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Matrine, an alkaloid isolated from Sophora flavescens, possesses a wide range of pharmacological properties. However, the use of
matrine in clinical practice is limited due to its toxic effects. The present study investigated the roles of mitochondria and
reactive oxygen species (ROS) in matrine-induced liver injury. Our results showed that treatment of HL-7702 cells with matrine
led to significant and concentration- and time-dependent reductions in their viability, as well as significant and concentration-
dependent increases in the number of apoptotic cells and supernatant lactate dehydrogenase (LDH) activity. The treatment led
to significant increases in the population of cells in S phase and significant reduction of cell proportion in G0/G1 and G2/M
phases. It also significantly and concentration-dependently increased the levels of ROS and malondialdehyde (MDA) but
significantly and concentration-dependently reduced superoxide dismutase (SOD) activity, level of reduced glutathione (GSH),
and mitochondrial membrane potential (MMP). Matrine treatment significantly and concentration-dependently upregulated
the expressions of Bax, p53, p-p53, p21, cyclin E, Fas, cleaved caspase-3, caspase-8, and caspase-9 proteins and downregulated
the expressions of Bcl-2, cyclin-dependent kinase 2 (CDK2), and cyclin A. It also significantly promoted the cleavage of
poly(ADP-ribose)polymerase (PARP), upregulated Kelch-like ECH-associated protein 1 (Keap1) expression, and downregulated
the expressions of cellular total and nuclear Nrf2. Matrine significantly inhibited the expressions of downstream
oxidoreductases (Heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductases 1 (NQO-1)) and enhanced the formation
of Keap1/Nrf2 protein complex. These results show that the hepatotoxic effect of matrine is exerted via inhibition of Nrf2
pathway, activation of ROS-mediated mitochondrial apoptosis pathway, and cell cycle arrest at S phase. Pretreatment with
N-acetyl cysteine (NAC) partially reversed matrine-induced hepatotoxicity.

1. Introduction

Matrine (dodecahydro3a,7a-diaza-benzo[de]anthracen-8-one)
(Figure 1) is an alkaloid isolated from the dry root of Sophora
flavescens, a plant indigenous to China [1]. In vitro studies
have shown that matrine possesses a wide range of pharma-
cological effects, such as anticancer, anti-inflammatory, anti-
bacterial, antiparasitic, antivirus, and antifibrosis properties
[2–4]. In Traditional Chinese Medicine (TCM), matrine is
used to treat hepatitis, cardiac diseases, skin diseases, and

some cancers [5]. It inhibits the proliferation of cancer cells,
such as HepG2, Bel7402, HT29, and K562 cells. The involve-
ment of proteins, such as Bax/Bcl-2, Fas/Fas-L, caspase-3,
AKT, and JAK2/STAT3, in matrine-induced apoptosis has
been reported [6–10]. Reports on the side effects of matrine
have increased considerably, and this has limited its use in
clinical practice. Studies have shown that matrine exerts hep-
atotoxic and neurotoxic effects in zebrafish embryos/larvae
[11, 12]. In one study, it was reported that treatment with
matrine resulted in severe liver damage in mice [13].
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However, another study reported that matrine had no signif-
icant effect on the viability of HL-7702 cells or body weight
of mice, suggesting that it may not be hepatotoxic [14].
Thus, there appears to be confusion about the hepatotoxic
effect of matrine, while the underlying mechanism of its tox-
icity has not been fully elucidated.

Stimulation of cells by xenobiotics or drugs results in the
overproduction of ROS and thus oxidative stress. The associ-
ation of ROS with drug-induced hepatotoxicity is an indica-
tion that oxidative stress is one of the major causes of
hepatocyte apoptosis and liver dysfunction [15–18]. The acti-
vation of nuclear factor-erythroid 2-related factor 2 (Nrf2)
has been linked to drug-induced hepatotoxicity [19]. After
the translocation of Nrf2 to the nucleus, it interacts with anti-
oxidant response elements (ARE) to modulate intracellular
antioxidant responses [20]. Under normal physiological con-
ditions, Nrf2 coexists with Keap1 in the cytosol, and Keap1
directly interacts with Nrf2 to prevent its translocation from
the cytosol to the nucleus. High cellular levels of ROS activate
the dissociation of Nrf2 fromKeap1 and its subsequent trans-
fer to the nucleus. While in the nucleus, Nrf2 binds to ARE
and activates the expressions of oxidoreductases such as γ-
glutamyl cysteine synthetase catalytic subunit (GCLC), HO-
1, and NQO-1, resulting in manifestation of its antioxidant
effects [21]. Thus, the Nrf2 pathway is considered a major
factor regulatory mechanism for reducing oxidative stress.

