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Abstract

In a dynamic environment, the data collected from real appibns varies not only with the amount of objects but
also with the number of features, which will result in contius change of knowledge over time. The static methods
of updating knowledge need to recompute from scratch wherdia¢a are added every time. This makes it potentially
very time-consuming to update knowledge, especially aslétaset grows dramatically. Calculation of approxima-
tions is one of main mining tasks in rough set theory, likgfrent pattern mining in association rules. Considering
the fuzzy descriptions of decision states in the universkeufuzzy environment, this paper aims to provide an ef-
ficient approach for computing rough approximations of fuzancepts in dynamic fuzzy decision systems (FDS)
with simultaneous variation of objects and features. Wélfipgesent a matrix-based representation of rough fuzzy
approximations by a Boolean matrix associated with a mapirator in FDS. While adding the objects and features
concurrently, incremental mechanisms for updating rowglay approximations are introduced, and the correspond-
ing matrix-based dynamic algorithm is developed. Unliledtatic method of computing approximations by updating
the whole relation matrix, our new approach partitions ibisub-matrices and updates each sub-matrix locally by
utilizing the previous matrix information and the inteligetinformation of each sub-matrix to avoid unnecessary cal
culations. Experimental results on six UCI datasets shbvatthe proposed dynamic algorithm achieves significantly
higher dficiency than the static algorithm and the combination of teference incremental algorithms.

Keywords: Rough fuzzy set, Incremental learning, Matrix, Rough agpnations.

1. Introduction

Rough Set Theory (RST) proposed by Pawlak in 1982 [1] isfAaient tool for mining knowledge from the data
with uncertainty and imprecision information. Since RSBdxhdata analysis does not need any extra information
about data, knowledge discovered from the data will be mbjeotive. Nowadays, RST has been successfully applied
in many fields, such as artificial intelligence [2, 3], dataimg [4, 5], intelligent information processing [6, 7] anal s
forth.

Although the Pawlak’s RST is arffective tool for dealing with the data in which the conditidgtriutes are sym-
bolic and decision attributes are crisp, it ighaiult to process the data with real attribute values or theyfaecision
values, which exist in many real applications, such as theadie diagnosis data [8], spacial data [9], microarray data
[10]. Rough fuzzy set and fuzzy rough set were presented ipoBet al. [11] to deal with the coarseness and fuzzi-
ness in a fuzzy environment[12, 13]. Due to the advantaggedrating two uncertainties (roughness and vagueness),
these two models have been widely applied for various agitins €.g, attribute reduction [14], rule induction [15],
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formal concept analysis [16], clustering [17], robust slfiss [18], etc). When the condition attributes are nominal
and decision attributes are fuzzy, rough fuzzy set depiesuzzy concept by lower and upper approximations in
a crisp approximation space. Yang et al. extended rougtyfsezto deal with interval-valued data based on the
a-dominance relation and investigated the correspondiggrihms of attribute reduction and rule induction [19].
Sun et al. constructed the decision-theoretic rough fuezyog combining the probability and fuzziness in a fuzzy
decision system (FDS) and proposed an approach for sejgmtitbability parameters based on decision-making risk
[20]. Li et al. integrated rough fuzzy set with two universggliscourse based on covering, tolerance, dominance
and equivalence relations, respectively [21]. Huang et@hbined rough set and fuzzy set for discovering the inher-
ent relationships among documents witkfelient languages [22]. Petrosino et al. developed an imag@m@ssion
algorithm by coding and decoding the image in terms of rouglzy approximations [23].

