
MATHTUTOR: A MULTI-AGENT
INTELLIGENT TUTORING SYSTEM

Janétte Cardoso
Institut de Recherche Informatique de Toulouse (IRIT) - UT1
jcardoso@univ-tlse1.fr

Guilherme Bittencourt, Luciana B. Frigo, Eliane Pozzebon
and Adriana Postal
Departamento de Automação e Sistemas (DAS) - UFSC
{ gb | lu eliane | apostal }@das.ufsc.br

Abstract
In this paper we propose a multi-agent intelligent tutoring system

building tool that integrates different formalisms in order to facilitate
the teacher task of developing the contents of a tutorial system and at
the same time to provide adaptiveness and flexibility in the presenta-
tion. The adopted formalisms are ground logic terms for the student
model, data-bases for the domain model and object Petri nets for the
pedagogical model. The interaction between the student and each agent
of the system is controlled by an object Petri net, automatically trans-
lated into a rule-based expert system. The object Petri net tokens are
composed by data objects that contain pointers to the student model
and to the domain knowledge, stored into a data-base of texts, exam-
ples and exercises. The object Petri net transitions are controlled by
logical conditions that refer to the student model and the firing of these
transitions produce actions that update this student model.

Keywords: Intelligent Tutoring Systems, Intelligent Agents, E-Learning, Expert
Knowledge-based Systems, Design Methodologies

Introduction
The field of Artificial Intelligent in Education (AI-ED) includes sev-

eral paradigms, such as Intelligent Computer Aided Instruction (ICAI),
Micro-world, Intelligent Tutoring Systems (ITS), Intelligent Learning
Environment (ILE) and Computer Supported Collaborative Learning

conference (CSCL), that originated many systems [12],[15],[14],[4]. More-
over, innovative computer technology, such as hyper-media, Internet and
virtual reality, had an important impact on AI-ED [3],[2].

Nevertheless, the task of building ITSs that cover a rich domain and
at the same time are adaptive to user level and interests continue to
be a very complex one. On the one hand, the domain knowledge must
be structured and its presentation planned by a human teacher in an
attractive and interesting way. On the other hand, differences among
the students, such as background knowledge, personal preferences and
previous interactions with the system, must be taken into account.

In [11], Mizoguchi and Bourdeau identifies several drawbacks of cur-
rent AI-ED tutoring systems, e.g. the conceptual gap between authoring
systems and authors, the lack of intelligent authoring methodologies, the
difficulty of sharing and reusing components of ITS, the gap between in-
structional planning and tutoring strategy for dynamic adaptation of
the ITS behavior. Furthermore, they note that all these drawbacks are
content-related and do not depend directly on issues such as represen-
tation and inference formalisms.

In this paper we propose a multi-agent ITS building tool, called
MathTutor, that integrates different formalisms in order to facilitate
the teacher task of developing the contents of a tutorial system and at
the same time to provide adaptiveness and flexibility in the presenta-
tion. Multi-Agent Systems (MAS) technology have been of great help
in reducing the distance between ideal systems and what can really be
implemented, because it allows to simplify the modeling and structuring
tasks through the distribution, among different agents, of the domain
and student models. The proposed tool is based on a conceptual model,
called MATHEMA [6], that provides a content-directed methodology for
planning the domain exposition and teaching strategies. The main con-
tribution of the paper, besides instantiating the MATHEMA model into
a working tool, is to propose an original way of integrating the student
and pedagogical models using Object Petri Net (OPN) [16].

The MathTutor tool has been implemented using the Java program-
ming language environment. The expert systems included in the system
were implemented using Jess [9], a Java Expert System Shell based on
the widely used Clips system. The multi-agent society is supported by
Jatlite [10], a Java platform that implements the KQML agent commu-
nication language [8]. The interface is based on Servlets and uses the
HTTP protocol and can be accessed through any browser, what allows
the use of the system as a distance learning tool. Using this tool, a
prototype of an Intelligence Tutor System, aimed to teach Information
Structure was implemented. The course is based on the programming

232

The tool architecture is based on the conceptual model MATHEMA
[6] and consists basically of three modules: the society of tutorial agents
(TAS), the student interface and the authoring interface. The interface
provides access to the system through any Internet browser. The au-
thoring interface module allows the definition of the course structure
and contents and is discussed in more detail in Section 3. Finally, the
society of tutorial agents consists of a multi-agent system where each
agent, besides communication and cooperation capabilities, contains a
complete intelligent tutorial system focused on a sub-domain of the tar-
get domain. The fact that the system consists of a multi-agent society
allows the distribution of domain contents and student modeling data
among the several agents that cooperate in the tutoring task.

