
Int J Parallel Prog (2009) 37:3–36
DOI 10.1007/s10766-008-0082-5

MATLAB���: A Language for Parallel Computing

Gaurav Sharma · Jos Martin

Received: 5 March 2008 / Accepted: 7 August 2008 / Published online: 15 October 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract Parallel computing with the MATLAB� language and environment has
received interest from various quarters. The Parallel Computing Toolbox™ and
MATLAB� Distributed Computing Server™ from The MathWorks are among sev-
eral available tools that offer this capability. We explore some of the key features
of the parallel MATLAB language that these tools offer. We describe the underlying
mechanics as well as the salient design decisions and rationale for certain features in
the toolset. The paper concludes by identifying some issues that we must address as
the language features evolve.

Keywords Parallel MATLAB · Parallel language design · Parallel Computing
Toolbox

1 Introduction

The MATLAB� technical computing language and development environment is used
in a variety of fields, such as image and signal processing, control systems, finan-
cial modeling, and computational biology. MATLAB offers many specialized rou-
tines through domain specific add-ons, called “toolboxes”, and a simplified interface
to high-performance libraries such as BLAS, FFTW, and LAPACK. These features
appeal to domain experts who can quickly iterate through various designs to arrive at
a functional design more quickly than with a low-level language such as C.

G. Sharma (B)
The MathWorks, 3 Apple Hill Drive, Natick, MA 01760, USA
e-mail: Gaurav.Sharma@mathworks.com

J. Martin
The MathWorks Ltd., Matrix House, Cambridge Business Park, Cambridge CB4 0HH, UK
e-mail: Jos.Martin@mathworks.com

123

4 Int J Parallel Prog (2009) 37:3–36

Advances in computer processing power have enabled easy access to multiproces-
sor computers, whether through multicore processors, clusters built from commercial,
off-the-shelf components, or a combination of the two. This created demand for desk-
top applications such as MATLAB to find mechanisms to exploit such architectures.

There have been several attempts at producing MATLAB based utilities for parallel
programming. Among the most notable are pMATLAB [1] and MatlabMPI [2] from
MIT Lincoln Laboratory, MultiMATLAB [3] from Cornell University, and bcMPI
from Ohio Supercomputing Center [4].

This paper focuses primarily on The MathWorks extensions to the MATLAB
language: Parallel Computing Toolbox™ and MATLAB� Distributed Computing
Server™ software. We do not intend this paper to document all the features available
in the language, nor do we fully detail all creative aspects or design choices of the
features that we do describe. Instead, we highlight some of the salient features and
provide insight into the motivations, rationale, and eventual design decisions that went
into the feature implementation. We will present solutions to some of the problems we
encountered while implementing these language features. Where appropriate we try to
draw parallels with other HPC languages such as HPF, Co-array FORTRAN, and UPC.

The paper is organized as follows. We touch briefly on the history of parallel
MATLAB and the various attempts to produce it. We then dive into the tools themselves
and describe the conceptual framework for various capabilities. We make a distinc-
tion between language and infrastructure features that the tools offer, and describe the
underlying mechanics and rationale behind components that make up the two pieces.
We conclude with questions that we pose to ourselves as language features evolve to
meet users’ needs.

2 A History of Parallel MATLAB���

Even in its relative infancy there were attempts to develop MATLAB for parallel com-
puters. Cleve Moler, the original MATLAB author and cofounder of The MathWorks,
himself worked on a version of MATLAB for both an Intel� HyperCube and Ardent
Titan in the late 1980s [5]. Moler’s 1995 article "Why there isn’t a parallel MATLAB"
[5] described the three major obstacles in developing a parallel MATLAB language:
memory model, granularity of computations, and business situation.

The conflict between MATLAB’s global memory model and the distributed model
of most parallel systems meant that the large data matrices had to be sent back and forth
between the host and the parallel computer. Also at the time MATLAB spent only a
fraction of its time in parallelizable routines compared to parser and graphics routines
which made a parallelization effort not very attractive. The last obstacle was simply a
dose of reality for an organization with finite resources—there were simply not enough
MATLAB users who wanted to use MATLAB on parallel computers, and we focused
instead on improving the uniprocessor MATLAB. However, these did not stop the user
community from developing utilities for parallel computing with MATLAB.

Several factors have made the parallel MATLAB project a very important one
inside The MathWorks: MATLAB has matured into a preeminent technical computing

123

Int J Parallel Prog (2009) 37:3–36 5

environment supporting large scale projects, easy access to multiprocessor machines,
and demand for a full fledged solution from the user community.

There have been three approaches to creating a system for parallel computing
with MATLAB. The first approach aims at translating MATLAB or similar programs
into a lower-level language such as C or FORTRAN, and uses annotations and other
mechanisms to generate parallel code from a compiler. Examples of such projects
include CONLAB [6], and FALCON [7]. Translating regular MATLAB code to C or
FORTRAN is a difficult problem. In fact, the MATLAB Compiler software from The
MathWorks switched from producing C code to producing wrappers around MATLAB
code and libraries to be able to support all the language features [8].

The second approach is to use MATLAB as a “browser” for parallel computations
on a parallel computer while MATLAB itself remains unmodified and the MATLAB
environment does not run natively on the parallel computer. This approach does
not really classify as a “parallel MATLAB” solution any more than a Web browser
used to access a portal for launching parallel applications is itself a parallel applica-
tion. The earliest solutions on Intel Hypercube and Ardent Titan used this approach.
More recently, the MATLAB*p project at MIT [9], now a commercial project called
Star-P�, has revived this approach.

Both of these approaches have significant limitations due to the limited language
and library support. Users must discard their existing MATLAB code or choose to
extensively re-implement it through the reduced set of constructs these systems pro-
vide. During our initial survey, reusability of existing MATLAB code was cited as the
most important feature of any parallel computing toolset.

The third approach is to extend MATLAB through libraries or by modifying the
language itself. Recently, the MatlabMPI and pMATLAB projects at MIT Lincoln Lab-
oratory and the MultiMATLAB project at Cornell University (with which The Math-
Works was also involved) are among the more successful and widely used libraries for
parallel computing with MATLAB. Other projects include ParaM and GAMMA pro-
jects [10], Parallel Toolbox for MATLAB [11] (which uses PVM for message passing),
and various MPI toolbox implementations for MATLAB, including the most recent
bcMPI (Blue Collar MPI) from Ohio Supercomputer Center.

To answer the need for a set of parallel MATLAB tools, The MathWorks intro-
duced Parallel Computing Toolbox software and MATLAB Distributed Computing
Server in November 2004, (originally named Distributed Computing Toolbox™ and
MATLAB� Distributed Computing Engine™, respectively). These fall into the last
category of solutions. When we started to expand the capabilities of MATLAB into
parallel computing, we decided to target embarrassingly parallel problems, given that
our initial survey showed a large number of our users wanted to simplify the process
of running Monte Carlo or parameter sweep simulations on their groups’ computers.
As more sophisticated users have taken to the toolset, we continue to incorporate
more language features, including message passing and higher-level abstractions such
as parallel for loop and global array semantics. Implicit multithreading of computa-
tions is another method to parallelize MATLAB computations on a single multicore
or multiprocessor machine; the language design team at The MathWorks continues to
invest heavily in this project. However, for the purposes of this paper we will focus

123

6 Int J Parallel Prog (2009) 37:3–36

our attention on the explicit parallel programming paradigm presented by Parallel
Computing Toolbox and MATLAB Distributed Computing Server.

3 Design Goals

Our overarching goal was to extend the traditional strengths of MATLAB to the cluster
environment. This encompasses features such as interactivity, multiplatform support,
and the ability to express ideas in a language close to mathematical expression while
abstracting out non-pertinent detail. We laid out the following design goals for the
toolset:

− Users should have the ability to execute arbitrary MATLAB code and Simulink�
models on the cluster. This continues to be our most important design goal.

− Users should be able to use the familiar MATLAB language for all the tasks asso-
ciated with writing and executing parallel MATLAB programs.

− Users should have access to first-class language constructs to express parallel-
ism. They should not have to make significant changes to their mode of operation
to create parallel programs. Nor should they have to worry about architecture or
system-specific constructs, or have to deal with threading, data management and
synchronization.

− The language should be completely independent from resource allocation. The
same program should be able to function correctly on a single processor or hun-
dreds of processors. Programs should scale appropriately with resources and should
function in the absence of cluster resources.

− Programmability will always trump other issues. Users should be able to create
programs that are correct, easy to read, easy to debug, and easy to maintain.

4 Framework and Terminology for Discussion

To examine the toolset, we distinguish between the infrastructure and the language
components presented by the MATLAB parallel computing tools. The language
exposes constructs such as parallel loops, distributed arrays, and message passing
functions. The infrastructure component is the machinery underlying the language
constructs including mechanics for data and code transfer, setting up of execution
environment, etc. In the next sections we examine some of the salient features of these
two components.

MATLAB Distributed Computing Server comprises several workers which
receive computation tasks from MATLAB client through functions in Parallel Com-
puting Toolbox. In our discussion, we will use the term workers as a generic term for
MATLAB computational engine processes that run on a cluster as part of the MATLAB
Distributed Computing Server.

