
MATOU: An Implementation of

Mode–Automata�

Florence Maraninchi, Yann Rémond, and Yannick Raoul

VERIMAG – Joint Laboratory of Universit Joseph Fourier, CNRS and INPG
Centre Equation, 2 Av. de Vignate, F38610 GIERES

{Florence.Maraninchi,Yann.Remond}@imag.fr

Abstract. Mode-Automata have been proposed in [11]. They introduce,
in the domain-specific data-flow language Lustre for reactive systems, a
new construct devoted to the expression of running modes. The idea is to
associate data-flow programs with the states of an automaton, represent-
ing modes. We define flat automata first, and then several composition
operators, such as parallel composition and hierarchic composition, which
give the language a state structure reminiscent from Statecharts. The se-
mantics of this extension may be defined by describing the translation
of Mode-automata into pure Lustre. However, the translation scheme is
complex and it gives poor code; we study here the translation of mode-
automata into the declarative format dc, used as an intermediate form
in the compilers of several synchronous languages (Lustre, Esterel, ...).
dc can be compiled into C, Java or Ada code. This allows to take ad-
vantage of the imperative mode-structure of a mode-automaton in order
to improve the final sequential code.

1 Introduction

We are interested in reactive systems, which interact continuously with their
environment. The synchronous approach [6] to the programming of reactive sys-
tems is represented by imperative languages like Esterel [2] and Argos [10], or
by declarative data-flow languages like Signal [8] or Lustre [7]. In the field of
reactive system programming, engineers who have to design control laws and
their discrete form were used to block-diagrams. Lustre and Signal offer a struc-
ture and even a graphical syntax similar to that of block-diagrams. They have
a formal semantics and can be efficiently compiled into C code, for instance.
Lustre has been defined and implemented at the Verimag laboratory. Recently,
the users expressed their need to specify part of a design as a state graph. Dis-
cussions about typical examples they had, led us to the following conclusion :
there is a need for the expression of running modes in Lustre — and it would be
the case for any other data-flow language. Stategraphs were used, more or less,
in order to represent the mode structure of the system.

In a data-flow language for reactive systems, both the inputs and outputs of
the system are described by their flows of values along time. Time is discrete
� This work has been partially supported by Esprit LTR Project SYRF 22703

A. Watt (Ed.): CC/ETAPS 2000, LNCS 1781, pp. 249–263, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

250 Florence Maraninchi et al.

and instants may be numbered by integers. If x is a flow, we will note xn its
value at the nth reaction (or nth instant) of the program.

A program consumes input flows and computes output flows, possibly using
local flows which are not visible from the environment. Local and output flows
are defined by equations. An equation “x = y + z” defines the flow x from the
flows y and z in such a way that, at each instant n, xn = yn + zn.

A set of such equations describes a network of operators. 0ne should not write
sets of equations with instantaneous loops, like : {x = y+ z, z = x+1, ...}. This
is a set of fix point equations that perhaps has solutions, but it is not accepted
as a data-flow program. For referencing the past, the operator pre is introduced :
∀n > 0, (preX)n = Xn−1. One typically writes T = pre(T) + i ; , where T is
an output, and i is an input. It means that, at each instant, the value of the
flow T is obtained by adding the value of the current input i to the previous
value of T. Initialization of flows is provided by the -> operator. The equation
X = 0 -> pre(X) + 1 defines the flow of integers.

In such a language, the notion of running mode corresponds to the fact that
there may exist several equations for the same output, to be used in distinct
periods of time. For instance, the coordinates of a robot arm are computed with
some equations when it moves right, and as soon as it reaches an obstacle, it
begins moving left and the equations of the coordinates are entirely different.

Designing a system that clearly exhibits such “independent” running modes is
not difficult since the mode structure can be encoded explicitly with the available
data-flow constructs. Typically, some Boolean flows mode1, mode2 are used to
identify the current mode, and all other variables computed by the system may
have definitions of the form: X = if (mode1) then ... else if (mode2) then

However the mode structure of the system is no longer readable in the re-
sulting program, and modifying it is error-prone, because it is hidden in the
conditionals and the code for one mode is mixed up with the code dedicated
to mode changes. This is exactly the same motivation as for the state design
pattern [5] proposed for object-oriented designs; this pattern is used for allowing
an object to alter its behavior when its internal state changes.

In object-oriented designs, the motivation for modes leads to a pattern, i.e. a
recipe for writing a structured, modifiable and readable code, using the available
constructs of the language. It is not compiled in a specific way. On the contrary, in
the domain of safety-critical reactive systems, we would like the code we produce
to benefit from the quite imperative structure implied by modes. Encoding modes
with data-flow conditionals, even if it can be done in a structured and readable
way, forbids efficient compilation. We need a new language feature, treated in a
specific way by compilers, not only a pattern.

Starting from these ideas, we proposed the mathematical model of mode-
automata [11], which can be viewed as a discrete form of hybrid automata [1].
In [11] we gave detailed motivations and related work on the notion of mode.

The present paper investigates implementation issues. First, we augment the
formalism presented in [11] with a simple notion of hierarchic composition of
mode-automata. Second, we define the semantics of mode-automata and their

MATOU: An Implementation of Mode–Automata 251

compositions in terms of activation conditions, a notion available in the format
dc [3] (for “declarative code”), used as an intermediate code in the compilers of
several synchronous languages (Lustre, Esterel, Signal, Argos...).

