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Abstract In 1994 S. Bullett and C. Penrose introduced the one complex
parameter family of (2 : 2) holomorphic correspondences Fa:
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and proved that for every value of a ∈ [4, 7] ⊂ R the correspondence Fa

is a mating between a quadratic polynomial Qc(z) = z2 + c, c ∈ R, and
the modular group Γ = P SL(2, Z). They conjectured that this is the case
for every member of the family Fa which has a in the connectedness locus.
We show here that matings between the modular group and rational maps in
the parabolic quadratic family Per1(1) provide a better model: we prove that
every member of the family Fa which has a in the connectedness locus is such
a mating.
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1 Introduction

The analogies between the iteration of holomorphic maps and the action of
Kleinian groups were first enumerated by Sullivan in the mid 1980s. His land-
mark paper [21], where he proved the conjecture of Fatou that there are no
wandering domains for a rational map on the Riemann sphere, includes the
first version of what it is now called Sullivan’s dictionary, in which defini-
tions, theorems and conjectures in the world of holomorphic maps are related
to analogous definitions, theorems and conjectures in the world of Kleinian
groups. Sullivan draws attention to deep parallels between the Fatou set F f

and Julia set J f of a holomorphic map f on Ĉ, and the ordinary set Ω(G) and
limit set Λ(G) respectively of a finitely generated Kleinian group G acting on
Ĉ, and his proof of the no wandering domains theorem for rational maps is
inspired by the method used to prove Ahlfors’ finiteness theorem in the world
of Kleinian groups.

Both rational maps and finitely generated Kleinian groups can be regarded as
particular cases of correspondences. An n-to-m holomorphic correspondence
on Ĉ is a multi-valued map F : z → w defined by a polynomial relation
P(z, w) = 0. A rational map f (z) = p(z)/q(z) becomes an n-to-1 corre-
spondence defined by P(z, w) = 0, where P(z, w) = wq(z) − p(z), and any
finitely generated Kleinian group G with generators

γ j (z) = a j z + b j

c j z + d j

( j = 1 . . . n)

can be regarded as an (n : n) correspondence by taking

P(z, w) =
n∏

j=1

(
w(c j z + d j ) − (a j z + b j )

)
.
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Mating quadratic maps with the modular group II 187

For example, since

α(z) = z + 1 and β(z) = z

z + 1

generate the modular group Γ = P SL(2, Z), the orbits of Γ on Ĉ are the
orbits of the (2 : 2) correspondence defined by

(w − (z + 1))(w(z + 1) − z) = 0.

The study of iterated holomorphic correspondences was initiated by Fatou
[11] in 1922, with an analysis of a family of examples ‘sur lesquels’, he
remarks, ‘on voit apparaitre déjà certaines propriétés, assez différentes de
celles auxquelles donnent lieu les cas d’itération déjà étudiés’ [‘in which one
already sees the appearance of certain properties somewhat different from
those arising in the cases of iteration studied up till now’]. He concludes
his article with the comment that one may treat various examples of iterated
algebraic functions in an analogous fashion, ‘mais une théorie générale de
ce problème ne parait pas facile. Nous pensons pouvoir y revenir ultérieure-
ment’ [‘but a general theory for this problem does not seem easy. We hope to
return to this in the future’]. The next developments of which we are aware
came in the 1990s, when McMullen and Sullivan in their foundational work
[17], defined a (one-dimensional) holomorphic dynamical system to be a col-
lection of holomorphic relations on a complex 1-manifold, and developed a
common framework in which rational maps, Kleinian groups and holomor-
phic correspondences can be treated simultaneously. At around the same time
researchers in integrable systems [3] were investigating the complexity of sym-
metric holomorphic correspondences associated with elliptic curves, a topic
also prefigured in the introduction to Fatou’s article.

Also in the 1990s, the first author and C. Penrose observed behaviour such
as that illustrated in the left-hand columns of Figs. 1 and 2, and 3, in a particular
family of (2 : 2) correspondences, namely the one parameter family Fa defined
by

(
aw − 1

w − 1

)2

+
(

aw − 1

w − 1

) (
az + 1

z + 1

)
+

(
az + 1

z + 1

)2

= 3.

Computer plots appeared to show two copies (denoted in this article by Λa,−
and Λa,+) of the filled Julia set of a quadratic polynomial, together with an
action of the modular group on the complement (denoted Ωa here), prompting
the question as to whether in the world of holomorphic correspondences there
might exist ‘matings’ between quadratic polynomials and the modular group.
Bullett and Penrose [4] constructed an abstract combinatorial mating between
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188 S. Bullett, L. Lomonaco

Fig. 1 An illustration of the Main Theorem: on the left is the limit set Λ−(F5) ∪ Λ+(F5) of
F5, the centre of the period 1 component of MΓ , and on the right is the filled Julia set K (G) of
G(z) = 2z2/(z2 +1) (which is conformally conjugate to P1 : z → z +1/z +1). After surgery,
the correspondence F5, restricted to a neighbourhood of Λ−(F5), becomes hybrid conjugate
to G on a (pinched) neighbourhood of K (G)

the modular group and any member of the quadratic family which has con-
nected and locally connected filled Julia set (see Section 1.1). Holomorphic
correspondences realising these combinatorial matings are holomorphic real-
isations of Minkowski’s question mark function [20], a homeomorphism from
the unit interval to the positive real line which sends a real number expressed
in binary to a real number with a corresponding continued fraction expression.
On the binary expression side of the mating is the Douady-Hubbard coding
of rays for quadratic polynomials, which is key to combinatorial descriptions
of Julia sets and renormalisation theory. On the continued fraction side, the
action of the modular group is related to the generation of Farey sequences of
rationals, and thence to the Riemann Hypothesis (we thank Charles Tresser
for drawing our attention to the work of Franel [12] and Landau [15], showing
that the Riemann Hypothesis is equivalent to certain conditions concerning
the uniformity of distribution of such sequences).

