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Abstract

The pocketing operation is a fundamental procedure in NC machining. Typical pocketing schemes compute uniform successive offsets or

parallel cuts of the outline of the pocket, resulting in a toolpath with C1 discontinuities. These discontinuities render the toolpath quite

impractical in the context of high speed machining (HSM).

This work addresses and fully resolves the need for a C1 continuous toolpath in HSM and offers MATHSM, a C1 continuous toolpath for

arbitrary C1 continuous pockets. MATHSM automatically generates a C1 continuous toolpath that consists of primarily circular arcs while

maximizing the radii of the generated arcs and, therefore, minimizing the exerted radial acceleration. MATHSM is especially suited for

machining of elongated narrow pockets.
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1. Introduction and related work

Pocketing is one of the most common operations in NC

machining applications [2–4,6,10–13,16,19,20,22]. For

example, forming die-cavities [3] is one such application.

It requires machining at different levels of several parallel

cutting planes that define various pockets. A closed shape,

denoted the outline of the pocket, is prescribed in a

pocketing operation, possibly with islands, and a toolpath

is generated to machine the interior of the shape, cleaning it

to a prescribed depth. In many applications the bottom of the

pocket is planar, an assumption we make in this paper unless

otherwise stated. We consider possible extensions to non-

planar bottoms toward the end of this paper.

Two major approaches exist to generate toolpaths for

pocketing operations. The first is based on the intersection

of the outline of the pocket with parallel and equally spaced
0010-4485//$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cad.2004.05.008

* Corresponding author. Tel.: C972-4-829-4338; fax: C972-3-829-

1128.

E-mail addresses: gershon@cs.technion.ac.il (G. Elber), cohen@cs.

utah.edu (E. Cohen), drake@cs.utah.edu (S. Drake).
planes. By connecting the parallel adjacent segments that

trim the pocket domain into a zig-zag motion, a complete

toolpath is constructed [2,11,19,20]. This approach is

similar to the scan conversion scheme used in computer

graphics to render polygonal domains and fill them with

pixels [9]. The different scanline segments are then

connected into a C0 continuous zig-zag toolpath.

The second approach offsets the outline(s) of the pocket

by equally spaced offset distances, and employs these

successive offsets to derive a toolpath [4,10,16]. Offsets of a

C1 continuous outline can yield C1 discontinuities in regions

where the radius of curvature of the curve is larger than the

offset distance. Hence, in general, this offset-based toolpath

is also C0 continuous.

Both schemes typically work with outlines formed from

lines and arcs. Use of lines alone to approximate the outline

risks the loss of C1 continuity in the outline’s approximation.

Hence, it is desirable to use arcs as well as lines, in the

approximating the outline. This makes it possible to achieve

C1 continuity where the radius is larger than the offset

distance and also, since many NC machines support an arc

instruction, it reduces the size of the generated G-codes.
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One approach to machining pockets with freeform curve

outlines is to approximate the freeform shape using arcs

[1,3,15]. Usually, the error between the freeform spline

curve and two successive arcs, or bi-arcs, is approximated

simultaneously, achieving the ability to approximate

inflection points in the curve. Errors are typically measured

in the LN sense, although the L2 norm has been employed as

well [15].

Offset computation directly from the freeform outline

curve is also quite common and robust (see Ref. [5] for a

recent survey), and is desirable for several reasons. The

parameterization of the original curve can be preserved, and

hence, the association between the original geometry and its

offset is maintained. In addition, the resulting offset

consisting of spline segments can be more efficiently

downloaded to an NC machine that supports spline motion

interpolation. Finally, the bi-arcs approximation introduces

another phase of approximation that also increases the data

sets. The problem, however, of clipping or trimming the

self-intersecting freeform curves in the resulting offsets is

considered a difficult one. In Ref. [6], analytic distance maps

are employed to robustly trim both local and global self-

intersections in offsets of freeform curves. The direction of

robust toolpath generation using direct spline offset

computations should, therefore, be further pursued.

