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Abstract 

MATRIX is a novel, coarse-grain, reconfigurable com- 
puting architecture which supports confgurable instruction 
distribution. Device resources are allocated to control- 
ling and describing the computation on a per task basis. 
Application-specific regularity allows us to compress the 
resources allocated to instruction control and distribution, 
in many situations yielding more resources for datapaths 
and computations. The adaptability is made possible by 
a multi-level configuration scheme, a unified configurable 
network supporting both datapaths and instruction distri- 
bution, and a coarse-grained building block which can 
serve as an instruction store, a memory element, or a com- 
putational element. In a 0.5,~ CMOS process, the 8-bit 
functional unit at the heart of the MATRIX architecture has 
a footprint of roughly 1.5mmx 1.2mm, making single dies 
with over a hundred function units practical today. At this 
process point, IOOMHz operation is easily achievable, al- 
lowing MATRIX components to deliver on the order of 10 
Goph (8-bit ops). 

1 Introduction and Motivation 

General-purpose computing architectures must address 

1. How are general-purpose processing resources con- 

2. How much area is dedicated to holding the instructions 

two important questions: 

trolled? 

which control these resources? 

There are many, different possible answers to these ques- 
tions and the answers, in large part, distinguish the various 
general-purpose architectures with which we are familiar 
(e.g. word-wide uniprocessor,j, SIMD, MIMD, VLIW, 
FPGA, reconfigurable ALUs). The answers also play a 
large role in determining the efficiency with which the ar- 
chitecture can handle various applications;. We have de- 
veloped a novel reconfigurable device architecture which 
allows these questions to be answered by the application 
rather than by the device architect. 

Most of the area on a modern microprocessor goes into 
storing data and instructions ancl into control circuitry. All 
this area is dedicated to allowing computational tasks to 
heavily reuse the small, active portion of the silicon, the 
ALUs. Consequently, very little of the capacity inherent 
in a processor gets applied to the problem - most of it 
goes into supporting a large operational diversity. Further, 
the rigid word-SIMD ALU instructions coupled with wide 
processor words make processcrs relatively inefficient at 
processing bit or byte-level data 

Conventional Field Programmable Gate Arrays (FP- 
GAS) allow finer granularity control over operation and 
dedicate minimal area to instruction distribution. Conse- 
quently, they can deliver more computations per unit sili- 
con than processors on a wide range of regular operations. 
However, the lack of resources for instruction distribution 
make them efficient only when the functional diversity is 
low - i.e. when the same operation is required repeatedly 
and that entire operation can be fit spatially onto the FPGA 
or FPGAs in the system. 

Dynamically Programmable Gate Arrayis (DPGAs) [ 141 
[7] dedicate a modest amount oj' on-chip area to store ad- 
ditional instructions allowing thcm to support higher oper- 
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ation diversity than traditional FPGAs. The area necessary 
to support this diversity must be dedicated at fabrication 
time and consumes area whether or not the additional di- 
versity is required. The amount of diversity supported - 
i.e. the number of instructions - is also fixed at fabrica- 
tion time. Further, when regular datapath operations are 
required many instruction stores will be programmed with 
the same data. 

Rather than separate the resources for instruction stor- 
age and distribution from the resources for data storage 
and computation and dedicate silicon resources to them at 
fabrication time, the MATRIX architecture unifies these re- 
sources. Once unified, traditional instruction and control 
resources are decomposed along with computing resources 
and can be deployed in an application-specific manner. 
Chip capacity can be deployed to support active compu- 
tation or to control reuse of computational resources de- 
pending on the needs of the application and the available 
hardware resources. 

In this paper we introduce the MATRIX architecture. 
The following section (Section 2) provides an overview 
of the basic architecture. In Section 3 ,  we show usage 
examples to illustrate the architecture’s flexibility in adapt- 
ing to varying application characteristics. Section 4 puts 
MATRIX in context with some of its closest cousins. We 
comment on MATRIX’S granularity in Section 5. In Sec- 
tion 6, we highlight implementation characteristics from 
our first prototype. Section 7 concludes by reviewing the 
key aspects of the MATRIX architecture. 