In real-life applications, the data are often not statid, éxolve over time. The characteristics of the evolving
data can be simply summarized as three scenamaghe objects are inserted or removed, the attributes aredaaid
deleted and the attribute values are revised. For exanmpd, électronic health records system, new patients’ record
are added or outdated records are deleted, new diseaseetetiributes) become available due to the appearance
of new medical devices or irrelevant disease features ameved, and the feature values may be revised because
of the incorrect inputs. Correspondingly, dynamically afiag the data will result in the changes of knowledge
discovered from data. Traditional static methods retdagwhole model on the entire updated data, which make it
too time-consuming to immediate decision making or prégigtetc. Incremental learning is affieient method to
improve the &ectiveness of data mining models and algorithms by meaniseoptevious accumulated knowledge
and the newly updated data [24]. It has been widely emplogeRIST under the dynamic environment with three
different data updating scenarios [25, 26, 27]. With the vanabif objects, based on information entropy, Liang et
al. presented an incremental attribute reduction appreaaiththe insertion of a group objects [28]. Huang et al.
proposed an incremental rule induction algorithm which gaarantee that the extracted rules were complete and no
duplicate [29]. Zeng et al. investigated the incrementatima@isms of computing rough fuzzy approximations [30].
With the variation of attributes, Wang et al. presented aremental feature selection method based on thiféerelint
entropy measures [31]. Chen et al. presented two increfn@ethods for computing rough fuzzy approximations
based on the boundary set and the cut set, respectively ¥22ig et al. investigated an incremental approach for
computing multigranulation rough approximations [33].th\Mihe change of attribute values, Luo et al. developed a
dynamic approach based on matrix for updating rough apprations in the set-valued decision systems [34]. Cai et
al. designed a fast attribute reduction algorithm in theecimg decision information systems [35]. However, the data
may vary in the form of multi-dimensions in real-life sitiats,i.e., objects, attributes and attribute values will vary
simultaneously. Chen et al. investigated the incrememdating approximations based on decision-theoretic rough
set when both the objects and attributes increase over 86je But the approach igrs the limitation of handling
the fuzzy set. As the fuzzy information universally existtive real applications, we investigate the incremental
mechanisms of rough approximations with respect to theyfeaencept set under the simultaneous change of objects
and attributes in this paper.

Matrix is advantageous in that it is intuitional and simpte knowledge representation and reasoning in RST
[37, 38, 39]. Wang et al. presented characteristic and Bootaatrices for illustrating covering approximations
[40]. Zhang et al. developed a parallel method of computioigmosite rough approximation based on Boolean
matrices [41]. Ma presented the matrix presentations ofagmations of two fuzzy covering rough set models
[42]. However, these matrix approaches could not be dirediized for the computation of approximations in rough
fuzzy set model. To address this limitation, we present &hmatrix operation for the construction of rough fuzzy
approximations, and further develop incremental mechasisased on matrix for maintenance of approximations
when objects and attributes are added simultaneously in Bp&cifically, the whole relation matrix is divided into
four parts for updating each sub-matrix conveniently. Eaetin diagonal block matrix is partly updated according
to the previous matrix information. The counter-diagonattices are updated by the interactive information of two
main diagonal matrices and the related properties of oelatiatrix. Finally, experimental results on six UCI datasset
show that the proposed dynamic algorithm can achieve hggtéormance than the static algorithm and the combined
algorithm by integrating two reference incremental altjoris with the single-dimensional variation of FDS.

The remainder of this paper is organized as follows. Se@imtroduces some basic concepts of FDS and rough
fuzzy set model. Section 3 presents a matrix-based methogbfestructing rough fuzzy approximations. Section
4 presents incremental mechanisms for updating rough fappyoximations when the objects and attributes vary
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simultaneously, and an illustrative example is employeshiow the &ectiveness of the proposed method. Section
5 develops and analyzes the static and dynamic algorithres wte objects and attributes are added simultaneously.
In Section 6, comparative experiments are designed fodatatig the iciency of the proposed dynamic algorithm.
Finally, the paper ends with conclusions and further redetpics in Section 7.

2. Preliminaries
In this section, we will introduce the basic concepts of FD8 sough fuzzy set [1, 11].

Definition 1. An FDS is 4-tuple S= (U,C U D, V, f), where U = {xi € {1,2,...,n}} is a non-empty finite set of
objects, called the universe; C is a non-empty finite set nélitmn attributes and D is a non-empty finite set of fuzzy
decision attributes, © D = 0; V = Ve U Vp, where V is the domain of all attributes¢ Vs the domain of condition
attributes and ¥ is the domain of decision attributes; f is an informationdtion from Ux (C U D) to V such that
f:UxC—-Vc, f:UxD—[0,1].