The main result of [4] is that for a in the real interval [4, 7] the holomorphic
correspondence Fa is indeed a mating between a (real) quadratic polynomial
and the modular group. More generally, Bullett and Penrose conjectured that
each Fa for which the parameter a is in the connectedness locus for the family
is a mating between a quadratic polynomial and the modular group. Their con-
jecture was subsequently proved [5] for a large class of values of the parameter
a, by applying Haïssinsky’s technique of ‘pinching’ to the correspondences
constructed in [6]. But the technique is not applicable for all values of a in the
connectedness locus, and we would argue that the root cause of the difficulty is
that the family of quadratic polynomials is the wrong model for the problem.
Whatever the value of a, the branch of Fa which fixes z = 0 is parabolic, with
multiplier at the parabolic fixed point equal to 1 (see Proposition 3.5). This
fact makes the use of polynomial-like mappings tricky and finally inefficient,
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Mating quadratic maps with the modular group II 189

Fig. 2 Two more examples illustrating the Main Theorem: top left, the limit set of the correspon-
dence Fa at the centre of the period two component of MΓ , and bottom left the correspondence
at the centre of the co-rabbit (period three) component, together with a P SL(2, Z) equivariant
tiling of the complement in each case; on the right, the filled Julia sets of the rational maps at
the centres of the corresponding components of M1. For clarity in our correspondence plots,
we only show the first few levels of the tiling. The tile boundaries are the images under Fn

a
(n ∈ Z) of the boundaries of the standard pair of Klein combination domains (Definition 3.2,
transferred to the z-coordinate in the plots); their images in H under the Riemann map φ (Sect.
4) vary with a, but are fixed for real a because of the additional reflection symmetry

and suggests that the optimum description of the correspondences Fa might
be as matings between the modular group and members of some family of
parabolic quadratic maps. As we shall demonstrate below, this is indeed the
case, the family of maps being

PA : z → z + 1

z
+ A, A ∈ C,

which we recall are the quadratic rational maps with a parabolic fixed point of
multiplier 1 at infinity and critical points at ±1. Note that PA′ is conformally
conjugate to PA′′ if and only if A′ = ±A′′; in Milnor’s notation the set of
(conformal) conjugacy classes is denoted Per1(1).

Definition 1.1 We say that Fa is a mating between the rational quadratic map
PA : z → z + 1/z + A and the modular group Γ = P SL(2, Z) if
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190 S. Bullett, L. Lomonaco

Fig. 3 Further examples illustrating Theorems A and B. Top left, the limit set of Fa for
a = 4.46435 + 0.53888i , the correspondence in the ‘rabbit limb’ such that the image of the
critical value is periodic of period two; on the right an example with totally disconnected limit
set for the nearby value of a = 4.5+0.6i , which is outside MΓ . Bottom left, analogous pictures
for a = 7 and the nearby value a = 6.9 + 0.15608i (outside MΓ ). The values of the parameter
a for the right-hand pictures both lie in the Klein combination locus K, so Theorem B applies,
though Theorem A does not. The effects of a ‘parabolic implosion’ are clearly visible in the
bottom right-hand picture

(i) the 2-to-1 branch of Fa for which Λa,− is invariant is hybrid equivalent
to PA on Λa,−, and

(ii) when restricted to a (2 : 2) correspondence from Ωa to itself, Fa is
conformally conjugate to the pair of Möbius transformations {α, β} from
the complex upper half plane H to itself.

Formal definitions of the sets Λa,−, Λa,+, and Ωa are given in Sect. 3. In
the same section we also define the Klein combination locus K ⊂ C and the
connectedness locus CΓ ⊂ K of the family of correspondences Fa . Given
these concepts, we are in a position to state the main result of this paper:

Main Theorem For every a ∈ CΓ the correspondence Fa is a mating between

some rational map PA : z → z + 1/z + A and Γ .

We view this theorem as superseding the Bullett–Penrose conjecture con-
cerning quadratic polynomial maps and Γ , since it offers a more natural
setting and yields a complete answer. The original conjecture remains, but
now becomes a question concerning the relationship between Per1(1) and the
space of conjugacy classes of quadratic polynomials.
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Mating quadratic maps with the modular group II 191

The layout of this paper is as follows. In Sect. 2 we assemble facts concerning
Fatou coordinates and parabolic-like mappings that will be needed later. In
Sect. 3 we investigate some dynamical properties of the family Fa and in Sect.
4 we prove:

Theorem A For every a ∈ CΓ , when restricted to a (2 : 2) correspondence

from Ωa to itself, Fa is conformally conjugate to the pair of Möbius transfor-

mations {α : z → z + 1, β : z → z/(z + 1)} from the complex upper half

plane H to itself.

In Sect. 5 we prove that every Fa with a in the Klein combination locus K

can be surgically modified to become a single-valued degree 2 parabolic-like

map in the sense of [14] on a neighbourhood of the backward limit set Λa,−.
Since this parabolic-like map can then be straightened ([14]) into a rational
map of the form PA : z → z + 1/z + A, we obtain the following:

Theorem B For every parameter value a ∈ K, after a surgery supported

outside the limit set, the branch of Fa fixing Λa,− restricts to a degree 2
parabolic-like mapping, and therefore on Λa,− is hybrid equivalent to a mem-

ber of the family Per1(1) of quadratic rational maps.

Note that since the Julia set of a rational map is the closure of the set of
repelling periodic points, and quasiconformal maps preserve the nature of
periodic points, the theorem implies the following:

Corollary 1.2 For each a ∈ K, the boundary of Λa,− is the closure of the set

of repelling periodic points of the branch of Fa fixing Λa,−.

The Main Theorem is a consequence of Theorems A and B.
As we shall see, the closed disc D = {a : |a − 4| ≤ 3} is contained in

the Klein combination locus K (apart from the point a = 1, where Fa is
undefined). Let MΓ denote the modular Mandelbrot set CΓ ∩ D. This set
MΓ (see Fig. 4), which visibly resembles the classical Mandelbrot set, was
first plotted in [4]. In [7] we investigate the dynamics of the family Fa , and in
particular we prove a new inequality of Yoccoz type which has as consequences
the facts that MΓ is contained in a lune within D of internal angle strictly less
than π , and that for all a ∈ MΓ the limit set Λa,− is contained in a dynamical
space lune of internal angle strictly less than π . This in turn will allow us in
[8] to apply holomorphic motion techniques enabling us to prove that MΓ is
homeomorphic to the connectedness locus M1 of the family Per1(1). Together
with the proof announced by Pascale Roesch and Carsten Petersen that M1 is
homeomorphic to the classical Mandelbrot set M , this will finally prove that
MΓ is homeomorphic to M . Moreover, as a corollary to the theorem that MΓ

is homeomorphic to M1, we shall prove that MΓ is the whole of CΓ .
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192 S. Bullett, L. Lomonaco

Fig. 4 Connectedness loci: MΓ on the left and M1 on the right. We will prove in [8] that these
two sets are homeomorphic, and that MΓ is the whole connectedness locus CΓ

2 Preliminaries

This section is devoted to a summary of results we will use during the article.

2.1 Petals and Fatou coordinates

A holomorphic map g(z) = z +bz2 +· · · , with b 	= 0, defined in a neighbour-
hood of the origin, has a parabolic fixed point at the origin with multiplicity 1.
A complex number v points in the repelling direction if bv is real and positive,
and a complex number w points in the attracting direction if bw is real and
negative. An open set in a neigbourhood of the origin is called an attracting
petal if it is mapped into itself and if each orbit eventually absorbed by it con-
verges to the origin from the attracting direction v. Similarly, a repelling petal
is an open set contained in its image and with orbits escaping from the origin
in the repelling direction w.