The MATHEMA conceptual model [6] provides a partitioning scheme,
called the external view, leading to sub-domains. This partitioning
scheme is based on epistemological assumptions about the domain knowl-
edge and consists of a three dimensional perspective. The proposed di-
mensions are: context: along the context dimension the domain knowl-
edge is partitioned according to a set of different points of views about
its contents; depth: given one particular context, the associated knowl-
edge can be partitioned according to the methodologies used to deal with
its contents; laterality: given one particular context and one particular
depth, complementary knowledge can be pointed to in order to allow
the student to acquire background knowledge not in the scope of the
course or to reach related additional contents. Each sub-domain defined
according to this scheme is under the responsibility of a different agent,
that contains a complete ITS specialized in the sub-domain. This fact fa-
cilitates the specification of the course contents, because the teacher can
concentrate in each sub-domain. During the execution of the system, if

MathTutor: A Multi-AgentIntelligent Tutoring System 233

language Scheme [1, 7] and covers the program of an undergraduate dis-
cipline of the Control and Automation Engineering course at the Uni-
versity of Santa Catarina, Brazil.

The paper is organized as follows. In Section 1, the ITS building tool
architecture is described. In Section 2, the architecture of the agents
that compose the multi-agent society and the tutor systems that they
contain are presented. In Section 3, the authoring mechanism that allow
the design of new courses to be included into the system is described.
In Section 4, some related work is presented. Finally, in Section 5, we
present some conclusions and future work.

1. Tool Architecture

one agent concludes that the next tutoring task is out of its capabilities,
it asks the other agents of the society for cooperation.

In the case of the implemented ITS prototype, the domain knowledge
– Information Structure – is divided into two contexts – theoretical and
practical –, and each of these contexts is worked out in two depths – pro-
cedural abstraction and data abstraction. Therefore, the tutorial agent
society consists of four agents, each one responsible for one of the follow-
ing sub-domains: TP - theoretical procedural abstraction; PP - practical
procedural abstraction; TD- theoretical data abstraction; PD- practical
data abstraction. Lateral knowledge includes computer architectures,
programming languages courses, in particular about the Scheme lan-
guage [7], complexity analysis, software engineering techniques, among
other.

According to the internal view of the MATHEMA conceptual model,
the knowledge associated with each sub-domain (TP, PP, TD and PD in
the case of the ITS prototype) is organized into one or more curricula.
Each curriculum consists of a set of pedagogical units and each peda-
gogical unit is associated to a set of problems. In the first interaction
of a new student with the system, the interface module asks for identi-
fication data, basic preferences and background knowledge, and builds
the initial student model. The control is then passed to one of the TAS
agents. In the first interaction, typically this agent would be the one
that is responsible for the initial pedagogical unit of the course, the the-
oretical procedural abstraction (TP), in the case of the implemented ITS
prototype.

234

2. Agent Architecture
Each agent in the TAS has the architecture shown in fig. 1. The

behavior of the agent is controlled by the Coordinator module and con-
sists of the following activities: (i) According to the information in the
student model, one predefined curriculum is chosen, (ii) The rules that
implement the pedagogical model of the chosen curriculum are loaded
and the expert system shell inference engine is started. (iii) The infer-
ence engine, based on the rules and on the information in the student
model, infers which pedagogical unity should be used next. (iv) The co-
ordinator extracts the appropriate interaction data associated with the
inferred pedagogical unity, typically a HTML page, from the domain
knowledge data base and sends it to the interface. (v) If the pedagogi-
cal unity does not need any interaction with the Scheme program, the
result of the interaction with the student is used to directly update the
student model. (vi) If some interaction with the Scheme program is

MathTutor: A Multi-AgentIntelligent Tutoring System 235

Figure 1. Tutorial Agent

needed, the Coordinator performs it and returns the results to the inter-
face, that would typically show to the student these results in the same
HTML page. (vii) When the interface finishes the interaction with the
student, the coordinator runs again the inference engine and the process
is repeated.

