
Matrix-based Dynamic Updating Rough Fuzzy Approximationsfor Data
Mining✩

Yanyong Huanga, Tianrui Lia,∗, Chuan Luob, Hamido Fujitac, Shi-jinn Hornga

aSchool of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
bCollege of Computer Science, Sichuan University, Chengdu 610065, China

cFaculty of Software and Information Science, Iwate Prefectural University, 020-0693, Iwate, Japan

Abstract

In a dynamic environment, the data collected from real applications varies not only with the amount of objects but
also with the number of features, which will result in continuous change of knowledge over time. The static methods
of updating knowledge need to recompute from scratch when new data are added every time. This makes it potentially
very time-consuming to update knowledge, especially as thedataset grows dramatically. Calculation of approxima-
tions is one of main mining tasks in rough set theory, like frequent pattern mining in association rules. Considering
the fuzzy descriptions of decision states in the universe under fuzzy environment, this paper aims to provide an ef-
ficient approach for computing rough approximations of fuzzy concepts in dynamic fuzzy decision systems (FDS)
with simultaneous variation of objects and features. We firstly present a matrix-based representation of rough fuzzy
approximations by a Boolean matrix associated with a matrixoperator in FDS. While adding the objects and features
concurrently, incremental mechanisms for updating rough fuzzy approximations are introduced, and the correspond-
ing matrix-based dynamic algorithm is developed. Unlike the static method of computing approximations by updating
the whole relation matrix, our new approach partitions it into sub-matrices and updates each sub-matrix locally by
utilizing the previous matrix information and the interactive information of each sub-matrix to avoid unnecessary cal-
culations. Experimental results on six UCI datasets shown that the proposed dynamic algorithm achieves significantly
higher efficiency than the static algorithm and the combination of two reference incremental algorithms.

Keywords: Rough fuzzy set, Incremental learning, Matrix, Rough approximations.

1. Introduction

Rough Set Theory (RST) proposed by Pawlak in 1982 [1] is an efficient tool for mining knowledge from the data
with uncertainty and imprecision information. Since RST based data analysis does not need any extra information
about data, knowledge discovered from the data will be more objective. Nowadays, RST has been successfully applied
in many fields, such as artificial intelligence [2, 3], data mining [4, 5], intelligent information processing [6, 7] and so
forth.

Although the Pawlak’s RST is an effective tool for dealing with the data in which the condition attributes are sym-
bolic and decision attributes are crisp, it is difficult to process the data with real attribute values or the fuzzy decision
values, which exist in many real applications, such as the disease diagnosis data [8], spacial data [9], microarray data
[10]. Rough fuzzy set and fuzzy rough set were presented by Dubois et al. [11] to deal with the coarseness and fuzzi-
ness in a fuzzy environment [12, 13]. Due to the advantage of integrating two uncertainties (roughness and vagueness),
these two models have been widely applied for various applications (e.g., attribute reduction [14], rule induction [15],
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formal concept analysis [16], clustering [17], robust classifies [18], etc). When the condition attributes are nominal
and decision attributes are fuzzy, rough fuzzy set depicts the fuzzy concept by lower and upper approximations in
a crisp approximation space. Yang et al. extended rough fuzzy set to deal with interval-valued data based on the
α-dominance relation and investigated the corresponding algorithms of attribute reduction and rule induction [19].
Sun et al. constructed the decision-theoretic rough fuzzy set by combining the probability and fuzziness in a fuzzy
decision system (FDS) and proposed an approach for selecting probability parameters based on decision-making risk
[20]. Li et al. integrated rough fuzzy set with two universesof discourse based on covering, tolerance, dominance
and equivalence relations, respectively [21]. Huang et al.combined rough set and fuzzy set for discovering the inher-
ent relationships among documents with different languages [22]. Petrosino et al. developed an image compression
algorithm by coding and decoding the image in terms of rough fuzzy approximations [23].

In real-life applications, the data are often not static, but evolve over time. The characteristics of the evolving
data can be simply summarized as three scenarios,i.e., the objects are inserted or removed, the attributes are added or
deleted and the attribute values are revised. For example, in an electronic health records system, new patients’ records
are added or outdated records are deleted, new disease features (attributes) become available due to the appearance
of new medical devices or irrelevant disease features are removed, and the feature values may be revised because
of the incorrect inputs. Correspondingly, dynamically updating the data will result in the changes of knowledge
discovered from data. Traditional static methods retrain the whole model on the entire updated data, which make it
too time-consuming to immediate decision making or predicting, etc. Incremental learning is an efficient method to
improve the effectiveness of data mining models and algorithms by means of the previous accumulated knowledge
and the newly updated data [24]. It has been widely employed in RST under the dynamic environment with three
different data updating scenarios [25, 26, 27]. With the variation of objects, based on information entropy, Liang et
al. presented an incremental attribute reduction approachwith the insertion of a group objects [28]. Huang et al.
proposed an incremental rule induction algorithm which canguarantee that the extracted rules were complete and no
duplicate [29]. Zeng et al. investigated the incremental mechanisms of computing rough fuzzy approximations [30].
With the variation of attributes, Wang et al. presented an incremental feature selection method based on three different
entropy measures [31]. Chen et al. presented two incremental methods for computing rough fuzzy approximations
based on the boundary set and the cut set, respectively [32].Yang et al. investigated an incremental approach for
computing multigranulation rough approximations [33]. With the change of attribute values, Luo et al. developed a
dynamic approach based on matrix for updating rough approximations in the set-valued decision systems [34]. Cai et
al. designed a fast attribute reduction algorithm in the covering decision information systems [35]. However, the data
may vary in the form of multi-dimensions in real-life situations, i.e., objects, attributes and attribute values will vary
simultaneously. Chen et al. investigated the incremental updating approximations based on decision-theoretic rough
set when both the objects and attributes increase over time [36]. But the approach suffers the limitation of handling
the fuzzy set. As the fuzzy information universally exist inthe real applications, we investigate the incremental
mechanisms of rough approximations with respect to the fuzzy concept set under the simultaneous change of objects
and attributes in this paper.