Apoptosis is a physiological process of autonomous, reg-
ulated cell death in response to disease and exogenous stress.
It is regulated by two major pathways: receptor-mediated
pathway (extrinsic pathway) and mitochondrial-dependent
pathway (intrinsic pathway) [22, 23]. Caspases are a family
of cysteine proteases which play key roles in cell apoptosis
[24]. The extrinsic pathway is initiated by ligation of death
receptors and subsequent activation of caspase-8 within a
death-inducing signaling complex. On the other hand, the
intrinsic pathway is triggered by intracellular stress and sub-
sequent activation by caspase-9. Although both pathways can
be activated by various stimuli, both lead to direct activation
of downstream effector caspase-3 [25, 26]. The increased
production of ROS leads to induction of mitochondrial-
dependent apoptosis [27]. Studies have shown that high
intracellular levels of ROS result in mitochondrial DNA

damage and release of cytochrome c from mitochondria
to cytosol, thereby triggering caspase-dependent or caspase-
independent apoptosis [28, 29].

The HL-7702 cells isolated from a normal human liver
exhibit ultrastructural features similar to those of hepatic
carcinoma. These cells are useful for assessing drug-
induced hepatotoxicity and constitute an ideal in vitro
model for cytotoxicity studies [30, 31]. The present study
investigated the roles of mitochondria and ROS in
matrine-induced liver injury.

2. Materials and Methods

2.1. Reagents. The HL-7702 cell line was purchased from
China Infrastructure of Cell Line Resources. Matrine (batch
no. MUST-17030401, purity > 98:72%) was a product of
Chengdu Mansite Bio-Technology Co., Ltd. (Chengdu,
China). Dulbecco’s modified Eagle’s medium (DMEM),
FBS, trypsin, penicillin, and streptomycin solutions were
obtained from Corning (NY, USA), and dimethyl sulfoxide
(DMSO), phosphate-buffered saline (PBS), and 3-(4,5-
dimethyl thiazol-2-yl-)-2,5-diphenyl tetrazolium bromide
(MTT) were products of Solarbio (Beijing, China). Assay kits
for SOD, MDA, and GSH were purchased from Nanjing
Jiancheng Bioengineering Institute (Nanjing, China). Assay
kits for Annexin V-fluorescein isothiocyanate (FITC)/propi-

dium iodide (PI) apoptosis, 4′,6-diamidino-2-phenylindole
(DAPI), LDH, MMP, ROS, cell cycle, and bicinchoninic acid
(BCA) were purchased from Beyotime (Shanghai, China).
Polyclonal antibodies for Fas, Bax, Bcl-2, p53, p-p53
(Ser-15), p21, cyclin A, CDK 2, cytochrome c, caspase-3,
caspase-9, PARP, cleaved caspase-3, cleaved caspase-9,
cleaved PARP, Nrf2, Keap1, HO-1, and NQO1 were products
of Cell Signaling Technology (USA). Antibodies for caspase-
8 and cleaved caspase-8 were purchased from Abcam (UK).
Amicroplate reader was obtained from Thermo Fisher Scien-
tific Co., Ltd. (USA), and a flow cytometer was the product of
BD Biosciences (USA). The ProteoExtract® Cytosol/Mito-
chondria Fractionation kit was purchased from Millipore
(USA), while a protease inhibitor was obtained from Sigma-
Aldrich (USA).

2.2. Cell Cultures and Treatment. The HL-7702 cells were cul-
tured in DMEM supplemented with 10% FBS and 1% penicil-
lin/streptomycin at 37°C in a humidified atmosphere of 5%
CO2 and 95% air. After attaining 80-90% confluence, the cells
were treated with serum-free medium and graded concentra-
tions of matrine (0–4mg/mL) for 24 h. Normal cell culture
without matrine served as the control group. Cells in the log-
arithmic growth phase were selected and used in this study.