There exists a well-established body of knowledge concerning attracting and
repelling petals at parabolic fixed points of holomorphic functions g, and Fatou

coordinates on these petals. We shall make use of petals with the properties
listed in the following Proposition.

Proposition 2.1 For every holomorphic function g as above, and every angle

0 < θ < π , inside every neighbourhood of 0 there exists a repelling petal U+
θ

containing an open sector of angle 2θ centered at the origin and symmetric

with respect to the repelling direction. Each of these petals is equipped with a

conformal homeomorphism Φ+ (known as a Fatou coordinate) from U+
θ to a

subset V +
θ of the complex plane consisting of all points w = u + iv to the left

of some curve which has asymptotes u = −|v| cot(θ) − c, with c large so that

|w| is large for all w ∈ V +
θ (see [19]), with the following properties:
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Mating quadratic maps with the modular group II 193

(i) Φ+ is a composition ψ−1φ where φ(z) = 1/(−bz) and ψ (defined on V +
θ )

is asymptotic to the identity, in the sense that lim|w|→∞ ψ(w)/w = 1 for

all w ∈ V +
θ ;

(ii) Φ+ conjugates g−1 on U+
θ to w → w − 1 on V +

θ .

Proof This is an immediate consequence of Chapter 10 in [18], or Chapter
6.5 in [1]. For the estimate of the asymptotes of the repelling petal in the w

coordinate, see the proof of Theorem 7.2 in [19]. ⊓⊔
An attracting petal U−

θ is a repelling petal for g−1, and has a Fatou coor-
dinate conjugating g to w → w + 1 on the corresponding domain V +

θ in C.
We observe that U+

θ and U−
θ are foliated by invariant curves (invariant under

g−1 and g respectively), corresponding to the respective foliations of V +
θ and

V −
θ by horizontal lines. When U+

θ ∩ U−
θ is non-empty (which is always the

case when θ > π/2) the two foliations on the intersection will usually be dif-
ferent: nevertheless for both these foliations on the intersection, leaves which
correspond to horizontal lines in the w-plane sufficiently far above or below
the real axis, extend to invariant (under both g and g−1) topological circles,
horocycles, in the z-plane.

2.2 Per1(1) and parabolic-like maps

Consider the family of quadratic rational maps having a parabolic fixed point
of multiplier 1 at ∞. Normalizing by setting the critical points to be at ±1,
this family is

Per1(1) = {PA(z) = z + 1/z + A | A ∈ C}/(A ∼ −A)

For a map in Per1(1), denoting by Λ the parabolic basin of attraction of
infinity, we can define the filled Julia set of PA to be K A = Ĉ \ Λ (the map
P0(z) = z + 1/z is the unique map in the family Per1(1) with two parabolic
attracting petals, and we set K0 to be the closure of the left half of the complex
plane).

A (degree 2) parabolic-like map is a map which behaves in a similar way
to a member of the family Per1(1) in a neighbourhood of its filled Julia set.
The definition extends the notion of a polynomial-like map (see [10]) to a map
with a parabolic external class:

Definition 2.2 A parabolic-like map is a 4-tuple ( f, U ′, U, γ ) where

– U ′, U are open subsets of C, with U ′, U and U ∪U ′ isomorphic to a disc,
and U ′ not contained in U ,

– f : U ′ → U is a proper holomorphic map of degree d with a parabolic
fixed point at z = z0 of multiplier 1,
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194 S. Bullett, L. Lomonaco

– γ : [−1, 1] → U , γ (0) = z0 is an arc, forward invariant under f , C1 on
[−1, 0] and on [0, 1], and such that

f (γ (t)) = γ (dt), ∀ − 1

d
≤ t ≤ 1

d
,

γ ([ 1

d
, 1) ∪ (−1, − 1

d
]) ⊆ U \ U ′, γ (±1) ∈ ∂U.

It resides in repelling petal(s) of z0 and it divides U ′, U into Ω ′, Δ′ and
Ω, Δ respectively, such that Ω ′ ⊂⊂ U (and Ω ′ ⊂ Ω), f : Δ′ → Δ is an
isomorphism and Δ′ contains at least one attracting fixed petal of z0. We
call the arc γ a dividing arc.

The filled Julia set of a parabolic-like map ( f, U ′, U, γ ) is the set of points
that never escape Ω ′∪{z0}, this is K f = {z ∈ U ′ | ∀n ≥ 0, f n(z) ∈ U ′\Δ′},
and the Julia set is defined as J f := ∂K f (see [14]). By the Straightening
Theorem for parabolic-like maps, any degree 2 parabolic-like map is hybrid
equivalent to a member of the family Per1(1), a unique such member if the
filled Julia set is connected.

3 Dynamics of Fa

We consider the family of (2 : 2) holomorphic correspondences on the Rie-
mann sphere which have the form Fa : z → w, where

(
az + 1

z + 1

)2

+
(

az + 1

z + 1

) (
aw − 1

w − 1

)
+

(
aw − 1

w − 1

)2

= 3

for a parameter a ∈ C, a 	= 1. The reason for studying this particular family is
the following lemma (the content of which is in [4], repeated here to establish
notation) together with Proposition 1.4 of [5], which states that every mating
between a quadratic map and the modular group which supports a compatible

involution (see [5]) is conformally conjugate to a member of this family.

Lemma 3.1 In the coordinate Z = az+1
z+1 , the correspondence Fa is the com-

position J ◦ Cov
Q
0 where

J (Z) = (a + 1)Z − 2a

2Z − (a + 1)

is the involution which has fixed points 1 and a, and Cov
Q
0 : Z → W is the

deleted covering correspondence of the rational map Q(Z) = Z3 − 3Z.
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Mating quadratic maps with the modular group II 195

Proof Consider the map Q(Z) = Z3 − 3Z . It has a double critical point at
infinity and simple critical points at ±1, and up to pre- and post-composition
by Möbius transformations, every degree 3 rational map with exactly 3 distinct
critical points is equivalent to Q(Z).

Let CovQ : Z → W be the (3 : 3) covering correspondence of Q, which is
the correspondence exchanging the preimages of Q, or in other words acting
on the fibres of Q. This is the correspondence defined by

Q(Z) = Q(W ),

or more explicitly by

Z3 − 3Z = W 3 − 3W.

Let Cov
Q
0 : Z → W be the (2 : 2) correspondence defined by

Q(Z) − Q(W )

Z − W
= 0,

that is,

Z2 + Z W + W 2 = 3.

This is called the deleted covering correspondence of Q, since its graph is
obtained from that of CovQ by deleting the graph of the identity.