Matrix is advantageous in that it is intuitional and simple for knowledge representation and reasoning in RST
[37, 38, 39]. Wang et al. presented characteristic and Boolean matrices for illustrating covering approximations
[40]. Zhang et al. developed a parallel method of computing composite rough approximation based on Boolean
matrices [41]. Ma presented the matrix presentations of approximations of two fuzzy covering rough set models
[42]. However, these matrix approaches could not be directly utilized for the computation of approximations in rough
fuzzy set model. To address this limitation, we present a novel matrix operation for the construction of rough fuzzy
approximations, and further develop incremental mechanisms based on matrix for maintenance of approximations
when objects and attributes are added simultaneously in FDS. Specifically, the whole relation matrix is divided into
four parts for updating each sub-matrix conveniently. Eachmain diagonal block matrix is partly updated according
to the previous matrix information. The counter-diagonal matrices are updated by the interactive information of two
main diagonal matrices and the related properties of relation matrix. Finally, experimental results on six UCI data sets
show that the proposed dynamic algorithm can achieve betterperformance than the static algorithm and the combined
algorithm by integrating two reference incremental algorithms with the single-dimensional variation of FDS.

The remainder of this paper is organized as follows. Section2 introduces some basic concepts of FDS and rough
fuzzy set model. Section 3 presents a matrix-based method for constructing rough fuzzy approximations. Section
4 presents incremental mechanisms for updating rough fuzzyapproximations when the objects and attributes vary
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simultaneously, and an illustrative example is employed toshow the effectiveness of the proposed method. Section
5 develops and analyzes the static and dynamic algorithms when the objects and attributes are added simultaneously.
In Section 6, comparative experiments are designed for validating the efficiency of the proposed dynamic algorithm.
Finally, the paper ends with conclusions and further research topics in Section 7.

2. Preliminaries

In this section, we will introduce the basic concepts of FDS and rough fuzzy set [1, 11].

Definition 1. An FDS is 4-tuple S= 〈U,C ∪ D,V, f 〉, where U= {xi |i ∈ {1, 2, . . . , n}} is a non-empty finite set of
objects, called the universe; C is a non-empty finite set of condition attributes and D is a non-empty finite set of fuzzy
decision attributes, C∩ D = ∅; V = VC ∪ VD, where V is the domain of all attributes, VC is the domain of condition
attributes and VD is the domain of decision attributes; f is an information function from U× (C ∪ D) to V such that
f : U ×C→ VC, f : U × D→ [0, 1].

The rough fuzzy set model was presented by Dubois and Prade toprocess the fuzzy concepts in a crisp approxi-
mation space [11].

Definition 2. Let S = 〈U,C ∪ D,V, f 〉 be an FDS and A⊆ C. d̃ is a fuzzy subset on D, wherẽd(x) (x ∈ U) denotes
the degree of membership with respect to x ind̃. The lower and upper approximations ofd̃ are a pair of fuzzy sets on
D in terms of the equivalence relation RA, and their membership functions are defined as follows:

RAd̃(x) = in f {d̃(y)|y ∈ [x]RA}

RAd̃(x) = sup{d̃(y)|y ∈ [x]RA}
(1)

where RA = {(x, y) ∈ U × U | f (x, a) = f (y, a),∀a ∈ A}, [x]RA = {y ∈ U |xRAy} denotes the equivalence class of x.

Example 1. Table 1 illustrates a medical diagnosis FDS, S= 〈U,C∪D,V, f 〉, where U= {xi |i ∈ {1, 2, . . . , 10}} denotes
the patients, the condition attributes set C= {headache,muscle pain, sore throat, temperature} = {c1, c2, c3, c4}, the
fuzzy decision attributes set D= {Flu,No Flu}. The domain Vc1 = {no,moderate, heavy} , {0, 1, 2}, Vc2 = Vc3 = Vc4 =

{no, yes} , {0, 1}.
Set A= {c1, c2} ⊂ C. The universe U can be partitioned according to the equivalence relation RA: U/RA =

{{x1, x3, x4}, {x2, x5, x7, x9, x10}, {x6, x8}}. Let d̃ denote the Flu. Then the degrees of membership can be computed
according to Definition 2:

RAd̃(x1) = RAd̃(x3) = RAd̃(x4) = 0.8∧ 1∧ 0.7 = 0.7;

RAd̃(x2) = RAd̃(x5) = RAd̃(x7) = RAd̃(x9) = RAd̃(x10)

= 0.3∧ 0.1∧ 0.2∧ 0.4∧ 0.2 = 0.1;

RAd̃(x6) = RAd̃(x8) = 0.3∧ 0 = 0;

RAd̃(x1) = RAd̃(x3) = RAd̃(x4) = 0.8∨ 1∨ 0.7 = 1;

RAd̃(x2) = RAd̃(x5) = RAd̃(x7) = RAd̃(x9) = RAd̃(x10)

= 0.3∨ 0.1∨ 0.2∨ 0.4∨ 0.2 = 0.4;

RAd̃(x6) = RAd̃(x8) = 0.3∨ 0 = 0.3.

Additionally, the lower and upper approximations ofd̃ are as follows:

RAd̃ = {
0.7
x1
,
0.1
x2
,
0.7
x3
,
0.7
x4
,
0.1
x5
,

0
x6
,
0.1
x7
,

0
x8
,
0.1
x9
,
0.1
x10
};

RAd̃ = {
1
x1
,
0.4
x2
,

1
x3
,

1
x4
,
0.4
x5
,
0.3
x6
,
0.4
x7
,
0.3
x8
,
0.4
x9
,
0.4
x10
}.
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Table 1: A fuzzy decision table.

