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Abstract. In this paper we propose a novel framework for the detection
and tracking in real-time of unknown object in a video stream. We de-
compose the problem into two separate modules: detection and learning.
The detection module can use multiple keypoint-based methods (ORB,
FREAK, BRISK, SIFT, SURF and more) inside a fallback model, to
correctly localize the object frame by frame exploiting the strengths of
each method. The learning module updates the object model, with a
growing and pruning approach, to account for changes in its appearance
and extracts negative samples to further improve the detector perfor-
mance. To show the effectiveness of the proposed tracking-by-detection
algorithm, we present quantitative results on a number of challenging
sequences where the target object goes through changes of pose, scale
and illumination.

Keywords: Tracking by detection, real-time, keypoint-based methods,
learning, interest points.

1 Introduction

Despite recent innovations, real-time object tracking remains one of the most
challenging problems in a wide range of computer vision applications. The task
of tracking an unknown object in a video can be referred to as long-term track-

ing [13] or model-free tracking [14]. The goal of such systems is to localize the
object (we shall refer to it as target object) in a generic video sequence, given
only the first bounding box that defines the object in the first frame. Tracking
objects is challenging because the system must deal with changes of appear-
ance, illuminations, occlusions, out-of-plane rotations and real-time processing
requirements.

In its simplest form, tracking can be defined as the problem of estimating the
object motion in the image plane. Numerous approaches have been proposed and
they primarily differ the choice of the object representation, that can include: (i)
points, (ii) primitive geometric shapes, (iii) object silhouette, (iiii) skeletal models

and more. For further details, the reader is refereed to [10].
The main challenge of an object tracking system is the difficulty to han-

dle the appearance changes of the target object. The appearance changes can
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be caused by intrinsic changes such as pose, scale and shape variation and by
extrinsic changes such as illumination, camera motion, camera viewpoint, and
occlusions. To model such variability, various approaches have been proposed,
such as: updating a low dimensional subspace representation [15], MIL based
[14] and template or patch based.

Robust algorithms for long-term tracking are generally designed as the union
of different modules: a tracker, that performs object motion analysis; a detector,
that localizes the object when the tracker accumulates errors during run-time
and a learner that updates the object model. A system that uses only a tracker
is prone to failure: when the object is occluded or disappears from the camera
view, the tracker will usually drift. For this reason we choose to design the pro-
posed framework as the union of only two modules: the detector and the learner.
The detector is designed according to a multi-level approach, where multiple
keypoint-based methods can be adopted to correctly localize the object, de-
spite changes of illumination, scale, pose and occlusions, within a fallback model.
The learner updates the training pool used by the detector to account for large
changes in the object appearance. Quantitative evaluations demonstrate the ef-
fectiveness of our approach that can be classified as a “tracking-by-detection”
algorithm, since we track the target object by detecting it frame by frame.

The rest of the paper is organized as follows. Section 2 proposes an outline of
the current keypoint-based methods. Section 3 introduces in detail the proposed
framework (Matrioska): subsection 3.1 and 3.4 analyze the detector and the
learning module, respectively. Section 4 shows experimental results.

2 Overview of Known Keypoint-Based Methods

Numerous new keypoint-based methods have been proposed over the recent years
(also known as local feature-based or interest point-based). The last technique,
to our knowledge, is KAZE [9], published in 2012.

Other methods are (in reverse cronological order): KAZE (2012) operating
completely in a nonlinear scale space [9]; FREAK (2012) inspired by the hu-
man visual system and more precisely by the retina [8]; BRISK (2011) Bi-
nary Robust Invariant Scalable Keypoints [6]; ORB (2011) Oriented FAST
and Rotated BRIEF [4]; ASIFT (2009) fully affine invariant image compari-
son method [7]; SURF (2006) Speeded Up Robust Features [3]; GLOH (2005)
Gradient location-orientation histogram [5]; PCA-SIFT (2004) Principal Com-
ponents Analysis (PCA) to the normalized gradient patch [2]; SIFT (1999)
Scale-Invariant Feature Transform [1].

