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1. Introduction. This subject is very vast and very old. It includes 
all of the arithmetic theory of quadratic forms, as well as many of 
other classical subjects, such as latin squares and matrices with ele-
ments + 1 or —1 which enter into Euler's, Sylvester's or Hadamard's 
famous conjectures. In recent years statistical research into block de-
signs on one hand and research into finite projective geometries on the 
other hand have led to a large amount of progress in this area. Thirdly 
the possibility of help from high speed computers has raised new 
hopes and stimulated new research. 

Under our subject comes the whole of the theory of the unimodular 
group in n dimensions and that of the modular group with all its 
ramifications into number theory and function theory including 
complex multiplication. The study of space groups and parts of 
crystallography belongs to our subject also. 

Matrix theory is a natural part of algebra. However many difficult 
problems do not seem to yield easily to purely algebraic methods. I 
refer for instance to much modern research on eigen values. Either 
geometrical or analytical methods seem to be called to the rescue. 
On the other hand, much inspiration is obtained from the study of 
matrices with elements in a ring and not in a field. This sometimes 
brings out the finer nature of the theorems considered. So it seems 
that not only the methods of abstract algebra, but also those of 
analysis, geometry and number theory play an increasing role in 
matrix theory. 

This account is divided into several chapters. Each has its own 
bibliography which is not intended to be complete. In particular in 
the chapters concerned with classical material much of the older 
literature is completely ignored. 
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2. Elementary number theory. The role of matrices with rational 
integers as elements is a double one. On one hand these matrices 
can be treated as a generalization of the ordinary rational integers 
and then we can try to see what happens to the usual number theo-
retical concepts and theorems. We can study common divisors, com-
mon multiples, diophantine equations, etc. New concepts can be 
added, e.g., instead of studying squares of numbers we can now study 
matrices of the form A A' where A' is the transpose of A. This is quite 
a famous subject. More generally we have transformations of the 
form ABA', so called congruent transformations and the study of the 
automorphs. Congruent matrices are said to belong to the same class 
and there is only a finite number of classes of symmetric matrices 
with rational integral elements and given nonzero determinants. This 
has been particularly studied for positive definite matrices with de-
terminant 1. 

Then there are the problems concerned with constructing normal 
forms of such matrices, such as the triangular Hermite normal form 
and the diagonal Smith normal form with the theory of elementary 
divisors. 

Also every symmetric matrix with elements in a principal ideal 
ring is congruent to a triple diagonal matrix. 
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3. Number theory in hypercomplex systems. Deeper uses of these 
matrices occur in algebraic number fields and more generally in linear 
algebras. Here again the role is a double one. Every linear algebra 
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Important work on number theory in general associative hyper-
complex systems goes back to Artin, Brandt, Chevalley, Eichler, 
Hasse, K. Hey, Schilling. 
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4. Ideal theory. On the other hand ideal theory in algebraic num-
ber fields and more general hypercomplex systems can be treated 
by the use of integral matrices. This was already recognized by 
Châtelet who set up a correspondence between ideals in an algebraic 
number field and matrices with rational integral elements. Poincaré's 
earlier theory of ideals in quadratic fields is a special case of Châte-
let's. During the last decades the links between ideal theory and 
integral matrices were particularly emphasized, studied and en-
riched by MacDuffee in his book and in a number of research papers. 
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5. Classes of matrices. As a special application of ideal theory in 
hypercomplex systems Latimer and MacDuffee studied the ring of 
all polynomials p(A), with integral coefficients, where A is an nXn 
matrix of rational integers which has as minimum polynomial 
f(x) ^xn+ai%n~l+ • • • +an-ix+an where the a* are rational integers 
and an7^0. The zeros of ƒ(x) are further assumed all different. The 
aim was to show that there exists a 1-1 correspondence between the 
classes of integral nXn matrices which are roots of ƒ(x) = 0 and have 
f(x) as minimum polynomial and the ideal classes in the ring mod f(x). 
By the class of an integral matrix A is understood the set of all 
matrices X~~lAX where X is a unimodular matrix with rational inte-
gral elements. 