Post-composing this last correspondence by the involution W → J (W ) we
obtain the (2 : 2) correspondence defined by the polynomial

Z2 + Z(J (W )) + (J (W ))2 = 3.

This is the correspondence

Z2 + Z

(
(a + 1)W − 2a

2W − (a + 1)

)
+

(
(a + 1)W − 2a

2W − (a + 1)

)2

= 3,

which is, via the change of coordinates

Z = az + 1

z + 1
, W = aw + 1

w + 1
,

the correspondence Fa . ⊓⊔
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196 S. Bullett, L. Lomonaco

Fig. 5 Standard
fundamental domains for Fa

a

L

∆J

−2 1 2

∆
Cov

Q
0

Note that in the coordinate z, the involution J becomes z ↔ −z. The
choice of whether to work in the coordinate Z or in the coordinate z depends
on whether it is more convenient to have a simple expression for Cov

Q
0 or for

J . We will denote by P the common fixed point of Cov
Q
0 and J (P is the point

Z = 1 or z = 0 in our two coordinate systems).
By a fundamental domain for Cov

Q
0 we shall mean a maximal open set

which is disjoint from its image under Cov
Q
0 . (In this article fundamental

domains will always be open sets.)

Definition 3.1 The Klein combination locus K for the family of corre-
spondences Fa is the set of parameter values a for which there exist
simply-connected fundamental domains ΔCov and ΔJ for Cov

Q
0 and J respec-

tively, bounded by Jordan curves, such that

ΔCov ∪ ΔJ = Ĉ \ {P}.

We call such a pair of fundamental domains (ΔCov, ΔJ ) a Klein combination

pair.

Definition 3.2 For a in D = {a : |a − 4| ≤ 3}, the standard pair of funda-

mental domains is that given by taking ΔCov to be the region of the Z -plane
C to the right of Cov

Q
0 ((−∞, −2]), and ΔJ to be the complement in Ĉ of

the closed round disc in the Z -plane Ĉ which has centre on the real axis and
boundary circle through the points 1 and a.

Proposition 3.3 For all a ∈ D (apart from the parameter value a = 1 where

the correspondence is undefined), the standard pair of fundamental domains

is a Klein combination pair. Hence D \ {1} ⊂ K.
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Mating quadratic maps with the modular group II 197

Proof The real line interval L = [−∞, +2] has inverse image Q−1(L) the
line interval L itself, together with a curve L ′ which crosses L orthogonally at
Z = 1 and runs off towards ∞ in directions approaching angles ±π/3 to the
positive real axis (Fig. 5). This line L ′ is the image of [−∞, −2] under Cov

Q
0 ,

and an elementary computation shows that

L ′ = {
(

1 + t

2

)
± i

√√√√3

(
t +

(
t

2

)2
)

: t ∈ [0, ∞]}.

Now the component of C \ L ′ which lies to the right of L ′ is a fundamental
domain for Cov

Q
0 , that is to say it is a maximal open set which is disjoint from

its image under Cov
Q
0 (see also Example 1.2 in [9]). But this component is

our standard fundamental domain for CovQ (Definition 3.2.)
The standard ΔJ is self-evidently a fundamental domain for the involution

J , so it only remains to verify that for a ∈ D \ {1}, the domains ΔCov and
ΔJ satisfy the Klein combination condition. However an elementary compu-
tation shows that L ′ meets the circle which has centre Z = 4 and radius 3
at the single point Z = 1. It follows that ΔCov ∪ ΔJ ⊇ Ĉ \ {1} for all a ∈
D \ {1}. ⊓⊔
Proposition 3.4 For every a ∈ K and Klein combination pair (ΔCov, ΔJ ),

the correspondence Fa has the following properties when its domain and co-

domain are restricted as indicated:

– F−1
a (ΔJ ) ⊂ ΔJ , and Fa| : F−1

a (ΔJ ) → ΔJ is a (single-valued, continu-

ous) 2-to-1 map;

– Fa(Ĉ \ ΔJ ) ⊂ Ĉ \ ΔJ , and Fa| : Ĉ \ ΔJ → Fa(Ĉ \ ΔJ ) is a 1-to-2
correspondence, conjugate via J to F−1

a | : ΔJ → F−1
a (ΔJ ).

Proof From the Klein Combination condition (Definition 3.1) we have that
Ĉ \ ΔJ ⊂ ΔCov and Ĉ \ ΔCov ⊂ ΔJ . Thus (see Fig. 6):

F
−1
a (ΔJ ) = Cov

Q
0 ◦ J (ΔJ )

= Cov
Q
0 (Ĉ \ ΔJ ) ⊂ Cov

Q
0 (ΔCov) = Ĉ \ ΔCov ⊂ ΔJ .

Now note that

Cov
Q
0 | : Cov

Q
0 (ΔCov ∪ {P}) → ΔCov ∪ {P}

is a (single-valued, continuous) 2-to-1 map, and so the same is true for

Fa = J ◦ Cov
Q
0 | : Cov

Q
0 (ΔCov ∪ {P}) → J (ΔCov ∪ {P}).
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a

∆J

(2 : 1)

(1 : 2)

(1 : 1)

F−1
a (∆J)

F−2
a (∆J)

Fig. 6 Images and preimages of ΔJ in the Z -coordinates

Since ΔJ ⊂ J (ΔCov ∪ {P}) by the Klein Combination condition, and also
F−1

a (ΔJ ) = Cov
Q
0 (Ĉ \ ΔJ ) ⊂ Cov

Q
0 (ΔCov ∪ {P}) by the same condition, it

follows that

Fa| : F
−1
a (ΔJ ) → ΔJ

is also a (single-valued, continuous) 2-to-1 map.
As J ◦ Fa = Cov

Q
0 = F−1

a ◦ J we deduce that

F
−1
a | : J (F−1

a (ΔJ )) → J (ΔJ )

is a 2-to-1 map. But J (ΔJ ) = Ĉ\ΔJ and J (F−1
a (ΔJ )) = Fa(Ĉ\ΔJ ). Thus

F
−1
a | : Fa(Ĉ \ ΔJ ) → Ĉ \ ΔJ

is a 2-to-1 map, and so its inverse

Fa| : Ĉ \ ΔJ → Fa(Ĉ \ ΔJ )

is a 1-to-2 correspondence. Moreover this 1-to-2 correspondence is conjugate,
via J , to F−1

a | : ΔJ → F−1
a (ΔJ ), and it follows from F−1

a (ΔJ ) ⊂ ΔJ that
Fa(Ĉ \ ΔJ ) ⊂ Ĉ \ ΔJ . ⊓⊔

We next examine the behaviour of Fa around the fixed point P (Z = 1).
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Proposition 3.5 Let ζ = Z − 1. When a 	= 7 the power series expansion of

the branch of Fa which fixes ζ = 0 has the form:

ζ → ζ + a − 7

3(a − 1)
ζ 2 + · · ·

and so the Leau-Fatou flower at the fixed point has a single attracting petal.