The Server supports a mode of operation in which the workers function completely
independently of each other without requiring any communication infrastructure setup
between the workers. However, this communication infrastructure is required for using
constructs such as message passing functions and distributed arrays. In this situation,

123

Int J Parallel Prog (2009) 37:3–36 7

Fig. 1 MATLAB� parallel computing tools in a typical cluster setup. The tools can be used in an interactive
as well as batch fashion

we call these connected workers “labs”. The various message passing functions carry
lab in their names to make this distinction (Fig. 1).

5 Language

As noted in our design goals, our intention was to extend the MATLAB language
with a set of parallel data structures and parallel constructs, which would abstract
details as necessary and present to users a language independent of resource alloca-
tion and underlying implementation. Our goal was for the language not to require
major changes to users’ existing working models. Most importantly, it would be as
easily programmable as the MATLAB language.

In this section, we describe the parallel MATLAB constructs starting from the low-
est-level constructs, message passing functions. We then present distributed arrays and
parallel for loops, which we think of as the first steps towards Lurie’s [12] annotation-
based language model in which domain experts make only minimal annotations to their
high-level language code to express the intent of using multiple compute resources.

5.1 Message Passing Functions

We introduced message passing functions in the second version of the toolset. As tool
builders our intent was not to implement an MPI specification directly in MATLAB
language. Instead we wanted to rely on an existing MPI implementation, possibly cho-
sen by the user, and make it available in a highly simplified and easily usable form, but
without sacrificing the richness of the message passing programming model. We did
not want to provide a “C/FORTRAN MPI”-like programming experience, which other
parallel extensions of MATLAB, such as MatlabMPI and bcMPI, aim to provide. We

123

8 Int J Parallel Prog (2009) 37:3–36

felt that the loading, initialization, and finally unloading and cleaning up were generic
tasks we could handle. End users could immediately start using the available mes-
sage passing functions independent of the environment they wanted to work in—for
example, the parallel interactive environment or batch job environment. Moreover,
we intended to provide enough generalization for users to be able to exchange any
MATLAB data type without any special set up such as declaring an MPI_Datatype.

Message passing functions in MATLAB are high-level abstractions of functions
described in the MPI-2 standard. For point-to-point communication, the labSend,
labReceive, and labSendReceive functions are available. The labBarrier, labBroad-
cast, and labProbe functions are direct equivalents of corresponding MPI func-
tions. The environment query functions labindex and numlabs are equivalent to
MPI_Comm_rank and MPI_Comm_size. Currently, the language does not support
user-specified MPI communicators.

5.1.1 A Protocol for Exchanging Arbitrary MATLAB Data Types

One of the most important requirements for this library of message passing func-
tions was the ability to trivially set up the exchange of arbitrary MATLAB data
types—including numerical arrays of any precision, structure arrays, and cell arrays
(MATLAB arrays that can contain any arbitrary data type). In normal usage, the MPI
library expects the knowledge of the size of data that is being exchanged. For an
arbitrary MATLAB array we do not expect the user to have this knowledge.

To solve this problem we established a protocol in which we send two messages—
the first a very short header message of a known size indicating the expected MATLAB
data type, the size of the data and other information as necessary, and the second mes-
sage containing the actual payload. For small enough data sizes we simply squeeze
the entire data into the header message.

For non-numeric data types, we insert the information about the MATLAB type
inside the header information and convert the incoming byte-stream on the receiving
lab. The actual payload is constructed by serializing the MATLAB data array which
can then be deserialized and reconstructed on the receiving lab. For MATLAB data
types that can be mapped directly on to MPI data types, e.g., MATLAB double to
MPI_DOUBLE, etc., we skip this serialization-deserialization step and directly send
the data.

This protocol allows for error detection, deadlock detection, and clearing messages
and message queues when errors are detected. Messages that are ready are sent as
soon as possible without any noticeable impact on the user. However if, for example,
it is not possible to send a message and we need to block MATLAB, we use the spare
cycles to handle errors such as deadlocks (Sect. 5.1.5). The following sections address
some of the salient details for various message passing operations and error detection.

5.1.2 Point-to-Point and Broadcast Operations: labSend, labReceive,
and labBroadcast

The labSend and labReceive functions are the two fundamental point-to-point com-
munication functions available in MATLAB. Users can send any arbitrary MATLAB

123

Int J Parallel Prog (2009) 37:3–36 9

data type without any special set up. Thus, the following is a complete program that
uses the labSend and labReceive functions to exchange a MATLAB structure and a
MATLAB double array. Note also that multiple destinations are targeted in a single
function call.

function aMsgPassingProgram()
source = 1;
destination = [2, 4];
if labindex() == source
% Send some data from source lab

testData.rpm = 1000; % Set up a structure
testData.speed = 35;
labSend(testData, destination); % send a structure
labSend(rand(1000), destination); % send an array

elseif any(destination == labindex())
% Receive on destination lab

recvdata{1} = labReceive(source);
recvdata{2} = labReceive(source);

end
end

Users can choose among several variants of labSend and labReceive function calls.

labSend(data, destinations) % internally generated tag
labSend(data, destinations, tag) % user specified tag
data = labReceive() % any source, any tag
data = labReceive(source) % specific source, any tag
data = labReceive(’any’, tag) % any source, specific tag
data = labReceive(source, tag) % specific source and tag
[data, source, tag] = labReceive(...) % multi-output version

We use non-blocking MPI calls (such as MPI_Isend, etc.) to implement the lab-
Send functionality, but we only return from a call to labSend once the MPI layer has
finished processing the data on the send side. A call to labSend may complete irre-
spective of whether or not the corresponding call to labReceive has started. This is
a side-effect of the way MPI libraries implement size-dependent data buffering for
send calls; the MPI standard permits send operations to return even if corresponding
receive operation has not started. Our build of MPICH2 buffers messages smaller than
256 KB. As a result, for messages smaller than 256 KB labSend immediately returns,
potentially even before the corresponding labReceive (and underlying MPI receive
calls) has started. On the other hand, for larger messages, the underlying MPI library
forces us to wait until the corresponding labReceive (and underlying MPI receive
calls) has started. This has important implications in certain cases, for example, where
neighboring labs are trying to send and receive data from each other in a cyclic shift
pattern. The labSendReceive section below proposes a solution for this cyclic shift
pattern problem.

123

10 Int J Parallel Prog (2009) 37:3–36

Although the labBroadcast operation is directly equivalent to the MPI_Bcast opera-
tion, we do not use the MPI_Bcast function, because implementing it in the MATLAB
language using the labSend and labReceive operations allows us to detect cyclic dead-
locks and miscommunications. The calls to labBroadcast take the following form:

%% Case 1: The variable "data" exists on all labs
data = []; % Declare on all labs
if labindex() == senderlab

data = rand(1e6, 1);
end
shared_data = labBroadcast(senderlab, data);
%% Case 2: The variable "data" exists only on sender
if labindex() == senderlab

data = rand(1e6, 1);
% Function call on sender lab
shared_data = labBroadcast(senderlab, data);

else
% Function call on receiving labs
shared_data = labBroadcast(senderlab);

end

5.1.3 labSendReceive Operation

As noted above, the labSend operation switches between non-blocking and blocking
behavior at a certain data size based on the underlying MPI library’s buffering behav-
ior. This can cause latent bugs that can manifest for larger problem sizes. Safe code
must therefore assume that calls to labSend block. However, this can be particularly
tricky in the case where labs are attempting to send data in a cyclic shift pattern. Con-
sider the following pattern where each lab sends data to its labindex()+1 neighbor and
receives from its labindex()−1 neighbor. This can be achieved by simply ensuring that
labs with odd valued labindex() send first and others receive first.

offset = 1;
to = mod(labindex() + offset - 1, numlabs()) + 1;
from = mod(labindex() – offset - 1, numlabs()) + 1;
if mod(labindex(), 2) == 1

labSend(data, to);
indata = labReceive(from);

else
indata = labReceive(from);
labSend(data, to);

end

However, this pattern can be difficult to generalize safely for cyclic shifts of more
than 1 lab. With large enough data (where labSend doesn’t return immediately) and
numlabs() equal to 4, the above code will deadlock if “to” and “from” were offset by

123

Int J Parallel Prog (2009) 37:3–36 11

2 from labindex(). In fact there will be two deadlocks: labindex 1 and 3 will simulta-
neously try to send to each other while 2 and 4 are stuck trying to receive from each
other. In C using one of the various flavors of sends and receives one could potentially
use a buffer where completion can be repeatedly checked for. However, this requires
exposing these sends and receives to the user and putting the responsibility of choosing
the right set of operations on the user. Another option is to let the user reorder the
operations, but this is hard to generalize for an arbitrary number of labs and data sizes.
Both options induce complexity beyond the reach of the naïve user.

The labSendReceive function was designed to enable this cyclic type communica-
tion (or any paired exchange) to be written more simply. Thus, a cyclic shift with any
offset can be written safely using labSendReceive as follows:

to = mod(labindex() + offset - 1, numlabs()) + 1;
from = mod(labindex() – offset - 1, numlabs()) + 1;
indata = labSendReceive(to, from, data);

We prevent deadlocks by using asynchronous send and receive at the C-MPI layer
and blocking until all sends and all receives have completed. That is, we still expose
a blocking send-receive, but underneath we use asynchronous exchange to prevent
deadlocking behavior.