In the case tha t / (x ) is an irreducible polynomial this correspond-
ence can be established particularly simply and opens up a great 
number of further investigations. I t will now be discussed in greater 
detail. 

Classes of matrices show particularly clearly some of the differences 
which occur between matrices of complex numbers and between 
matrices of integral numbers, or more generally, between fields and 
rings. 

I t is well known that the numbers which are roots of a polynomial 
equation 

f(%) == a0x
n + 0i#n - 1 + • • • + an-ix + an = 0, a0 9e 0 

are linked up with the nXn matrices A for which f(A)=Q. Assume 
the ai and the coefficients of A to be complex numbers, and f(x) to 
have all its zeros different. Then, if A is one matrix root, with f(x) 
as minimum polynomial, all others are of the form S~lAS where S 
is any nonsingular nXn matrix. Since one such matrix root, the 
companion matrix, is well known the problem of finding matrix roots 
of such a polynomial appears much easier than the problem of find-
ing number roots. 

If, however, f(x) is assumed to have integral numbers as coeffi-
cients, and a0 = l, then the problem of finding all matrix roots with 
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integral numbers as coefficients is considerably harder. While for S 
an integral matrix with \S\ = ± 1 every matrix of the form S~lAS 
is again a root, the converse does not hold any longer. The companion 
matrix remains a matrix root in the new sense too, however. All 
matrix roots can be divided into classes S^AS where A is a fixed 
matrix root and S runs through all unimodular matrices. In the case 
where ƒ (x) is irreducible in the rational number field it can be shown 
that there is a 1-1 correspondence between the classes of matrix 
roots of / ( x ) = 0 and the ideal classes in the ring R(a) of all poly-
nomials with integral coefficients in a1 where a is a scalar root of 
ƒ(x) = 0. The correspondence can be defined by the relation 

«r 
= a 

where «i, • • • , an are the components of an eigen vector of A with 
respect to the eigen value a. This eigen vector is unique apart from 
a common multiple and its components can be chosen in R(a). That 
the set ]^r,-a», with rt- integers, forms an ideal in R(a) follows at 
once from the relation (1). I t is further clear that S~lAS which has 
the eigen vector S~~1(<xi, • • • , an)' defines the same ideal since S is 
unimodular. In this way, a correspondence between the classes of 
matrix roots and the ideal classes is set up which is 1-1. I t follows 
immediately that the number of classes of matrix roots is finite. 

The commutative composition of matrix classes thus defined is 
not easy to express in matrix language. I t was studied by Poincaré 
for quadratic fields. I shall describe one way of obtaining a matrix 
root C which corresponds to the product of the ideals (ai, • • • , an) 
and (]Si, • • • , /3n) with corresponding matrices A and B. Consider 
the product 

(«1, • • • , On)(Pl, ' ' ' >Pn) 

= («101, <*2jöi, • • • , anPi, ai/32, «202, • • • , an/32, • • • , a A , 

« A , • • • , OtnPn) 

and apply a unimodular n2Xn2 transformation S with rational inte-
gral elements which transforms this vector into 

(71, • • • , Vn, 0, • • • , 0). 

Here (71, • • • , yn) is a modular basis for the product of the ideals 
considered. I t is then easy to see that the n2Xn2 matrix 
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'A 

A 

has in the upper left corner a n # X n matrix C of rational integers 
which has a as characteristic root and (71, • • • , yn) as corresponding 
characteristic vector. The lower left (n2 — n)Xn block in the large 
matrix is zero. 