Section 2 illustrates Lustre, flat mode-automata, dc and C for the same ex-
ample. Section 3 recalls parallel composition, and defines hierarchic composition.
In section 4, we show how to translate correct programs into dc, in a structural
way. We give criteria for evaluating the quality of the generated code, and sketch
the formal proof of the compilation scheme. Section 5 concludes, and draws some
directions for further work.

2 An Example

2.1 Lustre, Mode-Automata and C

Figure 1 shows a simple Lustre program, a C program and a mode-automaton
that have the same input/output behavior, illustrated by the timing diagrams.
The reactive system inputs an integer i and outputs two integers X and Y. The
Lustre program uses a Boolean memory M that commutes according to some
conditions on X, and we can see that X and Y are updated depending on the
value of M. This is a typical case where a mode-automaton can be useful.

The mode-automaton we give here has two states, and equations attached to
them. The transitions are labeled by conditions on X. The important point is that
X and its memory are global to all states. The only thing that changes when the
automaton changes states is the transition function; the memory is preserved.
Hence, by construction, the behavior attached to the target state starts with the
value of X that had been reached applying the equations attached to the source
state. This gives the timing diagram of figure 1.

The C program is an infinite loop: this is the typical form of a sequential
program produced from a synchronous language. However the code inside the
loop has not been obtained automatically from the Lustre program. Indeed, in
the example above, it could not: the IF conditional structure is strict in Lustre,
as in a number of data-flow languages; the C program that corresponds to the
Lustre programwould compute both C expressions corresponding to pre(X)+Y+1
and pre(X)-Y-1 before choosing between the two for assigning a new value to X.

On the contrary, the C program we give here is relatively close to the one we
would like to obtain from the mode-automaton. We would like the assignments
to x and y to be guarded by an imperative conditional structure. Pieces of code
attached to inactive modes should not be computed.

2.2 Clocks and States

In all data-flow synchronous languages, there exists a mechanism that allows to
restrict the instants in which some flows are defined; this mechanism is usually
called clock [4]. Associating clocks with the flows is an indirect way of controlling
the instants in which the operators are indeed computed. For instance, in order
to avoid a dynamic error like a division by zero, one has to use clocks.

252 Florence Maraninchi et al.

-
-

A

l
u
s
t
r
e

p
r
o
g
r
a
m

n
o
d
e

e
x
e
m
p
l
e
_
1

(
i

:

i
n
t
)

-
-

i
n
p
u
t

r
e
t
u
r
n
s

(
X

:

i
n
t
;

Y

:

i
n
t
)
;

-
-

o
u
t
p
u
t
s

v
a
r

M

:

b
o
o
l
;

-
-

l
o
c
a
l

v
a
r
i
a
b
l
e

l
e
t M

=
t
r
u
e
-
>
i
f

(
p
r
e
(
M
)

a
n
d

(
X
>
2
0
)
)

o
r

(
(
n
o
t

p
r
e
(
M
)
)

a
n
d

(
X
<
0
)
)

t
h
e
n

n
o
t

p
r
e
(
M
)

e
l
s
e

p
r
e
(
M
)
;

X
=
0
-
>
i
f

p
r
e
(
M
)

t
h
e
n

p
r
e
(
X
)

+

Y

+

1

e
l
s
e

p
r
e
(
X
)

-

Y

-

1
;

Y
=
0
-
>
i
f

p
r
e
(
M
)

t
h
e
n

i

+

p
r
e
(
Y
)

e
l
s
e

i

-

p
r
e
(
Y
)
;

t
e
l

/
*

a

C

p
r
o
g
r
a
m
,

i
n
p
u
t
i
n
g

i

a
n
d

o
u
t
p
u
t
i
n
g

x
,

y

*
/

v
o
i
d

m
a
i
n
(
)

{

i
n
t

m
=
1
,

x
=
0
,

y
=
0
;

i
n
t

i
;

/
*

f
i
r
s
t

i
n
s
t
a
n
t

:

*
/

s
c
a
n
f
(
"
%
d
"
,
&
i
)
;

p
r
i
n
t
f
(
"
x
=
%
d

y
=
%
d
\
n
"
,
x
,
y
)
;

f
o
r
(
;
;
)

{

/
*

a
n
d

t
h
e
n
,

f
o
r
e
v
e
r

:

*
/

s
c
a
n
f
(
"
%
d
"
,
&
i
)
;

i
f

(
m
)

{

y
=
i
+
y
;

x
=
x
+
y
+
1
;

m
=
(
x
<
=
2
0
)
;

}

e
l
s
e

{

y
=
i
-
y
;

x
=
x
-
y
-
1
;

m
=
(
x
<
0
)
;

}

p
r
i
n
t
f
(
"
x
=
%
d

y
=
%
d
\
n
"
,
x
,
y
)
;

}

}

X
=

pr
e(

X
)-

Y
-1

Y
=

i-
pr

e(
Y

)
Y

=
i+

pr
e(

Y
)