2 Architecture 

MATRIX is composed of an array of identical, 8-bit 
functional units overlayed with a configurable network. 
Each functional unit contains a 256x 8-bit memory, an 8- 
bit ALU and multiply unit, and reduction control logic 
including a 20 x 8 NOR plane. The network is hierarchical 
supporting three levels of interconnect. Functional unit 
port inputs and non-local network lines can be statically 
configured or dynamically switched. 

2.1 BFU 

The Basic Functional Unit (BFU) is shown in Figure 1. 
The BFU contains three major components: 

0 256 x 8 memory - the memory can function either as 
a single 256-byte memory or as a dud-ported, 128 x 8- 
bit memory in register-file mode. In register-file mode 

Neighborhood 

t 
Neighborhood 
Comp/Reduce Floating Port I Floatin Port I1 

I I F 

BFU Output 

Figure 2: BFU Control Logic 

the memory supports two reads and one write opera- 
tion on each cycle. 

8-bit ALU - the ALU supports the standard set of 
arithmetic and logic functions including NAND, NOR, 
XOR, shift, and add. With optional input inversion, 
this extends to include OR, AND, XNOR, and subtract. 
A configurable carry chain between adjacent ALUs 
allow cascading of ALUs to perform wide-word op- 
erations. The ALU also includes an 8 x 8 multiply- 
add-add operation; the multiply operation takes two 
operating cycles to complete producing the low 8 bits 
of the product on the first cycle and the high 8 bits on 
the second cycle. 

Control Logic - the control logic is composed of  (1) 
a local pattern matcher for generating local control 
from the ALU output (Figure 2 Left), (2) a reduction 
network for generating local control (Figure 2 Mid- 
dle), and (3) a 20-input, 8-output NOR block which 
can serve as half of a PLA (Figure 2 Right). 

MATRIX operation is pipelined at the BFU level with a 
pipeline register at each BFU input port. A single pipeline 
stage includes: 

1. Memory read 
2. ALU operation 
3. memory write and local interconnect traversal - these 

two operations proceed in parallel 

The BFU can serve in any of several roles: 

0 I-store - Instruction memory for controlling ALU, 

0 Data Memory - R e a m r i t e  memory for holding data 
0 RF+ALU slice - Byte slice of a register-file-ALU com- 

memory, or interconnect functions 

bination 
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Figure 1: MATRIX BFU 

0 ALU function - Independent ALU function 

The BFU’s versatility allows each unit to be deployed as 
part of a computational datapath or as part of the memory 
or control circuitry in a design. 

2.2 Network 

1. 

G! 
0 

h 

z, 
v 

FPout The MATRIX network is a hierarchical collection of 
8-bit busses. The interconnect distribution resembles tra- 
ditional FPGA interconnect. Unlike traditional FPGA in- Control Bit 

terconnect, MATRIX has the option to dynamically switch 
network connections. The network includes: 

Nearest Neighbor Connection (Figure 3 Left) - A 
direct network connection is provided between the 
BFUs within two manhattan grid squares. Results 
transmitted over local interconnect are available for 
consumption on the following clock cycle. 

Length Four Bypass Connection (Figure 3 Right) - 
Each BFU supports two connections into the level two 
network. The level two network allows corner turns, 
local fanout, medium distance interconnect, and some 
data shifting and retiming. Travel on the level two 
network may add as few as one pipeline delay stage 
between producer and consumer for every three level 
two switches included in the path. Each level two 
switch may add a pipeline delay stage if necessary for 
data retiming. 

Confiigiration Confi&ration 
Word A Word B 

Figure 4: BFU Port Architecture 

3. Global Lines - Every row and column supports four 
interconnect lines which span the entire row or col- 
umn. Travel on a global Lie  adds one pipeline stage 
between producer and consumer. 

2.3 Port Architecture 

The MATRIX port configurat !on is one of the keys to the 
architecture’s flexibility. Figure 4 shows the composition 
of the BFU network and data ports. Each port can be 
configured in one of three major modes: 
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Length Four Bypass Interconnect 

Nearest Neighbor Interconnect 

Figure 3: MATRIX Network 

1. Static Value Mode - The value stored in the port 
configuration word is used as a static value driven into 
the port. This is useful for driving constant data or 
instructions into a BFU. BFUs configured simply as 
I-Stores or memories will have their ALU function 
port statically set to flow through. BFUs operating in 
a systolic array might also have their ALU function 
port set to the desired operation. 