The rough fuzzy set model was presented by Dubois and Prguted¢ess the fuzzy concepts in a crisp approxi-
mation space [11].

Definition 2. Let S=(U,CuUD,V, f)bean FDSand AZC. d is a fuzzy subset on D, Wh&]‘@() (x € U) denotes
the degree of membership with respect to ®imhe lower and upper approxmatlonscbﬁre a pair of fuzzy sets on
D in terms of the equivalence relation,Rand their membership functions are defined as follows:

Rad(x) = inf{d(y)ly € [Xr,)
Rad(x) = supd(y)ly € [Xr,}

where R = {(x,y) € U x U|f(x,a) = f(y,a), Yae A}, [X]r, = {y € U|xRay} denotes the equivalence class of x.

1)

Example 1. Table 1 illustrates a medical diagnosis FDS=SU, CuD, V, f), where U= {x;li € {1,2,..., 10}} denotes
the patients, the condition attributes set=C{headachgmuscle painsore throaftemperaturg = {c,, Cy, C3, C4}, the
fuzzy decision attributes set-D{Flu, No Flu}. The domain Y, = {no, moderateheavy £ 10,1, 2}, Ve, = Ve, =V, =
{no,yes = {0, 1.

Set A= {ci,cz} ¢ C. The universe U can be partitioned according to the eqeieg relation R: U/Ra =
{{X1, X3, X4}, {X2, Xs, X7, X9, X10}, { X6, Xg}}. Letd denote the Flu. Then the degrees of membership can be cednput
according to Definition 2: _ _ _

Rad(X1) = Rad(Xs) = Rad(x4) = 0.8A 1A 0.7=0.7;
Rad(x;) = Rad(xs) = Rad(x7) = Rad(xe) = Rad(¥10)
=03A01A02A04A02=01,

Rad(xe) = Rad(xg) = 0.3 A 0=0;

Rad(x1) = Rad(Xs) = Rad(xs) = 0.8V 1v 0.7 =1;
Rad(x;) = Rad(xs) = Rad(x7) = Rad(xe) = Rad(¥10)
=03v0.1v02v04v02=04

Rad(%e) = Rad(xs) = 0.3v 0 =0.3.

Additionally, the lower and upper approximationscbére as follows:

— X1' X2 X3 Xa X5 Xe' X7 Xg X9 Xio
Rgo(L 04 1 1040304030404



Table 1: A fuzzy decision table.

Fuzzy Decision Attribute

u C1 C2 C3 (7]

Flu No Flu
X1 2 1 0 1 08 0.3
X2 1 0 0 1 03 05
X3 2 1 0 1 1 01
X4 2 1 0 1 Q7 0.2
X5 1 0 0 1 01 0.8
X6 0 1 1 0 03 0.7
X7 1 0 0 1 02 1
Xg 0 1 1 0 0 09
Xo 1 0 1 0 04 0.6
X10 1 0 1 0 02 0.7

3. A matrix-based representation of approximations in the BS

Matrix is a powerful tool, which has been widely applied toibtite reduction, rule induction and approximation
computing in RST [38, 43, 44, 45]. Liu et al. showed a matrasdd representation of classical rough approximations
[46]. Zhang et al. designed some matrices for describingctimeposite rough approximations based offiedent
relations in composite rough set [47]. Luo et al. preseritedibminant and dominated matrices for characterizing the
approximations in dominance-based rough set approachT48]et al. presented boolean, characteristic and neighbor
matrices for computing the set approximations in covebaged rough set [49]. In this section, a novel matrix
operation based on the relation matrix are firstly presefadedonstructing the lower and upper approximations in
rough fuzzy set. Then we discuss several matrix-based grepenhich will be employed to incrementally compute
approximations in next section.

Definition 3. [46] Let S = (U,C U D, YV, f) be an FDS, where U= {xl|i € {1,2,...,n}}, AC C. The corresponding
relation matrix of A is denoted as M= (rr{?)nxn , where

I'Tﬁ _ {1, X € [Xj]RA (2)

0, otherwise

Proposition 1. [46] M* = (m{})nxn is @ symmetric matrix, andfn= 1( = 1,--- ,n).