U c1 c2 c3 c4
Fuzzy Decision Attribute

Flu No Flu

x1 2 1 0 1 0.8 0.3

x2 1 0 0 1 0.3 0.5

x3 2 1 0 1 1 0.1

x4 2 1 0 1 0.7 0.2

x5 1 0 0 1 0.1 0.8

x6 0 1 1 0 0.3 0.7

x7 1 0 0 1 0.2 1

x8 0 1 1 0 0 0.9

x9 1 0 1 0 0.4 0.6

x10 1 0 1 0 0.2 0.7

3. A matrix-based representation of approximations in the FDS

Matrix is a powerful tool, which has been widely applied to attribute reduction, rule induction and approximation
computing in RST [38, 43, 44, 45]. Liu et al. showed a matrix-based representation of classical rough approximations
[46]. Zhang et al. designed some matrices for describing thecomposite rough approximations based on different
relations in composite rough set [47]. Luo et al. presented the dominant and dominated matrices for characterizing the
approximations in dominance-based rough set approach [48]. Tan et al. presented boolean, characteristic and neighbor
matrices for computing the set approximations in covering-based rough set [49]. In this section, a novel matrix
operation based on the relation matrix are firstly presentedfor constructing the lower and upper approximations in
rough fuzzy set. Then we discuss several matrix-based properties, which will be employed to incrementally compute
approximations in next section.

Definition 3. [46] Let S = 〈U,C ∪ D,V, f 〉 be an FDS, where U= {xi |i ∈ {1, 2, . . . , n}}, A ⊆ C. The corresponding
relation matrix of A is denoted as MA = (mA

i j )n×n , where

mA
i j =


1, xi ∈ [x j]RA

0, otherwise
(2)

Proposition 1. [46] M A = (mA
i j )n×n is a symmetric matrix, and mAii = 1(i = 1, · · · , n).

Definition 4. Let S = 〈U,C ∪ D,V, f 〉 be an FDS. The corresponding relation matrices of A, B ⊆ C are denoted as
MA = (mA

i j )n×n and MB = (mB
i j )n×n, respectively. Then the dot operation between MA and MB is defined as follows.

MA • MB = (mA
i j ·m

B
i j )n×n, (3)

where• is the dot product of two matrices.

Proposition 2. Let S= 〈U,C∪D,V, f 〉 be an FDS. The corresponding relation matrices of A, B ⊆ C are MA = (mA
i j )n×n

and MB = (mB
i j )n×n, respectively. Then the relation matrix MA∪B of A∪ B equals to MA • MB.

Proof. If mA∪B
i j = 1, according to Definition 3, it followsxi ∈ [x j]RA∪B. Thenxi ∈ [x j]RA andxi ∈ [x j ]RB, i.e.,mA

i j = 1
andmB

i j = 1. Therefore, we havemA∪B
i j = 1 = mA

i j · m
B
i j , and vice versa. IfmA∪B

i j = 0, thenxi < [x j]RA∪B, that is,
xi < [x j]RA or xi < [x j]RB. HencemA

i j = 0 ormB
i j = 0. ThusmA∪B

i j = 0 = mA
i j ·m

B
i j , and vice versa.
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Example 2. (Continuation of Example 1) Let A= {c1, c2}, B = {c3, c4}. Then according to Definition 3, the relation
matrices MA and MB can be calculated as follows.

MA =



1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 1
1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 1 0 1 1



MB =



1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0 0 0
0 0 0 0 0 1 0 1 1 1
1 1 1 1 1 0 1 0 0 0
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 0 1 1 1



According to Definition 4

MA • MB =



1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1



It is easy to demonstrate that the relation matrix MA∪B = MA • MB.

Definition 5. Let S = 〈U,C ∪ D,V, f 〉 be an FDS, where U= {xi |i ∈ {1, 2, . . . , n}}. d̃ is a fuzzy subset on D,̃d(x)
(x ∈ U) is the degree of membership of x iñd and MA = (mA

i j )n×n is the relation matrix of the attribute set A⊆ C.

MA ⊗max d̃ is a column vector, and the i-th element in this vector is defined as follows.

(MA ⊗max d̃)(i) = max{mA
i1 · d̃(x1),mA

i2 · d̃(x2), . . . ,mA
in · d̃(xn)} (i = 1, 2, . . . , n) (4)

where max operation takes the maximum value among n numbers and T denotes the transpose operation.

Theorem 1. Let S= 〈U,C ∪ D,V, f 〉 be an FDS, where U= {xi |i ∈ {1, 2, . . . , n}}. d̃ is a fuzzy subset on D. MA is the
relation matrix of the attribute set A⊆ C. The upper and lower approximations ofd̃ are calculated as follows.

RAd̃ = MA ⊗max d̃; (5)

RAd̃ = L − MA ⊗max d̃c (6)

whereL is the column vector that all elements are one andd̃c is the complement of̃d.

Proof. According to Definition 5,∀xi ∈ U, (MA⊗maxd̃)(i) = max{mA
i1·d̃(x1),mA

i2·d̃(x2), . . . ,mA
in ·d̃(xn)}. If mA

i j = 1, then

x j ∈ [xi ]RA, i.e., mA
i j · d̃(x j) = d̃(x j); otherwisemA

i j · d̃(x j) = 0. Therefore, we have (MA ⊗max d̃)(i) = RAd̃(xi) based on

Definition 2. In addition, according toRAd̃ =∼ RAd̃c and Equation (5), it is clearly thatRAd̃(xi) = L−(MA⊗maxd̃c)(i).
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Example 3. Given an FDS S=〈U,C ∪ D,V, f 〉 as shown in Table 1. Let A= {c1, c2} and d̃ be the Flu. Then
d̃ = { 0.8x1