2.3. Cell Viability Assay. The effect of matrine on the viability
of HL-7702 cells was assessed using the MTT assay. The cells
(5:0 × 103 cells/well) were seeded in 96-well plates and cul-
tured in DMEM for 24 h. Matrine (0-4mg/mL) was added
to the cells, followed by incubation for 72 h. At the end of
the third day, 20μL of 5 g/L MTT solution was added to the
wells, followed by incubation for another 4 h. The medium
was finally replaced with 150mL of 0.1% DMSO solution,
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Figure 1: The chemical structure of matrine.
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agitated at 50 oscillations/min for 10min to completely dis-
solve the formazan crystals formed, and absorbance of the
samples was read in a microplate reader at 570nm. The
degree of cell proliferation was determined at different time
points: 24, 48, and 72h. The assay was performed in trip-
licate. Cell viability was calculated as follows:

Cell viability %ð Þ =
Absorbance of the experimental group

Absorbance of the control group
× 100:

ð1Þ

2.4. Determination of Activity of LDH. The cells were
seeded into 96-well plates at a density of 1:5 × 104 cells/-
well and cultured in DMEM for 24 h. Matrine (0-4mg/mL)
was added to the cells and incubated for 48h. Then, the
cells were trypsinized and the resultant cell suspension
centrifuged at 3000 rpm for 10min to obtain supernatant.
The activity of each well was harvested, and LDH activity
was determined in the supernatant using the LDH kit
according to the instructions on the kit manual.

2.5. DAPI Staining. Morphological changes in the nuclei of
cells can be visually analyzed by staining DNA with DAPI
fluorescent dye [32]. The cells were seeded at a density of 4
× 105 cells/well in 6-well plates and treated with graded con-
centrations of matrine (0–4mg/mL) for 48 h prior to staining.
Then, the cells were harvested, washed twice with PBS, and
fixed with 4% paraformaldehyde for 20min at room temper-
ature. They were thereafter stained with DAPI solution in the
dark for 10min at room temperature. Changes in the nuclei
of stained cells were observed under an inverted Olympus
IX71 fluorescence microscope and photographed. The apo-
ptotic cells were identified.

2.6. Apoptosis Analysis. The cells were seeded in 6-well plates
at a density of 4 × 105 cells/well and cultured for 24h. Then,
matrine at different concentrations (0–4mg/mL) was added
to the medium and incubated for another 48 h at 37°C in
the presence or absence of NAC. The cells were thereafter
washed with PBS and thoroughly mixed with 295μL binding
buffer. Subsequently, the cells were stained with 5μL each of
Annexin V-fluorescein isothiocyanate and propidium iodide
within 25min at room temperature in the dark. Cell apopto-
sis was assessed using a flow cytometer fitted with argon laser
operated at 485nm [33].

2.7. Measurement of Intracellular ROS. The levels of ROS in
HL-7702 cells were determined using the 2,7-dichlorofluor-
escin diacetate (DCFH-DA) assay. The cells treated with
matrine (0–4mg/mL) were washed with PBS after an initial
incubation period of 48h. Then, 10μM solution of DCFH-
DA was added to the plates and incubated for another
30min at 37°C. Thereafter, the cells were washed with PBS
and injected into the flow cytometer for analysis [34].

2.8. Measurement of Lipid Peroxidation. The HL-7702 cells
were seeded in 6-well plates at a density of 4 × 105 cells/well
and cultured for 24h. After treatment with graded concentra-
tions of matrine for 48 h, the cells were lysed with ice-cold

radio-immunoprecipitation assay (RIPA) buffer and centri-
fuged at 12,000 rpm for 10min at 4°C. The level of MDA
was determined in the supernatant using the MDA assay
kit [35].

2.9. Determination of Oxidative Status in the Cells. The
HL-7702 cells were seeded in 6-well plates at a density
of 4 × 105 cells/well and cultured for 24 h. After treatment
with graded concentrations of matrine for 48 h, the activity
of SOD and level of GSH were determined using their
respective assay kits [36, 37].