X
=

pr
e(

X
)+

Y
+

1

X
 in

it
0

: i
nt

Y
 in

it
0

: i
nt

A
B

X
>

20

X
<

0

A
 M

od
e-

au
to

m
at

on
 w

ith
 in

pu
t i

 a
nd

 o
ut

pu
ts

 X
, Y

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

1
0

1
0

1
1

1
1

1
2

1
2

1
3

1
3

1
4

1
4

1
5

1
5

1
6

1
6

1
7

1
7

1
8

1
8

1
9

1
9

2
0

2
0

i

5

6

7

8

5

7

6

8

1

3

5

6

7

8

5

7

6

8

1

3

X

0

7

2
1

2
5

1
4

1
6

6

6

3

1

-
4

7

2
5

3
3

1
8

2
4

1
0

1
4

7

9

Y

0

6

1
3

-
5

1
0

-
3

9

-
1

2

1

4

1
0

1
7

-
9

1
4

-
7

1
3

-
5

6

-
3

Fig. 1. Example: Lustre, C, and Mode-Automata. The three programs have the same
input/output behavior, described by the timing diagram (the horizontal axis is
the discrete time; the values of the input i are chosen arbitrarily.)

MATOU: An Implementation of Mode–Automata 253

The execution of the Lustre program X = if Y != 0 then U/Y else U
gives a dynamic error when Y=0, because the expression U/Y is computed be-
fore the choice that depends on Y being zero or not. Using clocks, one may
write: X = if Y != 0 then U/(Y when Y !=0) else U; but this is a kind of
typing error: all the operands of an operator should have the same clock. One
then writes: X = if Y != 0 then (U when Y !=0)/(Y when Y !=0) else U.
Then the same holds for if, which can be corrected by writing: X = if Y !=
0 then current ((U when Y !=0)/(Y when Y !=0)) else U ; current is
the oversampling operator; in this case, it gives values to the flow X even in
the instants when Y=0. The semantics of sampling (when) and oversampling
(current) ensures that the expression U/Y will be computed only when Y is not
zero, which guarantees that there will be no dynamic error.

We were not happy with the translation of mode-automata into pure Lustre
without clocks because we would like the states of a mode-automaton to be-
have as clocks, not as strict conditional structures. Hence we should translate
mode-automata into Lustre with clocks, applying transformations like the one
needed for the division, systematically. However, the semantics of clocks does
not guarantee that the Lustre compiler be able to produce in all cases the ideal
C program of the form if (Y !=0) { X = U/Y ; } else { X = U ; }.

2.3 The Intermediate Format dc

dc [3] has a declarative style, and provides an imperative mechanism called acti-
vation condition. Such conditions are Boolean flows that may be associated with
basic operators or sub-networks, and allow to specify when things are computed.
The Lustre-to-DC front-end translates clocks into activation conditions, and
they are used in the back-end compilers (e.g. from dc to C), where they are
translated into conditionals, guarding a set of assignments.

The two following constructs define the flows X and Y , both initialized with
value i and computed, at each instant, depending on the value of the activation
conditions a1, ... ak, whose evaluation is sequential.
Equation defining X : X (init i) equcase: e1@a1, ..., ek@ak
Memorization defining Y : Y (init i) memocase: e1@a1, ..., ek@ak

For equations: For memorizations:

X0 =


e10 if a10

e20 if ¬a10 ∧ a20

...
ek0 if ¬(a10 ∨ ...) ∧ ak0
i if ¬(a10 ∨ ... ∨ ak0)

Xn>0 =


e1n if a1n

e2n if ¬a1n ∧ a2n

...
ekn if ¬(a1n ∨ ...) ∧ akn

Xn−1 if ¬(a1n ∨ ... ∨ akn)

Y0 = i
Yn+1 =



e1n if a1n

e2n if ¬a1n ∧ a2n

...
ekn if ¬(a1n∨...) ∧ akn

Yn if ¬(a1n ∨ ... ∨ akn)

We give below a dc program that has the same input/output behavior as the
Lustre program and the mode-automaton of figure 1. Moreover, the equations
attached to a state are computed only when necessary. The Boolean variable M

254 Florence Maraninchi et al.

is used to encode the states of the mode-automaton, and serves as activation
conditions. For instance, the flow X as a definition of the form:
X equcase: 0@first; (MX+Y+1)@M; (MX-Y-1)@true. Since the evaluation of
activation conditions is sequential, @true means: @(not M). The C program
obtained from this dc program contains the following line, in which we recog-
nize the structure of the ideal C program presented above: if (first) {X=0;}
else if(M) {X=MX+Y+1;} else {X=MX-Y-1;}. This form is guaranteed by the
semantics of dc activation conditions.
inputs: i int ; outputs: X int ; Y int ;

locals: M bool ; first bool ; MX int ; MY int ;

definitions:

first (init true) memocase: false@true;

MX (init 0) memocase: X@true;

MY (init 0) memocase: Y@true;

M (init true) memocase: (X<=20)@M; (X<0)@true;

X equcase: 0@first; (MX+Y+1)@M; (MX-Y-1)@true;

Y equcase: 0@first; (i+MY)@M; (i-MY)@true;

2.4 Implementing Mode-Automata on Top of Lustre

For implementing Mode-Automata, either we translate them into Lustre with
clocks, and then use the existing chain (Lustre to DC to C); or we translate
them to dc (for translating them directly to C, we would have to rewrite part
of the Lustre compiler, for the equations attached to states). Obtaining a Lustre
program with clocks from a mode-automaton implies that the quite imperative
structure of the mode-automaton be translated into the very declarative clock
structure of Lustre... that has to be translated back to the imperative notion of
activation condition. It is theoretically possible, but cumbersome to implement,
especially when mode-automata are composed (see section 3.2 below). Moreover,
keeping track of the interesting information about states along this path seems
hard. We chose to translate mode-automata to dc. Producing dc code is simpler,
and allows to use all the tools available for this format (formal verification,
testing, debugging, etc.) without adding the Lustre intermediate form: source
recovery is simpler. Moreover, dc is close to the internal formats of SCADE (the
commercial version of Lustre, sold by Verilog S.A.), and the algorithms we give
in this paper will be easy to reuse.