5.1.4 Reduction Operations

The gop (Global OPeration) function, along with its specifically targeted variants gplus
and gcat, is the MATLAB equivalent of various reduction and gather operations in
MPI implementations including MPI_Allreduce, MPI_Reduce, and MPI_Gather. The
expression result = gop(red_ func, x [, targetlab]) reduces the variant array x (an array
which resides in the workspace of all labs but whose content differs on these labs)
using the reduction function red_ func, and distributes the results to all the labs if
targetlab is not specified. The gop function performs a tree-reduce operation for any
built-in or user-specified reduction operation. The gop operation, like the labBroad-
cast function, is based on a system of labSend and labReceive function calls that
enables us to do error detections described in the following section.

5.1.5 Error Detection While Using Message Passing Functions

Cyclic deadlocks and mismatched communications are commonly encountered run-
time errors in parallel programs using message passing. We implement detection mech-
anisms for both error types. We set up a dedicated MPI communicator for each error
type at the beginning of program execution so that we do not affect the regular exe-
cution of the algorithm. Users can optionally turn the error detection mechanisms on
for debugging purposes in batch jobs. The detection mechanisms are automatically
turned on during interactive sessions.

123

12 Int J Parallel Prog (2009) 37:3–36

The deadlock detection algorithm causes calls to labReceive to error out if a circular
dependency of labReceive function calls is detected. Thus the following triggers an
error:

function realDeadlock
if labindex == 1

labReceive(2);
elseif labindex == 2

labReceive(1);
end

end

However, the following code is not really an instance of deadlock because there is
no circular dependency—it just happens that no one is sending the required data, but
it still causes a hang. This is a case of mismatched communication error where lab 1
blocks waiting to receive data but all the other labs go to completion.

function notDeadlock
% assume numlabs > 1

if labindex == 1
labReceive; % from any other lab

end
end

This observation that the rest of the labs have gone to completion while one or
more labs wait to receive data forms the basis for the test of mismatched commu-
nication error condition in our implementation. When one of the labs is waiting for
communication, it sends probe messages to test if the lab on which it is dependent has
completed. If it has, the lab reports a mismatched communication error.

For the cyclic deadlock detection we use a technique described by Chandy et al.
[13]. The algorithm essentially tries to detect a cycle in the send-receive call graph.
During program execution, if we suspect that a particular lab is in a deadlock we
send a small probe message to each process this lab is dependent on. The probe is
constructed to identify the path it has taken so far—it contains information about
initiator, sender, and target. If a lab is not in deadlock (or is executing) it simply
discards the probe message; otherwise it forwards it to the lab it is dependent on.
If eventually the initiator receives the probe message, we can say that we are in
a deadlock. For example, suppose we are in a deadlock situation where lab 1 is
dependent on lab 2 which itself is dependent on 3, which in turn is dependent on
lab 1. Suppose lab 1 initially suspects that it is in a deadlock and sends out a probe
message to lab 2. Because lab 2 is also waiting, it forwards this message to lab 3
which in turn performs the same operation. At this point the probe message initiated
from lab 1 is returned to lab 1 and we immediately determine that we are dead-
locked and error out. As we noted above probe messages are sent over a separate MPI
communicator.

123

Int J Parallel Prog (2009) 37:3–36 13

5.1.6 Interruptibility of Message Passing Functions

The message passing functions in MATLAB can be used in both batch and interactive
modes of operation. To support user-initiated interrupts in an interactive session (such
as CTRL+C at the parallel command window prompt), as well as breaking out of dead-
locks as described above, the execution of message passing functions in MATLAB
can be interrupted. More specifically, the execution of message passing functions in
MATLAB, i.e., labSend, labReceive, and functions based on these, can be interrupted
provided the corresponding receive or send has not started on the other end. The details
of implementation are beyond the scope of this paper.

5.2 Distributed Arrays

While message passing is the most commonly used method to develop parallel pro-
grams on computer clusters, it has been criticized as being equivalent to the Assembly
language of parallel programming. Global array semantics reduce the programming
complexity by abstracting out the details of message passing and letting users write
programs that look serial.

In the PGAS (Partitioned Global Address Space) model for SPMD (Single Pro-
gram Multiple Data) programs, multiple SPMD threads or processes share a part of
their address space [14]. This shared space is partitioned with portions localized to
each thread or process. Programs exploit locality by having each thread or process
principally compute on data that is local to it. MATLAB distributed arrays are an
implementation of the PGAS model. These arrays can be constructed by concatenat-
ing pieces of similarly sized arrays on the workers, distributing a large matrix, or using
specialized constructors that are overloaded forms of their serial counterparts. Some
examples of these are shown below:

% Distributing an existing array "A" which
% is the same on all labs
dA = distributed(A, ’convert’);
% Joining pieces on workers
localB = labindex() * rand(10000, 10000);
dB = distributed(localB);
% Using constructor functions
dC = rand(10000, 10000, distributor());

In the first example above, A is a replicated array containing the same values
on all labs. The distributed array dA is the same size as A, but the pieces local
to each lab hold only a subset of data contained in A. In the second example,
localB is a variant array containing different values but of the same size on differ-
ent labs. The calling syntax in the example ’concatenates’ arrays along columns.
Thus, dB has same number of rows as localB, but has numlabs times the number
of columns of localB. Additional arguments can be supplied to specify a data dis-
tribution. In this example, the labs need only exchange meta-data to construct the

123

14 Int J Parallel Prog (2009) 37:3–36

distributed array dB. The third example uses an overloaded rand function with a
distribution object (distributor() is the default distribution object constructor) as
the additional argument to make a random distributed array dC. Additional argu-
ments to the distribution object constructor can be used to specify a custom data
distribution.

Distributed arrays are implemented as a library layer on top of the MPI infrastruc-
ture. The user gets a shared memory view of the execution environment. However,
we do not make any assumptions about this environment except that we require MPI
infrastructure to be set up and initialized for these arrays to be able to function as a
parallel data structure.

One of the biggest strengths of distributed arrays is that they work with any
MATLAB data type including singles, doubles, cells, structures, as well as sparse
matrices. As with the message passing functions, the fundamental designing principle
was that a user should be able to trivially use any data type, not just floating-point
types.

The user interface provided by our implementation of distributed arrays is quite
similar to that of pMATLAB from MIT Lincoln Laboratory. Instead of distribution
objects, the MIT Lincoln Laboratory implementation uses a construct called maps to
indicate how data is distributed across processors [1].

5.2.1 Data Distribution

Distributed arrays are implemented as MATLAB objects where each lab stores a piece
of the array. Each piece of this array, in addition to storing the data, also stores infor-
mation about the type of distribution, the local indices, the global array size, blocking,
the number of worker processes, etc.

Distributed arrays support two data distributions—one-dimensional distribution
and two-dimensional block cyclic distributions. Users have access to various param-
eters to specify data distributions for their distributed arrays.

An important characteristic of data distributions in MATLAB is that they are
dynamic. This is in contrast to High-performance FORTRAN (HPF) which actually
assumes data distribution upfront [15] and Co-array FORTRAN in which distributed
arrays are really private arrays hooked up via MPI rank as an index for an additional
dimension [16]. The HPF compiler parallelizes code guided by the way data is dis-
tributed—shipping or reorganizing code and performing other optimizations based
on data distribution. Co-Array FORTRAN essentially provides users a language-level
message passing syntax.

With MATLAB distributed arrays, users can change distributions as they see fit
by redistributing data. Users can even create distributions on the fly by, for example,
reading arbitrary portions of data from a file and concatenating individual pieces to
construct distributed arrays. Certain operations and math functions can also change
data distribution. For example, in the extreme case, the gather operation brings all the
data onto a single lab (provided it fits) leaving the rest of the pieces on other labs
empty. Some examples are shown in Table 1.

123

Int J Parallel Prog (2009) 37:3–36 15

Table 1 Data distributions with MATLAB distributed arrays

MATLAB commands Distribution Size of local part of
dimension array on labs

% Distributed along columns (default) Columns 1000×250
dA = rand(1000, 1000, distributor()); On all labs
% Redistribute data – distribute along rows Rows 250×1000
dB = redistribute(dA, distributor (‘1d’, 1)); On all labs
% Functions can change data distribution Columns 1000×250
tdB = transpose(dB); On all labs
% A custom data partition (1 specifies row-based) Rows 500×1000 (lab 1)
dist = distributor(’1d’, 1, [500 250 150 100]); 250×1000 (lab 2)
pdA = redistribute(dA, dist); 150×1000 (lab 3)

100×1000 (lab 4)
% A custom data partition (2 specifies column-based) Columns 1000×600 (lab 1)
dist = distributor(’1d’, 2, [600, 200, 200, 0]); 1000×200 (lab 2)
dA = redistribute(dA, dist); 1000×200 (lab 3)

1000×-0- (lab 4)

Examples assume numlabs() is four

5.2.2 Indexing and Accessing Remote Data

Various methods are employed by different libraries and PGAS languages to
access remote memory. For example, in Co-array FORTRAN each piece of a co-
array is a private array, i.e., an A(m, n)exists for each worker. Access to a remote
element requires a special syntactic construct, the processor rank as the last dimen-
sion (A(m, n)[MPI_RANK]). This requires explicit knowledge of the data distribution
beforehand. Intel� OpenMP for Clusters implements remote data access via system
exceptions (an attempt to access memory beyond local array bounds generates the
exception) which the library handles by making the necessary arrangements to bring
in the required data [17].