Other related works on NC pocket operations have

attempted to look at optimization issues. Examples include

consideration of successive application of tools with

decreasing radii [22], so as to reduce the overall machining

time, or alternatively, minimizing the number of retractions

in zig-zag [2,19,20] and offset [4] type toolpaths. The latter

has an exponential-expected time complexity due to the

ability of reducing the toolpath traversal problem to the

traveling salesman problem (TSP).

High speed machining (HSM) is an NC machining pro-

cedure that is becoming more and more common [14,18,21].

Unfortunately, both the zig-zag toolpath and the offsetting

toolpath generation approaches introduce multiple C1

discontinuities into the toolpath, making it unsuitable for

HSM applications. Recently, several attempts have been

made to alleviate these difficulties. One approach employs a

spiral motion that starts at the center of the pocket and

spirals out until it reaches the outline [14,18]. The spiral

toolpath has an infinite curvature at the limit, if the spiral

starts at the center. Furthermore, it is unclear how to

initialize the spiraling process as well as bring the tool to its

proper cutting depth. While the spiraling scheme can work

reasonably well in almost circular pockets, it also becomes

arbitrarily inefficient when elongated pockets are con-

sidered. Similar difficulties might result when pockets with

complex shapes are considered. Other approaches include

trochoidal milling [21] where the toolpath is following a

trochoidal path. This scheme is used mainly to handle

locally C1 discontinuities in the pocket outline, converting

C1 discontinuities into small loops that connect the adjacent

pieces, thereby forming a C1 continuous toolpath.
In our work, we propose a different scheme to handle the

HSM of arbitrary C1 continuous pockets. The generated

toolpath consists of arcs of complete circles of as-large-as-

possible radii, or half that much, and segments that connect

consecutive arcs. This automatically generated tool path is

especially suited for narrow and elongated pocket regions

that are difficult to machine even using traditional toolpath

generation schemes. Further, the constructed toolpath is

guaranteed to be C1 continuous, maximizing the benefits

that can be drawn from the HSM schemes.

In Section 2, the basic algorithm is considered. In

Section 3, several examples are presented, including NC

machining tests we have conducted. In Section 4, several

possible extensions are discussed and finally, we conclude

in Section 5.
2. The basic MATHSM toolpath algorithm

Given a freeform closed curve, C(t), possibly with

islands, Ii(ti), we seek the medial axis transform (MAT) of

the geometry for reasons to be explained shortly. Robust

algorithms to approximate the MAT of freeform curves in

the plane have begun to appear [7,8,17]. Alternatively, one

can employ one of the existing piecewise bi-arc and/or

piecewise line-arc approximation methods for freeform

curves and use MAT computation for lines and arcs—an

approach that nowadays is considered robust. For example,

the VRONI [13] package derives the MAT of outlines

formed of lines and arcs. In this work, and in all presented

examples, the VRONI package was used to derive the MAT

by first converting the freeform spline into a bi-arc

approximation with prescribed tolerance.

By definition, the MAT fully prescribes the maximal

circles one can fit into any location of the pocket to be

machined (see Fig. 1). Denote such circles as maximally

inscribed circles (MICs). The MAT provides excellent cues

to build a toolpath from successive MICs, following discrete

steps along the MAT. Since accelerations should be

minimized in HSM, by using MICs one is offered the best

complete circular motions that are possible at those pocket

locations. The MIC is the largest complete circle that fits

any pocket location, and hence the MIC prescribes the

motion that minimizes the radial accelerations among all

circular motions in that local neighborhood. By connecting

successive MICs using bi-tangent lines (see Fig. 2), one can

construct a full and complete toolpath that will machine the

entire pocket.

This short overview of the proposed toolpath generation

approach portrays the essence of this work. The toolpath is

constructed using successive MICs and small bi-tangent line

segments connect the successive MICs. Because, in practice,

successive MICs possess somewhat different radii and are

not necessarily centered along a straight line, each MIC could

be traversed less than or more than 3608 (see Fig. 2). Clearly,

the spacings of the MICs is closely related to the amount of



Fig. 1. A pocket with an outline in the shape of a human hand is presented.