2.10. Determination of Effect of Matrine on MMP. Follow-
ing 24 h culturing of the HL-7702 cells seeded in 6-well
plates at a density of 4 × 105 cells/well, the cells were
treated with graded concentrations of matrine for 48 h

and stained with 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-
benzimidazolylcarbocyanine iodide (JC-1) working solu-
tion (10μM) for 30min at 37°C in the dark. Thereafter,
they were washed thrice with PBS and subjected to flow
cytometric analysis.

2.11. Cell Cycle Analysis. The effect of matrine on the dis-
tribution of HL-7702 cells among different phases of the
cell cycle was determined using a flow cytometer [38].
The treatment of the cells is referred to under Section
2.9. The cells were then washed with PBS and fixed with
70% ethyl alcohol at 4°C overnight. Tris hydrochloride
buffer (pH 7.5) containing 1% RNase A was then added
to the plates for 30min at 37°C in the dark. The cells were
subsequently stained with propidium iodide and injected
into the flow cytometer for analysis.

2.12. Cell Fractionation. The HL-7702 cells (4 × 105 cells/-
well) were seeded in 6-well plates and cultured for 24 h.
After treatment with graded concentrations of matrine for 48h,
the cells were lysed with ice-cold radio-immunoprecipitation
assay (RIPA) buffer for 30min and centrifuged at 12,000rpm
for 10min at 4°C. Protein concentration in the cell lysate
was determined using the BCA assay kit. The mitochon-
drial and cytosolic fractions of the lysed cells were also
separated using the ProteoExtract® Cytosol/Mitochondria
Fractionation kit.

Isolation of nuclear fraction: after treatment with
matrine, the cells were washed twice with ice-cold PBS and
resuspended in ice-cold hypotonic buffer containing 5μL
phosphatase inhibitor, 10μL phenylmethylsulfonyl fluoride
(PMSF), and 1μL dithiothreitol (DTT) for 10min. The
mixture was then centrifuged at 3,000 rpm for 5min at
4°C, and the supernatant was discarded. The resultant pel-
let was washed with cold hypotonic buffer for 30 sec and
centrifuged again at 5,000 rpm for 5min at 4°C to obtain pel-
let. Ice-cold lysis buffer was added to the pellet for 20min to
sustain the suspension which was thereafter centrifuged at
15,000 rpm for 10min at 4°C. The resultant supernatant
(nuclear fraction) was refrigerated at -80°C prior to use.

2.13. Western Blot. Equal amounts of protein were resolved
on sodium dodecyl sulfate-polyacrylamide gels (SDS-
PAGE) and transferred to polyvinylidene fluoride (PVDF)
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membrane. After blocking with TBST buffer containing 5%
skim milk for 1 h, the membranes were incubated with pri-
mary antibodies overnight at 4°C, followed by treatment
with corresponding secondary antibodies at room tempera-
ture for 1 h [39]. The target proteins were visualized and
determined by an intensive ECL detection system.

2.14. Immunoprecipitation. After treatment with matrine,
HL-7702 cells were collected and lysed with modified RIPA
buffer containing protease inhibitor cocktail. The homoge-
nates were centrifuged at 14,000 rpm for 15min at 4°C. The
supernatants were collected and protein concentration was
determined by the protein assay kit (Beyotime, Shanghai,
China). Whole-cell lysates containing 1mg of proteins were
precleared with protein A-Sepharose beads for 1 h and incu-
bated with 2μg of anti-Keap1 antibody for 3 h. Immunopre-

cipitated complexes were washed 3-5 times with RIPA buffer
and then boiled in SDS sample buffer for 5min. The
supernatant was then electrophoresed by SDS-PAGE for
further Nrf2 antibody immunoblotting.

2.15. Statistical Analysis. Data are expressed as mean ± S:D:,
and statistical analysis was performed using SPSS (17.0).
Groups were compared using the LSD test. Values of
p < 0:05 were considered statistically significant.