With MATLAB distributed arrays, we chose programmability over execution model
transparency. There is no syntactic difference in the way users can access elements in
MATLAB distributed arrays and regular MATLAB arrays. We take the responsibility
of appropriately shipping data as necessary. Thus, if dA is a distributed array, dA(4,
3) provides user access to the (4, 3) element in the entire dA distributed array and not
just the piece of dA local to a specific worker. Depending on the context, there may
be a penalty in terms of the communication costs.

5.2.3 Operations on Distributed Arrays

Distributed arrays may be used with almost all of the nearly 150 core built-in MATLAB
functions including reduction operations, indexing, and linear algebra operations such
as LU factorization. For dense linear algebra operations we use ScaLAPACK when-
ever we can. Other algorithms, such as those for sparse matrices, are implemented in
the MATLAB language. Figure 2 shows the MATLAB implementation of the NAS
Conjugate Gradient benchmark using distributed arrays and parallel functions. Note
that the only annotations we must make are in lines 10 and 13, while the actual con-
jugate gradient iteration implementation remains unchanged.

123

16 Int J Parallel Prog (2009) 37:3–36

Fig. 2 Implementation of the NAS conjugate gradient benchmark in MATLAB using distributed arrays.
Line numbers are provided for convenience

5.2.4 ScaLAPACK Interface

MATLAB uses several ScaLAPACK routines for parallel linear algebra functions that
operate on distributed arrays. We ship a ScaLAPACK build with the parallel computing

123

Int J Parallel Prog (2009) 37:3–36 17

toolset. The distributed array functions in MATLAB access ScaLAPACK routines via
several native gateway routines (or MEX-functions as they are called in MATLAB).

Direct use of ScaLAPACK presents two problems. First is the calling syntax, which
for ScaLAPACK is FORTRAN mixed with C-MPI. The second, which is the most
challenging part of using ScaLAPACK, is devising an optimal data distribution and
processor gridding for specific problems. ScaLAPACK expects users to lay out the data
in a proper fashion. It also expects users to indicate how it must organize the computa-
tions. That is ScaLAPACK must know how it must grid the available processors. For
example, for 12 processors a user must indicate which grid is desired: a 6×2, 3×4 or
4×3 or 12×1 grid. There are certain ratios that result in optimal performance. Typically
this is a fairly opaque and complicated process, a daunting task for an average user.

We make what we think are the right choices for the user. We make sure that the
data distribution actually confirms to our choice of the processor gridding. We encode
the data and decode the results that are returned from the ScaLAPACK library.

We also try to restructure the data distribution for optimal use. For a large number
of nodes, the cost of doing this restructuring (O(n2)) is much less than the benefits
one can derive (O(n3)) from proper data distribution and gridding.

5.2.5 FOR-DRANGE: Parallel Loops Over Distributed Arrays

The for-drange construct lets users iterate over a distributed range. Each worker exe-
cutes on the piece of range that it owns. The order of iterations is always the same, and
given a certain number of workers and the iteration range, the division of the range
remains the same across multiple runs. The for-drange construct requires loops itera-
tions to be independent of each other and that no communication should occur between
labs when executing the loop. These two requirements mean that in a for-drange loop
one can access only the portion of a distributed array that is local to each lab, i.e.,
a subscript can access only the local portion of the distributed array. In general, this
means the data distribution along the distribution dimension should match the range
distribution returned by drange.

distributedArray = rand(30, 1, distributor());
for itr = drange(1 : 30)

d(itr) = distributedArray(itr);
end

The for loop does not own the responsibility of moving code or data around. It
simply operates on an already divided iteration range. This is in contrast to the parfor
loops which we discuss in the next section. Readers will notice the similarity with con-
structs in languages such as Chapel (forall … in … do) [18], HPF (INDEPENDENT…
do…), etc.

5.3 Parallel for Loop (PARFOR)

The parfor loop is a parallel control flow construct. It is a work-sharing construct that
executes the loop body in an order-independent fashion over a set of available workers.

123

18 Int J Parallel Prog (2009) 37:3–36

This parallel for loop differs significantly from the for-drange construct in its intent
and design. We discuss this in a later section.

By annotating a for as a parfor, the user explicitly expresses that the contents of
the for loop may be executed in any order. If additional computational resources are
available (through matlabpool Sect. 6.3.1), the underlying execution engine can eval-
uate the code in parallel for faster results. In the absence of these resources, on a single
processor system, parfor behaves like a traditional for loop. The parfor loop requires
iterations to be completely independent of each other.

The parfor syntax is as follows:

parfor (itr = m : n, [NumWorkers])
% loop body

end

NumWorkers is an optional argument that indicates an upper-bound on the num-
ber of MATLAB workers the user wants to use for executing the loop body. If fewer
resources are available, MATLAB uses the maximum number available.

The parfor construct is quite similar to OpenMP parallel loops [19] (parallel for
or parallel do directives) or the for (parallel by default) construct in the Fortress
language specification [20]. The key difference is that OpenMP parallel loops and
Fortress loops run on threads within a single process on a single physical computer,
while the parfor iterations are distributed onto multiple processes, potentially run-
ning on multiple physically separate computers. At the same time, we ensure there is a
single workspace before and after the parfor loop is executed by transporting data and
code for execution and gathering results back from multiple workers on the fly. This
has interesting implications on how the work distribution is actually implemented. We
discuss these next.

5.3.1 PARFOR Mechanics

There are five essential steps in the execution of a parfor loop (Fig. 3):

1. Initialization of the resources by the user by executing the matlabpool command
2. A static analysis of the loop
3. Transfer of appropriate code and data to the compute resources by parfor infra-

structure
4. Code execution on workers initiated by parfor infrastructure
5. Gathering and collating results from the compute resources, again by parfor infra-

structure

The initialization of compute resources through matlabpool is discussed in the sched-
uler interface section later. Steps 2, 3, and 5 are the more interesting pieces that we
will describe here. The requirements for correct parfor behavior fall into three rule
categories: syntactic, deterministic, and runtime.

5.3.1.1 PARFOR Syntactic Rules These rules prescribe the permissible constructions
that may be used within the parfor loop. We prohibit the use of break and return state-
ments from within the parfor loop and also place restriction on the iteration ranges

123

Int J Parallel Prog (2009) 37:3–36 19

Fig. 3 An interactive parfor session (highlighted). The parfor construct detects workers and makes required
code and data transfer to and from workers using mechanics described in Sect. 5.3.1

(numeric, positive, non-decreasing only). These rules exist to force the loop to be
deterministic and to ensure that the code writer understands some of the restrictions
that apply to parfor loops.

5.3.1.2 PARFOR Deterministic Rules These rules exist to ensure that the loop is
deterministic, (that is, the results will not depend on the order in which iterations are
executed), and the necessary components for the loop are initialized. Failure of either
of these conditions is a programming error.

In step (2) above, a static analysis of the parfor loop body and the surrounding
dependencies is performed for these first two sets of requirements. The internal parser
performs the standard steps of building a parse tree, resolving names, building a sym-
bol table, and performing a use-define analysis. This analysis results in a classification
of variables that appear in the parfor body into five types:

1. Loop index variable: A variable that is controlled by parfor
2. Broadcast variable: A variable that is never the target of an assignment and must

be sent over from the host
3. Sliced variable: An indexed variable used in an expression within the loop body,

either on the right-hand side of an assignment, in which case it must be transferred
to workers, or on the left-hand size of an assignment in which case it is an output
variable and for which data must be transferred back

4. Reduction variable: A variable that appears in unindexed expressions of the form

r = f (expr, r) or r = f (r, expr)

123

20 Int J Parallel Prog (2009) 37:3–36

If a variable is classified as a reduction variable, MATLAB reduces the values of r
from different iterations in any order it chooses. When expr is a commutative and an
associative operation, then the results of the function f are deterministic, e.g., multi-
plication. In our implementation concatenation also behaves correctly although it is
not an order-independent operation. Thus, the following loop:

x = []; % empty array
parfor itr = 1 : 10

x = [x, itr]; % concatenation into a larger array
end

produces x = [1, 2, 3, 4, 5, 6, . . .10] in “correct” order and similarly for character
strings. We assume that a user deliberately using a reduction function that is not com-
mutative accepts that the resulting parfor behavior is nondeterministic.

5. A temporary variable: A variable that is subject to a simple assignment within
the loop. These are cleared at the beginning and at the end of each iteration. In
Fig. 4, any values assigned to variables dand a are lost after the execution of the
loop. Moreover, d does not exist outside the loop body (it was not declared before
the loop). Any attempt to use d after the loop results in an error. The variable a
continues to exist after the loop, but its value remains unchanged from what it was
assigned before the loop.

We attempt to classify all the variables according to this scheme. If we fail to classify
any variable, we declare the loop illegal, i.e., MATLAB reports an error. Once a deter-
mination of the variable types in the loop is complete, parfor makes the necessary
decisions to chop up the iteration range, package up executable code and data for exe-
cution on workers, and determine the result holding matrices after the loop execution.
We provide a code analysis tool called M-Lint that can be used to determine if a for
loop is a good candidate for converting to a parfor loop.

