has
been proposed in [9]. A normal text search
engine uses a recognizer which recognizes text
and parses it to sentences and words. Likewise,
use of formula recognizer has been proposed
which could recognize mathematical formulas

1https://www.w3.org/Math/
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and convert it to MathML form, Presentation or
Content2. Mathematical formulae are stored in
postfix notation so as to avoid use of parenthesis
and to facilitate similarity detection. Mathematical
expression “(a+b)-(c+d)”, for example, is first
converted to a postfix notation “ab+cd+-” followed
by storing of tokens “ab+”, “cd+” and “–” in the
index database. Use of postfix notation for indexing
offers flexibility of searching similar expressions.

Design principle of Math Indexer and Searcher
(MIaS) system [5] get motivation from the fact that
conventional search engines are incapable and
inefficient at handling math information retrieval
from Digital Mathematics Library. To build an
MIaS, different mathematical representations such
as TEX/LATEX, MathML, OpenMath3 and OmDoc4

have been explored and their advantages and
disadvantages have been discussed. Moreover,
existing Math search engines have been compared
on the grounds of indexing core, internal
representation of document, used converters,
query languages and query. Unfortunately, none
of the existing systems could offer search for exact
mathematical expression, equivalent expressions
with different notation, sub-expressions and mixed
mathematical contents.

Math Indexer and Searcher (MIaS) system
was later implemented to facilitate indexing and
searching of mathematical documents [23]. MIaS
facilitates searching of not only the complete
expression but also the sub-expressions and
similar expressions by exploiting techniques of
tokenization and structural unification respectively.
Tokenization, a process of plucking out sub-
expressions from a given input expression, is
accomplished by traversal of the expression tree
encoded using presentation MathML. Tokenization
is followed by unification to generate generalized
expressions for tokens and the same is achieved
using ordering, variable unification and constant
unification, whereby all the variables and constants
present in the expression are substituted by single
unified variable and constant.

Indexing process has been further delved into
and the processes of ordering, variable unification

2https://www.w3.org/TR/WD-math-980106/chapter2.html
3http://www.openmath.org/overview/technical.html
4http://www.omdoc.org/

and constant unification have been exemplified
[24]. Ordering introduces an alphabetical order
between arguments of an operator, whereas
unification avoids risk treating two or more
similar expressions, which differ only in terms of
variable names or constant values, as different.
Expressions, “a+ba” and “x+yx”, are semantically
same but differ in terms of variable names.
Proposed system substitutes variable names with
“ids”, thus normalizing both these expressions to
expression, “id1 + id2id1” and causing the two
expressions to match.

Canonicalization is act of transforming semanti-
cally similar MathML expressions into one common
form [1]. Different ways of canonicalizing the
MathML expressions have been discussed and
detailed, salient ones include:

(i) removing unnecessary elements and at-
tributes which only contribute to the appear-
ance and not to the semantics,

(ii) minimizing the number of <mrow> elements,

(iii) subscript and superscript handling, and

(iv) avoiding use of entity “&#x2061” for function
name.

Pre-processing, canonicalization and representa-
tion of math for indexing are salient issues related
to indexing process of Math Indexer and Searcher
(MIaS) [13]. Indexing process involves comparison
of expressions to be indexed with the pre-indexed
tokens and assigning weights to the token based
on percentage similarity. The weights associated
with the tokens later help in ranking the documents.

Design of MIaS has been further extended by
incorporating modules for structural and operator
unification [14] – two important features which
were absent in the previous architectures of
MIaS. An open source tool named MathML
Unificator, is used to generate series of structurally
unified variants of the input expression. Original
expression and the structurally unified variants are
added to the index database afterwards. However,
appropriate care is taken not to overfill the index
database with all possible variants of the input
expression.
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3 Semantic Textual Similarity

Retrieval of specific information requires an
intelligent retrieval mechanism which is suitable in
some specific domain. Many researchers have
used semantic based approaches in information
retrieval system to enhance performance of
their system. Word based similarity is the
primary similarity measure for measuring similarity
between sentences. Similarity between two texts
can be measured using four distinct similarity
measurement approaches: lexical similarity, syn-
tactic similarity, WordNet similarity and distributed
semantic [6, 10]. Lexical similarity measure is
concerned with words and is normally suitable
for measuring semantic similarity of all languages
[16, 17], whereas syntactic similarity measure
is predominantly concerned with similarity of
sentence structure. WordNet is an external
resource which has been used to find similarity
between sentences. On the other hand, distributed
semantic similarity is primarily concerned with
minimizing the difference between syntactic and
semantic similarity. Machine learning tool
(METEOR) and Levenshtein ratio find their appli-
cation in measuring semantic similarity between
sentences [15].