, 0.3
x2
, 1

x3
, 0.7

x4
, 0.1

x5
, 0.3

x6
, 0.2

x7
, 0

x8
, 0.4

x9
, 0.2

x10
}. From the results of Example 2, we have

RAd̃ = MA ⊗max d̃ =



1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 1
1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 1 0 1 1



⊗max



0.8
0.3
1

0.7
0.1
0.3
0.2
0

0.4
0.2



=



1
0.4
1
1

0.4
0.3
0.4
0.3
0.4
0.4



RAd̃ = L − MA ⊗max d̃c =



1
1
1
1
1
1
1
1
1
1



−



1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 1
1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 1 0 1 1



⊗max



0.2
0.7
0

0.3
0.9
0.7
0.8
1

0.6
0.8



=



0.7
0.1
0.7
0.7
0.1
0

0.1
0

0.1
0.1



4. Dynamically updating approximations under the variation of objects and attributes

In this section, an incremental method for computing approximations based on matrix is proposed in the FDS
associated with the addition of attributes and objects simultaneously. As mentioned above, the key step for the
computation of rough fuzzy approximations is how to update the relation matrix. If we can dynamically compute
the updated relation matrix based an incremental updating strategy rather than reconstructing it from scratch, then
the runtime will be reduced. In what follows, we discuss how to update the relation matrix incrementally while the
attribute and object sets simultaneously vary over time.

Let St = 〈U t,Ct ∪ Dt,Vt, f t〉 be an FDS at timet. St+1 = 〈U t+1,Ct+1 ∪ Dt+1,Vt+1, f t+1〉 denotes the FDS at
time t + 1, whereU t+1 = U t ∪ ∆U, Ct+1 = Ct ∪ ∆C, Dt+1 = Dt ∪ ∆D. To incrementally compute the relation
matrix, we partition the systemSt+1 into two subsystems. One isS∆U = 〈∆U,Ct+1 ∪ ∆D,V∆U , f ∆U〉 and the other is
SUt
= 〈U t,Ct+1 ∪ Dt,VUt

, f Ut
〉. Then theSUt

= 〈U t,Ct+1 ∪ Dt,VUt
, f Ut
〉 is again partitioned into two subsystems:

St = 〈U t,Ct ∪Dt,Vt, f t〉 andS∆C = 〈U t,∆C∪Dt,V∆C, f ∆C〉. Suppose| U t+1 |= n′, | U t |= n, | ∆U |= n+, | Ct+1 |= m′,
| Ct |= m, | ∆C |= m+, then we haven′ = n+ n+, m′ = m+m+.

Theorem 2. Let MCt+1
denote the relation matrix of FDS St+1. Then MCt+1

can be partitioned four parts, i.e.,

MCt+1
=


(MCt+1

Ut
)n×n (MCt+1

Ut ,∆U)n×n+

(MCt+1

Ut ,∆U)T
n+×n (MCt+1

∆U )n+×n+

, where MCt+1

Ut
denotes the relation matrix of Ut under Ct+1, MCt+1

Ut ,∆U denotes

the relation between Ut and∆U under Ct+1 and MCt+1

∆U denotes the relation matrix of∆U under Ct+1.

Proof. According to Definition 3, it is easy to see that the relation matrix MCt+1
can be divided into four parts. Each

part can be obtained according to Definition 3 directly.
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In order to dynamically compute the relation matrix, we partition the relation matrix into four parts according to
Theorem 2. Then the first part (MCt+1

Ut
)n×n can be incrementally updated as follows.

Theorem 3. Suppose MC
t+1

Ut
= (mCt+1

i j )n×n, MCt

Ut
= (mCt

i j )n×n, M∆C
Ut
= (m∆C

i j )n×n are the relation matrices with respect to

SUt
, St, S∆C, respectively. The relation matrix MC

t+1

Ut
can be updated as follows.

(1) if mCt

i j = 0, then mCt+1

i j = mCt

i j ;

(2) if mCt

i j = 1, and m∆C
i j = 1, then mCt+1

i j = mCt

i j ;

(3) if mCt

i j = 1, and m∆C
i j = 0, then mCt+1

i j = 0.

Proof. It follows directly from Proposition 2.

By utilizing the accumulated matrix informationMCt

Ut
and the newly added matrix informationM∆C

Ut
, we compute

the matrixMCt+1

Ut
only by updating the third scenario of Theorem 3 instead of recomputing the whole matrix, which

can improve the efficiency of computing.

Theorem 4. Given the relation matrices MC
t+1

∆U = (m∆U
i j )n+×n+ and MCt+1

Ut
= (mCt+1

i j )n×n. Then MCt+1

Ut ,∆U = (mUt ,∆U
i j )n×n+ can

be updated as follows.

(1) if xi and xj are equivalent under Ct+1, where xi ∈ U t, i ∈ {1, 2, . . . , n}, xj ∈ ∆U, j ∈ {n+ 1, n+ 2, . . . , n+ n+}, then
mUt ,∆U

[i:] = m∆U
[( j−n):] , mUt ,∆U

[:( j−n)] = mCt+1

[:i] . In addition, if xi and xi′ are equivalent under Ct+1, xj and xj′ are equivalent

under∆C, where i′ ∈ {1, 2, . . . , n} , j′ ∈ {n+ 1, n+ 2, . . . , n+ n+}, then mUt ,∆U
[i′:] = m∆U

[( j−n):] ,m
Ut ,∆U
[:( j′−n)] = mCt+1

[:i] .

(2) if xi and xj do not satisfy the aforementioned conditions, then mUt ,∆U
i( j−n) = 0. Furthermore, if xi and xi′ are equivalent

under Ct+1, xj and xj′ are equivalent under∆C, then mUt ,∆U
i′( j−n) = mUt ,∆U

i( j′−n) = mUt ,∆U
i′( j′−n) = 0.

where mUt ,∆U
[i:] denotes theith row in the matrix MCt+1

Ut ,∆U , mUt ,∆U
[: j] denotes thejth column in the matrix MC

t+1

Ut ,∆U .