3 The Mode-Automata Language

3.1 Flat Mode-Automata: Formal Definition and Semantics

Definition 1 (Mode-automata). Consider a set of variables V taking their
values in a domain D, and a partial function I : V −→ D, used to define the
initial value of some variables. We will note Vo = dom(I) the set of output
variables, and Vi = V − dom(I) the set of input variables. A mode-automaton
on V is a tuple (Q, q0, f, T) where:

MATOU: An Implementation of Mode–Automata 255

– Q is the set of states of the automaton part and q0 ∈ Q is the initial state
– T ⊆ Q × C(V) × Q is the set of transitions, labeled by conditions on the

variables of V
– f : V −→ (Q −→ EqR(V)) is a partial function ; a variable in V (typically

an output) may be associated with a total function from Q to the set EqR(V)
of expressions that constitute right parts of the equations (not all variables
are defined, but if a variable has an equation in one state, it has an equation
in all states).

EqR(V) has the following syntax: e ::= c | x | op(e, ..., e) | pre(x) where c
stands for constants, x stands for a name in V, and op stands for all combina-
tional operators. The conditions in C(V) are Boolean expressions of the same
form, but without pre operators. The set of mode-automata is denoted by M.

Note that Input variables are intended to be used only in the right parts of the
equations, or in the conditions. Output variables may be used everywhere. In
the sequel, we use the domain D = B ∪ Z of Boolean and integer values, and
we assume that all the expressions are typed correctly. We also assume that the
equations attached to a state do not hide a cyclic dependency (like X = Y ;
Y = X ;); this is the usual Lustre criterion, which is used independently for
each mode here. We require that the automaton part of a mode-automaton be
deterministic, i.e., for each state q ∈ Q, if there exist two outgoing transitions
(q, c1, q1) and (q, c2, q2) and q1 �= q2, then c1 ∧ c2 is not satisfiable. We also
require that the automaton be reactive, i.e., for each state q ∈ Q, the formula∨

(q,c,q′)∈T c is true (however we usually omit some loops in the concrete syntax
of mode-automata, as we did on the example of figure 1: the mode-automaton
should show the loops (A,X ≤ 20, A) and (B,X ≥ 0, B)).

Finally, the Lustre programs attached to states should not make use of the
following operators: initialization (the initial value of variables is given globally),
sampling and oversampling (states behave as implicit clocks). The conditions
that label transitions do no make use of the pre operator.

Definition 2 (Trace Semantics of Mode-automata). Consider a set of
variables V and a partial initialization function I. A input/output/state trace of
a mode-automatonM = (Q, q0, f, T) on V is an infinite sequence αn, n ∈ [0,+∞]
of tuples αn = (in, on, sn).
∀n, in (resp. on) is a valuation of the variables in V − dom(I) (resp. dom(I)),
i.e. a total function V − dom(I) −→ D (resp. dom(I) −→ D) ; sn ∈ Q. A trace
σ of such tuples is indeed a trace of M if and only if:

s0 = q0 ∧ ∀x ∈ dom(I) o0(x) = I(x)
(i) ∧ ∀(n > 0) ∀x ∈ dom(I)

on(x) = f(x)(sn)[in(z)/z][in−1(z)/pre(z)][on(y)/y][on−1(y)/pre(y)]
(ii) ∧ ∀(n ≥ 0) ∃(sn, C, sn+1) ∈ T such that: C[in(z)/z][on(y)/y] = true

In (i) and (ii) above, substitutions (denoted by []) are done for all variables z
in V − dom(I), and all variables y in dom(I). Hence the occurrences of variable
names are replaced by the current value of the variable, and the occurrences of

256 Florence Maraninchi et al.

sub-expressions of the form pre(x) are replaced by the previous value of the
variable. For all n > 0, this yields a circuit-free set of equations, of which the
valuation of variables at instant n is the unique solution.

3.2 Compositions

Figure 2 gives an example with parallel and hierarchic compositions. Their se-
mantics can be given by showing how to obtain a trace-equivalent flat mode-
automata from a composition of several flat automata. The compilation scheme
does not follow this idea, however (see section 4).

Given two mode-automata M1 and M2 on a set V , with the initialization
function I, and provided dom(f1) ∩ dom(f2) = ∅, we denote their parallel com-
position by M1 × M2. Its set of modes is the Cartesian product of the sets
of modes of M1 and M2. The set of equations attached to a composed mode
A1A2 (where A1 is a mode in M1 and A2 is a mode in M2) is the union of the
equations attached to A1 in M1 and those attached to A2 in M2. The guard
of a composed transition is the conjunction of the guards of the component
transitions. The parallel composition of two mode-automata is correct if all the
Lustre programs attached to the flat modes are correct: there is no instantaneous
dependency loop, and each variable has exactly one equation.