When a = 7 the expansion has the form:

ζ → ζ + 1

27
ζ 4 + · · ·

and so the flower at the fixed point has three attracting petals.

Proof By Lemma 3.1, Fa = J ◦ Cov
Q
0 , where J is the involution which has

fixed points 1 and a:

J (Z) = (a + 1)Z − 2a

2Z − (a + 1)

and Cov
Q
0 : Z → W where Z2 + Z W + W 2 = 3. Therefore the branch of

Cov
Q
0 fixing Z = 1 is Z → W where

W = −Z + (12 − 3Z2)1/2

2
.

Changing coordinates to ζ, ω where Z = ζ + 1 and W = ω + 1, so that the
fixed point is at ζ = 0, this branch of Cov

Q
0 becomes:

ω = −ζ

2
+ 3

2

((
1 − 2ζ

3
− ζ 2

3

)1/2

− 1

)
= −ζ − ζ 2

3
− ζ 3

9
− 2ζ 4

27
− · · ·

In these coordinates the involution J is:

ζ → −ζ

(
1

1 − 2ζ
a−1

)
= −ζ − 2ζ 2

a − 1
− 4ζ 3

(a − 1)2
− 8ζ 4

(a − 1)3
− · · ·

Composing the two power series and collecting up terms we deduce that the
branch of Fa = J ◦ Cov

Q
0 which fixes ζ = 0 sends ζ to:

ζ + a − 7

3(a − 1)
ζ 2 +

(
a − 7

3(a − 1)

)2

ζ 3

+
(

2

27
− 2

3(a − 1)
+ 4

(a − 1)2
− 8

(a − 1)3

)
ζ 4 + · · ·
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completing the proof. ⊓⊔
For a 	= 7 there is a unique repelling direction at the parabolic fixed point.

From Proposition 3.5, in the ζ coordinate this is the direction

ζ = ā − 7

ā − 1
.

For a = 7, there are three repelling directions: ζ = 0, e2π i/3, e4π i/3.

Definition 3.6 Let P be the parabolic fixed point of our correspondence Fa ,
a 	= 7. We call the line defined by the repelling direction the parabolic axis

at P , and we say that a differentiable curve ℓ passing through P is transverse

to the parabolic axis if ℓ crosses this axis at a non-zero angle. (For a = 7
we adopt the convention that the ‘parabolic axis’ is the real axis, in both the
Z -coordinate and the z-coordinate.)

Corollary 3.7 For a 	= 7, given any smooth curve ℓ passing through P trans-

versely to the parabolic axis, there is a repelling petal U+
θ and Fatou coordinate

Φ+ on U+
θ such that Φ+(ℓ) (in the w = u + iv plane) intersects every hori-

zontal leaf v = c in V +
θ = Φ+(U+

θ ) which corresponds to a sufficiently large

value of |c|.
Proof The line ℓ meets the repelling direction at P at some angle 0 < α < π .
Choose θ with α < θ < π . By Proposition 2.1, as we travel along ℓ towards
P from either side, the final part of our journey is contained in U+

θ . The result
follows, since Φ+ : U+

θ → V +
θ sends a line meeting the repelling direction

at P at angle α to a curve the points w(t) of which have limt→∞ |w(t)| = ∞
and limt→∞ arg(w(t)) = π − α. ⊓⊔

Proposition 3.8 For a ∈ K, we may always choose a Klein combination pair

(ΔCov, ΔJ ) of fundamental domains which have boundaries which are smooth

at P and transverse to the parabolic axis.

Proof By definition the Jordan curves bounding ΔCov and ΔJ meet only at P .
By making small perturbations to these curves if need be, we can ensure they
are both smooth, apart from an angle of 2π/3 on ∂ΔCov at the double critical
point (Z = ∞) of Q. At P the smooth curves ∂ΔCov and ∂ΔJ are tangent to
one another (since the Klein combination condition excludes the possibility
that they cross). For a ∈ int (D), that is |a − 4| < 3, the boundaries of the
standard pair (ΔCov, ΔJ ) at their intersection P (Z = 1) are parallel to the
imaginary axis in the Z -plane, and as a lies inside the circle in the Z -plane
which has diameter the real interval [1, 7], we know that

arg

(
ā − 7

ā − 1

)
	= ±π

2
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F
−1(∂∆Cov)

∂∆Cov

∂∆J

1

2

U
−

θ

Φ−

V
−

θ

Fig. 7 Changing domains

so the parabolic axis is tranverse to the imaginary axis and we are done. When
a = 7, by our convention the parabolic axis is the real axis, which is transverse
to the imaginary axis, so again we are done.

However for a ∈ ∂D \ {7} the boundaries of the standard pair are tangent to
the parabolic axis, and so small horocycles at P are tangent to ∂ΔJ there. We
shall see that in this situation, by making a small modification to the boundaries
of the standard pair near P , we can construct a new Klein combination pair
which have boundaries transverse to the parabolic axis. More generally, for
a ∈ K not necessarily in D, suppose we have Klein combination domains ΔJ

and ΔCov whose boundaries approach P tangentially to the parabolic axis at
P . Choose an angle 0 < θ < π/2 and attracting and repelling petals U±

θ which
are sufficiently small that they do not intersect. Using the fact that the invariant
foliations on these petals give us a complete picture of the dynamics of Fa

on them, we can modify the part of ∂ΔJ which lies in the repelling petal by
replacing a small segment by a curve ℓ1 which approaches P transversely to the
parabolic axis and meets Cov

Q
0 (J (ℓ1))(= F−1

a (ℓ1)) only at the point P (Fig.
7). Next we modify ∂ΔCov on the same petal, replacing a segment with a curve
ℓ2 lying between F−1

a (ℓ1) and ℓ1. Finally on the attracting petal we replace a
segment of ∂ΔJ by J (ℓ1) and a segment of ∂ΔCov by Cov

Q
0 (ℓ2). Since Cov

Q
0
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acts on a neighbourhood of P as an involution with fixed point P , rotating one
side of Fig. 7 to the other, we see that ℓ1 ∪ J (ℓ1) meets ℓ2 ∪ Cov

Q
0 (ℓ2) only at

P , and so we can use these as boundaries of modified fundamental domains
which still satisfy the Klein combination condition. ⊓⊔

Definition 3.9 For a ∈ K, with (∂ΔCov, ∂ΔJ ) chosen with boundaries trans-
verse to the parabolic axis at P , the forward limit set of Fa is defined to be

Λa,+ =
∞⋂

n=0

F
n
a (Ĉ \ ΔJ ),

the backward limit set is defined to be

Λa,− =
∞⋂

n=0

F
−n
a (ΔJ ) = J (Λa,+)

and the limit set is defined to be Λa = Λa,+∪Λa,−, noting that by Proposition
3.4 we have Λa,+ ∩ Λa,− = {P}. The regular set Ωa is defined to be Ĉ \ Λa .