Definition 4. Let S=(U,CuUD,V, f) be an FDS. The corresponding relation matrices opBA C are denoted as
MA = (Mf})nxn @nd M? = (M%) nxn, respectively. Then the dot operation betweehavid M® is defined as follows.

MA L4 MB = (n'ﬁ : nﬁ)nxn» (3)
wheree is the dot product of two matrices.

Proposition 2. Let S = (U, CuD, V, f) be an FDS. The corresponding relation matrices oBA C are M = (ﬁﬁ)nxn
and M? = (mP)nxn, respectively. Then the relation matrixf of AU B equals to M « M®.

Proof. If m{]*® = 1, according to Definition 3, it follows; € [Xj]r,,- Thenxi € [xj]r, andx € [Xj]ry, i.e.,m} =1
andm = 1. Therefore, we havey]*® = 1 = nf} - mP, and vice versa. If{"® = 0, thenx ¢ [X{]r,,, thatis,
% & [Xj]r, O % ¢ [Xj]r,- Hencem(} = 0 orm? = 0. Thusm({*® = 0 = m} - m?, and vice versa.

4



Example 2. (Continuation of Example 1) Let A {c1, C2}, B = {C3, ¢4}. Then according to Definition 3, the relation
matrices M* and M® can be calculated as follows.

101 100O0O0O00O0 1111101000
01 00101011 1111101000
101 1000O0O0O00O0 1111101000
101 100O0O0O00O0 1111101000
MA:0100101011MB:1111101000
0 000O0O0O1O01O00O0 0 00O0O0O1O0T111
01 00101011 1111101000
0 000O0O0O1O01O00 0 00O0O0OT1O0T111
01 00101011 0 00O0O1O0T111
01 00101011 0 00O0O0OT1O0T111
According to Definition 4

1 011 000O0O0O0OD0O

01 00101000

1 011 000O0O0O0ODO

1 011 000O0O0O0ODO

MAoMB=0100101000

0 0O0OO0OO0O1O01O00

01 00101000

0 00O0OO0O1O01O00

0 0O0OO0OO0OOOOT1a1

0 0O0OO0OO0OOOOT11

It is easy to demonstrate that the relation matriX¥ = M” « MB,

Definition 5. Let S= (U,CuU D,V, f) be an FDS, where U= {x|i € {1,2,...,n}}. disa fuzzy subset on x)
(x € U) is the degree of membership of xdrand M* = (rrﬁ)nxn is the relation matrix of the attribute set & C.

MA ®@maxd is a column vector, and the i-th element in this vector isngeffias follows.

(MA ®@max d)(i) = maxmf] - d(x,), M5 - d(xz), ... M\ -d(x,)} (i=1.2...,n) (4)
where max operation takes the maximum value among n numbefB denotes the transpose operation.

Theorem 1. Let S=(U,CuD,V, f) be an FDS, where U {xli € {1,2,...,n}}. d:is a fuzzy subset on D.Ms the
relation matrix of the attribute set & C. The upper and lower approximationscére calculated as follows.

ECT: MA ®maxd~; (5)
Rad = L — M” @paxd® (6)
whereL is the column vector that all elements are one dhis the complement af.

Proof. According to Definition 5¥x; € U, (MA®maxd)(i) = maxmf-d(x1), m5-d(xz), . . ., s -d(xn)). If m =1, then
Xj € [Xi]ra, 1-€., mﬁ . &x,—) = &x,—); otherwiserrﬁ . ERX,—) = 0. Therefore, we haveM” ®maxa)(i) = R_A&xi) based on
Definition 2. In addition, according @a=~ Rad® and Equation (5), itis clearly th%ff(xi) = L—(MA®ma&)(i).