In thick gray lines, the MAT of the outline is presented. Also shown is one

maximally inscribed circle (MIC) along with its typically two foot points,

F1 and F2. The foot points are provided by the MAT data structure for all

points on the MAT.
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material removed during the machining process and the

quality of the result. Let Mi be the ith MIC in the toolpath.

Then, when executing the motion of Mi, the tool removes the

material in MiKMiK1. The shape of the removed material is

shown in Fig. 2(c). The shape of the region of MiKMiK1 is

affected by the distance between the two centers of Mi and

MiK1 but also from changes in the radius of Mi. Let CiZ
ðcx

i ; c
y
i Þ and ri be the center point and radius of MIC Mi. Then,

the maximal width of the removed material in MiKMiK1 is

clearly governed by

kCi KCiK1kCri KriK1:

The amount of material that the tool removes while

traversing Mi changes continuously, gradually increasing

and then decreasing, making the load change on the tool

continuous (See Fig. 2(c)). This continuous behavior is
Fig. 2. Successive MICs (light gray) are connected using a line segment tangent to

toolpath. In (a), the two circles are isolated out of the pocket, whereas in (b), they a

two successive MICs is shown in gray.
crucial for the feasibility of using this toolpath in HSM

application. Because the tool load is not constant when

MATHSM toolpath is used, it is critical that the load change

will be continuous. Furthermore, the geometry of the

material removed also means that, in general, we are

machining about half the time using this toolpath scheme.

When the tool is traversing the MIC’s path Mi, it cuts nothing

when it is completely contained in the MIC MiK1. It can only

remove material when in contact with MiKMiK1. While, we

will partially address this shortcoming in Section 4, it is the

case that the MATHSM toolpath is not optimal. We denote

the toolpath generation scheme, shown in Fig. 3, as the

central MATHSM toolpath because the centers of the MICs

are placed on the MAT of the outline.

Two circles can have up to four different bi-tangent line

segments. Reconsider CiZ ðcx
i ; c

y
i Þ and ri, the center point

and radius of MIC Mi, respectively, and consider line AxC
ByCCZ0. Then, the four bi-tangent line segments between

Mi and MiK1 are the solution of the following constraints:

1 Z A2 CB2; Gri Z Acx
i CBc

y
i CC;

GriK1 Z Acx
iK1 CBc

y
iK1 CC;

(1)

having three equations and three unknowns, A, B, and C.

The first equation in Constraints (1) ensures that the line

representation is unique. The second and third equations

guarantee that the distance between the line and the MICs’

centers equates with the circles’ radii. By solving for A and

B, employing Cramer’s rule, as a function of C using the last

two equations of (1), one gets,
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(2)
both circles (in dark gray), yielding a scheme that achieves a C1 continuous

re shown inside the pocket. In (c), the new material that is removed between



Fig. 3. A C1 continuous central toolpath for a flat end tool for a human hand is connected using left line segments, creating a toolpath with CW rotations (a) and

using right line segments, creating a toolpath with CCW rotations (b). (c) and (d) show the thumb of (a) and (b), respectively, scaled up.
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for some m, n, p, q2R. Substituting A and B into the first

constraints of (1), the solution of the quadratic equation is C.

Having C, one can resolve A and B using Eq. (2), completing

the solution.

Two equations in Constraints (1) have a sign (G) degree

of freedom, suggesting four possibilities overall. None-

theless, and noting that lines (A, B, C) and (KA, KB, KC)

are the same, all that is necessary is to differentiate the case

where both centers are on the same side of the line (external

bi-tangent) or both centers are on the opposite side of the

line (internal bi-tangent). Interested in external bi-tangents

only, we need only find the solution of Constraints (1) such

that both constraints share the same sign.