3. Results

3.1. Matrine Induces Cytotoxicity in HL-7702 Cells. Com-
pared to the control, the results of theMTT assay showed that
matrine obviously inhibited the viability of HL-7702 cells in a
dose-dependent and time-dependent manner (Figure 2(a)).
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Figure 2: The cell viability and morphology in HL-7702 cells were detected after treatment with various concentrations of matrine. (a) Cell
viability was assessed by the MTT assay. (b) HL-7702 cells were treated with matrine at a series of concentrations (0-4mg/mL) for 48 h. The
cell cytotoxicity was evaluated by the LDH assay. (c) The morphology changes of the HL-7702 cell nucleus were examined by DAPI staining
and observed by fluorescence microscopy. The arrowmarkers represent the apoptotic cells. The data are presented as themean ± S:D: of three
independent experiments (∗p < 0:05 vs. vehicle control).
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The IC50 value of matrine for 48h was 1:446 ± 0:10mg/mL
for HL-7702 cells. When the cell membrane is damaged,
LDH is released from the cytoplasm into the extracellular
medium, and its release represents disruption of cell

membrane integrity. In this study, matrine treatment led
to the leakage of LDH observed on HL-7702 cells in a
concentration-dependent manner (Figure 2(b)). Next, in
order to validate whether the inhibitory effect of matrine
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on cell growth is related to apoptosis, the morphological
changes of the HL-7702 cell incubated with matrine (0-
4mg/mL) were evaluated by staining with DAPI fluores-
cent dye. As shown in Figure 2(c), treatment with matrine
significantly and concentration-dependently promoted apo-
ptosis in HL-7702 cells (p < 0:05). Apoptosis was evidenced
by chromatin condensation, nuclear fragmentation, and apo-
ptotic body formation.

3.2. Matrine Induces Apoptosis in HL-7702 Cells. As shown in
Figures 3(a) and 3(b), the percentage of viable cells was
significantly lower after incubation with matrine for 48h.
Moreover, the percentage of early and late apoptotic cells
was clearly increased in a dose-dependent manner from
5:13% ± 0:70 to 56:80% ± 4:11 and 2:37% ± 0:50 to 17:57
% ± 2:89, respectively. Meanwhile, we also detected the
presence of a subpopulation of G0/G1 cells corresponding
to apoptotic DNA fragmentation by cell cycle analysis
(Figures 4(a) and 4(b)). In addition, matrine-induced apo-
ptosis can be partially blocked by the ROS inhibitor NAC
(10mM). These results demonstrate that apoptosis is one of
the ways through which matrine induces HL-7702 cell death.

3.3. Activation of Oxidative Stress and Mitochondrial
Injury by Matrine in HL-7702 Cells

3.3.1. Matrine-Induced Oxidative Stress in HL-7702 Cells. The
generation of ROS plays an important role in oxidative stress
and apoptosis [40]. Compared with the control group, the

intracellular ROS and lipid peroxidation MDA level
increased in a dose-dependent manner after the cells were
exposed to matrine for 48 h (Figures 5(a) and 5(b)). After
treatment with different doses of matrine, the antioxidant
SOD and GSH levels were markedly reduced (Figure 5(b)).
These results indicated that matrine could induce oxidative
stress in HL-7702 cells.

3.3.2. Effect of Matrine on Mitochondrial Dysfunction in
HL-7702 Cells. After confirming the effect of matrine on
the apoptosis of HL-7702 cells, we then investigated
whether mitochondrial dysfunction mediates matrine-
induced apoptosis. Previous studies have shown that the
loss of mitochondrial membrane potential (MMP) can
increase mitochondrial outer membrane permeability,
leading to mitochondrial dysfunction and activation of
cytochrome c release [41, 42]. Compared with the control
group, treatment of HL-7702 cells with matrine induced a
significant loss of MMP in a dose-dependent manner
(Figures 6(a) and 6(b)). The mitochondria-dependent
apoptosis pathways involves signaling of mitochondrial-
associated apoptotic proteins, including Bax and Bcl-2.
Treatment of HL-7702 cells with matrine increased Bax
and decreased Bcl-2 expression in a concentration-
dependent manner, which increased the ratio of proapop-
totic/antiapoptotic proteins (Figure 7). Moreover, our
study demonstrated that matrine significantly increased
the release of cytochrome c from the mitochondria into
the cytoplasm (Figures 6(c) and 6(d)). Taken together,
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Figure 4: Effect of matrine on the distribution of HL-7702 cells among phases of the cell cycle. (a) Matrine induced cell cycle arrest at
the S phases. (b) Each phase of the cell cycle was shown in a polyline diagram. (c) The expression levels of the correlative proteins were
measured by western blot. β-Actin was used as a loading control. (d) Densitometric analysis was used to quantify these protein-related
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these results indicate that mitochondrial dysfunction is
involved in matrine-induced apoptosis of HL-7702 cells.