3 Matrioska

In the next sections we describe our novel framework for object detection and
tracking (belonging to the category of “tracking-by-detection”). First we will de-
scribe the principal components of the proposed detection module: (i) a detector
that uses the information of multiple keypoint-based methods, (ii) a filtering
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stage with a modified Generalized Hough Transform, and (iii) a scale identifi-
cation process. Then we will explain the learning module, based on a growing-
and-pruning approach. Later we will perform quantitative tests to show that,
by using multiple keypoint-based methods, it is possible to achieve both a faster
overall detection time and an improved recall. At this stage, we will disable the
online learning module to only focus on the outcome of the usage of multiple
methods. Then we will enable the online learning module to test Matrioska on
a number of challenging video clips that present strong changes in the object
appearance. Note that we intentionally choose to not apply any motion analysis,
as we only want to focus on the detector and learning components.

Fig. 1. Snapshots from TLD and MILTrack datasets

3.1 Detection: Combining Multiple Keypoint-Based Methods

As shown in section 2, tracking based on keypoint-based methods gets great
interest. The reason for this interest is essentially threefold: (i) they are fast as
they only focus on a sparse set of points and (ii) they are inherently robust to
a series of challenges (changes in illumination, point of view, rotation, scale and
occlusion); (iii) new fast and robust methods are continuously designed.

The development of Matrioska starts from these considerations: we want to
achieve real-time performance at an high degree of robustness. We believe that
the integration (in a multi-level approach) of various keypoint-based methods
represents one of the best ways to achieve these goals. Furthermore, by combining
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in a single framework the results coming from different techniques, we are able
to take advantage of the strengths of each of them, thus increasing the overall
robustness.

Matrioska proceeds as follows:

1. Detection of the keypoints from the nth frame with the first registered
method in the technique pool.

2. K-nearest neighbor search (k-NN) between keypoints (of the same class) of
the training pool.

3. A first outlier filtering process using the NNDR (Nearest Neighbor Dis-
tance Ratio).

4. A second filtering process to discard all matches whose first nearest neighbor
was found on a negative sample.

5. A third, more specific filtering, process is performed with the Generalized

Hough Transform (see section 3.2).
6. The last step involves the scale estimation to accurately draw the bounding

box according to the parameters obtained by the GHT (see section 3.3).

Steps 1-5 are encapsulated in a fallback model : we use the next (higher level)
method only if the previous ones were not able to identify the target object. This
model ensures that only the sufficient keypoint-based methods are used.

3.2 Outliers Filtering

The main drawback of using multiple keypoint-based methods is the fact that
each method will add a considerable amount of new outliers, making the filtering
stage a challenging process. Furthermore, we must operate in real-time, therefore
the filtering process should be as fast as possible.

In this scenario, filtering outliers with well-known fittings methods, such as
RANSAC or LMedS (Least Median of Squares), would not produce good results
since the percentage of inliers can fall much lower than 50%. For this reason, we
employ a filtering process based on the Generalized Hough Transform (GHT)
where each match of keypoints specifies three parameters: 2D object’s center
and orientation. To estimate the target object center we store, for each trained
keypoint, the size of the corresponding training image; therefore, we can project
the center of this image on the current frame with a translation and a rotation.

These parameters are sufficient to localize the object if the scale doesn’t
change during tracking, but this is a strong assumption and generally it doesn’t
stand. To account for scale changes we could use a GHT with four parame-
ters, adding the scale to the previous three parameters, similar to the solution
proposed by D. Lowe [1]. However, this could pose serious limitations on the
keypoint-based methods that Matrioska use, since, to identify the right scale
bin, we need to use the keypoint’s octave in which it was detected. However,
we cannot rely on it because not all the methods implement octave scaling, and
even if they implement it, we tend to fix the number of octaves to one for perfor-
mance reasons. Furthermore, the octave number gives a very broad indication
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because increasing the scale by an octave means doubling the size of the smooth-
ing kernel, whose effect is roughly equivalent to halving the image resolution.
Instead, we want to achieve a higher precision, up to a factor equal to 0.01 of
scale changes.

3.3 Scale Identification

The identification of the current object scale is a crucial step and deserves a
separate section because it is not directly related to the GHT discussed ear-
lier. We want to achieve a stable and accurate method to correctly identify the
scale of the object without relying on the keypoint’s octave. In order to satisfy
these constraints we study the geometric distance between pairs of keypoints:
we compute the ratio between the distance of consecutive pairs of keypoints be-
longing to one training image and the query image. We repeat the process for
each training image having at least two matches. After this process, we obtain
the final object size by calculating the mean of all training image sizes scaled by
the factor found with the ratio of distances. The final size can be obtained with
the following equation:

So =
1
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where

– So and Si are two vectors that represent the width and height. So represents
the size of the object while Si the size of the ith training image.