Assuming we would rather move in an always-clockwise

or always-counter-clockwise direction for all MICs and

throughout the toolpath, only the two external bi-tangents

are of interest. One can select either one of the two

external bi-tangents, corresponding to clockwise or
counter-clockwise toolpaths, two options that are shown in

Fig. 3(a) and (b), respectively. As can be seen by inspecting

Fig. 3, convex outline regions are better machined when

bi-tangent lines connect the successive MICs along the

convex edge. Yet, concave outline regions are better left

unconnected (connecting the successive MICs using their

other external bi-tangent), else gouging might occur. In

Section 4, we will consider a simple extension to this bi-

tangent line segment connection approach that will signifi-

cantly improve the quality of the finished machined outline,

for both convex and concave outline regions.

The MAT is a tree when no islands are introduced in the

outline, and shares the same genus with the pocket when

islands are present. In either case, each leaf of the MAT will

amount to one retraction in the toolpath. Since retractions

are expensive in HSM, we also consider an alternative

traversal of the MAT. Instead of placing the tool’s center

along the MAT, the tool will traverse the path while



Fig. 4. In (a), a modification of the central approach presented in Fig. 3 as a C1 continuous one-sided toolpath that virtually removes all necessary retractions at

the cost of halving the arcs’ radii in the toolpath is presented. (b) presents a scaled up view of thumb.
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the MAT is always to its left (or its right), placing the tool’s

center mid-way from a MAT point to its foot points (recall

Fig. 1), the support points where the MIC is tangent to the

outline. Provided there are no islands in the given pocket,

we now cover the entire domain of the pocket in a single

loop and no intermediate retractions are necessary. Having

islands in the pockets and hence loops in the MAT, we will

be forced to retract once per loop, a condition one could

somewhat relax in many cases, as we will see in Section 4.

We denote this toolpath a one-sided MATHSM toolpath.

The toolpath will now look as can be seen in Fig. 4. The

cost of this modified, one-sided approach that eliminates the

retractions is obvious. We are now machining with half

the optimal radius. Using the one-sided toolpath, the line

segments connecting the successive MICs will all be along

the outline or will all be in the interior, along the MAT; see

Fig. 5.

Using the one-sided MATHSM tool-path, the circles are

at half the radius of the MIC and are positioned at half way

toward the two foot support points of each MAT location. If

the two support points are not at opposite locations with

respect to the central MAT location, these two circles will

overlap. This phenomenon is clearly visible near the tip of

the thumb in Fig. 4(b). Such behavior is typical of tips of

elongated regions, where the foot points of are indeed not at

opposite locations.
3. Examples of the HSM toolpath algorithm

We have tested the one-sided HSM toolpath, which we

foresee as overall somewhat superior to the central scheme,
on three different examples. Fig. 6 shows the human hand

pocket from Fig. 4 machined in aluminum. Fig. 7 shows a

pocket in the shape of the letters ‘GE’, using the toolpath

from Fig. 5 machined in aluminum. Finally, Fig. 8 shows

one half of a mold machined at two levels of a rounded

square pocket, and then a four-circular-satellites pocket

shape. Fig. 8(a) shows the toolpath of the rounded square

pocket and Fig. 8(b) presents the toolpath of the four-

circular-satellites pocket. Fig. 8(c) and (d) presents the part

machined in aluminum.

As can be seen in all three examples, the proposed

scheme performs well in elongated and skinny regions,

regions in which traditional pocketing schemes do poorly.

The presented approach is not efficient in large rounded

pockets such as the large palm region of the hand in Fig. 4(a)

or the rounded square of the mold in Fig. 8(a). This lack of

efficiency is shown by the significant overlaps of different

MICs of unrelated branches of the MAT of the outline.

It is important to initialize the tool, that is, bring the tool

to its proper initial depth, while preserving the C1 continuity

of the toolpath and minimizing accelerations. One can select

one MIC in the toolpath that is not too small and spiral down

along that MIC in a helical motion for several rounds until

the proper depth is reached. Then, the regular toolpath is

used at the current depth, visiting the successive MICs until

the entire toolpath is traversed.
4. Extending the MATHSM toolpath algorithm

The MATHSM toolpath generation scheme as presented

so far attempts to connect successive MICs, with the aid of



Fig. 5. A C1 continuous central toolpath for the ‘GE’ letters pocket is connected using inside line segments along the MAT (a) and outside line segments along