3.4. Matrine Induces Cell Cycle Arrest in S Phase of HL-7702
Cells. To confirm the effects of matrine on cell cycle, the
cell cycle distribution of matrine-treated cells was analyzed
by flow cytometry. As shown in Figures 4(a) and 4(b),
exposure of HL-7702 cells to matrine for 48 h resulted in
an obvious increase in S phase cells and a corresponding
decrease in G0/G1 and G2/M phase cells when compared
with untreated cells. Furthermore, treatment with 2 and
4mg/mL matrine for 48 h markedly upregulated the
expression level of p53, p-p53, and p21 protein in a
dose-dependent manner. Cyclin-dependent kinases (CDKs)
complexed with corresponding cyclins were involved in
cell cycle progression [43]. As shown in Figures 4(c) and
4(d), matrine treatment for 48 h led to significant and
concentration-dependent upregulations of the expression
of cyclin E and downregulation of CDK2 and cyclin A
expressions. Together, these results indicate that matrine
induces S phase cell cycle arrest in HL-7702 cells.

3.5. Matrine Regulates the Expression of Apoptosis-Related
Proteins in HL-7702 Cells. As shown in Figure 7, matrine
treatment significantly and concentration-dependently
increased the expressions of Bax, cleaved caspase-3, cas-
pase-8, and caspase-9 but significantly reduced the expres-
sion of Bcl-2. It also significantly promoted the cleavage of
PARP. Furthermore, Figure 7 shows that matrine signifi-
cantly upregulated the expression of Fas, a typical death
receptor. Collectively, these results indicate that activation
of death receptors and mitochondrial-dependent apoptotic
pathways is involved in matrine-induced apoptosis.

3.6. Matrine Inhibits Nrf2 Pathway Activation Associated
with Oxidative Stress. As shown in Figure 8, matrine
significantly and concentration-dependently upregulated
Keap1 expression and downregulated the expressions of
cellular total Nrf2 and the nuclear Nrf2. It also significantly
inhibited the expressions of downstream oxidoreductase
(HO-1 and NQO-1) expression and promoted the formation
of Keap1/Nrf2 protein complex. These results indicate that
the oxidative-antioxidant balance of HL-7702 cells is
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disrupted, leading to inhibition of the Nrf2 pathway, which
corresponds to our previous ROS assay results.

4. Discussion

Matrine is an alkaloid isolated from Sophora flavescens, a
plant used in TCM for the treatment of several diseases. It
possesses a wide range of pharmacological properties. How-
ever, its use in clinical practice is greatly limited due to its
speculated toxic effects. Despite the wide speculation about
its potential adverse effect, the underlying mechanism has
not been fully elucidated.

The results obtained from MTT and LDH assays
showed that matrine had a significant cytotoxic effect on
HL-7702 cells in a concentration- and time-dependent
manner, indicating that it may have hepatotoxicity. Stud-
ies have shown that apoptosis is involved in the patho-
genesis of hepatocyte injury and liver diseases [44, 45].
Therefore, to assess the association between matrine and
apoptosis, the levels of different apoptotic markers in
HL-7702 cells after exposure to graded concentrations of
matrine were determined. The results showed that matrine
induced apoptosis in HL-7702 cells in a concentration-
dependent manner.

In a death receptor-mediated apoptotic pathway, the
activation of downstream caspase-8 in turn activates Fas
ligand (FasL) receptor [46]. Mitochondrial dysfunction
which is characterized by increased mitochondrial mem-
brane permeability is usually accompanied by the release
of several mitochondrial proteins into the cytosol [47].
Cytochrome c is a proapoptotic protein, and its release
activates downstream caspase-dependent apoptosis [48]. It
has been reported that Bcl-2 prevents the release of cyto-
chrome c into the cytosol, and that together with its
homologs, it maintains the integrity of mitochondrial
membrane [49].