4 System Architecture

Our system architecture, shown in Figure 1,
is enriched by three modules: Indexing, Math
Processing and Similarity.

4.1 Indexing Module

Apache Lucene5 is to be used for the purpose
of indexing which is a free and open-source
information retrieval software library, supported by
the Apache Software Foundation and released
under the Apache Software License. It performs
operations such as indexing, reverse indexing and
analysis on the documents fed to it, thus making
the documents searchable and easy to retrieve.
Three core components of Lucene comprise
Document Analyzer, Tokenizer and IndexWriter.
Document analyzer analyzes the documents to

5https://lucene.apache.org/

recognize their content. Tokenizer separates
the content into several small components called
tokens which are written to the index database
using IndexWriter. Writing to index is based
upon positional information of the tokens in the
document, a technique known as full inverted
indexing. Lucene based search engines have been
enabled to recommend similar documents based
on current search interest of the user. In the
recent release of Apache Lucene, few changes
have been made with respect to fuzzy querying
mechanism and query parser. Apache Lucene
6.4.0 is the latest version which is characterized
by enhanced features of spellchecking, hit
highlighting, advanced analysis and tokenization
capabilities.

4.2 Math Processing Module

Mathematical documents originating from different
sources attain heterogeneous forms such as .pdf,
.tex etc. and hence it becomes necessary to
pre-process the documents, converting them to
one common MathML form. Automated tools such
as Infty Reader6, MaxTract7, Tralics8 and LatexML9

are used to accomplish this task.

MathML, a form of XML concerned with
encoding syntax and semantics of mathematical
expressions, has got two major forms: presentation
and content10. Presentation MathML markup
comprises 30 elements accepting around 50
attributes. Most of these elements are concerned
with syntax or layout of representation and can be
categorized into three broad categories:

(i) Script elements: <msub>, <munder> and
<mmultiscripts>,

(ii) Layout elements: <mrow>, <mstyle> and
<mfrac>,

(iii) Table elements.

6http://www.inftyreader.org/
7https://www.cs.bham.ac.uk/research/groupings/reasoning

/sdag/maxtract.php
8http://www-sop.inria.fr/marelle/tralics/
9http://dlmf.nist.gov/LaTeXML/

10https://www.w3.org/TR/WD-math-980106/chapter2.html

Computación y Sistemas, Vol. 21, No. 2, 2017, pp. 253–265
doi: 10.13053/CyS-21-2-2743

Amarnath Pathak, Partha Pakray, Sandip Sarkar, Dipankar Das, Alexander Gelbukh256

ISSN 2007-9737



Fig. 1. System Architecture

Fig. 2. (a+ b)2 represented using Presentation MathML

Mathematical expression, “(a+ b)2” expressed
using presentation MathML is shown in Figure 2.

Content markup comprises about 120 elements
which accept around one dozen attributes and
majority of them are used to represent operators,
relations and named functions. <apply> is
among most important content MathML elements,
primarily used to apply functions to expressions
and perform arithmetic and logical operations on
collection of arguments. Mathematical equation,
y = (a+ b)2, expressed using content MathML is
shown in Figure 3.

Fig. 3. (a+ b)2 represented using Content MathML

Pre-processing is followed by canonicalization
in which MathML expressions are normalized
to single canonical form. Different ways of
canonicalization include [1] :

(i) Removing unnecessary elements and
attributes: Many elements such as
<mspace>, <mpadded>, <mphantom>
and <malignmark> contribute only to
the appearance of documents and not to
the semantics, thus being the preferred
candidates for removal.

(ii) Minimizing the number of <mrow> ele-
ments: <mrow> element is used for grouping
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other elements. Number of sub-expressions
present in an expression can be found by
counting the number of <mrow> elements.
However, if a parent expression contains only
one child expression then use of <mrow>
element is redundant and the same should be
omitted and avoided.

(iii) subscript and superscript handling: Use of
<msubsup> element should be discouraged
and <msub> and <msup> elements should
be used instead. If both the functionalities
are required then <msub> should be placed
inside <msup>.

(iv) Applying Functions: Function name should
be placed in the <mo> element and for the
arguments we can use <mfenced> elements
or parenthesis or both. Other ways of
representing functions such as use of Entity
‘&#x2061’ and use of function name inside
<mi> element should be discouraged for the
sake of avoiding ambiguity.