The inverse of a matrix class defined by the matrix A (in the case 
that 1, a, • • • , an~l form an integral basis for the integers in the field 
generated by a) is given by the matrix A'. (See Taussky.) This fact 
makes the study of matrix classes of order 2 rather easy and interest-
ing. If A is a matrix root contained in a class of order 2 then Af 

= S~XAS for some integral unimodular S. In particular, it can happen 
that such a class contains a symmetric matrix. For quadratic fields 
R{m112), where w i s a square free integer, this can happen only if m 
is a sum of two squares. An example of a field which contains a matrix 
class of order 2 with a symmetric element and another matrix class 
of order 2 without a symmetric element is i^([410]1/2). A splitting up 
of the ideal classes of order 2 in quadratic fields in two types is well 
known, namely the ones with and the ones without an invariant ideal. 
The splitting up of the matrix classes of order 2 into the two types 
discussed above is somehow related to it (see Faddeev, Gorshkov, 
Taussky). 

A matrix class of order 2 contains a symmetric matrix if and 
only if every matrix A contained in it is connected with its transposed 
A' by a relation 

A' = {TT'Y^ATV 

where T is integral and unimodular. It was shown by Minkowski that 
for n g 7 every positive definite unimodular matrix is a product TT' 
with T integral while this is not necessarily true for n> 7. Hence the 
cases n^7 play a different role compared with n>7. This is also 
apparent in the result of Faddeev who studied polynomials with 
rational integers as coefficients which are characteristic polynomials 
of symmetric matrices of rational integers. He also linked them up 
with ideal classes of order 2. Gorshkov studied 3X3 symmetric 
matrices of rational numbers which have irreducible characteristic 
polynomials. He showed that an eigenvalue of such a matrix gener-
ates a cubic field in which three elements exist which are orthogonal 
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to their conjugates. Conversely, such a cubic field can be generated 
by an element which is an eigen value of a symmetric matrix. 

The class of the companion matrix does not always contain a sym-
metric matrix. The problem is here much the same as for matrix 
classes of order 2. Observe also that every matrix S for which S^AS 
= A' is symmetric.1 For n = 2 and for/(x) = x2+px+q the companion 
matrix is 

( ° ') 
\-q -p/ 

and the matrix 5 is then of the form 

\b — qd - pb/ 

with by d arbitrary integers. If S is unimodular then its determinant, 
— (b+pd/2)2 + (p2/4c — q)d2, is the negative norm of a unit in the 
field of roots of ƒ(#)• This shows that the determinant of S can be 
chosen as + 1 only if R(a) has a unit of norm — 1 . For n>2 the de-
terminant of S is the product of a power of — 1, a norm in R(a) and 
the square of a rational number. 

If f(x) is any irreducible polynomial with integral coefficients and 
real zeros «i, • • • , an then a symmetric matrix with cei, • • • , an as 
eigen values can always be found, but not always an nXn matrix 
(see Krakowski). 

Instead of looking for matrix classes which contain a symmetric 
matrix one can look for classes containing a normal matrix. For n = 2 
this leads, apart from the symmetric cases, only to the matrices cor-
responding to Gaussian integers. Special normal matrices with ra-
tional elements were investigated by A. A. Albert. 

If the powers of a do not form an integral basis for the field gener-
ated by a then the ideal classes do not form a group since some of 
them have no inverses, e.g. in the ring generated by (—• 35)1/2 the 
ideal ct = (2, l + ( — 35)1/2) is equivalent to its square. The matrix 

/ - . 2N 

\—18 1/ 

and its transpose both correspond to a. The ideal class which cor-
responds to the transposed matrix, in the general case, is the so-called 

1 This is true in any case even if A is not a matrix of integers and even if the char-
acteristic polynomial is reducible, as long as it coincides with the minimal polynomial 
(see Taussky and Zassenhaus, On the similarity transformation between a matrix and 
its transpose, Pacific J. Math. vol. 9 (1959) pp. 893-896). 
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complementary ideal class.2 If ct=(ai, • • • , an) then this comple-
mentary ideal class is generated by b = (ft, • • - , (3n) where trace 
(<2»j3&) = öik. I t is expected that in general the complementary ideal 
class is connected with3 a "pseudo-inverse" in the semi-group of the 
ideal classes in R(a). 