Note that, by Proposition 3.4, the sets Λa and Ωa are completely invariant
under Fa , and the involution J conjugates Fa on Λa,− to F−1

a on Λa,+ (see
also the fifth of the ‘Comments on Theorem 2’ in [9]).

Remark 3.1 The partition of Ĉ into Λ and Ω is independent of the choice of
Klein combination domains, provided these domains have boundaries trans-
verse to the parabolic axis at P . For what can go wrong if we do not make this
requirement, see Remark 4.1 following the proof of Theorem A below.

Definition 3.10 The connectedness locus for the family Fa is the subset CΓ

of K for which Λa,−, and hence also Λa,+ and Λa , is connected.

Since ΔCov∪ΔJ = Ĉ\{P}, the proof of Theorem 2 in [9], which is a version
for correspondences of the Klein Combination Theorem [13,16] (sometimes
informally known as the ‘Ping-Pong Theorem’), shows that Fa acts on Ωa

properly discontinuously (see the 4th point of Theorem 2 in [9]) and faithfully
(since it acts freely on the set Ω ′

a obtained from Ωa by removing the grand
orbit of fixed points of J and Cov

Q
0 ), with fundamental domain

Δ = ΔCov ∩ ΔJ .

(The theorem in [9] is stated for correspondences F = CovP ∗ CovQ , where
P, Q are rational maps and CovP and CovQ are the covering correspon-
dences. Writing J (z) = −z and P(z) = z2 we have J = CovP

0 and thus our
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Fa has the form CovP
0 ◦ Cov

Q
0 . Note that if CovP ∗ CovQ acts freely on Ω ′

a ,

then CovP
0 ◦ Cov

Q
0 acts faithfully on Ωa , where CovP

0 , Cov
Q
0 are the deleted

covering correspondences of P and Q respectively.)

4 Proof of Theorem A

We start by observing that by Definition 3.9 and Proposition 3.4, for every
a ∈ CΓ the regular set Ω = Ωa is open and simply connected, and therefore
there exists a Riemann map φ : Ω → H. We will now prove that:

1. there exist Möbius transformations σ of order 2 and ρ of order 3, both in
P SL(2, R), such that φ conjugates Fa to {σρ, σρ−1};

2. the free product 〈σ 〉∗〈ρ〉 is a faithful and discrete representation of C2 ∗C3
in P SL(2, R);

3. this representation is conjugate to P SL(2, Z).

Step 1 Note that on a neighborhood of ∞ the Böttcher map conjugates the
map Q(Z) = Z3−3Z to the map Z → Z3. It follows that on a neighbourhood
of Z = ∞, the covering correspondence of Q is conjugate to that of Z → Z3

via a homeomorphism ϕ̂, say. This can be extended to a conjugacy ϕ̂ on the
whole of Ω , since the only critical point of Q on Ω is the double critical
point at Z = ∞. Thus CovQ on Ω is conjugate via ϕ̂ to {I, ρ̂, ρ̂2} on some
simply-connected open set Ω ′ ⊂ Ĉ, where ρ̂(z) = e2π i/3, and so Cov

Q
0 is

conjugate to {ρ̂, ρ̂2}. If R : Ω ′ → H is a Riemann map, φ := R ◦ ϕ̂ : Ω → H

is a Riemann map conjugating the action of Cov
Q
0 on Ω to the action of an

order 3 rotation ρ on H. On the other hand, since J |Ω is an involution, J |Ω
is conjugate by φ to some involution σ on H. Therefore Fa = J ◦ Cov

Q
0 is

conjugate by φ on Ω to {σρ, σρ−1}.
Step 2 By the correspondence ping-pong theorem ([9]) we have that Fa acts

on Ω faithfully and properly discontinuously. Since φ is a homeomorphism,
〈σ 〉 ∗ 〈ρ〉 also acts faithfully and properly discontinuously on H. Therefore
(since σ is an involution and ρ is an order 3 rotation) 〈σ 〉 ∗ 〈ρ〉 is a faithful
and discrete representation of C2 ∗ C3 in P SL(2, R).

Step 3 To complete the proof we must prove that the representation of
C2 ∗ C3 on H is conformally conjugate to the standard representation as
P SL(2, Z) ⊂ P SL(2, R). For every discrete representation of C2∗C3 the orb-
ifold H/(〈σ 〉 ∗ 〈ρ〉) is conformally isomorphic to a sphere with a 2π/3-cone
point, a π -cone point, and either a single boundary component or a punc-
ture point (a cusp is conformally equivalent to a neigbourhood of a puncture
point). The representation is conjugate to P SL(2, Z) if and only if the orbifold
H/(〈σ 〉 ∗ 〈ρ〉) has a puncture point. Since φ is an isomorphism, H/(〈σ 〉 ∗ 〈ρ〉)
is conformally equivalent to Ω/〈Fa〉. By Proposition 3.5 the point P (Z = 1)
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is a parabolic fixed point of Fa . Let (ΔJ , ΔCov) be a Klein combination pair
with boundaries transverse to the parabolic axis (such a pair exists by Propo-
sition 3.8). By Proposition 2.1 there exists a repelling petal U+

θ containing all
points of the line ∂ΔJ which lie sufficiently close to P , and by Corollary 3.7
the image of this line under the Fatou coordinate Φ+ meets all lines v = c in
the w-plane (where w = u + iv) which have |c| sufficiently large. Writing W

for the intersection between ΔJ \ F−1
a (ΔJ ) and the petal, we deduce that for

|c| sufficiently large, Φ+(W ) intersects the horizontal line v = c. So W \ {P},
after quotienting by the boundary identification induced by F−1

a , is confor-
mally bijective to a pair of neighbourhoods of the ends of V +

θ /〈w → w − 1〉,
that is to a pair of punctured discs. Hence Ω/〈Fa〉 has a pair of puncture points
(one either side of the parabolic axis) corresponding to P . ⊓⊔

Remark 4.1 If we were to choose ΔJ and ΔCov with boundaries approaching
Z = 1 tangentially to the parabolic axis, then the image under Φ+ of points
of ∂ΔJ sufficiently close to P might lie below some level v = c, in which
case (W \ {P})/Fa would be an annulus rather than a punctured disc and we
would find that the new set Ω would differ from that in the case of a transverse
intersection: a horodisc at Z = 1, together with the grand orbit of this horodisc,
would be excised from the set Ω of the transverse case. The representation of
C2 ∗C3 on H would no longer be that of P SL(2, Z), but Λ(Fa) would also be
changed, by the addition of a countable union of discs, attached at the points
of the grand orbit of Z = 1. In Definition 3.9 we required ΔJ and ΔCov to
have boundaries transverse to the parabolic axis, in order that the partition of
Ĉ into Ω and Λ be uniquely defined.