5.3.1.3 PARFOR Runtime Rules These rules specify the runtime transparency
requirement. It places a restriction on the use of MATLAB functions within the par-
for loop to those that are statically analyzable. Certain constructs in MATLAB, such

Fig. 4 Classification of variables in a parfor

123

Int J Parallel Prog (2009) 37:3–36 21

as eval, evalin, load, and save , modify their workspaces in a non-statically analyz-
able way. Thus, eval(string) or evalin(string, workspace) will modify respective
workspaces as defined by the variable string, which can be an arbitrary piece of
MATLAB code (and in a particularly malicious case even exit). Similarly, load, which
loads a MATLAB data file into memory with an arbitrary set of variables, modifies
the workspace in a way that cannot be determined by static analysis alone. As we note
above there is a single workspace before and after the parfor loop. When multiple
workers are trying to operate on this workspace, using such functions will destroy its
integrity—that is, there will be no deterministic way to find out what data must be
transferred to and from the workers. Attempts to execute a parfor loop containing
such constructs causes MATLAB to throw an error.

5.3.1.4 PARFOR Code and Data Transfer To support dynamic work sharing across
multiple worker processes that potentially run on multiple physically separate com-
puters, the parfor construct must provide mechanisms not only to transport the data
but also to ship the required code for execution.

In reality, the parfor loop is an implementation of the master-worker pattern. In an
interactive session the client MATLAB (with which the user interacts directly) acts
as the master, while the MATLAB worker processes on the cluster receive work from
the master. In a batch session, one of the MATLAB workers is reserved as a master.
This setup requires a persistent communication channel between the master and the
workers. As we describe in the matlabpool section, the persistent communication is
set up via socket connections between the client MATLAB and the workers.

The novelty of our implementation lies in the way we transport code and data over
this communication channel. While the details of the technique are beyond the scope
of this paper, we present some of the salient concepts. MATLAB supports the concept
of function handles and anonymous functions. Roughly speaking, function handles
are equivalent to pointers to functions in C. Thus, the expression myFun = @sin
provides a function handle to a built-in function “sin” and stores it in the variable
myFun. One can then perform various operations with myFun just as one would with
the function sin. Thus myFun(pi) will produce exactly the same result as sin(pi).
Anonymous functions are MATLAB expressions that exist as function handles in
the workspace but do not necessarily have a corresponding user-defined or built-in
MATLAB function. Thus the expression myfun = @(x , y)(xˆ2 + yˆ2) creates an anon-
ymous function that returns the sum of squares of the two inputs. The user accesses
this expression via its function handle, which is stored in myfun. Thus, my f un(2, 3)

will produce the same output as 2ˆ2 + 3ˆ2.
To parcel the work and data across workers, parfor encapsulates work and data into

a function that can be referenced using a function handle, with sliced input variables,
broadcast variables, and index variable (see above) as its inputs, and sliced output
variables as its output. Depending on the context in which it is executing parfor sends
this executable payload in two different ways. When it is executing from the MATLAB
command line, the executable package is an anonymous function that is transported
along with required data over to the workers for execution. When executing within a
MATLAB function body (which exists in the form of a MATLAB file with appropriate
function declaration), the executable payload is a handle to an automatically generated

123

22 Int J Parallel Prog (2009) 37:3–36

Fig. 5 Task parallelism using parfor

nested function from the parfor loop body, and assumes the existence and visibility
of the MATLAB function on the cluster workers. In this case, the loop body is not
transported to the workers, unlike when the parallel loop is entered at the MATLAB
command line.

This automatically generated payload is serialized and transmitted over the persis-
tent communication channel that is established between multiple workers and the client
MATLAB. On workers the package is deserialized, executed, and results returned in
the sliced output variables. Pieces of iteration range are dynamically assigned to the
workers. A rough schematic of the process for a simple parfor loop is shown in Fig. 5.

The parceling and transport of the loop body to various workers happens continu-
ously. Thus in Fig. 5, f2 is created and dispatched for execution before results from
executing f1 are actually returned. Depending on the availability of workers the itera-
tion range may be divided differently. We use a standard scheme to dynamically ration
the loop iterates among the several available workers. For example, one of the runs of
the following parfor loop with four workers produces a division of iteration range as
shown in Fig. 6:

parfor k = 1 : 60
a(k) = max(abs(eig(rand(300)));

end

In this example, each of the four workers (on the vertical axis) picks up different
pieces of the iteration range. For example, worker 3 was allocated k = 21–30, then
45–48, and finally 59–60. The horizontal time axis shows when each worker starts and
ends executing its share of iterates. Thus, by the time worker 1 had finished process-
ing 1–10, worker 4 and worker 3 had finished their first round of work and had been
allocated other iterates. Worker 2 finished last in the first round and picked up 52–54
range in the next round.

123

Int J Parallel Prog (2009) 37:3–36 23

Fig. 6 PARFOR distribution of iteration range

5.3.2 A Tale of Two Parallel Loops: PARFOR vs. FOR-DRANGE

Both parfor and for-drange seem to provide equivalent parallel loop functional-
ity. However, the two constructs are fundamentally different. The biggest difference
between the two is that parfor does not require any prior parallel computing knowledge
for use within a seemingly normal MATLAB program. There is a single workspace
before and after the parfor loop is executed, because MATLAB handles variable trans-
fer implicitly. There is no commitment to a parallel context.

The for-drange construct operates within a context that requires the user to have
made the mental commitment to the parallel world. It requires an understanding that
there are multiple workspaces (for each lab) and that there is no implicit transfer of
variables between these workspaces. Also, there is a static 1:1 relationship between
the labs and the iterations executed there. The parfor construct does not enforce such
a relationship.

Consider the examples in Fig. 7. In the case of for-drange, the user has made a
commitment that columns of A are distributed across multiple workspaces. In fact,
MATLAB will error out if the loop is changed to sweep over the rows (iteration range
modified to 1000 and A(:, k) changed to A(k, :)) and A’s distribution scheme is not
changed to an equivalent row-wise distribution. Also, note that in the for-drange exam-
ple variable A resides on the workers. In case of parfor, A resides on the user’s desktop
and the user has no knowledge of how A will be ‘communicated’ during the course of

123

24 Int J Parallel Prog (2009) 37:3–36

Fig. 7 A comparison of parfor and for-drange forms

the computations. f(A(:, 42424)) in a parfor loop can be executed on any worker, but
in case of for-drange, assuming that 100 workers are available, we know that it will
be executed on the lab with rank 5.

While for-drange is useful in certain execution contexts, we recommend a parfor
if the only intent is to speed up a for loop using additional compute resources.

6 Infrastructure

6.1 Introduction

When we began to expand the capabilities of MATLAB into the parallel computing
market we needed to decide on an initial direction for our development, while keeping
our longer-term goals in mind and ensuring that our infrastructure would be suitable
for our mid-term and long-term needs. In addition, we needed to ensure we could con-
tinually deliver a competitive product that solved user needs. It is worth noting that the
above statements are basically contradictory. Throughout the project we balanced the
competing needs of our current users with what we felt the product needed in terms
of infrastructure to try to navigate a development path through feature-space.

Early in the project, we canvassed our user community to try and find out what
tools we might provide to help them in a cluster environment. With a strong industry
focus (rather than academic) in our polling, we discovered that few of our users had
any experience with a cluster-type environment. In addition, virtually none of them
had even come across anything like OpenMP or MPI-type programming. This was
not particularly surprising for typical MATLAB users in 2003 and 2004. What was
surprising was the number who had set up batch scripts to run small-scale Monte
Carlo simulations or parameter sweeps on their group’s computers overnight. This
resonated with much of our experience at The MathWorks, and we decided that our
initial parallel computing offering would be a simple scheduler that could be used to
run independent MATLAB jobs and gather the results. This would solve a significant
class of problem.

Another decision we made early on was to target small- to medium-sized clusters.
Looking at our user feedback, we saw that very few users had access to clusters larger
than 128 nodes. In addition, many users were happy to purchase their own small-scale
cluster for their group or division. This trend of moving compute resources closer to
the end-user rather than having centralized resources fits with the MATLAB view of
giving users control over what they do and how they do it. While we did not want
to preclude running on a large system, if a decision rested on knowing the size of a
cluster, then we generally optimized for a smaller, rather than larger one.

123

Int J Parallel Prog (2009) 37:3–36 25

6.2 Schedulers

6.2.1 MathWorks Job Manager

Having decided to provide our users with a simple scheduling system that worked
well for MATLAB, we evaluated several options. We looked at existing scheduling
systems such as Platform LSF� (LSF) and Sun™ Grid Engine (SGE), some service-
orientated SOAP-based services, and JINI™ /RMI-based services. Whilst realizing
that we would eventually need to integrate with existing scheduler systems, we rapidly
discarded the notion of requiring something like SGE because the install, configura-
tion, and management overhead would be far too large for our users. We needed a
simple, agile system that would work cross-platform (Windows�, Linux�, Solaris�,
and Macintosh�) that was easy to set up and maintain, and could be used to build ad-
hoc clusters. These requirements appeared to fit well with the JINI/RMI framework,
so we built our queuing and dispatch services using that infrastructure.

We should emphasize one design decision that we made early in the project: we
decided not to require a shared file-system. With hindsight this decision has made
subsequent expansion of our capabilities more difficult to implement, but has meant
that we have been able to reach a wider user base. At the outset we did not realize
the importance of this decision, and it was only much later in the project when the
ramifications became clear. In the original JINI/RMI implementation of our sched-
uler we used the JavaSpace distributed tuple-space technology as our storage mech-
anism. However, its performance proved inadequate and we ended up using a simple
relational database to store all data needed to define the jobs and tasks. This data-
base can grow rapidly if the amount of data passed to or returned from a task is
large.