– N is the number of the training images.
– J is the number of keypoints found on the ith training image.
– P

Q
k and PTi

k are the kth keypoints found on the query image Q and matched
to the training image Ti.

Fig. 2. Consecutive pairs of keypoints belonging to one training image and the query
image, represented here as segments of the same color
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3.4 Learning: Growing and Pruning

The learning component is imperative to solve one of the toughest challenges of
visual tracking: adapting the model to account for changes in the target object
appearance (shape deformation, lighting variation, large variation of pose).

In this section we present the proposed schema aiming to update the model
(the training pool) used by the detection module (section 3.1) to track the object.
Inspired by [15,14,13,11,16] our learning model is an incremental growing and
pruning approach; while tracking the object, we must learn both new positive
and negative samples that will be added to the training pool.

One of the key factors in learning is the choice of the new positive sample: we
must learn a new sample only if the object appearance is undergoing changes.
This will: (i) avoid saturating the training pool with duplicated samples, (ii) add
valuable information to the detection component and (iii) not let the NNDR
discard good matches. To achieve this we must carefully determine the selection
criterion. The proposed criterion to choose a new candidate positive sample S+

c

is a combination of two different conditions: (1) the detection module failed to
detect the object in the previous frame, (2) the current best GHT’s bin has less
than 2V votes. To learn a new positive sample one of these conditions must be
verified. A similar but simpler process is employed for the negative samples: we
learn as negative the keypoints found outside the bounding box when the ratio
between the number of positive keypoints and the negatives exceeds a given
threshold.

Fig. 3. Some of the positive samples that have passed the selection criterion and have
been online learned. The tested video clip is the Carchase dataset from TLD.

4 Experimental Results

Matrioska has been tested on several challenging video sequences from TLD [13]
and MILTrack [14] datasets. The first tests show how the performance change,
adopting different multiple keypoint-based methods. However we only show some
possible combinations because testing all possible configurations would not be
plausible. Furthermore, our aim is to demonstrate that by using multiple meth-
ods in a multi–level approach, it is possible to achieve both a faster overall
detection time and an improved accuracy. At this stage of testing, we disabled
the online learning module to focus only on the relative meaning of multiple
methods.



MATRIOSKA: A Multi-level Approach to Fast Tracking by Learning 425

In other tests we enabled the online learning module to test Matrioska on
a number of challenging video clips that present strong changes in the object
appearance.

In all tests, the only a priori knowledge was the location of the object at the
first frame. Concerning the implementation, our OpenCV C++ single-threaded
implementation runs at 25 FPS on an Intel Core i7-920 with a QVGA video
stream.

To avoid confusion we adopt the same metric in all sequences to evalu-
ate Matrioska performance: precision P = correctDetections/detections, recall
R = correctDetections/trueDetections and f-measure, where correctDetections

represents the number of detection whose overlap with the ground truth bound-
ing box is wider than 25%, if the ground truth is defined. The overlap is defined
as intersection/(GTarea +BBarea − intersection), where GTarea is the area of
the ground truth and BBarea is the area of the bounding box [13].

4.1 Detection with Multiple Methods

For this testing phase we disabled the online learning module to only evaluate
the results of using multiple keypoint-based methods. We tested ORB, BRISK,
FREAK, SURF and SIFT alone on some sequences and then tried different
combinations. Note that our aim is to show the advantage obtained by combining
multiple keypoint-based methods rather than running comparative evaluations
of single methods (such as [17,18,19]).