the outline (b). (c) and (d) show the central regions of (a) and (b) scaled up, respectively.
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bi-tangent line segments, to successive circles. However,

with a little effort, one can do considerably better. Consider

the curved segment of the outline between two successive

MICs, Mi and MiK1 (see Fig. 9). One can fit an arc bi-

tangent to both Mi and MiK1 that better approximates the

shape of the outline. In Fig. 9(a), a line connects the two

successive MICs whereas in Fig. 9(b) a circular arc is fitted

to the two successive MICs that better approximates the

curvature of the outline in that neighborhood. Needless to

say, such bi-tangent arcs can be made to fit in all cases

where the outline is either convex, linear, or concave,

achieving a better approximation of the outline and hence a

superior finish for the side walls of the pocket.
Fig. 6. Two views of the hand machined in aluminu
Once again, let Ci Z ðcx
i ; c

y
i Þ and ri be the center point and

radius of MIC Mi. Assume the outline region between Mi

and MiK1 is convex (as in Fig. 9) and denote by k the

average curvature of the outline pocket curve between Mi

and MiK1. Then, the circular arc, A, of radius 1/k that is bi-

tangent to both Mi and MiK1 will better approximate the

outline, local1y. The center of A, CA Z ðCx
A;C

y
AÞ; can be

derived as,

kCA KCik Z 1=k Kri; kCA KCiK1k Z 1=k KriK1; (3)

or CA can be computed as the intersection points of two

circles centered at Ci and CiK1 and of radii 1/kKri and

1/kKriK1, respectively. For a concave circular arc A,
m are presented. See the tool path in Fig. 4.



Fig. 7. Two views of the ‘GE’ part machined in aluminum are presented. See the toolpath in Fig. 5.

Fig. 8. In (a) and (b), two stages of a one-sided MATHSM toolpath of a mold with two levels and two different pockets are presented. In (c) and (d), two views

of the end part machined in aluminum are shown.
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Fig. 9. Two successive MICs (in dark gray) along the outline (in light gray). The linear segment (in black) that connects the two MICs in (a) is clearly inferior to

the circular arc (in black) connecting the two MICs in (b). The circular arc in (b) is clearly a superior approximation for the outline, taking into consideration the

second order curvature properties of the outline.
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Eq. (3) becomes

kCA KCik Z 1=k Cri; kCA KCiK1k Z 1=k CriK1:

By selecting kmin instead of k in a convex region, where kmin

is the minimal curvature of the outline between Mi and Mi,

one can ensure that the fitted arc A is always inside the

pocket, and therefore, there is no danger of gouging. Similar

arguments can be made for the containment in concave

regions.

Pockets with non-planar bottoms could also benefit from

the proposed scheme. Assume the pocket is completely

visible from the Z direction. Instead of a regular arc or

circular motion, one should support a helical motion with a

circular path in the XY plane. Then, the Z-height or the

helical pitch will be adjusted to follow the elevation change

at the bottom of the pocket. Until now, a single MIC would

have been traversed using a single G-code or NC machining
Fig. 10. In (a), the MAT of a pocket with (three) islands is presented. The MA

completely traversed, in general, using a single path. In (b), the toolpaths for the ou

loops could be merged into one pass without retractions as can the loops around
command, provided the NC machine supported the circular

motion of 3608 in a single command. With our scheme, the

helical motions will have to follow the elevation of the

bottom of the pocket and hence it is expected that a single

circle will be broken into numerous arc segments, at the cost

of a significant increase in size of the generated toolpath. A

three-dimensional bi-arcs’ fitting scheme should now be

required to approximate the three-space path. Further, the

vertical slopes of the non-planar bottom geometry should be

analyzed, making sure the tool is not attempting to remove

too much (too little) material at its current feed rate. In other

words, the amount of material removed and hence the

forward motion that is applied to the tool from one MIC to

the next is also depending on the depth change between the

two MICs.