Another decision we needed to make revolved around how much of MATLAB we
should expose on the execution host; or in our product terminology “What was the
feature set of the MATLAB Distributed Computing Server?” Was this simply a small
process that could undertake linear algebra, or could it understand the full MATLAB
language? Should it be able to draw graphics somewhere, just print them out, or have
no graphics ability? Should it have a full JVM as MATLAB does, or could it give
up this functionality? Looking at existing parallel MATLAB implementations did not
give any guidance as they spanned the gamut, from server processes without MATLAB
to complete MATLAB processes running on the execution hosts. We debated a vari-
ety of design options for how the engine would work, but rapidly settled on using a
complete MATLAB process that knew it had no display. The major factor that swayed
us in this direction was stability; we already had very extensive internal testing on the
MATLAB product, and by using exactly the same code-base we would not have to
invest time ensuring that our server product was stable.

However this decision also meant that we needed to consider the launch charac-
teristics of the engine. In most existing schedulers the expected workflow is for the
scheduler to start the executable as requested, and shepherd that process until it is fin-
ished. However, with MATLAB often installed in a shared file-system environment,
the launch time of the executable can be significant. Therefore we opted for a sched-
uler that operated in a Service Orientated Architecture (SOA), which also fits well

123

26 Int J Parallel Prog (2009) 37:3–36

with the JINI/RMI framework. Using an SOA framework ensures that before compu-
tations are submitted to the scheduler, the MATLAB engine is already running, ready
to undertake work. It also ensures that any failures in cluster startup must be dealt with
by an administrator rather than an end user. This fail-fast feature is particularly useful
because it gives a clear delineation between the responsibilities of the system admin-
istrator and the end user. Administrators are responsible for ensuring that MATLAB
engine processes are up and running, leaving end users to assume control of a series of
MATLAB processes with which they should feel comfortable. A consequence of this
decision is that different users may sequentially share an engine process and there are
some associated risks with certain data persistence. We provide an API to restart the
engine processes before use if this is a risk a user is not willing to take. In addition,
restarting a worker can help reduce the overall memory footprint of that worker by
releasing un-freed memory.

6.2.2 Batch Interface

In our original design, we decided to implement the concepts of jobs and tasks. This
was unusual at the time, because most existing schedulers worked as off-load engines
where each job was independent of all others and constituted starting some process
on an execution host. We decided our users needed more richness to express the rela-
tionship between a number of individual tasks. Referring back to one of the use cases
our users mentioned, a job would be a parameter sweep and each simulation would
be a task within that job. This allowed users to logically group a series of related tasks
together, and allowed us to specify things that were common to all the tasks in a single
place.

The workflow we expected our users to follow was a typical prototype-test-run
cycle. We assumed that generally code would be developed in MATLAB using the
interactive development environment and visualization tools available. This prototyp-
ing stage would continue, probably on smaller data sets, until it was in a suitable
state to try testing on a cluster. Users would try out prototype code on a small subset
of the cluster, to ensure that it works correctly. There would be iterations on these
prototype-test stages until the code behaved as expected. Finally the code would be
run on larger problems. We focused the API design on making this type of usage as
simple as possible.

6.2.3 Data and Code Transfer

Unlike most schedulers, our API must provide significant data transfer facilities. This
is because the base unit of work in the task API is the evaluation of a single MATLAB
function of the form:

[O1, O2, O3, …, OnOutput] = foo(I1, I2, I3, …, InInput);

To execute this function on the cluster a user would create a task:

task = createTask(job, @foo, nOutput,{I1, I2, I3,…,InInput);

123

Int J Parallel Prog (2009) 37:3–36 27

The createTask API function creates a task that is part of a particular job. Once
that job is submitted its tasks are run on available engine process. Note that nOutput
is a required input to the createTask function because MATLAB functions can
change their behavior depending on the number of requested output variables. Thus to
call the function foo correctly the engine needs to know how many output variables
to specify.

Implicit in the above statement is that the cell array of input variables {I1, I2,
I3, …, InInput} needs to be transferred to the worker MATLAB process and the
output arguments from the function call to foo, {O1, O2, O3, …, OnOutput}
must be transferred back to the MATLAB client. Our design must incorporate facili-
ties to deal with these transfers being large. In addition to being transferred, this data
must also be persistent with respect to the MATLAB client and MATLAB worker
processes, because a user who submits a job does not expect that job to be unable to
get its input data just because their MATLAB client is no longer running.

This need for large, persistent data storage within the scheduling environment was
the motivation for integrating a relational database into our SOA architecture. Both the
input and output data related to a given task is stored in this database, and associated
with that task and its parent job. We provide API functions to find jobs and tasks, and
their associated data, from within the database such that any MATLAB process with
the appropriate privileges can interact with these objects. The lifetime of the job and
task are defined by the user since it requires an explicit API call to remove them from
the database. The internal implementation is such that we only assume the database
has a JDBC driver that supports Binary Large Objects (BLOBs). During development
we tried a number of different embedded databases to assess their suitability.

Alongside input and output data we must also address the problem of how a user’s
code gets to the cluster. In general cluster environments this is usually achieved using a
shared file-system, or some feature of the scheduler that stages files onto the execution
host. Our design reflects the need to incorporate both mechanisms, because whilst the
file copy solution is general and will always work, it can be far less efficient that the
shared file system approach. The solution we implemented defined two properties of
the job, called FileDependencies and PathDependencies, both of which
are cell arrays of strings. All files or directories in FileDependencies are com-
pressed and persist within the job, to be uncompressed and added to the MATLAB
path on the worker. All directories contained in PathDependencies are added to
the MATLAB path on the worker (treated as relative to the file system on the execution
host).

6.2.4 Interface to Other Scheduling Systems

Having built our own scheduling environment, our next problem was how to replace
our SOA scheduling system with an existing scheduling system such as LSF, SGE,
etc. This would allow code written for the toolbox to be agnostic to the scheduling
system it was run on. Our users already had a mental model of how our scheduling
system functioned, and we had to ensure that all other schedulers had similar syntax
and essentially the same semantics. To give other scheduling systems the same user
model, we had to solve a data transfer problem which we had neatly side-stepped

123

28 Int J Parallel Prog (2009) 37:3–36

within our own environment by implementing a database. Having already committed
to not requiring a shared file system, we needed to assume one of the following

• The cluster would provide a shared file-system
• The scheduler would provide a data staging system
• The administrator would be willing to run a database-like daemon on the cluster

In practice, most clusters running a scheduling system have a shared file system, so
we decided that all the data we had previously been writing into our database could
now be written to disk. When there was a shared file system between the client and
the execution hosts, this data could then be read by the MATLAB engine started by
the scheduler.

However, a relatively common situation that does not have this level of support
from its environment arises when communication with the cluster is exclusively over
SSH, or some other remote connection protocol. Under these circumstances, users
usually run remote terminal sessions on a login node on the cluster and undertake
cluster activities from that node. However, with MATLAB, the expectation is that the
client machine’s MATLAB instance should be able to submit and run jobs on the
cluster without requiring a MATLAB instance on the login node. This requires us to
somehow use the remote connection protocol to stage files onto the cluster file system
before submitting a job to the cluster. We support this mode of operation, provided
that we have been given a MATLAB function that will carry out a specific file copy
for the cluster.

It is worth noting that we strongly considered the third option above, which requires
the cluster system to provide a database-like daemon to support shared data semantics.
However, having talked with several large cluster administrators, it became apparent
that their tolerance for yet another daemon with large disk and bandwidth requirements
was low. While not currently supporting this third option, our solution is architected
to allow for the insertion of a framework of this nature.

Once we had made the decision on data transfer mechanisms, we could implement
our complete interface to other schedulers. We followed the same job and task model
that we had already used with our scheduler. The only assumptions we needed to make
about a scheduling system were that it had the ability to start a number of MATLAB
processes on the cluster, possibly using mpiexec to bind them into an MPI ring, and
that we had the ability to pass some environment variables into those processes. Thus
far, all scheduling systems we have encountered fulfill these assumptions. It should
be noted that the persistence of MATLAB processes is controlled by the scheduling
system, which mostly treat a task as finished when the process executing that task exits.
Thus, unlike our SOA architecture, each task is executed in a newly started MATLAB
process.

6.3 Interactive Interface

MATLAB has always been a cross-platform, interactive environment in which algo-
rithm and code development is intended to occur in a simple, iterative fashion from the
command line, leading to the generation of MATLAB files that carry out some task.

123

Int J Parallel Prog (2009) 37:3–36 29

The typical MATLAB user has a simulation or data analysis task to undertake, for
which they need to develop or use custom tools in MATLAB code. Interactivity with
the environment makes this an easy system to learn and use. Thus far our discussion of
parallel extensions to MATLAB has addressed uses that rely wholly on the behavior
of an external scheduling system. To quote Cleve Moler ‘I wrote MATLAB so I didn’t
have to run a batch job overnight, go down to the computing center the next morning,
and pick up my results’. Moler’s point is that the user is at the mercy of the scheduling
system which will often have policies that do not allow for true interactive use, where
the word interactive implies that the requested computation start as soon as the user
presses the return key. Not having such an interactive mode would significantly reduce
the effectiveness of our tools.

The need for interactivity is a somewhat unique challenge, not faced by many
other systems. What we wanted to achieve was a workflow identical to the serial
MATLAB development experience, in which our users could interactively use a par-
allel machine to explore distributed data, write parallel code, and develop tools that
could subsequently be used in any of the batch environments discussed above.