The other composition is the hierarchy of modes. The sets of variables defined
by the various mode-automata of the program are pairwise disjoint. In particular,
a given variable X may not be defined at several levels (see comments in the
conclusion). This composition is described by the operation �, applied to a mode-
automaton (not necessarily reactive) used as the overall controller, and a set of
refining mode-automata: � : M× 2M −→ M.

The equations attached to the refined state are distributed on all the sub-
states; the transitions sourced in a refined state also apply to all the states inside;
a transition that enters a refined state should go to the initial state (among all
the states inside); a transition between two states inside may happen only if
no transition from the refined state is firable (the outermost transitions have
priority).

3.3 A Simple Language and Its Semantics

The set E of mode-automata expressions is defined by the following grammar,
where NIL is introduced to express that a state is not refined and M stands for
a mode-automaton: E ::= E‖E | RM (R0, ..., Rn) R ::= E | NIL

The semantics of such a mode-automaton expression is a flat mode-automa-
ton, obtained by applying the operations × and � recursively ; since not all
compositions are allowed, the semantic function may return the special error
value ⊥ ; if there is no composition error, the function returns a flat mode-
automaton, which is both deterministic and reactive: S : E −→ M∪ {⊥}. The
recursive definition is given below (null, appearing below for NIL, is the function
whose definition domain is empty).

MATOU: An Implementation of Mode–Automata 257

B

C D

Y=10

E F

X init 0 : int
Y init 0 : int

i, j : bool
Z init 0 : int

X=0

(Z>100 and i) or j

X=pre(X)+1

A

X=pre(X)−1

Y=pre(Y)+1

Y=0

Z>100

Z=pre(Z)+Y

Z<50

Z=pre(Z)-Y

Y=pre(Y)−1

Fig. 2. A composition of mode-automata: parallel composition is denoted by a dashed
line; hierarchic composition involves the main mode-automaton (with states
A and B) and two refining sub-programs: the parallel composition in A, and
nothing (NIL) in B. The states C, D, E and F are also “refined” by NIL. Y and Z
are shared: they are computed by one of the mode-automata, and used as an
input by another. The signals i and j are inputs. The corresponding expression
is: RM1(RM2(NIL, NIL)‖RM3(NIL, NIL), NIL), where M1 is the mode-automaton
with states A and B, M2 is the mode-automaton with states C and D, M3 is the
mode-automaton with states D and F.

1 inputs: i,j : bool ;

2 outputs: X, Y, Z : int ;

3 locals: first, kA, A, B, C’, D’, E’, F’, C, D, E, F : bool ;

4 MX, MY, MZ : int ;

5 definitions:

6 first (init true) memocase: false @true;

7 X equcase: 0 @first; MX+1 @A; MX-1 @B;

8 Y equcase: 0 @first; MY+1 @C; MY-1 @D;

9 Z equcase: 0 @first; MZ+Y @E; MZ-Y @F;

10 MX (init 0) memocase: X @true;

11 MY (init 0) memocase: Y @true;

12 M (init 0) memocase: Z @true;

13 kA (init false) equcase: (((Z>100 and i) or j) or false) @A;

14 A (init true) memocase: not ((Z>100 and i) or j) @A; (X=0)@B;

15 B (init false) memocase: not (X=0)@B; ((Z>100 and i) or j)@A;

16 C’ (init true) memocase:true @(kA or not A);not(Y=10) @C; (Y=0)@D;

17 D’ (init false) memocase:false@(kA or not A);not(Y=0) @D; (Y=10)@C;

18 E’ (init true) memocase:true @(kA or not A);not(Z>100)@E; (Z<50)@F;

19 F’ (init false) memocase:false@(kA or not A);not(Z<50) @F;(Z>100)@E;

20 C equcase: false@not A; C’ @true;

21 D equcase: false@not A; D’ @true;

22 E equcase: false@not A; E’ @true;

23 F equcase: false@not A; F’ @true;

Fig. 3. The dc program obtained for the program of figure 2

258 Florence Maraninchi et al.

S(E1‖E2) =

�⊥ if S(E1) = ⊥ or S(E2) = ⊥ or dom(S(E1).f) ∩ dom(S(E1).f) �= ∅
S(E1) × S(E2) otherwise

S(RM (R0, ..., Rn)) =

8>><
>>:

⊥ if ∃i ∈ [0, n] s.t.

�S(Ri) = ⊥
or dom(S(Ri).f) ∩ dom(M.f) �= ∅

or ∃i, j ∈ [0, n].i �= j ∧ dom(S(Ri).f) ∩ dom(S(Rj).f) �= ∅
M � (S(R1), ...S(Rn)) otherwise

S(NIL) = ({NIL}, NIL,null, {(NIL, true, NIL)})

A Mode-automaton program is a tuple (V , I, E) where V is a set of variables,
I : V −→ D an initialization (partial) function, and E a mode-automaton
expression as defined above, composed from mode-automata on V . V and I play
the role of a set of global variable declarations, for all variables appearing in
the mode-automata of the expression E. The set of mode-automata programs is
denoted by P . A mode-automata program (V , I, E) is said to be correct if and
only if S(E) �= ⊥ and dom(S(E).f) = dom(I), i.e. there are no internal conflicts
in E and the declarations are consistent with the use of the variables in E.