2. Static Source Mode - The value stored in the port 
configuration word is used to statically select the net- 
work bus providing data for the appropriate port. This 
configuration is useful in wiring static control or dat- 
apaths. Static port configuration is typical of FPGA 
interconnect. 

3. Dynamic Source Mode - The value stored in the port 
configuration word is ignored. Instead the output of 
the associated floating port (see Figure 1) controls the 
input source on a cycle-by-cycle basis. This is useful 
when datapath sources need to switch during normal 
operation. For example, during arelaxation algorithm, 
a BFU might need to alternately take input from each 
of its neighbors. 

The floating port and function ports are configured sim- 
ilarly, but only support the static value and static source 
modes. 

3 Usage 

For illustrative purposes, let us consider various con- 
volution implementations on MATRIX. Our convolution 
task is as follows: Given a set of IC weights (w1, w2, . . . 
wk} and a sequence of samples (21, 22,. . .}, compute a 
sequence of results { y1, y2,. . . } according to: 

gz = w1 . zz + w2 9 z i t ]  + ” ’  + W k .  X i t k - 1  (1) 

Systolic Figure 5 shows an eight-weight ( I C  = 8) convo- 
lution of 8-bit samples accumulating a 16-bit result value. 
The top row simply carries sample values through the sys- 
tolic pipeline. The middle row performs an 8 x 8 multiply 
against the constants weights, w’s, producing a 16-bit re- 
sult. The multiply operation is the rate limiter in this task 
requiring two cycles to produce each 16-bit result. The 
lower two rows accumulate yi results. In this case, all 
datapaths (shown with arrows in the diagram) are wired 
using static source mode (Figure 4). The constant weights 
are configured as static value sources to the multiplier cells. 
Add operations are configured for carry chaining to perform 
the required 16-bit add operation. For a k-weight filter, this 
arrangement requires 4k cells and produces one result ev- 
ery 2 cycles, completing, on average, $ 8 x 8 multiplies and 
$ 16-bit adds per cycle. 

In practice, we can: 

1. Use the horizontal level-two bypass lines for pipelin- 
ing the inputs, removing the need for the top row 
of BFUs simply to carry sample values through the 
pipeline. 
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2. 

3. 
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Figure 5: Systolic Convolution Implementation 

Use both the horizontal and vertical level-two by- 
pass lines to retime the data flowing through the add 
pipeline so that only a single BFU adder is needed per 
filter tap stage. 

Use three I-stores and a program counter (PC) to 
control the operation of the multiply and add BFUs, 
as well as the advance of samples along the sample 
pipeline. 

I%-weight filter can be implemented with only 2k + 4 
cells in practice. 

Microcoded Figure 6 shows a microcoded convolution 
implementation. The k coefficient weights are stored in the 
ALU register-file memory in registers 1 through k and the 
last k samples are stored in a ring buffer constructed from 
registers 65 through 64 + k. Six other memory location 
(Rs, Rsp, Rw, Rwp, R1, and Rh) are used to hold values 
during the computation. The ALU’s A and B ports are 
set to dynamic source mode. I-store memories are used to 
drive the values controlling the source of the A and B input 
(two I,,, memories), the values fed into the A and B inputs 
(Iu,&), the memory function ( I m j )  and the ALU function 
(Iulu). The PC is a BFU setup to increment its output value 
or load an address from its associated memory. 

The implementation requires 8 BFUs and produces a 
new 16-bit result every 86 + 9 cycles. The result is output 
over two cycles on the ALU’s output bus. The number 
of weights supported is limited to k 5 61 by the space in 
the ALU’s memory. Longer convolutions (larger IC) can 
be supported by deploying additional memories to hold 
sample and coefficient values. 

Custom VLIW (Horizontal Microcode) Figure 7 shows 
a VLIW-style implementation of the convolution operation 

that includes application-specific dataflow. The sample 
pointer (Xptr) and the coefficient pointer (Wptr) are each 
given a BFU, and separate ALlJs are used for the multiply 
operation and the summing add operation. This configura- 
tion allows the inner loop to consist of only two operations, 
the two-cycle multiply in parallel with the low and high 
byte additions. Pointer increments are also performed in 
parallel. Most of the I-stores wed in this design only con- 
tain a couple of distinct instructions. With clever use of 
the control PLA and configuration words, the number of 
I-stores can be cut in half making this implementation no 
more costly than the microcoded implementation. 