Example 3. Given an FDS S(U,C U D,V, f) as shown in Table 1. Let A {ci,C} and d be the Flu. Then

d=108 03 1 07 01 03 02 0 04 02
d={3 o e N G e X Xt e X} From the results of Example 2, we have

1011000000 08 1
0100101011 0.3 04
1011000000 1 1
1011000000 0.7 1

. -~ lo1o00101011 01 04

Rad=M"maxd=| o 6 5 00 1 0 1 0 0/° 03|/ 03
0100101011 0.2 04
0000010100 0 03
0100101011 04 04
0100101011 0.2 04
1 1011000000 0.2 0.7
1 0100101011 0.7 01
1 1011000000 0 0.7
1 1011000000 03 0.7

_ U 0100101011 0.9 01

Rad=L-M"@maxd™=1 1 1=1 5 5 000101 0 o077 o
1 0100101011 0.8 01
1 0000010100 1 0
1 0100101011 0.6 01
1 0100101011 08 01

4. Dynamically updating approximations under the variation of objects and attributes

In this section, an incremental method for computing apnaxions based on matrix is proposed in the FDS
associated with the addition of attributes and objects Banaously. As mentioned above, the key step for the
computation of rough fuzzy approximations is how to updaterelation matrix. If we can dynamically compute
the updated relation matrix based an incremental updatiategy rather than reconstructing it from scratch, then
the runtime will be reduced. In what follows, we discuss howpdate the relation matrix incrementally while the
attribute and object sets simultaneously vary over time.

Let St = (U, Ct u DY, Vi, f') be an FDS at timé. S*1 = (U*l ct+! y D1 vl {1y denotes the FDS at
timet + 1, whereU%! = U'U AU, C*! = Ct U AC, D"*! = D' U AD. To incrementally compute the relation
matrix, we partition the syste®"*! into two subsystems. One 8"V = (AU, C"*! U AD, V2V, fAY) and the other is
sY' = (ut,c*t u DY, VY, V. Then theSY' = (Ut,Ct*1 U DY, VY, fY') is again partitioned into two subsystems:
St = (U, Ctu D!, VE, fty andSAC = (U, ACU DY, VAC, fAC) Suppos¢ Ut =, | Ut |=n,| AU |= n*, | C*L = m,
|C'|=m, | AC |= m*, then we have’ = n+n*, M’ = m+m".

Theorem 2. Let MC"" denote the relation matrix of FDS'$. Then M can be partitioned four parts, i.e.,

(MCt+l) . (Mct+l )

' Ly nxn* . . +

ME™ = |- U PR AU | where M denotes the relation matrix ofWinder G+, MS, | denotes
(M&,AU I*xn ' (M(A:U Inescne ' s

the relation between Uand AU under C¢*! and l\/IEG1 denotes the relation matrix @fU under C*1.

Proof. According to Definition 3, it is easy to see that the relaticatnix MC"* can be divided into four parts. Each
part can be obtained according to Definition 3 directly.
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In order to dynamically compute the relation matrix, we i@ the relation matrix into four parts according to
Theorem 2. Then the first pamﬁd)nxn can be incrementally updated as follows.

+1 t+1 t t . . .
Thfeorem 3. Suppose " = (M )nen, MG = (‘W}Cj Jnxn, MEC = (M ©)nxn are the relation matrices with respect to
SY', St, SAC respectively. The relation matrixw can be updated as follows.

(1) ifmS =0, then n§™ = mC;

(2) ifmS =1, and M = 1, then n§™* = nf"';
(3) ifmS =1, and m = 0, then n§™* = 0.
Proof. It follows directly from Proposition 2.

By utilizing the accumulated matrix informatidvl& and the newly added matrix informaticM\ﬁtC, we compute

the matrixM&+1 only by updating the third scenario of Theorem 3 instead cbmegputing the whole matrix, which
can improve thefciency of computing.

t+1

Theorem 4. Given the relation matrices ' = (MY )rxn+ and I\/ﬁi1 = (r‘rﬁ“l)nxn. Then Mgy, = (miLJ-J"AU)nxm can

be updated as follows.

(1) if x; and x are equivalent under €1, where xe Ut i€ {1,2,...,n}, Xje AU, je{n+1,n+2,...,n+n*}, then
mey ™Y = Y, ity = mE In addition, if x and x are equivalent under €, x; and x; are equivalent

i’ + AU U Ui, AU _ t+1
underAC, wherefe(1,2,...,n}, j e{n+1,n+2,...,n+n*}, then nl[f,:] = MGy Moy = m[C:iI .
(2) if x; and x do not satisfy the aforementioned conditions, th{{sﬁﬁﬁ = 0. Furthermore, if xand x. are equivalent
1 . . ; LAU U AU U AU
under C*1, x; and %, are equivalent undesC, then rﬁ(jfn) =mgTy =M, =0.

where rf;*" denotes théth row in the matrix M, ,, ms*" denotes théth column in the matrix I, .

