
Matlab Implementation of the Finite Element Method in Elasticity

J. Alberty, Kiel, C. Carstensen, Vienna, S. A. Funken, Kiel and R. Klose, Kiel

Received June 18, 2001; revised February 25, 2002
Published online: December 5, 2002

� Springer-Verlag 2002

Abstract

A short Matlab implementation for P1 and Q1 finite elements (FE) is provided for the numerical
solution of 2d and 3d problems in linear elasticity with mixed boundary conditions. Any adaptation
from the simple model examples provided to more complex problems can easily be performed with the
given documentation. Numerical examples with postprocessing and error estimation via an averaged
stress field illustrate the new Matlab tool and its flexibility.

AMS Subject Classification: 65N30, 65R20, 73C50.

Keywords: Finite element method, elasticity, Matlab.

1. Introduction

Unlike complex black-box commercial computer codes, this paper provides a

simple and short open-box Matlab implementation of P1 and Q1 finite elements

(FE) for the numerical solutions of linear elasticity problems. Instead of covering

all kinds of possible problems in one code, the proposed tool aims to be plain,

easy to understand, and to modify. Therefore, only simple model examples are

included to be adapted to whatever is needed in the spirit of [1]. We present an

error estimator which illustrates the accuracy of the numerical calculation.

A different approach is realized by the company Comsol with the finite element

package Femlab [7]. It is a tool for the solution of partial differential equations of

many physical phenomena, including structural mechanics. A special feature is

the comfortable mesh generator and the possibility to combine different physical

problems. The code is written for the most part in Matlab and can be modified,

except for the mesh generator and the solver for nonlinear problems. The basis

functions in the finite element method can be chosen to be linear, quadratic, cubic

or of fourth order. The solver can use adaptivity as well.

The plan of our paper is as follows. The model problem, the Navier-Lamé

equations, with general boundary conditions is described in Sect. 2; the weak

formulation and discretisation in Sect. 3. The heart of this contribution is the data

representation of the triangulation, the Dirichlet and Neumann boundary in

Computing 69, 239–263 (2002)

Digital Object Identifier (DOI) 10.1007/s00607-002-1459-8

Sect. 4 together with the discrete space. The main steps are the assembly proce-

dure of the stiffness matrix in Sect. 5, the right-hand side in Sect. 6, and the

incorporation of the Dirichlet boundary conditions in Sect. 7. A post-processing

routine to preview the numerical solution is given in Sect. 8; in Sect. 9 an im-

plementation of an a posteriori error estimator is presented [3], [4], [5]. Applica-

tions illustrate the usage of the new tools in Sects. 10, 11, 12, and 13 and serve as

examples for writing the user-specified Matlab routines f.m, g.m, and u d:m. The
main program is given partly in these sections and in its total in the appendices.

The programs are written for Matlab 6 but adaptation for earlier versions is

possible. For a finite element calculation it is necessary to run the main

program with (user-specified files) coordinates.dat, elements.dat,

dirichlet.dat, and neumann.dat if necessary, as well as the sub-routines

f.m, g.m, and u d:m. The graphical representation is performed with the function
show.m and the error is estimated in aposteriori.m. All files with the code

and the data for all examples can be downloaded from www.math.tuwien.ac.at/

�carsten/.

2. Model Problem

The proposed Matlab program employs the finite element method to calculate

a numerical solution U which approximates the solution u to the following

d-dimensional Navier-Lamé problem (P). Let X � R
d be a bounded Lipschitz

domain with polygonal boundary C. On some closed subset CD of the

boundary with positive length, we assume Dirichlet conditions while we have

Neumann boundary conditions on the (possible empty) part CN . The d com-

ponents of the displacement u need not satisfy either Dirichlet- or Neumann

conditions, i.e., CD and CN may overlap. Given f 2 L2ðXÞ, M 2 L1ðCDÞd�d
,

w 2 H 1ðXÞ, and g 2 L2ðCN Þ as well as the positive parameters k and l, seek

u 2 H1ðXÞ with

ðkþ lÞðr div uÞT þ lDu ¼ �f in X; ð1Þ
ðk trð�ðuÞÞI þ 2l�ðuÞÞ � n ¼ g on CN ; ð2Þ

M � u ¼ w on CD; ð3Þ

where �ðuÞ ¼ ðruþ ðruÞT Þ=2. The matrixM contains in row number j ¼ 1; . . . ; d
the entries mj1; . . . ;mjd (explained in Sect. 7) to model gliding geometric boundary

conditions. According to Korn’s inequality and the Lax-Milgram Lemma [2, 6],

there exists a weak solution to (1)–(3) for reasonable boundary conditions in

(3), i.e., there exists u 2 H1ðXÞ that satisfies (3) and, for all v 2 H1
DðXÞ :¼

fv 2 H1ðXÞ : Mv ¼ 0 on CDg,
Z

X

�ðvÞ : C�ðuÞ dx ¼
Z

X

f � v dxþ
Z

CN

g � v ds: ð4Þ

240 J. Alberty et al.

(C is the fourth-order isotropic material tensor corresponding to (1).) The weak

form (4) will be relevant in the sequel and so boundary conditions are treated

correctly while (2) can be wrong if only some components of u on CN \ CD are

fixed and so (2) holds only for some projections of both sides.