Our most important decision about this interactive environment was that it should
be independent of the choice of scheduler used to interface to the cluster. In essence,
this implies that the interactive layer would sit on top of the job scheduling layers
previously described because this had a consistent API to any scheduler. This in turn
implies that an interactive environment consists of a number of MATLAB processes
running on the cluster, necessarily with a communication channel back to the client
machine. This leads to a slightly controversial resource allocation decision, namely
that we expect a scheduler to dispatch these specific jobs in an interactive fashion, and
that while a user has an interactive session running, our processes will use resources
on the cluster nodes until the user closes the session.

In particular, our processes have a significant memory footprint that is not released
until the session is finished, and when computing or communicating with other pro-
cesses we will not endeavor to reduce our CPU usage to allow other processes CPU
time on the system. We believe that while this policy is currently at odds with some
cluster administrators’ views, it represents the most viable way of exposing interactive
parallel computing to users.

Looking back at the history of computing, we see that early computers had batch-
type operation with clearly defined time slots allocated for jobs (remarkably similar
to some of today’s batch clusters). However, as machines became more available
and the ownership of a machine moved to an individual, so the assumptions about
resource usage of programs changed. We believe that the same changes will occur in
the cluster environment, with single people or small groups having exclusive access
to the resources available.

Cross-platform use was another requirement that our interactive environment
needed to fulfill, particularly where the client machine is a Windows desktop and the
execution hosts are part of a UNIX cluster. This, coupled with the need for effectively
one-sided communication within the processes in the interactive session, required us
to implement our own communication protocol, since a general MPI2 implementation
would not provide enough functionality.

123

30 Int J Parallel Prog (2009) 37:3–36

This second communication layer between the client and lab processes is used as
a control layer rather than as a data transfer layer. This should be contrasted with the
MPI communication layer between the lab processes on the cluster, which is exclu-
sively used to transfer data between different parts of an SPMD program. Obviously
some data needs to be transferred over the control layer, but it is not optimized for
this purpose. It is intended to enable the operation of our parallel language constructs
(such as parfor) by transferring the requisite control messages that execute the remote
code, and returning relevant information back to the client, such as any display output,
completion statuses, etc.

It is worth pointing out that this second communication layer joins the client
machine with the back-end processes, and thus it is likely that it will need to traverse
a firewall. This means it is important to consider in which direction the connection
of the layer is implemented. We could ask the remote processes to open sockets and
let the client connect, or we could open a socket on the client and expect connection
back from the remote processes. We opted for the latter approach because it is much
more likely that a cluster will allow out-going connection attempts than incoming con-
nections. With hindsight this was a good strategy because the alternative would have
required administrators to create specific firewall rules for our connections, which
reduces the security of their clusters. We rejected a general tunneling approach (using
for example SSH) as that infrastructure is not generally available cross-platform, and
is not always enabled even if it is installed.

6.3.1 The Parallel Command Window and MATLABPOOL

The control communication infrastructure allowed us to develop a parallel command
window (pmode) that is a counterpart to the normal MATLAB command window.
This window provides a command line interface to an SPMD programming model with
interrupt capability and also displays output from all the computational processes. This
interface allows both prototyping and development of SPMD algorithms and interac-
tive use of the distributed array language features. In fact, all the code in the distributed
array layer was developed using the parallel command window. The parallel command
window is a relatively simple use of the control layer, where simple evaluation request
messages are sent to all labs when a user types a command in the parallel command
window. All display output from the labs is streamed back to the client machine using
observed return messages (messages are returned from remote processes, received
by the I/O infrastructure and are then passed on to designated ‘observers’ for further
processing). The parallel command window has display features that allow this output
to be viewed in several different ways. Interrupt and other control requests can be sent
as messages that are out-of-band and affect all the labs. The only relatively difficult
part is ensuring that the state of all the labs remains consistent when a user types a
command that might affect one lab differently from others (Fig. 8).

The problem with the current parallel command window as described above is that
it is not the MATLAB command window. The problem with having two windows is
that users have to choose whether they are currently trying to work in serial or parallel
and then use the appropriate window. Getting variables from the serial to the parallel
workspace, or vice-versa, requires users to say that they want a data transfer to occur.

123

Int J Parallel Prog (2009) 37:3–36 31

Fig. 8 An interactive session in parallel command window

This is currently not just a brief annotation on the serial MATLAB language that we
described at the beginning of the paper.

Our solution to this problem uses the concept of a pool of MATLAB engines
combined with language annotations and keywords. This will allow us to express
parallelism within the language rather than through the use of a particular command
window. We noted that the parallel language features, such as parfor, would be inter-
mingled with serial code, and that they would be independent of actual resource request
and allocation. However, the language does need to use extra processes when it hits a
parallel construct. These processes are held in what we term a matlabpool, which is just
a series of MATLAB engine processes in an MPI ring, with a control communication
connection back to the client MATLAB.

When the client is running serial code and encounters a parfor language construct,
it parses the construct as described previously and then runs code to see if there are
any available resources in the current matlabpool. If there are no resources, then a
temporary interface to a local lab is set up and the parsed code is run locally. If there
are available resources, an interface to the remote labs is returned. This has the same
API as the local interface and the client code run is the same; however, the result is
that multiple requests are sent out simultaneously across the control layer and many
labs start working on small intervals of the parfor loop at the same time. In this way,
the parallel language constructs independent of the resources used to carry out their
processing.

Figure 9 shows the salient parts of the software stack that enable both the paral-
lel command window and the matlabpool features. Within the Parallel Computing
Toolbox the API to a parallel job is consistent across all schedulers. This job layer is
exposed to users and is the main interface to batch control of schedulers within the

123

32 Int J Parallel Prog (2009) 37:3–36

Fig. 9 Infrastructure for schedulers, jobs and parallel interactive sessions. The uniform interface provided
by the tools lets users connect to clusters managed by different schedulers, with different number of workers
from the same MATLAB session without making code changes

toolbox. Built on top of that job layer is the control communication layer, which is used
by both matlabpool and the parallel command window. Each scheduler interface is
slightly different, reflecting the differences in schedulers. However, the schedulers all
have the common feature that they will be starting, or already have started, a number
of MATLAB engine processes, which can connect back to the client machine to form
the control communication layer (Fig. 9).

6.4 Message Passing Infrastructure

The message passing infrastructure tries to satisfy two key requirements: uniform
messaging behavior across platforms, and to provide a uniform interface to dependent
layers built on top of this. Several parallel MATLAB constructs use this infrastructure,
including the message passing functions, distributed arrays, functions that operate on
distributed arrays, and the ScaLAPACK interface (Fig. 10).

There are two important layers in the MATLAB MPI infrastructure: (a) the MPI
library layer, and (b) the binder layer which provides a uniform interface to the under-
lying MPI library layer. We discuss some of the salient details next.

6.4.1 MPI Library Layer

The MPI library layer is a shared library build of an MPI-2 library implementa-
tion. By default, we provide an MPI implementation based on MPICH2 distribution
from Argonne National Laboratory. In particular, we use the ch3:sock device build

123

Int J Parallel Prog (2009) 37:3–36 33

Fig. 10 Message passing infrastructure

of MPICH2 since it happens to work in the same way across all platforms. The MPI
library is built as a shared library that is loaded on demand and is not linked directly
into MATLAB. We also realized that the MPICH2 library build we supply is a lowest
common denominator library. For special hardware requirements (e.g., non-Ethernet
connections between nodes) users may want to use another MPI library. Therefore,
we support any user-supplied MPI implementation provided that the library satisfies
certain requirements. In particular, we expect the user-supplied MPI library to be
binary compatible with MPICH2, i.e., the underlying types of various MPI data types
such as MPI_Comm, MPI_Group, etc. and values of various MPI constants such as
MPI_COMM_WORLD, MPI_INT, MPI_DOUBLE, etc., are the same.

The binder layer, described next, helps provide a uniform interface to the ScaLA-
PACK libraries and message passing functions in MATLAB.

6.4.2 Binder Layer

The binder layer is an abstraction layer that provides MATLAB with a standard binary
interface to all MPI library functions, given that users can plug-in their own MPI library
implementations provided that these are binary compatible with MPICH2. The mes-
sage passing functions in MATLAB as well as the ScaLAPACK library communicate
with this binder layer enabling uniform behavior irrespective of the MPI library being
used. When users specify their own MPI library implementation, the binder layer
remaps function pointers to the right functions in the MPI library. This is the layer
that enables us to use any compatible MPI library without significantly changing the
user-visible layers above.

6.4.3 Launch Mechanics with MathWorks Job Manager

MATLAB parallel jobs can be launched in two ways. With all third-party schedulers
we rely on the schedulers to provide adequate mechanisms to launch MATLAB work-
ers (as applications that are brought up for each job and shut down after completion).
The MPI communication setup parallels typical usage of MPI-based programs. The
MPI shared library is loaded and made available to the MATLAB workers, which call

123

34 Int J Parallel Prog (2009) 37:3–36

necessary initialization functions. We spawn a few communicators to keep communi-
cation namespaces clean and separate.

However, with the MathWorks job manager MATLAB workers remain running
between jobs as a service or daemons. As we note in the Schedulers interface section
above, we make a distinction between two types of jobs: distributed and parallel jobs.
A parallel job requires an MPI infrastructure, while a distributed job does not. This
presents an unusual situation in which MPI must be loaded and communication set up
between already running processes. We use functions provided in the MPI-2 standard
that let us connect and establish communication between MATLAB worker processes
that have been launched independently and not under mpiexec.