The classes of unimodular 2X2 matrices of integers were recently 
studied by Rademacher. A new set of invariants for the classes were 
given. Only matrices with negative trace were considered. For trace 
â — 3 there is a finite number of classes. For trace = — 2 the matrix 
has a double characteristic root and there are infinitely many classes. 
If M is one matrix root then M~l or — M~l is again a root according 
as \M\ — 1 or — 1. The matrix M is similar (via a unimodular integral 
matrix) to M~~l (or — M"1)—which is similar to M' via a unimodular 
matrix—if and only if the corresponding ideal class is equal to its 
conjugate class—which is equivalent to the inverse class. 

This last fact is an example of the following fact: In a normal field 
we obtain n matrix roots from one matrix root by using the regular 
representation of the number roots and the polynomial relation that 
exists between any two of them. These matrix roots can be looked 
upon as "conjugate" matrices. Even if the field is not normal several 
of its conjugate fields could coincide so that some of the matrices 
could still be "conjugate." Conversely, one matrix root gives rise 
to an ideal class for each of its eigen vectors which lie in the same 
field. These are called conjugate ideal classes, anyhow. 

In the irreducible case any matrix root A defines an irreducible 
representation for the whole R(a) and S~xASj for unimodular 5, de-
fines an equivalent representation. All irreducible representations by 
rational integer matrices are obtained in this way. Hence the number 
of irreducible inequivalent representations with integer elements is 
equal to the number of ideal classes in R(a). In this way the theory 
appears as a special case of a theorem of Steinitz, which was also 
studied by Zassenhaus, and used by Reiner for the study of integral 
representations of the cyclic group of prime order. 

Let t> be a Dedekind ring which is a finitely-generated torsion free 
module. Then every finitely-generated torsion free b-module is t)-
isomorphic to a direct sum cti© • • • ©a» of ideals in t). The number 
n and the product of the ideal class as of the a* are invariants and 

2 See Dedekind, Ges. Werke I I I , Braunschweig, Vieweg, 1932, p. 58. 
3 I t was shown recently by Drazin, Pseudo-inverses in associative rings and semi

groups, Amer. Math. Monthly vol. 65 (1958) pp. 506-514, that in certain semi-groups 
"pseudo-inverses" can be defined in a unique way. For finite semi-groups this is always 
possible. 
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determine the module up to t>-isomorphism. 
This theorem of Steinitz was also used by I. Schur to study repre-

sentations of finite groups by nXn matrices in a given algebraic 
number field and to show that the representation can be carried out 
by integers in this field if n is relatively prime to the class number 
of the field. This generalizes a well known theorem of Burnside. 
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6. Group matrices. Representation theory is also the main source 
of the next chapter. 

The group matrix (XPQ-1) associated with a group of order n and 
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elements P , Q, • • • is obtained from the regular representation. The 
n elements Xp, XQ, • • • are indeterminates associated in a 1-1 cor-
respondence with the group elements. The first row is formed by 
the group elements in a fixed, but arbitrary order, the other rows are 
then determined. If the group is cyclic the matrix is called a circulant, 
though sometimes this name is used for its determinant. The deter-
minant of the general group matrix is called the group determinant. 
The irreducible factors of the group determinant are well known from 
the theory of group representations. Not much work has been done on 
the eigenvalues.4 If special numerical values are substituted for the 
Xp then we speak about a "group matrix" or "group determinant." 
If the group matrix is written as a linear form in the Xp with coeffi-
cients matrices of 0's and Ts then it is a representation of the group 
ring of the group. For these coefficient matrices form the regular 
representation of the same group. This establishes a 1-1 correspond-
ence between the elements of the abstract group ring and group 
matrices. 

Among the group matrices with integral elements of a fixed group 
the unimodular ones seem of special interest. Consider such a matrix 
and the corresponding element of the abstract group ring with ra-
tional integers as coefficients. It can be shown that this element is a 
so-called unit, i.e., another element of the same group ring exists such 
that their product is the unit element of the group. The converse is 
also true. To prove this, let the first row of the group matrix be 
#p, XQ> ' ' ' • The corresponding element in the group ring is then 
y^p XpP. Let ^2Q JQQ be any other element in the group ring for 
integer yys. The product of these two elements is 

P,Q R 

where 
ZR = ] C XRQ~ljQ' 

Q 

This system of n equations in the n unknowns and with the unimodu-
lar matrix (XRQ-1) as coefficient matrix can be solved to give ZR — 1 if 
R is the unit element and ZR = 0 if R differs from the unit element. 