4 Implementation by Translation into dc

A dc program is a tuple (I,O, L,Mm,Eq) where I, O and L are the sets of
input, output and local variables,Mm is the set of memorizations and Eq is the
set of equations. Each memorization or equation is a tuple < v, i, σ > where v is
the name of the variable being defined, i is the initial value and σ is a sequence
(denoted by []) of (expression@activation)s. The set of dc programs is denoted
by DC. Our translation is defined in order to guarantee the following:
Property 1(Form of the dc code)
The dc code corresponding to the equations attached to a global state X , and
to the conditions of the transitions sourced in X , are computed exactly when
this state X is active.

For the typical programs we have in mind (a few modes, and big programs
attached to modes), this is our notion of good code.

4.1 The Translation Algorithm

The Translation Function Γ : P −→ DC is the function translating main
mode-automata programs into dc programs. It is defined on top of the γ function
(to be defined later). For a correct (see paragraph 3.3) program (V , I, E):

Γ ((V , I, E)) = let (L,Eq,Mm) = γ(I, E, false, true)
in (V − dom(I), dom(I), L ∪ {first}, Eq,

Mm ∪ { < first, true, [false@true] > })

Figure 3 gives the dc program obtained for the example of figure 2. It al-
ways contains the Boolean variable first, which is true at the first instant,

MATOU: An Implementation of Mode–Automata 259

and then false forever. It is defined by the the memorization
< first, true, [false@true] > (line 6). It is used as an activation condition
for the encoding of other variables.

γ is the interesting function. It takes an initialization function I, a mode-
automaton expression E and two dc Boolean expressions k (for “kill”) and a
(for “alive”), and it gives a tuple (L,Eq,Mm), where L is a set of fresh variables
needed for encoding the expression E into dc, Eq and Mm are the equations
and memorizations obtained by encoding E. The variables in L are intended to
become local variables of the dc program.

The two expressions k and a are used to encode a sub-expression depending
on its context ; they are inherited parameters in the recursive definition of γ,
starting from the root of the expression tree with values k = false (the main
program is never killed) and a = true (the main program is always alive).

Since the parameter I of γ is transmitted unchanged through the recursive
calls, we omit it as an explicit parameter, in the following definitions.

NIL and Parallel Composition There is little to do in order to encode the
NIL leaves. k and a are transmitted unchanged to the operands of a parallel
composition, and the global dc program is obtained by gathering the sets of
fresh variables, equations and memorizations introduced for encoding the two
operands:

γ(NIL, k, a) = (∅, ∅, ∅)
γ(E1‖E2, k, a) = let (L1, Eq1,Mm1) = γ(E1, k, a)

(L2, Eq2,Mm2) = γ(E2, k, a)
in (L1 ∪ L2, Eq1 ∪ Eq2, Mm1 ∪Mm2)

Hierarchic Composition The interesting (and difficult) case is the hierarchic
composition: we encode the states and transitions of the main automaton, and
the kill and alive parameters transmitted to the refining mode-automata are
built according to the Boolean dc variables encoding the states of this main
mode-automaton.

The idea is the following: we introduce 3 fresh Boolean variables (si, s′i, ki)
per state of the refined mode-automaton. ε is a set of equations defining the si
variables. si means: “the global program is currently in the state si and in all
of its ancestors” ; it is defined as being false when the context says that the
automaton is not alive, otherwise it copies the value of the other state variable
s′i. s

′
i is defined by a memorization in µ, which corresponds to the classical

encoding of an automaton, adapted to the dc style with activation conditions.
Moreover s′i is set to its initial value whenever k ∨ ¬a, i.e. when the automaton
is being killed, or is currently not alive (see Figure 3, lines 14-23. the example
is optimized a little: for the states belonging to the upper level, we do not need
two state variables, and we use only one).

ε = { < si, ?, [false@(¬a), s′i@true] > }i∈[0,n]

µ = {< s′i, ✷, [✷@(k ∨ ¬a), (¬∨
(qi,C,qj)∈T C)@si] >}i∈[0,n]

260 Florence Maraninchi et al.

(“?” means any value may be chosen, because it is never used; ✷ is “true” if
i = 0 (initial state) and “false” otherwise).

ki means “the mode-automaton refining state number i has to be killed” and
is defined by an equation in χ ; its definition shows two cases: either the global
program is killed (k), or the state i is left because one of the outgoing transition
conditions is true (see Figure 3, line 13).

χ = {< ki, false, [(k ∨
∨

(qi,C,qj)∈T

C)@si] >}i∈[0,n]

Encoding the refining programRi with si as the alive parameter and ki as the
kill parameter, gives the (rLi, rEqi, rMmi), and encoding the equations attached
to the states of the refined mode-automaton, gives the (XEqi, XMmi, XLi). All
the sets of fresh variables, equations and memorizations are then gathered.