Proof. If xi andx j are equivalent, then according to Theorem 2 and Propoisition 1, we havemUt ,∆U
[i:] = m∆U

[( j−n):] . In

addition, according to Proposition 1, we havemUt ,∆U
[:( j−n)] = mCt+1

[:i] . Furthermore, ifxi andxi′ , x j andx j′ are in the same

equivalence class, respectively. Then we havemUt ,∆U
[i′:] = mUt ,∆U

[i:] = m∆U
[( j−n):] , mUt ,∆U

[:( j′−n)] = mUt ,∆U
[:( j−n)] = mCt+1

[:i] according to
Proposition 1. The proof of case 2 is analogous.

By the utilization of the symmetry property of the relation matrix and the previous updated matrix results, we
can update the whole row or the whole column of the matrixMCt+1

Ut ,∆U , not rather one by one, which can reduce the
computing overhead.

In order to describe the mechanisms of incremental computing approximations more clearly, here is an example
to introduce the process of computing rough fuzzy approximations.

Example 4. Let St = 〈U t,Ct∪Dt,Vt, f t〉 be an FDS at time t, where U= {xi |i ∈ {1, 2, . . . , 10}}, Ct = {ci , 1 ≤ i ≤ 4} (see
Table 1). At the time t+ 1, the attribute set∆C = {runny noses, cough} = {c5, c6} and the objects∆U = {x11, x12, x13}

are added to St, where Vc5 = Vc6 = {No,Yes} = {0, 1} (see Table 2).
Firstly, the result MCt

Ut
of Example 2 and the relation matrix M∆C

Ut
can be obtained according to Definition 3.

MCt

Ut
=



1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1



M∆C
Ut
=



1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 1 1
1 0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 1 0 1 1
1 0 1 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 1 1
0 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 1 0 1 1


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Table 2: A decision table with fuzzy decision attributes at time t + 1.

U c1 c2 c3 c4 c5 c6
Fuzzy Decision Attribute

Flu No Flu

x1 2 1 0 1 1 0 0.8 0.3

x2 1 0 0 1 0 1 0.3 0.5

x3 2 1 0 1 1 0 1 0.1

x4 2 1 0 1 0 0 0.7 0.2

x5 1 0 0 1 0 1 0.1 0.8

x6 0 1 1 0 1 0 0.3 0.7

x7 1 0 0 1 0 1 0.2 1

x8 0 1 1 0 0 0 0 0.9

x9 1 0 1 0 0 1 0.4 0.6

x10 1 0 1 0 0 1 0.2 0.7

x11 1 0 0 1 0 1 0.4 0.8

x12 1 0 0 1 0 1 0.1 0.7

x13 2 1 0 1 1 1 0.9 0.3

Secondly, according to Proposition 1, we only compute the elements under the principal diagonal of the matrix
MCt+1

Ut
. We judge the elements which values are“1” under the principal diagonal of the matrix MC

t

Ut
whether change

or not according to Theorem 3. Then the matrix MCt+1

Ut
can be obtained.

MCt+1

Ut
=

1 2 3 4 5 6 7 8 9 10




1 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1

where three elements are changed under the principal diagonal of the matrix MCt

Ut
.

Thirdly, the relation matrix MCt+1

∆U can be obtained according to Definition 3.

MCt+1

∆U =


1 1 1 0
2 1 1 0
3 0 0 1



Then according to Theorem 4,

1. Because x2 and x11 are equivalent, then mUt ,∆U
[2:] = m∆U

[1:] , mUt ,∆U
[:1] = mCt+1

[:2] .
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2. According to mCt+1

25 = 1, mCt+1

27 = 1, we have mUt ,∆U
[5:] = m∆U

[1:] , mUt ,∆U
[7:] = m∆U

[1:] , and according to m∆U
11,12 = 1, we have

mUt ,∆U
[:2] = mCt+1

[:2] .

3. Because x2 and x13 are not equivalent, then mUt ,∆U
[13] = 0. The others are the same.

Therefore, we obtain the relation matrix

MCt+1

Ut ,∆U =



1 2 3
1 0 0 0
2 1 1 0
3 0 0 0
4 0 0 0
5 1 1 0
6 0 0 0
7 1 1 0
8 0 0 0
9 0 0 0
10 0 0 0



where the first and second columns are the same to the second column of MCt+1

Ut
, and the second, fifth and seventh rows

are the same to the first row of MC
t+1

∆U . It apparently reduces the computing time than reconstructing the entire matrix.

Lastly, according to Theorems 1 and 2, we have the upper and lower approximations of̃dt+1.

RCt+1d̃
t+1 = {

0.8
x1
,
0.1
x2
,
0.8
x3
,
0.7
x4
,
0.1
x5
,
0.3
x6
,
0.1
x7
,

0
x8
,
0.2
x9
,
0.2
x10
,
0.1
x11
,
0.1
x12
,
0.9
x13
}

RCt+1d̃
t+1 = {

1
x1
,
0.4
x2
,

1
x3
,
0.7
x4
,
0.4
x5
,
0.3
x6
,
0.4
x7
,

0
x8
,
0.4
x9
,
0.4
x10
,
0.4
x11
,
0.4
x12
,
0.9
x13
}

5. Dynamic and static algorithms based on the matrix for computing approximations under the addition of
objects and attributes

According to the incremental mechanisms for computing approximations while objects and attributes increase
over time in FDS, the static and dynamic algorithms are developed and analyzed in this section, respectively.

