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Abstract
The Padovan and Perrin numbers have the matrix formula,

Qn

⎡
⎣

0 3
0 0
1 2

⎤
⎦ =

⎡
⎣

0 1 0
0 0 1
1 1 0

⎤
⎦

n ⎡
⎣

0 3
0 0
1 2

⎤
⎦ . The matrix product is a 3× 2

matrix that when raised to the nth power give a matrix product whose
entries are Padovan and Perrin numbers. For which we established by
mathematical induction such that,

Qn

⎡
⎣

0 3
0 0
1 2

⎤
⎦ =

⎡
⎣

0 1 0
0 0 1
1 1 0

⎤
⎦

n ⎡
⎣

0 3
0 0
1 2

⎤
⎦ =

⎡
⎣

Pn Pn

Pn+1 Pn+1

Pn+2 Pn+2

⎤
⎦ ,

where Pn and Pn are the Padovan and Perrin sequences, respectively.
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1 Introduction

The Padovan sequence is named after Richard Padovan who attributed its
discovery to Dutch architect Hans van der Laan in his 1994 essay Dom Hans
van der Laan: Modern Primitive.

In this paper, the Padovan sequence is the sequence of integers Pn defined
by the initial values P0 = 0, P1 = 0, P2 = 1 and the recurrence relation

Pn = Pn−2 + Pn−3, for all n ≥ 3.
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The first few values of Pn are 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16,
21, 28, 37, 49, 65, 86, . . . .

The Padovan numbers have the Q-matrix, Q =

⎡
⎣

0 1 0
0 0 1
1 1 0

⎤
⎦ such that

Qn =

⎡
⎣

Pn−1 Pn+1 Pn

Pn Pn+2 Pn+1

Pn+1 Pn+3 Pn+2

⎤
⎦ , for all n ≥ 3.

The Perrin sequence is the sequence of integers Pn defined by a recurrence
relation, and is qualitatively similar to the Lucas sequence. The initial terms
are P0 = 3,P1 = 0,P2 = 2 and subsequent terms are defined by

Pn = Pn−2 + Pn−3, for all n ≥ 3.

Here are the first few Perrin numbers: 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22,
29, 39, 51, 68, 90, 119, 158, . . . .

2 Main Results

In this study, we investigate the new property of Padovan and Perrin num-

bers in relation with the Padovan and Perrin matrices formula,

⎡
⎣

0 1 0
0 0 1
1 1 0

⎤
⎦

n ⎡
⎣

0 3
0 0
1 2

⎤
⎦ .

More generally, we have Qn

⎡
⎣

0 3
0 0
1 2

⎤
⎦ =

⎡
⎣

Pn Pn

Pn+1 Pn+1

Pn+2 Pn+2

⎤
⎦ . This strategy allow

us to obtain the new relations for the Padovan and Perrin sequences.

Theorem 2.1. For all n ∈ N we have,

Qn

⎡
⎣

0 3
0 0
1 2

⎤
⎦ =

⎡
⎣

0 1 0
0 0 1
1 1 0

⎤
⎦

n ⎡
⎣

0 3
0 0
1 2

⎤
⎦ =

⎡
⎣

Pn Pn

Pn+1 Pn+1

Pn+2 Pn+2

⎤
⎦ .

Proof. Let use the principle of mathematical induction on n. For n = 1, it is
easy to see that

Q1

⎡
⎣

0 3
0 0
1 2

⎤
⎦ =

⎡
⎣

0 1 0
0 0 1
1 1 0

⎤
⎦

1 ⎡
⎣

0 3
0 0
1 2

⎤
⎦ =

⎡
⎣

0 0
1 2
0 3

⎤
⎦ =

⎡
⎣

P1 P1

P2 P2

P3 P3

⎤
⎦ =

⎡
⎣

P1 P1

P1+1 P1+1

P1+2 P1+2

⎤
⎦ .

Assume that it is true for all positive integer n = k. That is,

Qk

⎡
⎣

0 3
0 0
1 2

⎤
⎦ =

⎡
⎣

0 1 0
0 0 1
1 1 0

⎤
⎦

k ⎡
⎣

0 3
0 0
1 2

⎤
⎦ =

⎡
⎣

Pk Pk

Pk+1 Pk+1

Pk+2 Pk+2

⎤
⎦ .
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Therefore, we have to show that it is true for n = k + 1. By the laws of
associativity and exponents hold for the matrices such that their dimensions
match. Consider,

Qk+1

⎡
⎣

0 3
0 0
1 2

⎤
⎦ =

(
QQk

)
⎡
⎣

0 3
0 0
1 2

⎤
⎦

= Q

⎛
⎝Qk

⎡
⎣

0 3
0 0
1 2

⎤
⎦

⎞
⎠

=

⎡
⎣

0 1 0
0 0 1
1 1 0

⎤
⎦

⎡
⎣

Pk Pk

Pk+1 Pk+1

Pk+2 Pk+2

⎤
⎦

=

⎡
⎣

Pk+1 Pk+1

Pk+2 Pk+2

Pk + Pk+1 Pk + Pk+1

⎤
⎦

=

⎡
⎣

Pk+1 Pk+1

Pk+2 Pk+2

Pk+3 Pk+3

⎤
⎦ .

Therefore, the result is true for every n ≥ 1.

Let us generalize this observation using the Padovan and Perrin formula
matrices.

Proposition 2.2. For all integers m,n such that 3 ≤ m < n, we have the
following relations:

(a) Pn = Pm−1 · Pn−m + Pm+1 · Pn−m+1 + Pm · Pn−m+2,
(b) Pn = Pm−1 · Pn−m + Pm+1 · Pn−m+1 + Pm · Pn−m+2.

Proof. From the laws of exponent for the square matrices. So, we have

Qn = QmQn−m,

it follows that

Qn

⎡
⎣

0 3
0 0
1 2

⎤
⎦ = Qm

⎛
⎝Qn−m

⎡
⎣

0 3
0 0
1 2

⎤
⎦

⎞
⎠ .

From the property of Padovan Q-matrix (see [2], page 2778) and Theorem 2.1
it follows that,

⎡
⎣

Pn Pn

Pn+1 Pn+1

Pn+2 Pn+2

⎤
⎦ =

⎡
⎣

Pm−1 Pm+1 Pm

Pm Pm+2 Pm+1

Pm+1 Pm+3 Pm+2

⎤
⎦

⎡
⎣

Pn−m Pn−m

Pn−m+1 Pn−m+1

Pn−m+2 Pn−m+2

⎤
⎦
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yielding, upon equating corresponding elements. That is,

Pn = Pm−1 · Pn−m + Pm+1 · Pn−m+1 + Pm · Pn−m+2,

and
Pn = Pm−1 · Pn−m + Pm+1 · Pn−m+1 + Pm · Pn−m+2.

Completes the proof.

Remark 2.3. In Proposition 2.2, if m = 3, then we have

Pn = P2 · Pn−3 + P4 · Pn−2 + P3 · Pn−1 ,

= 1 · Pn−3 + 1 · Pn−2 + 0 · Pn−1 , (replaces P2 = P4 = 1 and P3 = 0)

= Pn−2 + Pn−3.

Similary, we have Pn = Pn−2 + Pn−3.
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