γ(R(Q,q0,f,T)(R0, ..., Rn) , k, a) =
let Ω = {s0, ..., sn, s′0, ..., s′n, k0, ..., kn}, ε = ..., χ = ..., µ = ... (see above)

(rLi, rEqi, rMmi) = γ(Ri, si, ki) , i ∈ [0, n] (refining programs)

(XEqi, XMmi, XLi) = δ(Q, f, dom(f)) (refined mode-automaton)
in (

⋃
i∈[0,n] rLi ∪

⋃
i∈[0,n]XLi ∪Ω,

⋃
i∈[0,n] rEqi ∪

⋃
i∈[0,n]XEqi ∪ ε ∪ χ,⋃

i∈[0,n] rMmi ∪
⋃

i∈[0,n]XMmi ∪ µ)

Encoding Lustre Equations δ takes the set Q of states of the main automa-
ton, the function f that associates definitions of variables with the states, and
the set dom(f) of variables for which we need to generate dc definitions.

For each variable v ∈ dom(f), δ gathers the dc expressions ei, i ∈ [0, n] ob-
tained by translating (with the function θ given below) the Lustre
equations attached to states (f(v)(qi), i ∈ [0, n]) into a single equation
< v, ?, [I(V)@first, e0@s0, ..., en@sn] >, adding a case for the initial instant (see
Figure 3, lines 7-9). The order of the cases is irrelevant, since the si Boolean
variables are guaranteed to be pairwise exclusive (they encode the states of the
main automaton).

δ(Q, f, {v} ∪ V) = let (ei,Mmi, Li) = θ(f(v)(qi)), i ∈ [0, n]
(Eq′,Mm′, L′) = δ(Q, f, V)

in (Eq′ ∪ {< v, ?, [I(V)@first), e0@s0, ...en@sn] >},
Mm′ ∪ ⋃

i∈[0,n]Mmi, L′ ∪ ⋃
i∈[0,n] Li)

δ(Q, f, ∅) = (∅, ∅, ∅)

Translation of Lustre Into DC The θ function translates the Lustre ex-
pressions attached to states of the mode-automata into dc expressions, possibly
creating variables and memorizations (for the pre sub-expressions); it returns a
tuple (e,Mm,L) where e is a dc expression,Mm is a set of memorizations and L
is a set of new variables, to be added to the set of local variables of the global
dc program. We define θ for binary operators (expr1 op expr2), variables (v),

MATOU: An Implementation of Mode–Automata 261

constants (cst) and pre sub-expressions. Lustre constants and operators have a
counterpart in dc.

θ(expr1 op expr2) = let (e1,Mm1, L1) = θ(expr1), (e2,Mm2, L2) = θ(expr2)
in (e1 op e2, Mm1 ∪Mm2, L1 ∪ L2)

θ(v) = (v, ∅, ∅) θ(cst) = (cst, ∅, ∅)
θ(pre(v)) = let Mv be a fresh variable

in (Mv, {< Mv, I(v), [v@true] >}, {Mv})
The last line means that Mv is the memory of v, initialized as required in

the global function I of the program, and always computed (@true). If there are
several occurrences of pre(v), the variable Mv and its definition are created only
once (see Figure 3, lines 10-12).

4.2 Correctness of the Translation Scheme

Both mode-automata and dc have a formal trace semantics, i.e. there exists
a mathematically defined function fm from mode-automata to input/output
traces, and another function fd from dc programs to input/output traces. Traces
are sets of sequences of input/output tuples. We have to prove that :

∀P = (V , I, E). fm(S(P)) = fd(γ(I, E, false, true))
where P = (V , I, E) is a mode-automaton program as defined in section 3.3.
However, since the translation algorithm does not perform complex optimiza-

tions like minimizing the automaton structure, S(P) and γ(I, E, false, true)
are more than trace-equivalent: they are isomorphic, which is easier to prove.

We extend the semantics of mode-automata to input/output/state traces,
and that of dc to input/output/local traces. We then exhibit a one-to-one func-
tion λ relating a global state of a mode-automaton program with a configuration
of the local Boolean variables used for encoding states in the dc program. Then
we have to prove that: first, S(P) and γ(I, E, false, true) have the same initial
state (via λ); second, if we start from a global state (of the mode-automaton
program) and a configuration of the variables (of the dc program) related by λ,
and take the same input into account, then the two objects produce the same
output and evolve to a new global state and a new configuration of dc vari-
ables that are, again, related by λ. This is sufficient for proving that S(P) and
γ(I, E, false, true) have the same sets of input/output traces.

4.3 Quality of the Translation Scheme

We already said that the typical systems we have in mind have a few modes,
and big programs attached to modes (this is not the case in our example, for
sake of simplicity, but imagine that we replace X = pre(X) − 1 by a one-page
program). Our criterion for good code is the property 1, page 258. Our translation
scheme guarantees it, due to the careful encoding of states with two variables s
and s′ (except at the upper level which is never killed).

262 Florence Maraninchi et al.

We could also take the number of variables into account, for this is the main
parameter that plays a role in the complexity of the static analysis algorithms
that could be applied at the dc level. Reducing the number of variables was not
our main aim but, yet, the encoding is not so bad: a log encoding of the states
of a single mode-automaton into Boolean dc variables would make the transi-
tions very complex for a very little gain, because the automaton components are
supposed to be small. The structural encoding of composed programs ensures
that global states are encoded in an efficient way. Since there exist optimizations
techniques at the dc level, we should concentrate on the optimizations that can
be performed only at the mode-automaton level. For instance, we could use the
hierarchic structure of a mode-automaton program in order to reuse some dc
variables used for the encoding of states.