3. Finite Element Discretisation

For the implementation, problem (4) is discretised using the standard Galerkin

method. The space H1ðXÞ is replaced by the finite dimensional subspace S. If wh

is the projection of w onto S, the discretised problem (PS) reads: Seek uh 2 S

such that Muh ¼ wh on CD and, for all vh 2 S with Mvh ¼ 0 on CD,

Z

X

�ðvhÞ : C�ðuhÞ dx ¼
Z

X

f � vh dxþ
Z

CN

g � vh ds: ð5Þ

Let T denote a triangulation of X specified in Sect. 4 and let N be the set of all

nodes in T; set ðg1; . . . ; gdN Þ ¼ ðu1e1;u1e2; . . . ;u1ed ; . . . ;uNe1;uNe2; . . . ;uNedÞ
be the nodal basis of the finite dimensional space S, where N is the number of

nodes of the mesh, d the dimension of the displacement vector, and uz is the scalar

hat function of node z in the triangulation T, i.e., uzðzÞ ¼ 1 and uzðyÞ ¼ 0 for all

y 2 N with y 6¼ z. Up to geometric boundary conditions (involved in Sect. 7), (5)

reads

Z

X

�ðgkÞ : C�ðuhÞdx ¼
Z

X

f � gk dxþ
Z

CN

g � gk ds ðk ¼ 1; . . . ; dNÞ: ð6Þ

For the discrete displacement vector we have uh ¼
PdN

‘¼1 U‘g‘ and thus (6) yields

the linear system of equations

XdN

‘¼1

Z

X

�ðgkÞ : C�ðg‘Þdx
� �

U‘ ¼
Z

X

f � gk dxþ
Z

CN

g � gk ds ðk ¼ 1; . . . ; dNÞ: ð7Þ

The coefficient matrix (global stiffness matrix) A ¼ ðAk‘Þ 2 R
dN�dN and the right-

hand side b ¼ ðbkÞ 2 R
dN are defined as

Ak‘ ¼
Z

X

�ðgkÞ : C�ðg‘Þdx and bk ¼
Z

X

f � gk dxþ
Z

CN

g � gk ds: ð8Þ

The coefficient matrix is sparse, symmetric and positive semidefinite. The condi-

tion Muh ¼ wh on CD and Mvh ¼ 0 on CD will be incorporated in Sect. 7 via

Lagrange multipliers.

Matlab Implementation of the Finite Element Method in Elasticity 241

4. Data Representation of the Triangulation

Supposing the domain X has a polygonal boundary C, we can cover �XX by a

regular triangulation T, i.e., �XX ¼
S

T2T T , where the elements of T are triangles

and/or quadrilaterals for d ¼ 2 and tetrahedrons for d ¼ 3. Regular triangulation

in the sense of Ciarlet [6] means that the nodesN of the mesh lie on the vertices of

the elements, the elements of the triangulation do not overlap, no node lies on an

edge of an element, and each edge E � C of an element T 2 T belongs completely

to �CCN , completely to �CCD, or completely to both.

Matlab supports reading data from files given in ASCII format by *.dat files.

Fig. 1 shows the mesh of a two dimensional example and the corresponding file

coordinates.dat, which contains the coordinates of each node. The two real

numbers per row are the x- and y-coordinates of each node.

The files elements3.dat and elements4.dat contain for each triangular

and quadrilateral element the node numbers of the vertices, numbered anti-

clockwise. See, for instance, the triangular element marked 1 in Fig. 1 which is

given by the node numbers ð13; 3; 2Þ and not ð13; 2; 3Þ.
The space S is chosen globally continuous and linear on each triangle (d ¼ 2) or

tetrahedron (d ¼ 3) and bilinear on each quadrilateral element.

With this space S and its corresponding nodal basis, the integrals in (8) can be

calculated as a sum over all elements and a sum over all edges on CN , i.e., for

j; k ¼ 1; . . . ; dN ,

Ajk ¼
X

T2T

Z

T

�ðgjÞ : C�ðgkÞdx; ð9Þ

bj ¼
X

T2T

Z

T

f � gjdxþ
X

E�CN

Z

E

g � gjds: ð10Þ

Fig. 1. Plot of triangulation and corresponding data file coordinates.dat

242 J. Alberty et al.

The files neumann.dat and dirichlet.dat contain the two node numbers

which bound the corresponding edge on the boundary. In this way, the sum over

E � CN results in a loop over all entries in neumann.dat. The right-hand side f

and g is evaluated in Sect. 6 and the Dirichlet conditions from u d:m are discussed

in Sect. 7.