Two special events may stop the above behavior: (i) the present cur-
riculum ends, or is interrupted by the student, and in this case either a
new curriculum is chosen or the session is terminated; (ii) the present
curriculum rules infer that the next interaction should be controlled by
another agent, e.g., to switch between theoretical and practical con-
texts, or to change the depth of the present context, and in this case,
the coordinator uses its communication and cooperation capabilities to
inform the other agent that it should take the control. In the following
subsections the three models (see fig. 1) are presented in detail.

2.1 Domain Model
The adopted formalism for the domain model is a data base of Servlets

definitions, i.e. interactive HTML pages, structured according to the
pedagogical approach proposed in the MATHEMA conceptual model
[6]. This approach is inspired both by the constructivism [13] and by
the Vygotsky’s theory of social knowledge [17]. The idea is to allow the
student to acquire and construct knowledge through the interaction with
the tutor system, that is designed with the aim of reinforcing the active
participation of the student in the learning process. To achieve this
goal, the interaction is based on cooperative problem solving activities,
combining learning by doing and learning by being told [5].

According to the internal view of the MATHEMA conceptual model,
the knowledge associated with each sub-domain (TP, PP, TD and PD
in the case of the ITS prototype) is organized into one or more cur-
ricula. Each curriculum consists of a set of pedagogical units ordered
according to prerequisites. For instance, in the Information Structure
ITS prototype, the pedagogical units associated with the sub-domains

236

Figure 2. Prerequisite graphs: (a) Curriculum CV1, (b) Pedagogical Unit PU1

TP and PP (Procedural abstraction) are: PU1 - Primitive procedures;
PU2 - Compound Procedures; PU3 - Interaction and recursion; PU4 -
Higher-Order Procedures; PU5 - Procedures as Arguments; PU6 - Pro-
cedures as General Methods; PU7 - Procedures as Returned Values. In
this example, both contexts – theoretical and practical – have the same
pedagogical units, what changes is the point of view about the subject.

A possible curriculum prerequisite graph for the “theoretical proce-
dural abstraction” domain is represented in fig. 2(a). Each pedagogical
unit is associated with a set of problems, in the sense that, if the student
is able to solve the problems associated with a given pedagogical unit,
the system considers that the contents of the unit have been learned.
The problems are also ordered according to prerequisite. The prerequi-
site order graph is defined by the teacher using the authoring interface
(see Section 3). A possible prerequisite graph for the problems in ped-
agogical unit “primitive procedures” (UP1) is represented in fig. 2(b).
Note that has two prerequisites – and – and they can be done in
any order. Each problem is associated with a set of interactive HTML
pages that support the problem solving activities. These pages are of
three types – explanations, examples and exercises – and the pages of
each type are ordered by difficulty.

The interactive pages that implement a problem have a standard for-
mat with some navigation controls, such as exit, proceed, repeat, etc.
Explanations and examples are just HTML text pages to be read by
the student and typically would be available in different levels of com-
plexity for each content. Exercises can be (multiple) choice questions,
questions that ask for some symbolic or numerical answers or questions
asking for some Scheme implementation, that need the interaction with
the Scheme program to be tested. Below, we present a fragment of the
domain model structure for the pedagogical unit “primitive procedures”
of the TP and PP sub-domains, in the Jess knowledge base syntax:

MathTutor: A Multi-AgentIntelligent Tutoring System 237

The system knowledge base is represented by Jess unordered facts with
the following structure:
where is the type of the fact, the name of an attribute
and its associated value. The three levels of the domain model
structure can be clearly seen in the representation: a pedagogical unit
contains a set of problems and each problem is associated with sets
of explanations, examples and exercises objects, represented by page
objects, where a pointer to the associated interactive HTML page is
stored.

2.2 Student Model
The adopted formalism for the student model is the subset of first-

order logic supported by the Jess knowledge base mechanism. This
mechanism consists of a base of facts containing ground logic terms and
a query language that may contain terms with variables. The model
contains static and dynamic information. The static information con-
sists of identification data (name, origin, background knowledge, etc.)
and preferences (theoretical oriented, practical oriented, first overview
than detail, step by step, etc.). The dynamic information consists of
descriptions of the student activities during all the interaction sessions
of the student with the system. The dynamic information is stored into
a distributed knowledge base, where each one of the TAS agents stores
the details of its own interactions with the student and just summaries of
the interactions of the other agents. These summaries contains basically
which pedagogical units have been visited and the degree of advance in
each of them.