Let St = 〈U t,Ct ∪ Dt,Vt, f t〉 be an FDS at timet. The attribute sets∆C and∆D and the object set∆U are added
into St simultaneously at timet + 1. Suppose| U t |= n, | Ct |= m, | ∆U |= n+, | ∆C |= m+, then| U t+1 |= n′ = n+ n+

and| Ct+1 |= m′ = m+m+, whereU t+1 = U t ∪ ∆U, Ct+1 = Ct ∪ ∆C.
Algorithm 1 is a matrix-based static algorithm for computing approximations while objects and attributes are

increased simultaneously. Steps 2-14 are to compute the relation matrixMCt+1
according to Definition 3, whose time

complexity isO( n′(n′+1)m′

2 ). Steps 15-19 are to calculate the lower and upper approximations by Theorem 1. Hence the

total time complexity isO( n′(n′+1)m′

2 + (n′)2).
Algorithm 2 is a matrix-based incremental algorithm for updating approximations when objects and attributes

are added simultaneously. Steps 2-15 are to update the relation matrix MCt+1

Ut
in terms of Theorem 3, whose time

complexity isO( ηm
+

2 ), whereη denotes the numbers of “1” in the matrixMCt

Ut
andη 6 n2. Steps 17-22 are to compute

the relation matrixMCt+1

∆U by Definition 3, whose time complexity isO( n+(n++1)(m+m+)
2 ). Steps 23-27 are to update

the interactive matrixMCt+1

Ut ,∆U according to Theorem 4, which are the crucial steps for updating approximations in
FDS, and the time complexity of updating operation isO(|U t/RCt+1 ||∆U/RCt+1 |). Step 28 is to calculate the lower
and upper approximations according to Theorem 1, whose timecomplexity isO((n′)2). Therefore, the total time
complexity of Algorithm 2 isO( ηm

+

2 +
n+(n++1)(m+m+)

2 + (n′)2 + |U t/RCt+1 ||∆U/RCt+1 |(m+ m+)). To compare with the

static algorithm more clearly, the complexity of Algorithm1 is divided into five parts, namely,O( n′(n′+1)m′

2 + (n′)2) =

O( n(n+1)m+

2 +
n+(n++1)(m+m+)

2 + (n′)2 +
n(n+1)m

2 + nn+(m+m+)). It can be seen that the time complexity of Algorithm 2
is better than that of Algorithm 1. When the size of added object and attribute set is small, i.e.,n+ andm+ are far
less thann andm, respectively, it is obvious that the time complexity of Algorithm 2 is almost identical to that of
Algorithm 1. However, ifn+ andm+ are increased ton andm, respectively, the last two terms of time complexity in
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Algorithm 1: The static algorithm for computing approximations in FDS while attributes and objects are added
simultaneously

Input :
1. An FDSS = (U,C ∪ D,V, f );
2. The added object set∆U, the condition attribute set∆C and the decision attribute set∆D.

Output : The lower and upper approximations in FDS.
1 begin
2 for 1 ≤ i ≤ n′ do // Compute the relation matrix MCt+1

by Definition 3;
3 for i ≤ j ≤ n′ do
4 if j = i then // According to Proposition 1;

5 mCt+1

ii = 1;
6 else
7 if xi ∈ [xj ]RCt+1 then

8 mCt+1

i j = mCt+1

ji = 1;
9 else

10 mCt+1

i j = mCt+1

ji = 0
11 end
12 end
13 end
14 end
15 for 1 ≤ i ≤ n′ do
16 for 1 ≤ j ≤ n′ do
17 ComputeRCt+1 d̃,RCt+1 d̃; // Compute the approximations by Theorem 1;

18 end
19 end
20 return RCt+1 d̃,RCt+1 d̃.

21 end

Algorithm 1 could not be disregarded. Evidently, the last term |U t/RCt+1 ||∆U/RCt+1 |(m+ m+) of time complexity in
Algorithm 2 is far less than the sum of last two terms, i.e.,n(n+1)m

2 + nn+(m+m+), in Algorithm 1. Thus, the dynamic
algorithm (Algorithm 2) is more efficient than the static algorithm (Algorithm 1) when a large number of new objects
and attributes are added concurrently.

6. Experimental evaluations

To demonstrate the effectiveness of our proposed incremental algorithm, the comparative experiments are de-
signed and the results are discussed in this section. Six data sets are obtained from the UCI Repository of Ma-
chine Learning Databases (www.ics.uci.edu/∼mlearn/MLRepository.html). The description of data sets is listedin
Table 3, which is ordered by the number of samples in an ascending order. Since there is no fuzzy membership in-
formation on decision attributes of the experimental data,the membership of each object is calculated according to
Ai (x) = 1− d(x,ci)

max(d(x,c1),d(x,c2),··· ,d(x,cm)) , whereAi (x) is the membership of the objectx in the ith decision class,ci is the
center ofith decision class which is computed by the mean of theith decision class, andd (x, ci) is the Euclid distance
between the objectx and theith class centerci . All experiments are performed on personal computer with Intel Core
i5-4200U CPU 1.60GHZ, 4.0 GB of memory, running Win 7. Algorithms are coded in Matlab 2012.

6.1. A comparison of computational efficiency between the static and dynamic algorithms under the addition of dif-
ferent sizes of objects and attributes

In this subsection, to compare the performance between static and dynamic algorithms when adding different sizes
of data set, we select 50% attributes and objects from the whole data set as the basic data set and 10%, 20%, . . . , 100%
attributes and objects are taken out from the remaining 50% data set as the incremental data set. The experimental
results are illustrated in Table 4 and Figure 1. Table 4 indicates the comparison of computational time between static
and dynamic algorithms on six data sets, which are listed in Table 3. The tendency of running time with the addition
of different sizes of data sets are shown in Figure 1. In each sub-figure of Figure 1, thex-coordinate pertains to the
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Algorithm 2: The dynamic algorithm for computing approximations in FDS while attributes and objects are
added simultaneously

Input :
1. An FDSS = (U,C ∪ D,V, f );

2. The relation matrix at timet: MCt

Ut
= (mCt

i j )n×n;

3. Original unions of equivalent classes at timet: U t/RCt = {E1, E2, . . . ,Er };
4. The added object set∆U, the condition attribute set∆C and the decision attribute set∆D.