5. Assembling the Stiffness Matrix

The local stiffness matrix is determined by the coordinates of the vertices of the

corresponding element and is calculated in the function stima3 for triangular

elements, stima4 for quadrilateral elements, and stima for tetrahedral elements.

Fig. 2. Data files elements3.dat and elements4.dat

Fig. 3. Data files dirichlet.dat and neumann.dat

Matlab Implementation of the Finite Element Method in Elasticity 243

Let k1 through kK be the numbers of the nodes of an element T . For a d-dimensional

problem there are then dK basis functions with support on T , namely

gpðT ;1Þ ¼ uk1
e1; . . . ; gpðT ;dÞ ¼ uk1

ed ;

� � �

gpðT ;dK�ðd�1ÞÞ ¼ ukK
e1; . . . ; gpðT ;dKÞ ¼ ukK

ed ;

where ej is the j-th unit vector. The function ukj
is the local scalar hat function of

node kj. The function p maps the indices 1; . . . ; dK of the local numeration with

respect to T to the global numeration. The entries of the local stiffness matrix of

an element T read

STIMAðT Þk‘ ¼
Z

T

�ðgpðT ;kÞÞ : C�ðgpðT ;‘ÞÞdx ðk; ‘ ¼ 1; . . . ; dKÞ ð11Þ

and are assembled to the global stiffness matrix A. This means, the entry Apq is the

sum of STIMAðT Þk‘ over all elements T with p ¼ pðT ; kÞ and q ¼ pðT ; ‘Þ, which is

performed by the following Matlab commands for the two-dimensional case for

triangles and quadrilaterals.

The local stiffness matrix for each element T requires an individual discussion for

triangular, tetrahedral, and quadrilateral elements.

5.1. Triangular Elements

We consider triangular elements with the vertices ðxj; yj; zjÞ for j ¼ 1; 2; 3. The
Voigt representation c : H1ðXÞ ! L2ðXÞ of the linear Green strain tensor reads

cðuÞ ¼
@u1=@x
@u2=@y

@u2=@xþ @u1=@y

0

@

1

A ¼
�11ðuÞ
�22ðuÞ
2�12ðuÞ

0

@

1

A: ð12Þ

244 J. Alberty et al.

For r ¼ C�ðuÞ we have the relation

r11
r22
r12

0

@

1

A ¼
kþ 2l k 0

k kþ 2l 0

0 0 l

0

@

1

A

�11ðuÞ
�22ðuÞ
2�12ðuÞ

0

@

1

A ¼: CcðuÞ: ð13Þ

and thus obtain

�ðvÞ : C�ðuÞ ¼ r11�11 þ r22�22 þ r12�12 þ r21�21
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼2r12�12

¼ cT ðvÞCcðuÞ: ð14Þ

From (11) and relation (14) and the fact that gpðT ;kÞ etc. are affine on T it follows

that

STIMAðT Þk‘ ¼
Z

T

cðgpðT ;kÞÞTCcðgpðT ;‘ÞÞdx ¼ jT jcðgpðT ;kÞÞTCcðgpðT ;‘ÞÞ: ð15Þ

Laborious but elementary calculations verify

c
X6

j¼1
ujgpðT ;jÞ

 !

jT ¼
uk1;x 0 uk2;x 0 uk3;x 0

0 uk1;y 0 uk2;y 0 uk2;y

uk1;y uk1;x uk2;y uk2;x uk3;y uk2;x

0

@

1

A

u1

.

.

.

u6

0

B
@

1

C
A¼:R

u1

.

.

.

u6

0

B
@

1

C
A

ð16Þ

and hence expression (15) can be written simultaneously for all indices as

STIMAðT Þ ¼ jT jRTCR: ð17Þ

The following function is a Matlab implementation of (17):

This function makes use of the fact that the gradients of the scalar basis functions

can be calculated as

ruk1

ruk2

ruk3

0

@

1

A ¼ 1

2jT j

y2 � y3 x3 � x2
y3 � y1 x1 � x3
y1 � y2 x2 � x1

0

@

1

A ¼
1 1 1

x1 x2 x3
y1 y2 y3

0

@

1

A

�1
0 0

1 0

0 1

0

@

1

A: ð18Þ

Matlab Implementation of the Finite Element Method in Elasticity 245

5.2. Tetrahedral Elements

The Voigt representation c : H1ðXÞ3 ! L2ðXÞ6 of the linear Green strain tensor

reads

cðuÞ ¼

@u1=@x
@u2=@y
@u3=@z

@u1=y þ @u2=x
@u1=zþ @u3=x
@u2=zþ @u3=y

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

¼

�11ðuÞ
�22ðuÞ
�33ðuÞ
2�12ðuÞ
2�13ðuÞ
2�23ðuÞ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