Table 1. Tiger2 (MILTrack)

Method(s) FPS Recall

ORB 30 0.15

BRISK 20 0.01

FREAK 29 0.23

SURF 6 0.04

SIFT 4 0.05

ORB + FREAK 24 0.38

FREAK + SURF 10 0.37

Table 2. Face occlusion 2 (TLD)

Method(s) FPS Recall

ORB 26 0.44

BRISK 25 0.44

FREAK 27 0.63

SURF 16 0.57

SIFT 9 0.64

FREAK + SURF 21 0.68

FREAK + SIFT 18 0.69

As Tables 1, 2, 3, 4 show, the best results in terms of recall, are obtained
with a combination of two methods. Furthermore, table 2 is indicative of the
contribution given by the fallback model: we obtained a recall of 0.69, halving
the time complexity from 0.11 seconds per frame (9 FPS) required using SIFT
only, to 0.055 seconds (18 FPS) using FREAK + SIFT. This is possible because
SIFT is adopted by Matrioska only when necessary. Table 4 shows an almost
perfect result testing Car dataset (TLD), even without the online learning mod-
ule enabled: this is due to the fact that the target object does not change its
appearance during the sequence and our detector, with a combination of two
methods, is enough to obtain a robust performance.
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Table 3. Motocross (TLD)

Method(s) FPS Recall

ORB 38 0.31

BRISK 24 0.10

FREAK 25 0.05

SURF 9 0.04

SIFT 6 0.05

ORB + SURF 15 0.34

ORB + SIFT 10 0.40

Table 4. Car (TLD)

Method(s) FPS Recall

ORB 28 0.48

BRISK 30 0.23

FREAK 33 0.54

SURF 15 0.48

SIFT 8 0.67

FREAK + SIFT 14 0.95

ORB + FREAK 20 0.87

4.2 Detection and Learning

In this testing phase, we enabled the online learning module of Matrioska to
test our approach against the dataset used by TLD and MILTrack. The gain
in performance compared to the use of the detection module alone is clear in
Table 5. Figure 1 shows snapshots of the tested sequences with examples of
detection. The obtained results are better than other state-of-the-art approaches
[24,22,25,21,15,23,14,13,26].

It must be remarked that: (i) we could carefully choose for each sequence the
most suitable methods to obtain better performance, and we choose to include in
the technique pool only ORB and FREAK techniques, independently from the
tested sequence, (ii) the use of keypoint-based methods forced us to double the
size of the smaller sequence (and relocate the ground truth accordingly), because
when the target object is too small we cannot compute a feature vector for each
keypoint found inside it (e.g. Tiger2 and Coke11), (iii) we slightly enlarged the
first bounding box to be able to detect keypoints near the borders of the target
object.

Table 5. Evaluation of Matrioska with online learning enabled. We provided only the
first object location and algorithm tracked the target object up to the final frame.

Sequence Frames Correct D. / True D. P / R / F-measure

Car (TLD) 945 854 / 860 0.97 / 0.99 / 0.98

Carchase (TLD) 9928 7551 / 8660 0.97 / 0.87 / 0.92

Motocross (TLD) 2665 1357 / 1412 0.84 / 0.96 / 0.90

Pedestrain2 (TLD) 338 260 / 266 0.94 / 0.98 / 0.96

Pedestrain3 (TLD) 184 145 / 156 0.96 / 0.92 / 0.94

Coke11 (MILTrack) 292 59 / 59 1.00 / 1.00 / 1.00

David (MILTrack) 462 93 / 93 1.00 / 1.00 / 1.00

Face occlusion 2 (MILTrack) 816 163 / 163 1.00 / 1.00 / 1.00

Tiger2 (MILTrack) 365 67 / 73 0.93 / 0.91 / 0.92

Sylverster (MILTrack) 1345 269 / 269 1.00 / 1.00 / 1.00
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5 Concluding Remarks

The paper reports a novel framework based on a multi-level approach to address
the problem of tracking an unknown object in a video sequence. We used a com-
bination of two modules: (i) a detector that, using keypoint-based methods, can
identify an object in presence of illumination, scale, rotation and other changes,
and (ii) a learning module that updates the object model to account for large
variations of the target appearance. Several tests validated this approach and
showed its efficiency. In most cases, we obtained comparable, if not better, re-
sults to the current state-of-the-art approaches using only two components (a
detector and a learning module).

The integration of a tracker could provide even better overall results, even
though with higher computational cost. Instead, to fully exploit the Matrioska
framework capabilities, we advice to develop a series of new (keypoint-based)
techniques, each based on the analysis of a particular feature (color, shape and
more) to obtain fast and simple techniques if used individually, but robust when
used together. These techniques, within a fallback model, would ensure also a
low computational complexity, as only the sufficient features would be used for
the correct detection of the object.
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