As shown, the implementation requires 11 BFUs and 
produces a new 16-bit result every 2k + 1 (cycles. As in the 
microcoded example the result is output over two cycles on 
the ALU output bus. The number of weights supported is 
limited to k 5 64 by the space in the ALU’s memory. 

VLIW/MSIMD Figure 8 shows a Multiple- 
SIMDNLIW hybrid implementation based on the control 
structure from the VLIW implementation. As shown in 
the figure, six separate convolutions are performed simul- 
taneously sharing the same VLIW control developed to 
perform a single convolution, amortizing the cost of the 
control overhead. To exploit shared control in this manner, 
the sample data streams must rcceke data at the same rate 
in lock step. 

When sample rates differ, separate cointrol may be re- 
quired for each different rate. ‘This amounts to replicating 
the VLIW control section for each data stream. In the ex- 
treme of one control unit per data stream, ‘we would have a 
VLIWMIMD implementation. Between the two extremes, 
we have VLIWMSIMD hybrids with varying numbers of 
control streams according to the application requirements. 
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Label ALU Op PC 
newsample Rxp +- Rxp + 1 ; Match (k + 1) (6 bits) 

< Rxu > t new x, 
BNE xpcontl 
(pipelined branch slot) 

Xptr++ MOD k I 64 Wptr tO,  Match false BNE nextsample x -continue 
output Xptr output Wptr (pipeline branch slot) < Xptr > +- new xc 

x i  
(8 bit) 

Rlow t Rlow + MPY-result 
Rhigh t Rhigh + MPY-result 

Rxp t 65 
< Rxp > + new x, 
Rs t < Rxp > 
Rwp t 1 
R w t < R w p >  
Rs t Rs x Rw 
Rw t x -continue 
R1 t Rs; Match false 

xpcontl 

. .  

BNE enterlooo 
Rh t Rw 
Rs t Rs x Rw 
Rw t x-continue 
R1 t R s + R l  
Rh t Rw +-continue Rh 
Rxp t Rxp + 1 ; Match (k + 1) (6 bits) 
Rs + < Rxp > 
Rxp + 65 
Rs t < Rxp > 
Rwp +- Rwp + 1 ; Match (IC + 1) (6 bits) 
R w t < R w p >  (pipelined branch slot) 

read Rh (oioelined branch slot) 

(pipelined branch slot) 
innerloop 

enterloop BNE xpcont2 
(pipelined branch slot) 

xpcont2 

last read RI ; Match false BNE newsample 

BNE innerloop 

Figure 6: Microcoded Convolution Implementation 

(16 bits output 
over 2 cycles) 

Boxed values in last are the pair of yi output bytes at the end of each convolution. 

Figure 7: Custom VLIW Convolution Implementation 
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X l i  x2i x3i X4i x5i ~6 i 
I I I I I I 

Figure 8: VLIWNSIMD Convolution Implementation 

Comments Of course, many variations on these themes 
are possible. The power of the MATRIX architecture is its 
ability to deploy resources for control based on application 
regularity, throughput requirements, and space available. 
In contrast, traditional microprocessors, VLIW, or SIMD 
machines fix the assignment of control resources, memory, 
and datapath flow at fabrication time, while traditional pro- 
grammable logic does not support the high-speed reuse of 
functional units to perform different functions. 

4 Relation to Existing Computing Devices 

Owing to the coarse-grain configurability, the most 
closely related architectures are PADDI [4], PADDI-2 [ 151, 
and PMEL's vDSP [6]. PADDI has 16-bit functional units 
with an 8-word deep instruction memory per processing 
element. A chip-wide instruction pointer is broadcast on 
a cycle-by-cycle basis giving PADDI a distinctly VLIW 
control structure. From what little public information is 
available, the vDSP appears to have a similar VLIW con- 
trol structure with 4 contexts and 8-bit wide functional 
units. PADDI-2 also supports 8 distinct instructions per 
processing element but dispenses with the global instruc- 
tion pointer, implementing a dataflow-MIMD control struc- 
ture instead. While the MATRIX BFU is similar in func- 
tional composition to these devices, MATRIX is unique 
in  control flexibility, allowing the control structure, be it 
SIMD, VLIW, MIMD, systolic, or a hybrid structure, to be 
customized on a per application basis. 