: ð19Þ

Using the relation

r11
r22
r33
r12
r13
r23

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

¼

kþ 2l k k 0 0 0

k kþ 2l k 0 0 0

k k kþ 2l 0 0 0

0 0 0 l 0 0

0 0 0 0 l 0

0 0 0 0 0 l

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

�11ðuÞ
�22ðuÞ
�33ðuÞ
2�12ðuÞ
2�13ðuÞ
2�23ðuÞ

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

¼: CcðuÞ; ð20Þ

we obtain �ðvÞ : C�ðuÞ ¼ cT ðvÞCcðuÞ. Since again gpðT ;kÞ etc. are affine on T , (15)

also holds for tetrahedral elements, but this time with C as defined in 12. Finally,

we have

c
X12

j¼1
ujgpðT ;jÞ

 !

jT ¼

uk1;x 0 0 uk2;x 0 0 uk3;x 0 0 uk4;x 0 0

0 uk1;y 0 0 uk2;y 0 0 uk3;y 0 0 uk4;y 0

0 0 uk1;z 0 0 uk2;z 0 0 uk3;z 0 0 uk4;z

uk1;y uk1;x 0 uk2;y uk2;x 0 uk3;y uk3;x 0 uk4;y uk4;x 0

uk1;z 0 uk1;x uk2;z 0 uk2;x uk3;z 0 uk3;x uk4;z 0 uk4;x

0 uk1;z uk1;y 0 uk2;z uk2;y 0 uk3;z uk3;y 0 uk4;z uk4;y

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

�
u1

.

.

.

u12

0

B
B
@

1

C
C
A

ð21Þ

and so we obtain (17), where R is the coefficient matrix on the right-hand side of

(21).

246 J. Alberty et al.

The Matlab realisation of (17) for tetrahedral elements utilizes

ruk1

ruk2

ruk3

ruk4

0

B
B
@

1

C
C
A

¼
1 1 1 1

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

0

B
B
@

1

C
C
A

�1
0 0 0

1 0 0

0 1 0

0 0 1

0

B
B
@

1

C
C
A

ð22Þ

and reads as follows.

5.3. Quadrilateral Elements

Finally, we consider quadrilateral elements with vertices ðx1; y1Þ through ðx4; y4Þ.
Since T is a parallelogram, there exists an affine mapping

Uðn; gÞ ¼ x

y

� �

¼ x2 � x1 x4 � x1
y2 � y1 y4 � y1

� �
n

g

� �

þ x1
y1

� �

ð23Þ

which maps ½0; 1�2 onto T . The shape functions on Tref ¼ ½0; 1�2 are defined as

~gg1ðn; gÞ ¼
~uu1ðn; gÞ

0

� �

; ~gg2ðn; gÞ ¼
0

~uu1ðn; gÞ

� �

;

.

.

.

~gg7ðn; gÞ ¼
~uu4ðn; gÞ

0

� �

; ~gg8ðn; gÞ ¼
0

~uu4ðn; gÞ

� �

ð24Þ

with

~uu1ðn; gÞ ¼ ð1� nÞð1� gÞ; ~uu2ðn; gÞ ¼ nð1� gÞ;
~uu3ðn; gÞ ¼ ng; ~uu4ðn; gÞ ¼ ð1� nÞg: ð25Þ

The entries of the local stiffness matrix for the element T are obtained by trans-

forming the integral in (11) onto the reference element Tref . We use the following

abbreviation for the transpose of the gradient of the transformation.

F ¼
@U�1

1 ðx;yÞ
@x

@U�1
1 ðx;yÞ
@y

@U�1
2 ðx;yÞ
@x

@U�1
2 ðx;yÞ
@y

0

@

1

A: ð26Þ

Matlab Implementation of the Finite Element Method in Elasticity 247

We notice that for the expression �ðgpðT ;kÞÞ : C�ðgpðt;‘ÞÞ there are four different

possibilities depending on the zero-components of the basis functions. In the first

case we have to transform an expression of the form � upðT ;iÞðx;yÞ
0

� �

: C� upðT ;jÞðx;yÞ
0

� �

to

one depending on the variables n; g, which results in

ðr ~uiuiÞ F
kþ 2l 0

0 l

� �

F T r ~ujuj
T : ð27Þ

In the second case we have to transform � 0
upðT ;iÞðx;yÞ

� �

: C� 0
upðT ;jÞðx;yÞ

� �

and obtain

ðr ~uiuiÞ F
l 0

0 kþ 2l

� �

F T r ~ujuj
T : ð28Þ

In the third case we transform the expression � 0
upðT ;iÞðx;yÞ

� �

: C� upðT ;jÞðx;yÞ
0

� �

and obtain

ðr ~uiuiÞ F
0 l

k 0

� �

F T r ~ujuj
T : ð29Þ

In the fourth case we have to transform � upðT ;iÞðx;yÞ
0

� �

: C� 0
upðT ;jÞðx;yÞ

� �

and obtain

ðr ~uiuiÞ F
0 k

l 0

� �

F T r ~ujuj
T : ð30Þ

Hence transforming the integration in (11) leads to four cases of the form

Z

Tref

E :
�
ðr ~uiuiÞTr ~ujuj

�
dx; ð31Þ

where E differs for each case and is the product of the three inner matrices in each