Output : The lower and upper approximations in FDS.
1 begin
2 for 1 ≤ i ≤ n do // Compute the relation matrix M∆C

Ut
= (m∆C

i j )n×n,MCt+1

Ut
= (mCt+1

i j )n×n;
3 for i ≤ j ≤ n do
4 Computem∆C

i j ; // Compute the relation matrix by Definition 3;

5 if mCt

i j == 0 then // Update the relation matrix MCt+1

Ut
by Theorem 3;

6 mCt+1

i j = mCt+1

ji = mCt

i j are constant;
7 else
8 if m∆C

i j ==1 then

9 mCt+1

i j = mCt+1

ji = mCt

i j are constant;
10 else
11 mCt+1

i j = mCt+1

ji = 0
12 end
13 end
14 end
15 Compute the equivalence classesU t/RCt+1 .
16 end

17 for 1 ≤ i ≤ n+ do // Compute the relation matrix MCt+1

∆U = (m∆U
i j )n+×n+ ;

18 for i ≤ j ≤ n+ do
19 Computem∆U

i j ; // Compute the relation matrix by Definition 3;

20 end
21 Compute the equivalence classes∆U/RCt+1 .
22 end

23 for 1 ≤ i ≤ |U t/RCt+1 | do // Compute the relation matrix MCt+1

Ut ,∆U = (mUt ,∆U
i j )n×n+ ;

24 for 1 ≤ j ≤ |∆U/RCt+1 | do

25 ComputemUt ,∆U
i j ; // Update the relation matrix by Theorem 4;

26 end
27 end
28 Compute the lower and upper approximationsRCt+1 d̃, RCt+1 d̃. // Compute the approximations by Theorem 1;

29 return RCt+1 d̃ andRCt+1 d̃.

30 end

Table 3: A description of data sets

Data sets Abbreviation Samples Attributes Classes Source

1 Phishing Websites Phishing 2456 30 2 UCI

2 Chess Chess 3196 36 2 UCI

3 Optical Recognition of Handwritten Digits Optical 5620 64 10 UCI

4 Turkiye Student Evaluation Turkiye 5820 32 13 UCI

5 Statlog (Landsat Satellite) Statlog 6435 36 7 UCI

6 Musk (Version 2) Musk 6598 168 2 UCI
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Table 4: A comparison of static and incremental algorithms versus different updating ratios when adding the objects
and attributes simultaneously.

Phishing Chess Optical Turkiye Statlog Musk

Insert rate Static Dynamic Static Dynamic Static Dynamic Static Dynamic Static Dynamic Static Dynamic

10% 5.155 2.426 11.574 4.911 31.996 25.188 30.366 24.629 31.649 27.196 34.277 3.351

20% 6.225 3.081 13.967 7.552 38.655 29.254 39.081 29.711 31.580 28.503 41.510 5.914

30% 7.467 3.997 16.394 8.693 51.230 31.661 50.271 34.743 48.920 31.523 52.451 8.746

40% 9.202 4.695 19.516 10.776 60.266 37.379 55.351 37.464 61.282 34.924 60.930 11.494

50% 10.664 5.703 22.219 12.338 69.054 40.177 72.027 41.859 70.126 40.511 78.201 14.507

60% 12.415 6.566 25.696 13.537 82.285 43.763 80.684 45.459 82.432 43.712 95.161 18.573

70% 14.808 7.763 30.126 15.401 95.829 51.416 102.225 50.99297.113 49.184 113.914 20.901

80% 17.217 8.743 32.957 16.856 112.820 59.495 114.431 56.244 114.266 55.491 137.987 24.639

90% 18.519 9.949 38.234 19.783 130.904 63.281 136.791 63.314 132.167 62.729 165.719 31.620

100% 22.671 11.092 42.449 23.652 144.559 73.251 154.597 70.234 158.107 75.069 188.678 33.390
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Figure 1: A comparison of computational time between the static algorithm (Algorithm 1) and incremental algorithm
(Algorithm 2) with increasing size of attributes and objects simultaneously.

rate of the objects and attributes added to the basic data setfrom the rest of data set and they-coordinate pertains to
the computational time of static and dynamic algorithms.

It is easy to observe from Table 4 and Figure 1 that the runningtimes of static and incremental algorithms rise
with increasing ratio of data set. And the gap becomes greater when the size of data set increases. Furthermore, the
computational time of the incremental algorithm keeps persistently lower than the static algorithm when the same rate
of data are added from the rest of data set. Hence, the experimental results demonstrate that the dynamic algorithm
is more efficient than the static algorithm when keeping the basic data set unchanged and adding different ratios of
objects and attributes simultaneously.
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Table 5: The incremental speedup ratio versus each test set

Data Set

Test Set Phishing Chess Optical Turkiye Statlog Musk

1 1.922 2.502 1.825 1.434 1.001 1.025

2 2.797 3.265 1.780 1.592 1.038 1.085

3 2.794 2.479 1.569 1.285 1.081 1.094

4 2.102 2.571 1.388 1.198 1.081 1.023

5 1.992 2.144 1.167 1.157 1.088 1.109

6 1.888 1.940 1.291 1.135 1.099 1.110

7 1.873 1.960 1.356 1.131 1.102 1.105

8 1.841 1.673 1.347 1.147 1.109 1.117

9 1.676 1.596 1.214 1.154 1.106 1.113

average 2.098 2.237 1.438 1.248 1.078 1.087

6.2. Performance comparison with the growing sizes of data sets

In this subsection, to compare running times between the static and incremental algorithms when the size of
original data set grows, we extract 10%, 20%, . . . , 90% data astest set 1, test set 2, . . . , test set 9 from each data
set which is listed in Table 3, respectively,i.e., the original data set is increased by 10% gradually. Then the data
of which size is the 5% of test set is appended to the test set from the rest of each data set. In order to show the
advantage of incremental algorithm, the speedup ratio on each test set is depicted in Table 5. The computational time
of static and incremental algorithms when objects and attributes are added simultaneously are shown in Figure 2,
wherex-coordinate pertains to the number of test set and they-coordinate pertains to the computational time of static
and dynamic algorithms.
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Figure 2: A comparison of computational time between staticalgorithm (Algorithm 1) and incremental algorithm
(Algorithm 2) when the original data set grows.