The method we use is essentially a three-step process.

1. When a parallel job is launched, the MathWorks job manager launches a sin-
gle parallel task on a lab and defines its rank as 1. This lab opens a port using
MPI_Open_port, which returns a description of how other labs can connect to that
port. The lab 1 opens this port for others to connect to and passes this information
back to the job manager.

2. The job manager launches a parallel task on other labs, passing the port infor-
mation received from lab 1 to all of these labs. At the end of this stage, all the
MATLAB workers (labs) are trying to run the task and are aware of the port they
need to connect to but are not connected yet.

3. The next stage is a series of connect-accept iterations, in which each lab tries to
connect to the others. As an illustration, imagine that we have four labs. In the first
iteration lab1 calls accept and all the others call connect. Only one of the others
will succeed; suppose that lab2 is successful. Next lab1 and lab2 call accept, while
the others call connect, at which point another lab is brought into the MPI ring.
At the end of this stage, all the labs are connected to each other and we know that
each lab is capable of exchanging data with all others.

7 Bringing it All Together

The MathWorks toolset aims to provide users with a set of constructs that can be
applied to exploit various types of parallelism with minimal effort. Thus, parfor is a
way to exploit task parallelism, while distributed arrays and parallel functions target
data parallel problems. The toolset aims to provide adequate levels of control to end
users, who can choose to use a specific subset to exploit parallelism in their applica-
tions, from low-level message passing functions to high-level distributed arrays and
parallel loops. Each of these constructs provides various parameters that users can
tweak to apply to their specific problem. Even without these specific modifications,
we are able to make decisions for users that we hope are close to optimal. Our goal is to
maintain the highest degree of programmability. Programmability for us will always
trump performance.

The toolset was designed to be portable across multiple platforms and architec-
tures: Linux, Macintosh (Intel, 32-bit), Solaris (64-bit), and Windows. Barring the
assumption that MPI can function in a given environment, and that MATLAB worker
processes can be launched, we do not make any other assumptions about the operating

123

Int J Parallel Prog (2009) 37:3–36 35

environment. This cleanly separates the algorithm from the underlying architecture
details.

As we move forward we ask ourselves several questions. At the beginning we distin-
guished between the implicit parallel programming model through multithreading and
the explicit model that we describe in this paper. Given the proliferation of multi-core,
multiprocessor desktop computers and predictions of tens or hundreds of processing
cores we are curious as to what the interplay will be between the two models. Multith-
reading (computational threads) in MATLAB is exposed via a user settable preference
which enables certain functions to switch to multithreaded versions for appropriate
problem sizes. Since threads execute within a single process, utility of multithreading
is restricted by the limitations imposed on the individual processes themselves (e.g.
limitations of 32-bit computers). Similarly, using multiple workers to solve large prob-
lems has its own share of difficulties. Users could use a hybrid scheme making sure to
avoid resource contention [22]. But then the user must make a decision on number of
computational threads and number of workers. For example, on a 64 core computer
8 workers each with 8 computational threads could yield better performance than 16
workers with 4 computational threads each. The picture is further complicated in the
presence of accelerators and coprocessors such as GPUs and FPGAs.

We also worry about the tradeoffs between ease of use and performance. It is clear
that unless parallel programming tools are simplified their adoption is a lost cause.
How should MATLAB as a technical computing environment stay true to its goal of
enabling users to express their intent and algorithms in the simplest possible way while
scaling both in performance and problem sizes with available resources?

Tied to this is how do we enable users to actually use the parallel programming
constructs we provide. Even with a highly simplified language it is possible that users
are turned away by complexities that are not abstracted out. Thus, the question is what
level of complexity users would tolerate.

Finally, for the firms that have large amount of legacy MATLAB code, code changes
are also a major concern. Would these firms invest time to re-code some of their
MATLAB algorithms, and what amount of code changes would they tolerate? Quite
clearly, these users will also require some of the specialized toolbox functions used in
their codes to be parallelized. We will have to actively pace and sequence ourselves
to deliver this functionality.

We conclude by noting that MATLAB has evolved rapidly and must continue to do
so or risk becoming irrelevant in the new world order.

Acknowledgements We would like to acknowledge the contributions of the parallel language design team
members at The MathWorks who simplified the esoteric details for the purposes of this paper, particularly
Penny Anderson, Edric Ellis, Mike Karr and Brett Baker. We would also like to thank Cleve Moler, Chief
Scientist and cofounder of The MathWorks, for being our fiercest critic.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

123

36 Int J Parallel Prog (2009) 37:3–36

References

1. Travinin Bliss, N., Kepner, J.: pMatlab parallel Matlab library. Int. J. High Perform. Comput. Appl.
21(3), 336–359 (2007). doi:10.1177/1094342007078446

2. Kepner, J.: MatlabMPI. J. Parallel Distrib. Comput. 64(8), 997–1005 (2004). doi:10.1016/j.jpdc.2004.
03.018

3. Trefethen, A.E., Menon, V.S., Chang, C., Czajkowski, G., Myers, C., Trefethen, L.N.: Multimat-
lab: MATLAB on Multiple Processors. Technical Report, UMI Order Number: TR96-1586, Cornell
University (1996)

4. Hudak, D.E., Ludban, N., Gadepally, V., Krishnamurthy, A.: Developing a computational science
IDE for HPC systems. In: Proceedings of the 3rd International Workshop on Software Engineering
for High Performance Computing Applications, International Conference on Software Engineering.
IEEE Computer Society, Washington, DC, 20–26 May 2007

5. Moler, C.: Why isn’t There a Parallel MATLAB. The MathWorks Newsletter, Spring 1995
6. Jacobson, P., Kågström, B., Rännar, M.: Algorithm development for distributed memory multicom-

puters using CONLAB. Sci. Prog. 1, 185–203 (1992)
7. DeRose, L., Gallivan, K., Gallopoulos, E., Marsolf, B., Padua, D.: FALCON: a MATLAB inter-

active restructuring compiler. In: Languages and Compilers for Parallel Computing, pp. 269–288.
Springer-Verlag, New York (1995)

8. Release Notes: MATLAB Compiler (version 4.0), The MathWorks (2004)
9. Husbands, P., Isbell, C.: Matlab*p: a tool for interactive supercomputing. In: The Ninth SIAM Con-

ference on Parallel Processing for Scientific Computing (1999)
10. Panuganti, R., Baskaran, M.M., Hudak, D., Krishnamurthy, A., Nieplocha, J., Rountev, A., et al.:

GAMMA: Global Arrays Meets MATLAB. Technical Report OSU-CISRC-1/06-TR15, The Ohio
State University, January 2006

11. Hollingsworth, J., Liu, K., Pauca, P.: Parallel Toolbox for MATLAB PT v. 1.00: Manual and Reference
Pages. Wake Forest University (1996). URL: www.mthcsc.wfu.edu/pt/pt.html

12. Lurie, R.: Language Design for Uncertain Future. HPCwire, September 2007
13. Mani Chandy, K., Misra, J., Haas, L.M.: Distributed deadlock detection. ACM Trans. Comput.

Syst. 1(3), 145–156 (1983)
14. Carlson, B., El-Ghazawi, T., Numrich, R., Yelick, K.: Programming in the Partitioned Global Address

Space Model. Tutorial at Supercomputing 2003, November 2003. URL: http://www.gwu.edu/~upc/
tutorials/tutorials_sc2003.pdf

15. HPF Language Specification, Version 2.0, 31 January 1997
16. Numrich, R.W., Reid, J.K.: Co-array FORTRAN for parallel programming. FORTRAN Forum 17(2),

(1998)
17. User Manual, Cluster OpenMP*, Intel Corporation, 2005–2006.
18. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the chapel language. Int.

J. High Perform. Comput. Appl. 21(3), 291–312 (2007). doi:10.1177/1094342007078442
19. Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.: Parallel Programming in

OpenMP. Morgan Kaufmann, Mosby (2000)
20. Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.-W., Ryu, S., Steele, G.L., Jr., Tobin-

Hochstadt, S.: The Fortress Language Specification, Version 1.0 β, Sun Microsystems, Inc., 6 March
2007

21. Kepner, J.: Programming with MatlabMPI, Web documentation, URL: www.ll.mit.edu/MatlabMPI
22. Moler, C.: Parallel MATLAB: Multiple processors and multiple cores, The MathWorks News and

Notes, June 2007

123

http://dx.doi.org/10.1177/1094342007078446
http://dx.doi.org/10.1016/j.jpdc.2004.03.018
http://dx.doi.org/10.1016/j.jpdc.2004.03.018
www.mthcsc.wfu.edu/pt/pt.html
http://www.gwu.edu/~upc/tutorials/tutorials_sc2003.pdf
http://www.gwu.edu/~upc/tutorials/tutorials_sc2003.pdf
http://dx.doi.org/10.1177/1094342007078442
www.ll.mit.edu/MatlabMPI

	Abstract
	1 Introduction
	2 A History of Parallel MATLAB"472-.4
	3 Design Goals
	4 Framework and Terminology for Discussion
	5 Language
	5.1 Message Passing Functions
	5.2 Distributed Arrays
	5.3 Parallel for Loop (PARFOR)

	6 Infrastructure
	6.1 Introduction
	6.2 Schedulers
	6.3 Interactive Interface
	6.4 Message Passing Infrastructure

	7 Bringing it All Together
	Acknowledgements