of (27)–(30) and i and j depend on the corresponding shape functions ~ggk and ~gg‘ as

in (24). Note that E is constant on Tref . Hence, if we define the four matrices

R11 ¼
�Z 1

0

Z 1

0

@ ~uuiðn; gÞ
@n

@ ~uujðn; gÞ
@n

dndg

�

i;j¼1;...;4
¼ 1

6

2 �2 �1 1

�2 2 1 �1
�1 1 2 �2
1 �1 �2 2

0

B
B
B
B
B
@

1

C
C
C
C
C
A

; ð32Þ

R22 ¼
�Z 1

0

Z 1

0

@ ~uuiðn; gÞ
@g

@ ~uujðn; gÞ
@g

dndg

�

i;j¼1;...;4
¼ 1

6

2 1 �1 �2
1 2 �2 �1

�1 �2 2 1

�2 �1 1 2

0

B
B
@

1

C
C
A
;

ð33Þ

248 J. Alberty et al.

R12 ¼ RT
21 ¼

�Z 1

0

Z 1

0

@ ~uuiðn; gÞ
@n

@ ~uujðn; gÞ
@g

dndg

�

i;j¼1;...;4
¼ 1

4

1 1 �1 �1
�1 �1 1 1

�1 �1 1 1

1 1 �1 �1

0

B
B
@

1

C
C
A
;

ð34Þ

the following Matlab routine calculates the local stiffness matrix for quadrilateral

elements:

6. Assembling the Right-hand Side

The right-hand side contains the work of the volume forces f and the surface

forces g. In this section, the assembling of the right-hand will be studied for the

two-dimensional (as the three-dimensional case is analogous).

The value of f are provided by f :m and evaluated in the centre of gravity ðxS ; ySÞ of
T , to approximate the integral

R

T
f � gkdx in (10),

Z

T

f � gkdx �
1

kT

1 x1 y1
1 x2 y2
1 x3 y3

�
�
�
�
�
�

�
�
�
�
�
�

fjðxS ; ySÞ with j :¼ modðk � 1; 2Þ þ 1; ð35Þ

where kT ¼ 6 if T is a triangle and kT ¼ 4 if T is a parallelogram. The following

Matlab commands calculate the f-related part of (10).

Matlab Implementation of the Finite Element Method in Elasticity 249

The integral
R

E
g � gkds in (10) that involves the Neumann conditions is approxi-

mated with the value of g in the centre ðxM ; yM Þ of the edge E with length jEj,
Z

E

g � gkds �
1

2
jEjgjðxM ; yM Þ with j :¼ modðk � 1; 2Þ þ 1: ð36Þ

The user-defined function g specifies the values of g in its first component; its

second argument is the outward normal vector. The following Matlab commands

calculate the g-related part of (10).

7. Incorporating Dirichlet Conditions

Gliding boundary conditions, such as those along symmetry axes, require a

particular treatment as the displacement is fixed merely in one specified direction

and possibly free in others. A general approach to this type of condition reads

m1

.

.

.

md

0

B
@

1

C
Au ¼

w1

.

.

.

wd

0

B
@

1

C
A on C; ð37Þ

where mj : C ! R
d and wj : C ! R. With the normal vector n along C and the

canonical basis ej, j ¼ 1; . . . ; d, in R
d , gliding conditions, classical Dirichlet con-

ditions and the lack of Dirichlet-type conditions on certain parts of C can all be

included by

250 J. Alberty et al.

n

0

.

.

.

0

0

B
B
@

1

C
C
A
u ¼ 0 or

eT1

.

.

.

eTd

0

B
@

1

C
Au ¼ uD or

0

.

.

.

0

0

@

1

Au ¼ 0: ð38Þ

The data mðxÞ and W ðxÞ in (37) are provided by the user in a user-defined Matlab

program u d:m through the command line ½mðxÞ;W ðxÞ� :¼ uDðxÞ; examples of

which are given in Sects. 10, 11, 12, and 13. For the discrete problem, this leads to

the linear system

BU ¼ w; ð39Þ

where each row of B 2 R
n�dN contains the value of some mj 2 R

dN at a node on

the boundary CD and w 2 R
n contains the corresponding values wj at this node; N

is the number of nodes. It is assumed that rangB ¼ n. In particular, all mj ¼ 0 are

not included in B.