5 Proof of Theorem B

5.1 Properties of the 2-to-1 branch of Fa which fixes Λa,−

For the proof of Theorem B we shall need to convert the branch of Fa which
fixes Λa,− into a parabolic-like map, using quasiconformal surgery. The next
two results set the scene. Proposition 5.1 ensures that this branch of Fa is
locally holomorphic everywhere but on a neighbourhood of S (the preimage
of the parabolic fixed point). Proposition 5.2 ensures we have a sector at S

which can support the surgery that will turn the branch into a parabolic-like
map.

Proposition 5.1 For every a ∈ K, the restricted correspondence

Fa| : F
−1
a (ΔJ ) → ΔJ

is a single-valued holomorphic map of degree two.
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For each Z ∈ ∂F−1
a (ΔJ ), with the exception of Z = S, the pre-image of

the parabolic fixed point P other than P itself, there exists a neighbourhood

of Z on which Fa| extends to a (single-valued) holomorphic map.

There exists a neighbourhood of S on which Fa| extends locally to a 1-

to-2 holomorphic correspondence, the image of which is a neighbourhood of

P. This correspondence between neighbourhoods of S and P is conformally

conjugate to the 1-to-2 correspondence ζ → ±
√

ζ from the unit disc to itself.

Proof The fact that Fa| : F−1
a (ΔJ ) → ΔJ is a (single-valued) holomor-

phic map follows at once from Proposition 3.4, since an n-to-1 holomorphic
correspondence defined on an open set is necessarily a holomorphic map.

Moreover, given any Z ∈ ∂F−1
a (ΔJ ) which does not map to P (the point

Z = 1), we may deform the boundary of ΔJ (without altering that of ΔCov)
in such a way that Z now lies in the interior of the deformed ΔJ , so the second
statement also follows from Proposition 3.4.

Finally, a neighbourhood of S (Z = −2) is mapped 1-to-2 by Fa to a
neighbourhood of P (Z = 1), since Fa = J ◦ Cov

Q
0 , and Cov

Q
0 : Z → W

is the 1 : 2 correspondence which has formula W = (−Z ±
√

12 − 3Z2)/2.
The local conjugacy to ζ → ±

√
ζ is immediate from the formula. ⊓⊔

Proposition 5.2 For every a ∈ K and Klein combination pair (ΔJ , ΔCov)

for Fa , with boundaries transverse to the parabolic axis at the fixed point P,

there exist a closed topological disc Va ⊂ Ĉ and angles θ1 = θa,1 > 0 and

θ2 = θa,2 > 0, with θ1 + θ2 < π , with the following properties:

1. Λa,− ⊂ Va and Λa,− ∩ ∂Va = {P};
2. the boundary ∂Va of Va is smooth away from the parabolic fixed point P,

where it meets ∂ΔJ at angles θ1 and θ2 (so at P the boundary ∂Va has a

‘cone’ of angle θ̂ = π − (θ1 + θ2));

3. V ′
a = F−1

a (Va) ⊂ Va , and ∂V ′
a ∩ ∂Va = {P};

4. the boundary ∂V ′
a of V ′

a is smooth everywhere but at P, where it forms a

cone of angle θ̂ , and at the preimage S of P, where it forms a cone of angle

2θ̂ ;

5. inside every neighbourhood of P there exist Fa-invariant arcs γi : [0, 1] →
V̄a , i = 1, 2, emanating from P on the two sides of the parabolic axis, each

C1 and satisfying γi (t)[1/2, 1) ⊂ Va \ V ′
a .

Proof By Proposition 3.8, for every a ∈ K we can choose a Klein combination
pair (ΔCov, ΔJ ) of fundamental domains which have boundaries which are
smooth at P and transverse to the parabolic direction. By Proposition 3.4,
F−1

a (ΔJ ) ⊂ ΔJ . We shall construct Va by making a small change to the
boundary of ΔJ in a neighbourhood of P , so that while Va is not a fundamental
domain for J it retains the property that F−1

a (Va) ⊂ Va and gains the other
properties listed.
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Suppose firstly that a 	= 7, so we are in the ‘single petal’ case. Let ℓ denote
∂ΔJ and let the angles at P between ℓ and the parabolic axis be α1 and
α2 = π − α1. Choose θ such that max(α1, α2) < θ < π (such an angle θ

exists since we started from a Klein combination pair (ΔCov, ΔJ ) which have
boundaries which are smooth at P and transverse to the parabolic direction).
Let U+

θ be a repelling petal containing an open sector of angle 2θ centered
at P given by Proposition 2.1, and Φ+ : U+

θ → V +
θ be a repelling Fatou

coordinate (where Vθ is the subset of C consisting to all the w = u + iv to the
left of a curve which has asymptotes u = −|v| cot(θ)−c, with c large). As ℓ is
C1 at P , and so is F−1

a (ℓ), with the same tangent at P , we know that for every
point R ∈ ℓ sufficiently close to P the open straight line segment (in whatever
coordinate we are working in) from R to F−1

a (R) lies in ΔJ \ F−1
a (ΔJ ).

Thus we can foliate the intersection W between ΔJ \F−1(ΔJ ) and a suitable
neighbourhood of P by straight line segments. The set W has two components,
which we denote W1 and W2, one on each side of the parabolic axis at P . Write
Di (i = 1, 2) for

⋃∞
n=0 F−n

a (Wi ). The sets Di are foliated by piecewise-linear
leaves, each of which is invariant under F−1

a and crosses each line F−n
a (ℓ)

exactly once. In Φ+(Di ) ⊂ Vθ they become leaves invariant under w → w−1.
Consider a set of these leaves which are integer distances apart at the points
where they meet Φ+(ℓ). Together with the lines (Φ+(F−n

a (ℓ)))n≥0 they create
a ‘skew grid’ in each of the Φ+(Di ), i = 1, 2.