Most often, a user might be interested in search
for a sub-expression rather than the complete
expression. Tokenizer facilitates such functionality
by plucking out sub-expressions from the input
math expression and indexing them separately
at a later stage. Consider a user querying for
the expression “

√
(x+ y) ” and a document ‘d’

containing Equation 1:

y =

√
(x+ y)
√
y

. (1)

MathIRs will not retrieve document ‘d’ for the
given query expression, if Equation 1 has not been
tokenized into tokens “

√
(x+ y) ” and “

√
y ”.

Further, a user might probably be interested in
similarity search rather than complete expression
search or sub-expression search. This may
correspond to a situation where expressions look
syntactically different but semantically they are the
same. Unifactor copes up with such an issue
by generating all meaningful structural variants
of expressions and sub-expressions and index-
ing them separately by assigning appropriately
lowered weights to the structural variants [14].

Consider, for example, an input expression of the
form “x2 +

√
x
z ”. Different structural variants of this

expression will be:

(i)
⊙2

+
√
x
z ,

(ii)
⊙2

+

⊙
z .

These variants, when indexed, are helpful in
searching an expression which is similar to original
expression but not exactly same. With this added
functionality, if a user searches for the expression
“x2+

√
x
z ” then the document containing expression

“x2 +
√
x
z ” is likely to get retrieved.

Final indexing of tokenized and structurally uni-
fied math formulas and sub formulas is proposed
to be done using a substitution tree based indexing
mechanism. An index tree is going to be used to
systematically store math expressions. When a
new expression is encountered, the existing tree
is searched for the expression and if absent, extra
nodes are appended in the tree to accommodate
the expression. However, the tree need not
be modified if parent expression of the given
expression has already been indexed. Such an
indexing mechanism is presumed to minimize our
memory requirement by eliminating the need to
store all the structurally unified variants of an
expression.

4.3 Importance of Similarity Modules

Similarity modules constitute essential compo-
nents of proposed architecture because user query
may contain text and math contents and to retrieve
documents it becomes necessary to compare
(text/math) contents in the query with (text/math)
contents of the underlying documents. These
mandatory comparisons, if not performed, will
result in retrieval of relatively less number of
relevant documents.
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4.4 Similarity Modules

The idea of text-text, math-math and text-math
similarity matching is driven by the system
architecture of MIaS [11], containing separate
modules for Text-Text Entailment (TE), Math-Math
Entailment (ME) and Text-Math Entailment (TME).
A text or math query serves as ‘hypothesis’ and
the content present in scientific documents serves
as ‘text’. An ME module, for example, will retrieve
a document if some part of its mathematical
content entails the mathematical query hypothesis.
On the same grounds, we have proposed an
architecture comprising TS, MS and TMS modules
which perform text-text, math-math and text-math
similarity matching for scientific document retrieval.

Our first module is TS module which defines
the degree of similarity between text query
and the text in document. The similarity
between text and text can be computed using
four approaches: lexical, syntactic, wordnet
and distributed semantic. In knowledge-based
approach the query is represented using synonym,
hypernyms and hyponyms. Detailed description
about the feature set and the experiment is
provided in section 5 and section 6 respectively.

Our second module is MS module which finds
the similarity between math query and the the doc-
ument containing mathematical expressions. MS
module helps in comparing canonicalized query
expressions with canonicalized and structurally
unified math expressions present in the document.
A query expression might not match the exact math
expression inside a document but may match one
of its structurally unified versions which eventually
results in retrieval of the underlying document. For
example, the query expression “a + x

y ” will match

one of the structurally unified versions of “a +
√
x
y ”

and our MS module will retrieve the corresponding
document.

Our third and final module is TMS module
which finds similarity between text query and the
mathematical expressions inside the documents.
Text-Math similarity matching can be made feasible
by assigning valid names to math expressions at
the time of indexing. Text query will be matched to
indexed names of mathematical expressions and

if any suitable match is found, the corresponding
document gets retrieved.

5 Features for Similarity Module

5.1 Cosine Similarity

Cosine similarity is a well known similarity
measurement feature for finding similarity between
two sentences. For our purpose we can represent
each sentence using vectors. Similarity score of
two sentences can be computed using dot product
of corresponding vectors divided by the product of
length of vectors.