Below, we present a fragment of the student model in the Jess knowl-
edge base syntax:

238

Figure 3. Object Petri Net

The student identification data is stored in a fact assigned to a global
variable (?*app*). In particular, this fact contains the present interac-
tion situation of the student: in the slot doing, the current pedagogical
unit/problem and, in the slot what, the current activity. The student
model consists of objects of type problem, explanation, example and
exercise, linked to the student identification data by the student slot,
where the details of the interaction, such as the session number in which
the object was accessed, the result obtained, etc, are stored.

2.3 Pedagogical Model
The pedagogical model controls the interaction between the student

and each agent of the system and is implemented by an object Petri Net
(OPN) [16], automatically translated into a rule-based expert system.
The OPN and its associated expert system are generated by the Author-
ing Interface (see Section 3) based on the description, provided by the
teacher, of courses sequences (curricula and prerequisite order of peda-
gogical units and problems) and contents (explanations, examples and
exercises, ordered by difficulty). An important point in the proposed
approach is that the teacher does not need to specify the interaction
with the student model, this interaction is automatically included in the
OPN using the prerequisite and difficulty orders defined by the teacher.

In an OPN, the tokens are object instances. A OPN is defined by a
control structure (places, transitions and arcs connecting places to/from
transitions) and by the data structure of its tokens. In our case, all
places and tokens have the same class (type): student. The generated
OPN is hierarchical, because nodes of the curriculum graph are peda-

MathTutor: A Multi-AgentIntelligent Tutoring System 239

gogical units, and each pedagogical unit is itself a graph whose nodes
are problems (see fig. 3). The tokens are instances of the student class
whose associated data structures are defined in Section 2.2. A token in
a place of the curriculum OPN represents that the student is doing
pedagogical unity Each place is exploded in a whose
places are problems A student token in a place means that the stu-
dent can do it. If the token attribute doing is set to the student
is actually doing problem of pedagogical unit Considerer fig. 3,
the student is doing can do and

and is actually doing
in particular doing an example associated with problem because

Maria.what = examples.
The arcs represent the prerequisite order between pedagogical units,

in curriculum OPN, and between problems, in the problem OPN. Besides
these prerequisite conditions, transitions have also extra firing conditions
controlled by the student model. The firing of transitions produce ac-
tions that update the student model. These extra conditions, predefined
into the OPNs, are not specified by the teacher and allow the system to
be adaptive with respect to the different students.

Below, we present a fragment of the pedagogical model in the Jess
knowledge base syntax, in the situation shown in fig. 3:

Places and transitions are represented by Jess objects (classes place
and trans). The tokens are the global variables associated with stu-
dents and are stored in the slot token of the class place. Conditions
are functions that access the student model to determine whether the
transition should fire or not and are stored in the slot condition of class
trans.

3. Authoring Interface
The complexity of the MathTutor architecture is a consequence of

the intended goal of presenting the domain knowledge in an attractive
and interesting way and, at the same time, to provide adaptiveness to

240

Figure 4. Authoring Mechanism

user level and interests. Nevertheless, this complexity makes the task of
designing a course for the system equally complex.

To facilitate this task, an authoring mechanism is proposed (see figure
4). This mechanism, following the internal view of the MATHEMA con-
ceptual model, has three levels. At the first level, the teacher specifies
the curricula of the course. Each curriculum is composed by a set of
pedagogical units and their possible sequences of execution. To specify
each curriculum the teacher disposes of a graphical interface that allows
the construction of graphs (see fig. 2(a)). Each graph is associated with
a curriculum and each node of a graph is associated with a pedagogical
unit. An edge from node to node means that pedagogical unit

has pedagogical unit as prerequisite. Each node may have the
following input edges: (i) none: the pedagogical unit has no prerequisite
and can be executed anytime; (ii) one: the pedagogical unit has only
one pedagogical unit as prerequisite and this one must be executed be-
fore it is available for execution; (iii) two or more necessary edges: the
pedagogical unit has several prerequisite pedagogical units and all must
be executed, in any order, before it is available for execution; (iv) two
or more alternative edges: the pedagogical unit has several prerequisite
pedagogical units but only one of them must be executed before it is
available for execution.

Nodes and the different types of edges may be combined in a complex
graph, according to the intended course sequences. The output of the
interface first level consists of a graph represented as an expression in a
pre-defined formal language.