Choose 0 < θ1 < α1 and 0 < θ2 < α2. Using the skew grids as coordinate
systems, we can now construct in each Φ+(Di ), i = 1, 2, a smooth curve mi

which at one end joins Φ+(ℓ) smoothly, at the other is asymptotic to a line at
angle θi to the horizontal as w tends to infinity, and in between crosses each leaf
of the foliation exactly once, and each line Φ+(F−n

a (ℓ)) exactly once. Note that
the lines (Φ+)−1(mi ) lie outside Λa,− since every point of (Φ+)−1(Di ) even-
tually leaves ΔJ under some iterate of the branch of Fa which fixes P . We now
define Va to be the domain bounded by ℓ = ∂ΔJ as modified by (Φ+)−1(m1)

and (Φ+)−1(m2) in a neighbourhood of P , and define V ′
a to be F−1

a (Va). The
first three properties stated in the Proposition are immediate, and the 4th prop-
erty follows from Proposition 5.1. Finally, for the 5th property we note that each
leaf of the foliation satisfies all the requirements except that it is piecewise-
linear and not (in general) C1. We rectify this by replacing a chosen straight
line leaf in each Wi , i = 1, 2, by a C1 curve ni with the same end-points, say
Ri ∈ ℓ and F−1

a (Ri ), such that ni meets ℓ and F−1
a (ℓ) at angles which sum to

π : we then set γi to be
⋃∞

n=0 F−n
a (ni ), parametrized appropriately.

In the case a = 7 we have to modify the argument above to allow for the
fact that we have three attracting petals and three repelling petals. We omit
details, but remark that the key difference is that whereas for a 	= 7 we can
choose θ1 and θ2 such that θ̂ = π − (θ1 + θ2) is arbitrarily small, for a = 7,
with the standard domains, by taking Fatou coordinates on appropriate over-
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lapping attracting and repelling petals, one can show that θ1 and θ2 must satisfy
θ̂ > 2π/3 > 0 but can be chosen with θ̂ arbitrarily close to 2π/3. ⊓⊔

5.2 Proof of Theorem B

By Proposition 5.1, for every a ∈ K, and therefore in particular for every a ∈
CΓ , the correspondence Fa , restricted to a neighbourhood of Λa,−, satisfies
all the conditions necessary for it to be a parabolic-like map in the sense of
[14], except one: on a neighbourhood of the point S = F−1

a (P) \ {P} it is not
a single-valued map, as such a neighbourhood is mapped one-to-two onto a
neighbourhood of P . However by redefining Fa on a ‘sector’ at P lying outside
Λa,−, and adjusting the complex structure on this sector and its inverse images,
we shall now modify a restriction of the branch of Fa fixing Λa,−, to yield a
parabolic-like map F̃ .

By Proposition 5.2, at the parabolic fixed point P the boundary ∂V ′ of V ′

forms a cone of angle θ̂ = π − (θ1 + θ2), and at the preimage S of P it
forms a cone of angle 2θ̂ . Possibly by reducing θ1, θ2 and θ̂ we can choose
ǫ > 0 small enough so that the round disc D2 = D(S, ǫ) intersects V ′ in a
sector of angle 2θ̂ , so that D1 = F(D2) intersects V ′ in a sector of angle θ̂ ,
and moreover ∂V ∩ γi 	⊂ D1 (where V is the set, γ1, γ2 the invariant arcs,
and θ̂ the angle given by Proposition 5.2). Hence denoting by T̂2 the sector
(π − 2θ2, S, π + 2θ1) and by T̂1 the sector (3π/2 − θ2, P, π/2 + θ1), both
T̂1 and T̂2 are outside V ′, and in particular T̂2 ∈ V \ V ′. Set φ : D2 → D,
φ(z) = (z − S)/ǫ), and let ψ : D1 → D be the Riemann map sending P

to 0. Then φ ◦ F−1 ◦ ψ−1 is a degree 2 proper and holomorphic map from
the unit disc into itself, with a unique fixed point at z = 0, and so pre- or
post-composing with a rotation we can assume it to be the map P0(z) = z2

(see Fig. 8).
We are now going to modify F on T̂2 by quasiconformal surgery. Lift to

logarithm coordinates, and define the quasiconformal map

G : {x + iy | x < 0, y ∈ [π, 3π ]} → {x + iy | x < 0, y ∈ [0, 2π ]}

as follows (see Fig. 8):

G(z) =

⎧
⎨
⎩

2z − 2π i on {x + iy | x < 0, y ∈ [π, 3π/2 − θ2]}
qc interpolation on {x + iy | x < 0, y ∈ [3π/2 − θ2, 5π/2 + θ1]}

2z − 4π i on {x + iy | x < 0, y ∈ [5π/2 + θ1, 3π ]}

Then the map f = φ−1 ◦exp◦G ◦ log ◦ψ : D1 → D2 is also quasiconformal
(see [1]). Define U = V ∪ D1, U ′ = F−1(U ), and the map F : U ′ → U to
be:
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φ

3πi

ψ

0

(5π/2 + θ1)i

(3π/2 − θ2)i

πi

πi

P0

f

2πi

2πi

3π/2 − θ2

π/2 + θ1π − 2θ2

π + 2θ1

loglog

2z − 4πi

qc interpolation

2z − 2πi

T̂1
T̂2

Fig. 8 Surgery construction

F =
{

f −1 on D2
F on U ′ \ D2

The map F : U ′ → U is continuous, because it coincides with F everywhere
but on T̂2, and along the boundaries of T̂2 inside D2 it is continuous by con-
struction. So the map F is quasiregular, proper of degree 2, and holomorphic
everywhere but on the sector T̂2.

123



Mating quadratic maps with the modular group II 209

Setting μ̃ = ( f −1)∗(μ0), and spreading μ̃ by the dynamics of F , we obtain
on U the Beltrami form:

μ =

⎧
⎨
⎩

μ̃ on T̂

(Fn)∗μ̃ on F−n(T̂ )

μ0 on U \ F−n(T̂ )

Since the sector T̂2 lies outside F−1(V ), it follows that F−i (T̂2) lies outside
F−i−1(V ), and therefore the preimages of the sectors F−i (T̂2) where we
change the structure do not intersect each others. Hence the Beltrami form μ

is F-invariant, and by the Measurable Riemann Mapping Theorem there exists
a quasiconformal map ϕ : U → D such that ϕ∗μ0 = μ. Let us define

F̃ := ϕ ◦ F ◦ ϕ−1 : V
′ = ϕ(U ′) → V = ϕ(U ),

and set γ+ = ϕ(γ1) ∩ V and γ− = ϕ(γ2) ∩ V (where γ1 and γ2 are the
invariant arcs given by Proposition 5.2). Then γ = γ+ ∪ γ− is a dividing
arc in the sense of Definition 2.2, and (F̃, V ′, V, γ ) is a degree 2 parabolic-
like map, with filled Julia set K = ϕ(Λ−). The map F̃ is quasiconformally
conjugate to F everywhere but on the sector T̂2 and its image, which do not
intersect the filled Julia set K . Moreover, this quasiconformal conjugacy is
holomorphic everywhere but on the preimages of T̂2 (which do not intersect
the filled Julia set K ). Therefore F̃ is hybrid conjugate to F on K . By the
Straightening Theorem for parabolic-like maps (see [14]), this implies that F

is hybrid conjugate to a member of the family Per1(1) on Λ−. ⊓⊔
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