Coupling this set of conditions through Lagrange parameters with (7) leads to the

extended system

A BT

B 0

� �
U

k

� �

¼ b

w

� �

: ð40Þ

The following Matlab instructions compute the matrix B, the vector w for the

two-dimensional case, and form the extended matrix and right-hand side:

8. Computing and Displaying the Numerical Solution

The rows of (40) form a system of equations with a symmetric, indefinite coeffi-

cient matrix ÂA :¼ A BT

B 0

� �

and right-hand side b̂b :¼ ðb;wÞT . It is solved by the

binary Matlab operator n and reads

x ¼ A n b;

Matlab makes use of the properties of a sparse, symmetric matrix for solving

the system of equations efficiently. The solution vector is x ¼ ðU; kÞT , where

Matlab Implementation of the Finite Element Method in Elasticity 251

U occupies the first dN components. For the two dimensional case U is extracted

by

u ¼ xð1 : 2 � sizeðcoordinates;1ÞÞ;

Our two-dimensional problem models the plain strain condition. It that case, the

complete stress tensor r 2 R
3�3
sym has the form:

r ¼
r11 r12 0

r12 r22 0

0 0 r33

0

@

1

A;

with r33 ¼ k
2ðlþkÞ ðr11 þ r22Þ. It then follows for jdevrj2, where devA :¼

A� trA
3
Id3�3 and jAj :¼

�Pn
i;j¼1 A

2
ij

�1=2
, the Frobenius norm, that

jdev rj2 ¼ l2

6ðlþ kÞ2
þ 1

2

 !

ðr11 þ r22Þ2 þ 2ðr212 � r11r22Þ:

The graphical representation shows the deformed mesh with a magnification of the

displacement. The main interest might be on the elastic shear energy density

jdevrj2=ð4lÞ and so we provide a tool to attach grey tones (or a colour bar) to the
displayedmeshes. In the two-dimensional case we use the followingMatlab routine:

The function show uses the variable AvS, which stores the nodal-values of r�h;
where rh is the stress calculated by the finite element method and r�h is a smoother
approximation. For triangular and tetrahedral elements, rh is constant on each

element. In the case of quadrilateral elements, we use the stress in the centre of

gravity of each element; r�h is defined in every node of the mesh as the mean value

of the stresses on the corresponding patch. The matrix AvS is calculated in the

function avmatrix below.

The Matlab routine trisurfðelements;x;y;z;AvC; ‘facecolor’; ‘interp’Þ
is used to draw triangulations for equal types of elements. Every row of the matrix

252 J. Alberty et al.

elements determines one polygon where the x-, y-, and z-coordinate of each

corner of this polygon is given by the corresponding entry in x, y, and z. (In 2d-

problems, we use for the z-coordinate the same value (zero) in all mesh points.) The

values together with the options ‘‘facecolor’’, ‘‘interp’’ determine the grey

tone of the area determined by AvC and linearly interpolated.

The following Matlab function calculates the stress tensors rh, r
�
h and the strain

tensors C�1rh, C
�1r�h for triangular and quadrilateral elements. The output of this

routine is needed for the graphical representation of the solution in the function

show and for the a posteriori error calculation in the function aposteriori.

The variables AvS and AvE denote the stress and strain tensors, averaged over a

patch. The variables Sigma3, Sigma4, Eps3, and Eps4 denote the stress and

strain tensors on triangular and quadrilateral elements.

9. A Posteriori Error Estimator

The averaged stress field r�h of Sect. 8 allows a simple a posteriori error estimation

by comparing it to the discrete (discontinuous) stress rh. Indeed, gT :¼

Matlab Implementation of the Finite Element Method in Elasticity 253

kr�h � rhkL2ðT Þ may serve as a local error indicator in automatic mesh-refining

adaptive algorithms [3], [4]. A modified version of this error estimator, which

involves a nodal interpolation of the true applied surface load g, was recently

rigourously shown to be reliable in [5]. The error estimator g ¼ ð
P

T2T g2T Þ
1=2

might be interpreted in practical computations as a hint on the possible dis-

cretisation error. In the examples below, the relative quantity

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

T2T g2T

q

ffi
P

T2T
R

T
r�h : C

�1r�hdx
q with g2T ¼

Z

T

ðrh � r�hÞ : C�1ðrh � r�hÞdx; ð41Þ

serves as such an error guess; the robust error estimator from [5] is denoted by ĝg

and given in brackets following the value of (41).

The stress tensors rh, r
�
h and the strain tensors C�1rh, C

�1r�h for triangular and
quadrilateral elements are calculated for example in the function avmatrix

given in Sect. 8.