Conversely, assume that ZR = 1 if R is the unit element of the group 
and ZR = Q if R differs from the unit element. This implies that the 
product of the two matrices (XPQ-1) and (ypQ"1) is a permutation of 
the unit matrix and hence that (XPQ-1) is unimodular. 

4 See, however, E. Noether, Normalbasis bei Körpern ohne höhere Verzweigutig, 
J. Reine Angew. Math. vol. 167 (1931) pp. 147-152. 
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Units in group rings have been discussed by G. Higman. In par-
ticular he showed that for a finite abelian group no unit of finite 
order exists apart from the group elements. It was further proved 
that units outside the group elements exist for all abelian groups un-
less all elements are of order 2, 3, 4 or 6. 

A proof for this result for cyclic groups by means of unimodular 
group matrices-—circulants in this case-—was given recently as well 
by Newman and Taussky. 

Both unimodular group matrices and units in the group ring form 
groups. I t is easy to see that they are isomorphic. 

Group matrices and even positive definite ones are also closed 
under the so-called Hadamard product for matrices 

(dik) (bik) = (dikbik)', 

however unimodular group matrices are not closed under this multi-
plication. 

To use group matrices instead of units has certain advantages. 
E.g., for matrices the concepts of symmetric and normal matrices 
exist and allow the formulation of further problems. E.g. the follow-
ing theorem (Newman and Taussky) was obtained recently: A uni
modular nXn circulant of integers which is of the form A A' where A 
is an nXn matrix of integers is also of the form CC where C is again 
an nXn circulant of integers. 

In the case of nonabelian groups units of finite order other than 
the group elements can occur. For the symmetric group on 3 letters 
consisting of the elements 1, a, a2, b, ab, a2b the following unit is of 
order 2: — a+a2 — b+ab+ba, (Taussky). Construct the correspond-
ing group matrix and its transpose and multiply the corresponding 
units. The results are the following units: 

(—a + a2 — b + ab + ba)(a — a2 — b + ab + ba) 

= 5 - 2a - 2a2 + 4ab - Aba, 

(a — a2 — b + ab + ba)( — a + a2 — b + ab + ba) 

= 5 - 2a - 2a2 — Aab + Aba. 

These two units are of infinite order, and their corresponding group 
matrices have eigen values which are not roots of unity, namely 
7±4(3) 1 ' 2 . 

I t is interesting to note that while the units ±a+a2 — b+ab+ba 
have no scalar part their product does have a scalar part 9^0. The 
reason is that the group matrix corresponding to the product is posi-
tive definite and of the form ^4^4', hence the corresponding quadratic 
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form represents odd and even integers. This implies that the coeffi-
cients of the squares in the form cannot all be even. 

The eigenvalues of the group matrix corresponding to the unit 

%i + %ia + %za2 + x±b + x$ab + x*ba 

are [2x1-x2-xz± { (2x i -x 2 ~x 3 ) 2 ±4} 1 / 2 ] /2 , ± 1 , ± 1 . This follows 
from representation theory, but can still be obtained by actual com-
putation. 

The elements generated by the units 

—• a + a2 — b + ab + ba, a — a2 — b + ab + ba 

satisfy no other relations apart from that expressing that both units 
have order 2. 

Another interesting unit in this group is l+a — a2+ab — ba. I t has 
the property that 

(1 + a — a2 + ab — ba)n = I -\- na — na2 + nab + nba 

for n = 0, ± 1 , ±2 , • • • . 

Multiplied with its "transpose" 1 — a + a2 + ab — ba it gives 
5 — 2a— 2a2 — 4&+4a& which has again infinite order. 