Dharma [l] ,  DPGA [14], arid VEGA [9] demonstrate 
various fixed design points with dedicated (context memory 
for reusing the computing and interconnect resources in 
fine-grained programmable arrays. Dharma has a rigid de- 
composition of resources into computatioinal phases. The 
DPGA provides a more flexible multicontext implementa- 
tion with a small context memory (e.g. 4 in the prototype). 
At the other end of the spectrum, VEGA has 2048 context 
memory words. The differences in these devices exhibit 
the tension associated with making a pre-fabrication par- 
titioning and assignment of resources between instruction 
memory, data memory, and active computing resources. 
While necessarily granular in nature, MATRIX allows the 
resource assignment to be made on a per alpplication basis. 

The proposed DP-FPGA [5] controls multiple FPGA 
LUTs or interconnect primitives with a single instruction. 
However, the assignment of inst ructions to functional units, 
and hence the width of the datapath of identically controlled 
elements is fixed at fabrication time. MATRIX allows a 
single control memory to control multiple functional units 
simultaneously in a configurable-SIMD fashion. This pro- 
vides a form of instruction memory compression not pos- 
sible when instruction and compute resources have fixed 
pairings. 

As seen in Section 3, MATRIX can be configured to 
operate in VLIW, SIMD, and MSIMD fashion. Unlike tra- 
ditional devices, the arrangement of units, dataflow, and 
control can be customized to the application. In the SIMD 
cases, MATRIX allows the construction of the master con- 
trol and reduction networks out of the same pool of re- 
sources as array logic, avoiding, the need for fixed control 
logic on each chip or an off-chip array controller. Like 
MSIMD (e.g. [3, 111) or MIMI) multigauge [ 131 designs, 
the array can be broken into unil s operating on different in- 
structions. Synchronization between the separate functions 
can be lock-step VLIW, like the convolution example, or 
completely orthogonal depending on the aipplication. Un- 
like traditional MSIMD or multigauge designs, the control 
processors and array processors are built out of the same 
building block resources and networking. Consequently, 
more array resources are availatde as less control resources 
are used. 

To handle mixed granularity data efficiently, a number 
of architectures have been proposed or built which have 
segmentable datapaths (e.g. [ 131 [2]). 'These generally 
exhibit SIMD instruction control for the datapath, but can 
be reconfigured to treat the n bit datapath as I%, ;-bit words, 
for certain, restricted, values of IC. Modern multimedia 
processors (e.g. [ 121 [SI) allow i he datapatlh to be treated as 
a collection of 8, 16,32, or 64 bit words. MATRIX handles 
mixed or varying granularities by composing BFUs and 
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deploying instruction control. Since the datapath size and 
assignment of control resources is not fixed for a MATRIX 
component, MATRIX has greater flexibility to match the 
datapath composition and granularity to the needs of the 
application. 

The LIFE [ 101 VLIW architecture was designed to al- 
low easy synthesis of function-specific micro-programmed 
architectures. The number and type of the functional units 
can be varied prior to fabrication. The control structure and 
resources in the architecture remain fixed. MATRIX allows 
the function-specific composition of micro-programmed 
functional units, but does not fix control or resource al- 
location prior to fabrication time. 

Reviewing the microcoded example in Section 3, we 
can see both how microprocessors manage to achieve more 
functional diversity than FPGAs and how FPGAs and 
other reconfigurable architectures can achieve higher per- 
formance than processors on highly repetitive computing 
tasks with limited functional diversity. In order to sup- 
port heavy reuse of a functional unit, a considerable frac- 
tion of the resources must go into controlling the functions 
and datapaths including the memory to hold programs and 
data, as we see in the microcoded example. This is one 
of the primary reasons that the performance provided by 
microprocessors is small compared to their reconfigurable 
counterparts - most of the device capacity in micropro- 
cessors is dedicated to memory and control not to active 
computation required by the task. Furthermore, in cases 
such as this one, most of the cycles on the active resources 
are dedicated to control and bookkeeping. 