The following Matlab routine calculates the estimated error for triangular and/or

quadrilateral elements:

254 J. Alberty et al.

10. L-Shape Example

The L-shape X described by the polygon ð�1;�1Þ, ð0;�2Þ, ð2; 0Þ, ð0; 2Þ, ð�1; 1Þ,
ð0; 0Þ serves as a first test example where the exact solution u is known in polar

coordinates,

urðr; hÞ ¼
1

2l
ra
�
�ðaþ 1Þ cos

�
ðaþ 1Þh

�
þ
�
C2 � ðaþ 1Þ

�
C1 cos

�
ða� 1Þh

��
;

uhðr; hÞ ¼
1

2l
ra
�
ðaþ 1Þ sin

�
ðaþ 1Þh

�
þ ðC2 þ a� 1ÞC1 sin

�
ða� 1Þh

��
:

ð42Þ

The critical exponent a � 0:544483737 is the solution of the equation

a sinð2xÞ þ sinð2xaÞ ¼ 0 with x ¼ 3p=4 and C1 ¼ �ðcos
�
ðaþ 1Þx

�
Þ=

ðcos
�
ða� 1Þx

�
Þ, C2 ¼ ð2ðkþ 2lÞÞ=ðkþ lÞ. The function (42) solves the Lamé

equation (1) with f ¼ 0 and the boundary condition (3) on C ¼ CD (with w de-

fined through u). This example is a common benchmark problem for linear

elasticity because it models a re-entrant corner with a typical singularity in

the stress at ð0; 0Þ. For the elasticity module E ¼ 100000 and the shear module

m ¼ 0:3 of bronze the Lamé constants are k ¼ Em=ðð1þ mÞð1� 2mÞÞ and l ¼ E=
ð2ð1þ mÞÞ.

The Matlab code for the functions u d:m, u value:m and f.m is given below. It

should be noted that in this particular example, the material parameters E and m

determine the boundary condition and thus appear in u value:m.

Matlab Implementation of the Finite Element Method in Elasticity 255

The function show of Sect. 8 yields the deformed mesh with a displacement

multiplied by a factor of 3000 based on P1 Finite Elements and Q1 Finite

Elements for 450 degrees of freedom of Figs. 4 and 5. The grey tones visualise

jdevr�hj
2=ð4lÞ as described in Sect. 8 from the averaged stress field r�h. The

singularity at ð0; 0Þ causes different maximal values in the visualized stress

of Figs. 4 and 5 on coarse meshes (for finer meshes the stress at that corner

increases).

The averaging a posteriori error estimate g of Sect. 9 (the reliable estimator ĝg of

[5]) indicates a relative error g ¼ 15% (ĝg ¼ 15%) for Q1 finite elements and

g ¼ 26% (ĝg ¼ 26%) for P1 finite elements; g is not a reliable estimate but a

reasonable error guess (while ĝg is a reliable error estimator which merely lacks an

unknown universal constant).

11. Cook’s Membrane Problem

A two-dimensional tapered panel X ¼ convfð0; 0Þ; ð48; 44Þ; ð48; 60Þ; ð0; 44Þg of

Plexiglass (with E ¼ 2900, m ¼ 0:4), named Cook’s membrane problem, serves as

a second numerical example for a bending dominated elastic response. The panel

is clamped at one end (x ¼ 0) and subjected to a shearing load g ¼ ð0; 1Þ on the

opposite end (x ¼ 48) with vanishing volume force f . The Matlab routines for the

functions u d, f, and g are given in the table below:

Figure 6 shows the deformed mesh (578 degrees of freedom) displayed by the

Matlab function show with a magnifying factor 20 for the displacements. The

numerical solution shows peak stresses at the corner ð0; 44Þ as it is expected from

the literature.

The a posteriori error estimate of Sect. 9 indicates a relative error g ¼ 16% (while

the reliable estimator of [5] results in ĝg ¼ 17%).

12. Membrane with a Hole

A two-dimensional benchmark problem with the elastic body with a hole

X ¼ ð�3; 3Þ2 n Bð0;
ffiffiffi

2
p

Þ (E ¼ 2900 and m ¼ 0:4) is stretched at the top (y ¼ 3) and

at the bottom (y ¼ �3) with a surface load g ¼ n, where n denotes the outer

normal to @X; the rest of the boundary is traction free [9]. As the problem is

symmetric only a quarter of X was discretized. Section 7 discussed the resulting

boundary conditions on the initial symmetry axes described by ð�1; 0Þ u ¼ 0 on

256 J. Alberty et al.

f0g � ½
ffiffiffi

2
p

; 3� and by ð0;�1Þ u ¼ 0 on ½
ffiffiffi

2
p

; 3� � f0g which are included in the

following table:

The Matlab program yield the deformed mesh (1122 degrees of freedom) shown in

Fig. 7 with displacements magnified by a factor of 20. The example demonstrates

how the combination of triangular and quadrilateral finite elements can be

combined to describe regions with non-parallel boundaries without globally

preferring a certain mesh orientation.

The relative error is g ¼ 8% according to the a posteriori error estimate of Sect. 9

and ĝg ¼ 9% according to the reliable estimator of [5].