5 Conclusions and Future Work

The algorithm presented in this paper has been implemented in the tool MA-
TOU by Yann Rémond, on top of the DRAC set of tools for the dc format,
developed at Verimag by Y. Raoul, and part of the SYRF project [12]. MATOU
has been used for several case studies, among which: a simplified temperature
control system for an aircraft, submitted by SAAB and already studied in the
SYRF [12] project; the production cell [9] that was proposed at FZI (Karlsruhe)
as a test bench for several languages and proofs tools; an operational nuclear
plant controller submitted by Schneider Electric. These three examples fall in
the category we are interested in: a little number of modes, and quite complex
programs for each mode. The code we obtained is satisfactory, but we still need
to run MATOU on a test-bench, for determining where optimizations should be
applied.

Concerning the language constructs, the equations attached to states are
written using a very small subset of Lustre, sufficient for demonstrating the
interest of mode-automata, and for which we can perform the compilation into dc
in a simple way. Our notion of hierarchic composition is also simple; in particular,
we reject programs in which the same variable is defined at several levels. We are
working on more permissive definitions of the hierarchic composition, inspired
by some medium-size examples, in which such a situation is allowed, and treated
like some special case of inheritance. However, as far as the translation into dc is
concerned, the algorithm described in this paper will continue to be the basis of
the implementation. For the moment, it seems that the more advanced versions
of the constructs will be implemented by some transformations of the abstract
tree, before generating dc code.

Further work on the definition and implementation of mode-automata in-
cludes some easy extensions (variables local to a state and its outgoing transi-
tions; priorities between transitions sourced in the same state, importing objects
from a host language like C, ...) and some extensions of the subset of Lustre we
allow to label states (calling nodes with memory, using Lustre clocks, ...) that

MATOU: An Implementation of Mode–Automata 263

require a careful study of the interaction between the automaton structure and
the Lustre constructs.

Finally, concerning the translation scheme, we managed to take the mode-
structure into account fully: we avoid unnecessary computations. dc turns out to
be the appropriate level for studying the introduction of an imperative construct
into a data-flow language: the format is still declarative and equational, but the
notion of activation condition gives a pretty good control on the final C code.
Moreover, although the implementation is particular to the precise structure
of dc code, we think that the ideas developed in the paper can be reused for
translating modes into a wide variety of formats; for instance, we plan to study
the translation of Mode-Automata into other target codes like vhdl or verilog.
The method can also be used to introduce modes in other data-flow languages.
Moreover, dc is close to SCADE and the translation of mode-automata into one
of the SCADE internal formats does not bring new semantical problems.

References

1. R. Alur, C. Courcoubetis, T. A. Henzinger, and Pei-Hsin Ho. Hybrid automata:
an algorithmic approach to the specification and analysis of hybrid systems. In
Workshop on Theory of Hybrid Systems, Lyngby, Denmark, October 1993. LNCS
736, Springer Verlag. 250

2. G. Berry and G. Gonthier. The Esterel synchronous programming language: De-
sign, semantics, implementation. Science Of Computer Programming, 19(2):87–
152, 1992. 249

3. C2A-SYNCHRON. The common format of synchronous languages – The declar-
ative code DC version 1.0. Technical report, SYNCHRON project, October 1995.
251, 253

4. P. Caspi. Clocks in dataflow languages. Theoretical Computer Science, 94:125–140,
1992. 251

5. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison Wesley, Reading, MA, 1995. 250

6. N. Halbwachs. Synchronous programming of reactive systems. Kluwer Academic
Pub., 1993. 249

7. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language lustre. Proceedings of the IEEE, 79(9):1305–1320, Septem-
ber 1991. 249

8. P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMaire. Programming real time
applications with signal. Proceedings of the IEEE, 79(9):1321–1336, September
1991. 249

9. Claus Lewerentz and Thomas Lindner. Formal Development of Reactive Systems:
Case Study Production Cell. Number 891 in Lecture Notes in Computer Science.
Springer Verlag, January 1995. 262

10. F. Maraninchi. Operational and compositional semantics of synchronous automa-
ton compositions. In CONCUR. LNCS 630, Springer Verlag, August 1992. 249

11. F. Maraninchi and Y. Rémond. Mode-automata: About modes and states for
reactive systems. In European Symposium On Programming, Lisbon (Portugal),
March 1998. Springer Verlag, LNCS 1381. 249, 250

12. SYRF. Esprit ltr 22703, “synchronous reactive formalisms”. Technical report,
1996-1999. http://www-verimag.imag.fr/SYNCHRONE/SYRF/syrf.html. 262

	Introduction
	An Example
	Lustre, Mode-Automata and C
	Clocks and States
	The Intermediate Format DC
	Implementing Mode-Automata on Top of Lustre

	The Mode-Automata Language
	Flat Mode-Automata: Formal Definition and Semantics
	Compositions
	A Simple Language and Its Semantics

	Implementation by Translation into DC
	The Translation Algorithm
	Correctness of the Translation Scheme
	Quality of the Translation Scheme

	Conclusions and Future Work
	References