Cosine similarity for two sentences, represented
using vectors S1 and S2, can be computed using
Equation 2:

S =
S1.S2

||S1||.||S2||
. (2)

5.2 Levenshtein Ratio

Levenshtein distance, also known as edit distance,
can be computed using three basic operations:
insertion, deletion and substitution. To improve
system performance, we can use normalization
process to convert Levenshtein distance into
Levenshtein ratio. Suppose ‘a’ and ‘b’ are
two strings, then the Levenshtein ratio can be
computed using the Equation 3:

EditRatio(a, b) = 1− EditDistance(a, b)

|a|+ |b|
. (3)

5.3 METEOR

METEOR is normally used for machine translation
and it tries to include grammatical and semantic
knowledge. METEOR score depends on outcome
of types of matching: exact matching, stem
matching, synonym matching and paraphrase
matching [4]. Exact matching counts the similar
words present in the hypothesis and referent part.

Stem matching matches words after they have
been stemmed to their root words. Words such
as organize, organizes, and organizing stem to
the same root word ’organize’ and hence they are
said to match. Third module defines matching in
terms of synonymy, meaning that two or more given
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words are said to match if they are synonyms. The
last kind of matching is based on the paraphrase
matching between the hypothesis and reference
translation.

5.4 Word2vec

In distributed semantic similarity approach, each
word is represented using vector [12]. The main
advantage of distributed semantic similarity is its
ability to capture semantic representation of words
after analyzing large corpora of text.

Distributed semantic similarity is based on
the hypothesis: the meaning of a word is
represented using the surrounding of that word [7].
Word2vec is a well-known model to produce word
embedding and can be implemented using Gensim
framework11.

5.5 Jaccard Similarity

Suppose S and T are two sets containing words
from two sentences. Jacardian similarity of the two
sets is expressed using Equation 4:

JaccardSimilarity =
|S

⋂
T |

|S
⋃
T |

=
|S

⋂
T |

|S|+ |T | − |S
⋂
T |

.

(4)

5.6 WordNet

WordNet is a lexical resource composed of
synsets and semantic relations. Synset is a
set of synonyms representing distinct concepts.
Synsets are linked with basic semantic relations
like hypernymy, hyponymy, meronymy, holonymy,
troponymy, etc. and lexical relations like antonymy,
gradation etc.

11https://radimrehurek.com/gensim/.

5.7 TakeLab

We have implemented TakeLab feature which
was made available12. TakeLab system made
use of various semantic features based on
lexical, syntactic and external resources. The
TakeLab ‘simple’ system obtained 3rd place in
overall Pearson correlation and 1st for normalized
Pearson in STS-12.

The source code was used to generate all its fea-
tures namely n-gram overlap, WordNet-augmented
word overlap, vector space sentence similarity,
normalized difference, shallow NE similarity,
numbers overlap, and stock index features.

TakeLab system predicts semantic similarity of
two sentences using SVM regression approach
which required full LSA vector space models
provided by the TakeLab team. The word counts
required for computing Information Content were
obtained from Google Books Ngrams.

6 Text Similarity Module: Comparison
between Winner Score and Baseline
Score

Text based similarity module constitutes an
important component of any Information Retrieval
(IR) system. Sometimes relevant documents can’t
be retrieved, the reason being the absence of
knowledge based similarity or lexical similarity
between the text in the query and the text
in document. The choice of an efficient and
effective similarity measure for measuring text
based similarity can boost the performance of our
proposed system.

Our text similarity modules have been evaluated
using SemEval 2016 dataset13. To find the
semantic similarity, we have used two different
approaches: lexical and distributed semantic
similarity. Final semantic score has been
computed after training using feed-forward neural

12http://takelab.fer.hr/sts.
13http://alt.qcri.org/semeval2016/task1/index.php?id=data-

and -tools.
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network and layer-recurrent network which are
available in Matlab toolkit 14.

Five types of SemEval-2016 test datasets were
used in monolingual sub-task: News, Headlines,
Plagiarism, Post-editing, Answer-Answer and
Question-Question.

The comparison between winner score15 and our
system’s best score is given in Table 1. Besides,
Table 1 shows that our system gives better result
than TakeLab system which was the winner system
in 2012. For plagiarism and question-question
datasets, our system gave better results using
distributional approach whereas best scores
in answer-answer and headline datasets were
obtained using lexical approach which is based
on unigram matching ratio, Levenshtein ratio and
METEOR.