In Table 5, the incremental algorithm achieves 2.797-1.676speedup over the static algorithm on the Phishing data
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set. And the average speedup ratio on each different data set is from 1.078- 2.237. Obviously, the incremental algo-
rithm performs better than the static algorithm when the original data set grows. Figure 2 shows that the computational
time of incremental algorithm is much faster than the staticalgorithm with the growth of original data set. In addition,
the differences are getting larger with the increasing size of test sets, which demonstrates the much better performance
of our presented algorithm when the original data set becomes larger.

6.3. Comparisons with the reference algorithm
Although there were not related algorithms for maintenanceof rough approximations in FDS where both objects

and attributes increase over time, Chen et al. introduced anincremental method for computing approximations with the
variation of attributes (CIA for short) [32] and Zeng et al. presented a dynamic algorithm for updating approximations
under the variation of objects (ZIO for short) [30]. In orderto compare our proposed algorithm with these two
incremental algorithms with single-dimensional variation of FDS, we combine them to deal with the simultaneous
variation of objects and attributes in FDS. The combined algorithm is abbreviated as CIA+ZIO for convenience in
this paper.

Table 6 shows the speedup ratio between the computational times of our proposed algorithm and CIA+ZIO when
inserting different proportion of data. It is evidently that our method is much faster than the combined method. And
the average speedup ratio increases with the number of samples of each data set. Figure 3 shows the running time of
our incremental algorithm and CIA+ZIO with the different adding ratio. Clearly, the performance of our method is
better than the combined method. Since that the combined method only considers the incremental mechanism with the
single-dimensional variation of objects or attributes, itomits the interactive information which can reduce the runtime
when adding objects and attributes simultaneously. However, our proposed approach not only handles the individual
variation’ impacts on the structure of approximations, butalso takes into account the interaction between adding
attributes and inserting objects. Moreover, according to Theorem 4, the updating of interactive matrix is that multiple
matrix elements or even several rows and columns of matrix are renewed by utilizing the previous matrix information.
Hence, our method is more efficient than the combined method through updating the structure of approximations
under the independent variation of objects and attributes.

Table 6: The incremental speedup ratio between the computational times of our incremental algorithm and CIA+ZIO

Data Set

Insert rate Phishing Chess Optical Turkiye Statlog Musk

10% 18.106 19.252 3295.830 5072.693 6634.820 27612.330

20% 14.964 16.909 2843.597 4233.077 6458.600 17402.735

30% 12.895 21.727 2665.665 4092.389 6368.522 12386.122

40% 12.163 28.369 2308.833 4829.983 5816.108 9914.626

50% 10.710 28.132 2187.322 4364.921 5079.422 7937.799

60% 11.066 26.389 2020.844 4145.912 5156.450 6455.063

70% 12.240 24.396 1767.120 3852.931 4919.663 5959.542

80% 13.148 22.481 1545.254 3502.400 7111.295 5113.529

90% 15.243 20.512 1478.272 3119.385 7155.473 3993.029

100% 18.321 17.893 1301.878 2847.486 6267.194 3978.997

average 13.886 22.606 2141.461 4006.118 6096.755 10075.377

7. Conclusions

In this paper, we defined a novel matrix operator for the construction of rough fuzzy approximations. To improve
the efficiency of computing approximations in FDS when objects and attributes are added simultaneously, we pro-
posed the dynamic mechanisms for maintenance of rough fuzzyapproximations based on matrix. Then we developed

14



10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

50

100

150

200

Adding Ratio

C
o

m
p

u
ta

ti
o

n
al

 T
im

e 
(s

)

(a) Phishing

 

 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

100

200

300

400

Adding Ratio

C
o

m
p

u
ta

ti
o

n
al

 T
im

e 
(s

)

(b) Chess

 

 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

2

4

6

8

10
x 10

4

Adding Ratio
(c) Optical

C
o

m
p

u
ta

ti
o

n
al

 T
im

e 
(s

)

 

 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

0.5

1

1.5

2
x 10

5

Adding Ratio

C
o

m
p

u
ta

ti
o

n
al

 T
im

e 
(s

)

(d) Turkiye

 

 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

1

2

3

4

5
x 10

5

Adding Ratio

C
o

m
p

u
ta

ti
o

n
al

 T
im

e 
(s

)

(e) Statlog

 

 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

4

8

12

x 10
4

Adding Ratio

C
o

m
p

u
ta

ti
o

n
al

 T
im

e 
(s

)

(f) Musk

 

 

CIA+ZIO
Incremental

CIA+ZIO
Incremental

CIA+ZIO
Incremental

CIA+ZIO
Incremental

CIA+ZIO
Incremental

CIA+ZIO
Incremental

Figure 3: A comparison of computational time between our incremental algorithm and CIA+ZIO.

a matrix-based incremental algorithm for updating approximations in FDS. Finally, we designed comparative exper-
iments for validating the effectiveness of the proposed incremental algorithm. Experimental results demonstrated
that the performance of dynamic algorithm is better than thestatic and combined algorithms. Furthermore, the more
objects and attributes are added to the data set, the more efficiency of dynamic algorithm will be achieved. Consider-
ing attributes with preference-ordered domains in FDS, we will integrate the proposed method and dominance-based
rough set model to update approximations under dynamic fuzzy environments in the future.
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