13. 3D-Example : Iron Piece of Hardware

As a 3-dimensional example we solve the Navier-Lamé equation on a region that

models an iron piece of hardware with a more complex geometry than the pre-

Fig. 4. Deformed mesh for P1 FE on L-Shape

Matlab Implementation of the Finite Element Method in Elasticity 257

vious examples. The material is fixed at the two holes with centres

O1 ¼ f17;�1:5; 21g and O2 ¼ f48;�1:5; 21g so that at their inner edges there is a

homogeneous Dirichlet boundary. The hole with centre O3 ¼ f20;�77; 11:5g is

lifted in z-direction by 0:1 units described by a Dirichlet boundary condition with

uD ¼ f0; 0; 0:1g there; the rest of the boundary is traction free. The describing

Matlab routines for the boundary conditions and the volume force are given in

the following table:

The deformed mesh for 6512 degrees of freedom is presented in Fig. 8, where

the displacement is magnified by a factor of 100. Again the shades of grey

visualise the square mean of the eigenvalues of the stress as calculated and

displayed by functions show and avmatrix similar to those presented in

Sect. 8 and 9.

Fig. 5. Deformed mesh for Q1 FE on L-Shape

258 J. Alberty et al.

Appendix A

Main Program for Two-dimensional Problems

What follows is the complete listing of the main program as it was used for

Example 11 and Example 12. It differs in line 1 in Example 10 owing to different

material constants E and m.

Fig. 6. Deformed mesh for Cook’s membrane

Fig. 7. Deformed mesh for membrane with hole

Matlab Implementation of the Finite Element Method in Elasticity 259

260 J. Alberty et al.

Appendix B

Main Program for Three-dimensional Problems

What follows is the complete listing of the main program as it was used for

Example 13.

Fig. 8. Deformed mesh for the 3d iron piece of hardware

Matlab Implementation of the Finite Element Method in Elasticity 261

Acknowledgments

It is our pleasure to thank Axel Hecht and Darius Zarrabi for discussions and other contributions on
the propagation of this report. The fourth author (R. K.) thankfully acknowledges the partial support
by the German research foundation at the Graduiertenkolleg 357 ‘‘Effiziente Algorithmen und
Mehrskalenmethoden’’.

262 J. Alberty et al.

References

[1] Alberty, J., Carstensen, C., Funken, S. A.: Remarks around 50 lines of Matlab: finite element
implementation Numerical Algorithms 20, 117–137 (1999).

[2] Brenner, S. C., Scott, L. R.: The mathematical theory of finite element methods. Texts in Applied
Mathematics 15. New York: Springer 1994.

[3] Carstensen, C., Bartels, S.: Each averaging technique yields reliable a posteriori error control in
FEM on unstructured grids, Part I: Low order conforming, nonconforming, and mixed FEM.
Math. Comp. 71, 945–969 (2002).

[4] Carstensen, C., Funken, S. A.: Averaging technique for FE-A posteriori error control in
elasticity, Part I: Conforming FEM. Comput. Methods Appl. Mech. Engrg. 190, 2483–2498
(2001).

[5] Carstensen, C., Funken, S. A.: Averaging technique for FE-A posteriori error control in
elasticity. Part II: k-independent estimates. Comput. Methods Appl. Mech. Engrg. 190, 4663–
4675 (2001).

[6] Ciarlet, P. G.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978.
[7] COMSOL Group: FEMLAB: Multiphysics in Matlab. (http://www.femlab.com)
[8] Schwarz, H. R.: Methode der Finiten Elemente. Stutgaart: Teubner 1991.
[9] Wriggers, P. et al.: Benchmark perforated tension strip. Communication in talk at ENUMATH

Conference in Heidelberg, 1997. (See also http://www.ibnm.uni-hannover.de/Forschung/Pake-
tantrag/Benchmarks/benchmark.html)

Jochen Alberty
Mathematisches Seminar, Bereich II,
Christian-Albrechts-Universität zu Kiel
Ludewig-Meyn-Str. 4 24098 Kiel
Germany
e-mail: ja@numerik.uni-kiel.de

Carsten Carstensen
Institute for Applied Mathematics and
Numerical Analysis,
Vienna University of Technology
Wiedner Hauptstraße 8-10/115
A-1040 Vienna
Austria
e-mail: carsten.carstensen@tuwien.ac.at

Stefan A. Funken
Mathematisches Seminar, Bereich II,
Christian-Albrechts-Universität zu Kiel
Ludewig-Meyn-Str. 4
24098 Kiel
Germany
e-mail: saf@numerik.uni-kiel.de

Roland Klose
Mathematisches Seminar, Bereich II,
Christian-Albrechts-Universität zu
Kiel Ludewig-Meyn-Str. 4
24098 Kiel
Germany
e-mail: rkl@numerik.uni-kiel.de

Matlab Implementation of the Finite Element Method in Elasticity 263