7 Proposed Method for MathIRs

7.1 Motivation

For MathIRs, we have proposed substitution tree
based indexing method which is an enhancement
of the previous works in this regard [2, 18].
Substitution tree indexing was introduced by
Graf where each node of the index tree
represents predicates. Non-leaf nodes represent
generalized substitution variables whereas leaf
nodes represent specific ones. Depth first traversal
of tree and applying substitutions in parallel yield
specific predicates. Underlying idea has been
further extended and the substitution trees have
been used to represent mathematical expressions
[18]. Working principle is exactly the same except
for the fact that nodes in substitution trees now
represent an expression in place of predicate.
Each node of substitution tree is a Symbol Layout
Tree (SLT) corresponding to some mathematical
expression and edges of the SLT labeled as:
NEXT, ABOVE and BELOW, indicating the terms
next, super-scripted and sub-scripted to the given
term, respectively.

14http://nl.mathworks.com/help/nnet/ref/feedforwardnet.html,
http://nl.mathworks.com/help/nnet/ref/trainrp.html,
http://nl.mathworks.com/help/nnet/ug/design-layerrecurrent-
neural-networks.html.

15http://alt.qcri.org/semeval2016/task1/index.php?id=results.

Further simplification involves representing the
nodes using substitutions to be applied while
traversing the tree from root to leaf. Existing
substitution tree indexing method offers minimum
memory requirement benefits as it only stores the
substitution at each node and not the complete
terms. Memory is an important and deciding
parameter while trying to build index databases
and substitution tree indexing being best at
minimizing memory requirements, motivates us
to further investigate its structure. Besides, the
proposed system in [18] suffers from obvious
disadvantages of indexing only Latex formulas and
representing the expressions purely based upon
their syntax. Aim of our proposed system is to
overcome such shortcomings and to further delve
into structure of substitution trees for exploring
other possible advantages.

7.2 Working Principle

The proposed system is characterized by under-
lying principles of SLT, substitution [18] and an
improved indexing mechanism. SLT is 5 tuple (t, A,
B, {x1,x2,...xn},N) where ‘t’ refers to term, ‘A’ refers
to above expression (or super-scripted expression
to t), ‘B’ refers to below expression or (sub-scripted
expression), “x1,x2,....xn” refer to arguments and
‘N’ refers to next term. Any of these five tuples, if
absent, are represented by ‘φ’. Shorthand notation,
(t) is used for SLTs containing only term and (t,N)
for SLTs containing term plus next term, to avoid
unnecessary φ entries. For example, “x2 + y1”
represented using SLT tuples is shown in Figure 4.

Fig. 4. SLT tuples for, x2 + y1

However, for the purpose of indexing math-
ematical expressions, SLTs are replaced by
their substitution counterparts. In subsubsection
7.2.3, we have explained the difference between
proposed indexing method and the indexing
method used in [18], through an illustrative
example.
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Table 1. Performance comparison with other Systems on Monolingual Dataset

Corpus
Winner Score

(Samsung Poland
NLP Team)

TakeLab
Score

Our System Baseline
ScoreBest Score Approach

answer-answer 0.69235 0.43301 0.57454 Lexical 0.48023
headlines 0.82749 0.55870 0.72567 Lexical 0.70749
plagiarism 0.84138 0.75086 0.79877 Distributional 0.76752
postediting 0.83516 0.64140 0.81060 Cosine 0.77196

question-question 0.68705 0.48409 0.63612 Distributional 0.43751

7.2.1 Dataset Description for MathIRs

We evaluated our system on the dataset from
NTCIR-12 MathIR task16. Two corpora were used
for the evaluation of our system: arXiv corpus
and Wikipedia Corpus. arXiv corpus has been
written by technical users assuming some level of
mathematical understanding from users whereas
Wikipedia corpus contain mathematical formulas
written for normal users.

(i) arXiv corpus: arXiv corpus contains 105120
scientific articles converted from LATEX to
HTML+MathML format. Technical document
from several arXiv categories17 such as math,
cs, physics:math-ph,stat, physics:hep-th are
contained in arXiv corpus. Each document is
divided into paragraphs resulting in 8,301,578
search units equating to 60 million math
formulae.

(ii) Wikipedia corpus: Wikipedia corpus con-
tains 319,689 articles from English Wikipedia
converted into simpler XHTML format with
images removed. These articles are not split
into smaller documents with 10 % of the
sampled article containing<math> tag and 90
% of the article containing complete English
without <math> tag. There are around
590,000 formulas in this corpus encoded
using presentation and content MathML. This
corpus having uncompressed documents is
5.15 GB in size.

16http://ntcir-math.nii.ac.jp/.
17https://arxiv.org/list/math-ph/1101.