The minors of group matrices have not received much attention. 
They show interesting symmetries in numerical examples, e.g. the 
symmetric 8X8 circulant with the first row 

2, 1, 0, - 1 , - 1 , - 1 , 0, 1 

has as leading principal minors 

2, 3, 4, 4, 4, 3, 2, 1. 

The symmetric 12X12 circulant with first row 

3, 2, 1, 0, - 1 , - 2 , - 2 , - 2 , - 1 , 0, 1, 2 

has as leading principal minors 

3, 5, 8, 12, 16, 16, 16, 12, 8, 5, 3, 1. 

Also the minors of the group matrices of the nonabelian group of 
order 6 show interesting symmetries. 

Let us return to the theorem concerning unimodular nXn circu-
lants of the form A A''. 

I t leads to a number of interesting problems which have not yet 
been investigated further: 

(1) The corresponding question for group matrices corresponding 
to other groups. 
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(2) The following generalization suggested by Morris Newman: 
Let C, K be unimodular circulants of rational integers such that 
C = AKA' where A is a unimodular matrix of rational integers. Can 
A be replaced by a circulant? 

(3) The question as to which "classes" unimodular positive defi-
nite group matrices belong. It was shown by Minkowski that for n ^ 7 
every unimodular positive definite nXn matrix of rational integers 
is of the form A A' with A an nXn integral matrix, but that this is 
not the case for n>7. If F is any fixed unimodular positive definite 
nXn matrix of rational integers then the set of matrices AFA' with 
A arbitrary integral and unimodular is called the class of F. For n = S 
there are two classes. It was shown by Newman and Taussky that 
a representative for each of these classes can be chosen as a circulant, 
the circulant with first row (2, 1, 0, — 1 , — 1, — 1 , 0, 1) for the non-
unit class. The corresponding question for larger n and more general 
groups seems of interest, in particular for the reason that group 
matrices are closed under multiplication while the classes of uni-
modular positive definite matrices do not have this property. 

Postscript. The following progress concerning the questions raised 
in this lecture has been made, some at the Number Theory Institute 
at Boulder, 1959. 

1. Units of finite period in integral group rings. Iwasawa constructed 
a large class of units of period 2 in the integral group ring of the 53. 
By transforming a group element of order 3 by such an element of 
period 2 a unit of period 3 is obtained. 

2. The semi-group of ideal classes in R(a). The author raised the 
question of studying the possible structures of the semi-group formed 
by the ideal classes in the ring R(a) formed by all polynomials in 
some algebraic integer a with rational integral coefficients, in particu-
lar the question of when this semi-group is the union of groups. Dade 
and Zassenhaus showed that this is true for all quadratic fields, but 
not, in general, for others. In the quadratic case every element has 
as its pseudo-inverse its inverse in the group in which it lies. This 
result is already contained in Gauss' work on quadratic forms. It is 
this pseudo-inverse which corresponds to the transposed matrix class. 

3. Symmetry of principal minors in special circulants. The circulant 
with first row 2, 1, 0, — 1, — 1 , —1,0 , 1 has as leading principal 
minors 2, 3, 4, 4, 4, 3, 2. I t was pointed out by Davenport that this 
symmetry holds for any symmetric unimodular matrix (ars) which 
has the additional property 

(1) symmetry in the nonprincipal diagonal, i.e. 
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drs = dn+l-s, fl + 1 — r, 

(2) ( O " 1 = ( O or (a,,)"1 = ((-iy+sar8). 

For let A(w, y) denote the principal minor formed with the rows from 
utov inclusive, and let A'(#, z;) have the same meaning for the matrix 
(a rs)

_1. Then for any unimodular matrix it is known that 

A(l , r ) = A ' ( r + 1 , » ) . 

By (2) above, A'(V + 1, w)=A(r + l, n) and by (1) above A(r + 1, ») 
= A(1, n — r). Hence 

A(l, r) = A(l, » - r). 

The 8 X 8 circulant in question has the property that (ars)~
i 

= (( — l)r+*ar8). However, not all unimodular circulants have this 
property, e.g. the circulant with the first row (3, —2, 1, 1, —2) does 
not. 
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