Table 1 presents an instruction stream taxonomy for 
multiple data computing devices. Owing to their fixed 
instruction control structure, all traditional computing de- 
vices can be categorized in this taxonomy. MATRIX is 
unique in that its multi-level configuration allows it, post 
fabrication, to implement any of these structures and many 
hybrids. Independent of an application configuration, MA- 
TRIX defies strict classification based on the number of 
instructions and threads of control. 

0 

1 

n 

Instructions 

n/a Hardwired Functional Unit Group 
ArchitectureJExamples 

(e.g. ECC/EDC unit, FP MPY, 
hardware systolic) 

n FPGA, Programmable Systolic Array 
1 SIMD 
n VLIW, PADDI, DPGA 
n MIMD (traditional), PADDI-2 

Table 1: Taxonomy for Fixed Instruction Distribution Ar- 
chitectures 

Technology 0.5 ,~  CMOS 
BFU Size 1.5" x 1.2" 

Data Width 8-bit 
Memory 256x8 
Cycle 10 ns (estimate) 

(1.8mm2 M 29MX2) 

Figure 9: MATRIX BFU Composition 

completely subsume bit-granularity reconfigurable devices 
for irregular, fine-grained operations. 

5 Granularity 
6 Implementation 

The 8-bit granularity used in MATRIX is a convenient 
size for use in datapaths, memory addressing, and control. 
Using the configurable instruction distribution, wide-word 
operations can be cascaded with reasonable efficiency. The 
overhead for configuring and controlling datapaths is sig- 
nificantly reduced compared to a bit-level network config- 
uration. Owing to the 8-bit granularity, MATRIX will not 

Figure 9 shows the composition of a BFU along with its 
size and performance. As described in Section 2, the BFU 
is pipelined at the BFU level allowing high speed imple- 
mentation. The 10 ns cycle estimate is for the university 
prototype. With only a small memory read, an ALU oper- 
ation, and local network distribution, the basic cycle rate 
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can be quite small - at least comparable to microprocessor 
clock rates. The area breakdown is roughly: 50% network, 
30% memory, 12% control, and 8% ALU including the 
multiplier. At 1.8mm2, 100 BFUs fit on a 17mmx 14" 
die. A 100 BFU MATRIX device operating at lOOMHz 
has a peak performance of 1O'O 8-bit operations per cycle 
(10 Gop/s). 

The result is a general-purpose, reconfigurable computing 
architecture which robustly yiel ds high-pei:formance across 
a wide range of computational ]:asks. 

Acknowledgments: 

7 Conclusions 

Traditional computing devices are configured for an ap- 
plication by their instruction stream. However, the compo- 
sition of their instruction stream and the resources it occu- 
pies cannot be tailored to the application. With amulti-level 
configuration scheme, MATRIX allows the application to 
control the division of resources between computation and 
control. In the process, MATRIX allows the application to 
determine the specifics of the instruction stream. Conse- 
quently, MATRIX to provide: 

0 Parallel, Configurable Dataflow - Datapaths can be 
wired up in an application-specific manner avoiding 
serialization of data transfer through memory or global 
busses. Results can often be delivered directly to their 
consumers avoiding intermediate operations to route 
data. 

0 As much Dynamic Control as Needed -Values, oper- 
ations, and switches which need to change on a cycle- 
by-cycle basis may be controlled by deploying memory 
or functional blocks for their control. Values and enti- 
ties which do not need to change during a computation 
require the deployment of no additional resources for 
their control. 

0 As much Regularity as Exploitable- A single instruc- 
tion may control as many or as few distinct functional 
units as the task merits. 
Deployable Resources - Each BFU can serve as data 
memory, datapath ALU, control logic, or instruction 
memory. This allows each application to allocate avail- 
able resources according to its characteristics. Regular 
operations may dedicate most BFUs to datapath logic, 
while irregular and spatially limited applications may 
dedicate most BFUs to control. 

0 Instruction Stream Compression - Application- 
specific tailoring of datapaths and instruction distribu- 
tion exploits application structure to reduce the size of 
the delivered instruction stream. Most notably, when an 
operation does not change from cycle-to-cycle it does 
not require broadcast, and when the same operation oc- 

need be broadcast. 
curs at multiple computational sites, only a single copy 
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