7.2.2 Query Set Description for MathIRs

arXiv corpus query set comprises 29 queries,
5 of them having only formula query whereas
rest 24 having formula query plus keyword(s) and
Wikipedia corpus query set comprises 30 queries
– 3 of them having only formula whereas rest
27 having formula plus keyword(s)18. Queries
are characterized and identified by unique IDs
assigned to each of them. MathIRs is evaluated
by comparing results of retrieval with Gold Dataset
and checking values of the evaluation parameters
obtained as result of comparison. Mean
Average Precision (map), P 5 (Precision@5),
P 10 (Precision@10) and bpref are some of the
commonly used evaluation parameters.

7.2.3 Proposed Indexing Method

As per the previous indexing method [18], the
expression to be indexed is first normalized by
introducing an absolute ordering of variables
present in the expression – for example, replacing
‘x’ by ‘∗1’ , ‘y’ by ‘∗2’ and so on. The expression
to be inserted, is compared with the root and if
match is successful then the indexing process is
recursively called upon the children. If at any node,
mismatch between the existing substitution at a
node and the syntax of expression is found, a new
node having a new substitution strategy is created
to accommodate the expression. ‘φ’ symbol is
used as root if no generalization is possible for
all the expressions. Consider , for example, that
expressions shown in Figure 7 are to be indexed
and they appear in the documents in the same
order as they have been written.

18http://ntcir-math.nii.ac.jp/
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Fig. 5. Substitution Tree for expressions created using previous indexing method

In normalized forms of these expressions, ‘x’
is replaced by ‘∗1’ and ‘y’ is replaced by ‘∗2’.
Complete substitution tree for these expressions is
shown in Figure 5.

The obvious disadvantage worth noticing about
this indexing method is its specificity. The method
treats two expressions, “x21 + y21” and “x22 +
y22” as different although semantically they are
the same – both representing sum of squares
of two variables. Such an extreme specificity
might not be desired in MathIRs. The user
query “x21 + y21” might probably benefit from all
the documents containing expressions similar to
“x21 + y21”. Such a shortcoming is probably
an outcome of the syntax based approach of
indexing which overlooks semantic similarity of
two expressions, while indexing. Moreover, it
only indexes math formulas written using LatexML,
a serious bug which needs to be fixed keeping
in mind enormously growing corpus of MathML
documents.

As explained in subsection 4.2, our proposed
substitution tree based indexing method comes
into role after the math expressions have been
tokenized and structurally unified. In our proposed
indexing method, we index one of the structurally
unified versions of an expression rather than
indexing its normalized version. However, utmost
care should be taken in selecting the structurally
unified version of an expression otherwise we
might end up generating an index tree which
will yield absurd results or huge number of

unnecessary results when searched for a query
expression. Structurally unified version of
expression should be such that it preserves syntax
of the original expression. For example, if we

have to index the expression: “a +

√
(b)

c ”, it will

be a wise decision to select “
⊙

+

√
(
⊙

)⊙ ” over

“
⊙

+

⊙⊙ ”, because the former one retains the

syntax of original expression while the latter one
completely deforms it.

For indexing the expressions: “x21”, “x22”, “x21+y21”
and “x22 + y22”, we will structurally unify them to
obtain “

⊙2”, “
⊙2”, “

⊙2
+
⊙2” and “

⊙2
+
⊙2”,

respectively. Substitution tree for these unified
expressions is shown in Figure 6.

Substitution tree shown in Figure 6, has
comparatively less number of branches, causing
minimization of memory requirement and offering
more generality. It also ensures generation of
relatively more number of relevant results when
searched for a query expression. Moreover, the
proposed indexing method is able to index MathML
formulas after they have been tokenized and
structurally unified – an important feature which
was absent in the previous indexing method [18].

8 Conclusion and Future Works

In this paper we have proposed system archi-
tecture for MathIRs which comprises separate
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Fig. 6. Substitution Tree for expressions created using proposed indexing method

Fig. 7. Mathematical Expressions

modules for text-text, math-math and text-math
similarity matching. An existing substitution tree
based indexing [18] for mathematical expressions
has been modified to make the indexing process
more effective and generalized.

Unlike the previous approach [18], our proposed
indexing method treats two semantically equivalent
expressions as similar and the method is presumed
to minimize memory requirement and increase
number of relevant results. However, further
modification in structure of substitution tree and
careful selection of structural variant of an
expression for indexing, can further improve
effectiveness of MathIRs.

In addition, we plan to consider applying
similarity measures based on the soft cosine
measure [21] and syntactic n-grams [22, 19, 20].
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