In this study, matrine significantly upregulated the
expressions of Fas, cleaved caspase-3, caspase-8, caspase-9,
and PARP and the Bax/Bcl-2 ratio. Meanwhile, matrine sig-
nificantly increased the release of cytochrome c. These results
suggest that matrine may induce apoptosis in HL-7702 cells
via the Fas death receptor-mediated and caspase-dependent
mitochondrial apoptotic pathways. Previous studies have
shown that matrine activates the mitochondrial apoptotic
pathway in esophageal cancer cells [50]. Thus, results
obtained in this study suggest that mitochondrial-initiated
ROS activation may be also involved in matrine-induced cell
death of HL-7702 cells isolated from normal human liver cell
and underlie cellular hepatotoxicity.
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Oxidative stress plays an important role in the pathogen-
esis of diseases [51]. The generation of intracellular ROS is
closely associated with cell apoptosis [52, 53]. ROS-induced
oxidative damage regulates the Bax/Bcl-2 balance, stimulates

mitochondrial membrane depolarization, and releases cyto-
chrome c from mitochondria into the cytosol [54, 55]. In this
study, matrine treatment significantly increased intracellular
ROS level, Bax/Bcl-2 ratio, and cytochrome c release and
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significantly reduced MMP. In addition, the level of MDA
was significantly increased in matrine-treated HL-7702 cells,
an indication that the cells were damaged due to lipid perox-
idation. Intracellular SOD and GSH are natural antioxidants
that scavenge free radicals such as ROS. The results of this
study showed that matrine significantly reduced the antioxi-
dant capacity of HL-7702 cells by decreasing the activity of
SOD and reducing GSH levels. In addition, pretreatment
with NAC effectively blocked matrine-induced apoptosis. It
is likely that matrine induced oxidative damage in HL-7702
cells via the generation of ROS which acted on upstream sig-
naling molecules to trigger cell apoptosis.

It is generally believed that the overproduction of ROS is
key in the activation of mitochondria-induced caspase cas-
cade and that the Nrf2 pathway plays an important role in
the defense mechanism of cells against oxidative damage
[56]. In this study, treatment of HL-7702 cells with matrine
significantly downregulated the expression of cellular total
Nrf2 and the nuclear Nrf2. However, the formation of
Keap1/Nrf2 protein complex was significantly increased by
matrine treatment. These results suggest that matrine may
have suppressed the induction of antioxidant defenses in
HL-7702 cells. It is likely that matrine reduced the antioxi-
dant defense mechanism of HL-7702 cells by targeting the
formation of Keap1/Nrf2 complex. It is also possible that
matrine may have inhibited nuclear translocation of Nrf2,
thereby suppressing downstream antioxidant protein expres-
sion. It is likely that matrine-induced oxidative damage may
be due partly to the inhibition of its Nrf2-mediated antioxi-
dant activities.

There is an association between oxidative stress and DNA
damage [57]. Oxidative damage to DNA due to overproduc-
tion of ROS results in rapid activation of p53 and its accumu-
lation within the nucleus [58, 59]. The p21 protein is an
inhibitor of cyclin-dependent kinases (CDKs) [60, 61]. Cell
cycle is controlled by cyclins, CDKs, and cyclin-dependent
kinase inhibitors (CDKIs). Cyclin A is required for both the
initiation and elongation of DNA in the late G1 and S phases,
while p21 inhibits cyclin A, thereby blocking cell cycle
progression from S to G2/M phase [62, 63]. In this study,
the expressions of cyclin A and CDK2 were significantly
downregulated, while the expressions of p53, p-p53, and
p21 proteins were significantly upregulated. These results
indicate that matrine may arrest cell cycle in the S phase
via activation of p53 expression. It has been reported that
p53 triggers apoptosis via the regulation of expression of
apoptosis-related proteins such as Bcl-2 and Bax [64].
The results of this study indicate that overproduction of
ROS may cause oxidative damage to DNA, which indi-
rectly leads to S phase cell cycle arrest and activation of
mitochondrial-dependent apoptosis pathway.

5. Conclusions

The results obtained in this study show that the hepatotoxic
effect of matrine is exerted via inhibition of Nrf2 pathway,
activation of ROS-mediated mitochondrial apoptosis path-
way, and cell cycle arrest at S phase (Figure 9). Pretreatment
with NAC partially reverses matrine-induced hepatotoxicity.
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