The interface second level allows the definition of the pedagogical
units. Each pedagogical unit consists of a set of problems whose defini-
tions are specified through a specific interface. The problem definition
includes a question that the student should be able to answer, after the
interaction with the problem, and the specification of the number of

explanations, examples and exercises that will be associated with the
problem. The prerequisite ordering among the problems of the same
pedagogical unit is defined through the same graphical interface used to
define the ordering of pedagogical units (see fig. 2(b)) and is represented
by an expression in the same formal language.

Based on the information obtained in these two first levels, the in-
terface generates an object Petri net (OPN) description of the course
sequences, taking into account the defined prerequisites. In this OPN,
each problem is associated with a place and each pedagogical unit with
a sub-net. The use and update mechanisms of the apprentice model are
automatically integrated into the OPN, leaving to the teacher only the
task of providing the associated explanations, examples and exercises.
The OPN is automatically translated into Jess expert system rules that
implement it.

The interface third level is where these explanations, examples and
exercises are specified by the teacher. They can be directly typed into
the interface or copied from previously prepared files. The texts are
incorporated into Servlets HTML pages in a standard format that al-
ready include the navigation controls. Presently, the exercise pages that
include interaction with the Scheme system must be defined manually.

REFERENCES 241

4. Conclusion

References

We presented MathTutor, a multi-agent tool for building intelligent
tutoring systems based on a principled model for content exposition and
learning strategy planning. The tool also includes a three level authoring
interface, through which the structure of on-line courses can be defined.
It was used to implement a prototype ITS to teach Information Structure
as an undergraduate course. The implemented ITS prototype consists
of a multi-agent society composed by four ITSs, each one specialized on
a sub-domain.

Future work includes the refinement of the student model use and
update mechanisms embedded into the object Petri net control. Future
work also includes the development of other courses based on the same
architecture and the evaluation of the implemented ITS prototype by the
students of the discipline of Information Structure of the Control and
Automation Engineering course at the University of Santa Catarina.

H. Abelson and G. J. Sussman. Structure and Interpretation of Computer Pro-
gram. The Mit Press, 1996.

[1]

242

S. R. Alpert, M. K. Singley, and P. G. Fairweather. Deploying intelligent tutors
on the web: An architecture and an example. J. of AI in Education, 10:183–197,
1999.

P. Brusilovsky. Adaptative hypermedia: From intelligent tutoring systems to
web-based education. LNCS 1839, June 2000. ITS 2000, Montreal, Canada.

W.J. Clansey. Knowledge-Based Tutoring: The GUIDON Program. The MIT
Press, 1987.

E. Costa. Artificial intelligence and education: the role of knowledge in teaching.
In Machine and Human Learning, pages 249–258. 1991.

E. de B. Costa, M.A. Lopes, and E. Ferneda. MATHEMA: A learning environ-
ment based on a multi-agent architecture. In LNAI, volume 991, pages 141–150,
October 1995.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krish-
namurthi. How to Design Programs An Introduction to Computing and Pro-
gramming. The MIT Press, 2001.

T. Finin, Y. Labrou, and J. Mayfield. KQML as an Agent Communication
Language. MIT Press, 1995.

Ernest J. Friedman-Hill. Jess, The Rule Engine for the Java Platform. Sandia
National Laboratories, Livermore, CA, distributed computing systems edition,
September 2003. http://herzberg.ca.sandia.gov/jess/.

JATLite. Java agent template lite. Technical report, Stanford University, 1997.

R. Mizoguchi and J. Bourdeau. Using ontological engineering to overcome com-
mon AI-ED problems. J. of AI in Education, 11(2):107–121, 2000.

T. Murray. Authoring intelligent tutoring systems: An analysis of the state of
the art. In J. of AI in Education, volume 10. 1999.

Jean Piaget. The Psychology of Intelligence. Routledge Classics, Sept. 2001.

John Self. Artificial intelligence and human learning : intelligent computer-aided
instruction. Chapman and Hall, 1988.

John Self. Theoretical foundations for intelligent tutoring systems. J. of AI in
Education, 1990.

C. Sibertin-Blanc. High-level Petri nets with data structures. In European
Workshop on Application and Theory of Petri nets, pages 141–170, Helsinki,
Finland, June 1985.

Lev Semyonovich Vygotsky. Mind in Society: The Development of Higher Psy-
chological Processes. Harvard University Press, 1978.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