We have already mentioned that when using either the

central or the one-sided MATHSM toolpath, the tool is
T can no longer be traversed using a single toolpath loop and cannot be

ter loop and the loop around island 1 are shown. Clearly, these two toolpath

islands 2 and 3 (not shown).
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removing material approximately half of the time. One

could somewhat alleviate this 50% deficiency by bringing

the tool more quickly to the next cutting position.

Traversing Mi, this goal could be achieved by either

increasing the feed rate while the tool is completely

contained in MiK1, or by shortening the length of the path

while completely inside MiK1, at the cost of higher

curvature arcs introduced into the toolpath.

In many cases, pockets are piecewise C1 continuous and

present corners. The stage of the computation of the MAT

can handle C1 discontinuities unaltered. Yet, clearly sharp

convex corners cannot be machined with a finite radius tool.

In traditional schemes, the minimal radius that can be

machined is governed by the tool radius. Here, and because

the tool is moving in circles, the minimal radius that can be

machined is also by the minimally allowed MIC, following

the maximal radial accelerations that are permitted.

When the one-sided MATHSM toolpath is used for

pockets with islands, the MAT is no longer a tree and

hence retractions are required. Since the toolpaths of the

different loops meet along shared MAT boundaries, one

can employ heuristics that connect different loops into a

larger toolpath, positioning the starting (and end) point(s)

of one loop at the seam with another loop, hence reducing

the number of retractions. Clearly not all retractions can be

removed using such a heuristic, but this number, bounded

from above by the number of islands in the pocket, can be

made even smaller in practice. Fig. 10 again shows the

hand pocket, this time with three interior islands. The MAT

can no longer be traversed using a toolpath of a single loop.

Yet, the presented loops, the outer loop and the loop

around island 1, can clearly be merged into one toolpath as

can the two loops around islands 2 and 3. (They are not

shown.)

When the radius of the MIC is changing rapidly, a

redundant front can be formed in the toolpath. This effect

can be seen, for example, near the bases of the five fingers,

in Figs. 3 and 4. The reason for this behavior can be found in

the large change of radius in the MIC as the MAT and the

toolpath traverse the palm into one of the fingers. In order

for the toolpath to enter the finger, its MICs’ radii

must be significantly reduced. The radii of the MICs is

decreased almost as fast as the centers of the MICs are

moving forward, creating a front that is almost standing still.

Equally critical is the fact that the material removal rate at

the neighborhood of this front is minimal. One can clearly

alleviate this toolpath redundancy by purging MICs that

remove little or no material, near the front. By computing

the amount of material being removed between two

successive MICs (see Fig. 2(c)), one can purge away

intermediate MICs that contribute below a certain threshold.

Alternatively and based on the changes in the radii of the

MICs, one can modify the forward steps between two

successive MICs to ensure a constant amount of material

removal or constant tool load.
5. Conclusion and future work

In this paper, we have introduced a new scheme for

toolpath generation of pockets, with typically freeform

outlines, toward HSM. The generated toolpath is C1

continuous. Further, the central MATHSM toolpath opti-

mizes the radial acceleration exerted on the machining tool,

whereas the one-side MATHSM toolpath minimizes the

number of retractions-two features that are of extreme

importance in HSM.

The MATHSM toolpath is inefficient in large rounded

pocket regions, such as the palm region of the hand

(Fig. 6(a)) or the rounded square shape of the mechanical

mold’s pocket (Fig. 8(a)).

One can attempt more global optimization schemes and

detect cases where Mi cuts nothing, not due to MiK1, but

because of previous machining operations, from different

branches of the MAT of the shape. Nevertheless, even with

such feasible yet complex optimization, we expect that the

toolpath scheme presented in the work augments more

standard approaches in regions that are long and narrow,

regions where the MATHSM performs very well and more

standard approaches lead to C1 discontinuities, changes in

accelerations, and multiple retractions. We foresee a global

analysis scheme that will examine the geometry of a given

pocket and optimize and split the work between different

toolpath generation techniques, using the MATHSM

scheme in long and narrow pocket regions and traditional

schemes in almost circular pocket regions.
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