Proof. If x; andx; are equivalent, then according to Theorem 2 and Propaisitjove havequi’}]'AU = (%’_n):]. In
addition, according to Proposition 1, we hawd*) = m". Furthermore, it andx., x; andx; are in the same
equivalence class, respectively. Then we U= mpt = mel o meet = ety = ey " according to

Proposition 1. The proof of case 2 is analogous.

By the utilization of the symmetry property of the relatioratmix and the previous updated matrix results, we
can update the whole row or the whole column of the meM[j{;U, not rather one by one, which can reduce the
computing overhead.

In order to describe the mechanisms of incremental comguatiproximations more clearly, here is an example
to introduce the process of computing rough fuzzy approtiona.

Example 4. Let § = (U!, C'uD!, V!, f'y be an FDS attime t, where § {x|i € {1,2,...,10}},C' = {¢;,1 < i < 4} (see
Table 1). At the time + 1, the attribute seAC = {runny nosescough = {cs, Cs} and the objectaU = {X11, X12, X13}
are added to § where \§ =V, = {No, Yes = {0, 1} (see Table 2).

Firstly, the result l\ﬁ of Example 2 and the relation matrixf}f?‘l can be obtained according to Definition 3.

1011000000 1010010000
0100101000 0100101011
1011000000 1010010000
1011000000 0001000100

e [0 100101000 ,c [0100101011

“"[ooo0OO0OOT1O01O00 Ui 1010010000
0100101000 0100101011
000O0O01O0100 0001000100
000O0O0OOOTZ 11 01001010011
000O0O0OOOOTZ 11 0100101011




Table 2: A decision table with fuzzy decision attributesiatett + 1.

Fuzzy Decision Attribute

U C1 C2 C3 Ca Cs Ce

Flu No Flu
X1 2 1 0 1 1 0 03] 0.3
X2 1 0 0 1 0 1 o3 05
X3 2 1 0 1 1 0 1 aL
X4 2 1 0 1 0 0 o7 0.2
X5 1 0 0 1 0 1 01 0.8
X6 0 1 1 0 1 0 3 0.7
X7 1 0 0 1 0 1 (02 1
X8 0 1 1 0 0 0 0 ®
Xg 1 0 1 0 0 1 07! 0.6
X10 1 0 1 0 0 1 (023 0.7
X11 1 0 0 1 0 1 o 0.8
X12 1 0 0 1 0 1 01 0.7
X13 2 1 0 1 1 1 0°] 0.3

Secondly, according to Proposition 1, we only compute teenehts under the principal diagonal of the matrix
MS:“. We judge the elements which values ‘dré under the principal diagonal of the matrix thether change

or not according to Theorem 3. Then the matrigzi\l/lcan be obtained.

1 23 45 6 7 8 9 10
101 00O0O0O0O0 O

01 0010100 O
101 00O0O0O0O0 O
0001 000O0TO O
Mc® [0 1 0 0 1.0 1 0 0 0
‘* lo oo 00100 0 0
010010100 O
0000 O00O0TI1TO0 O

0 00O0O0O0GO OO 1 1
000O0O0O0GO OGO 1 1

where three elements are changed under the principal diagoiithe matrix I\ﬁ
Thirdly, the relation matrix I\gﬁjl can be obtained according to Definition 3.

Then according to Theorem 4,

1. Because xand % are equivalent, then H‘f“ =y, nt’ﬁAU = :;]1.



t+1

2. According torf; " = 1, n,” = 1, we have tjAU =mY, m[U;;]AU = my;, and according to df’;, = 1, we have

U,AU _ t1
m[:2] - 2] -

3. Because xand %3 are not equivalent, then HQ]AU = 0. The others are the same.

Therefore, we obtain the relation matrix

1 2 3
1 (000
2 |11 0
3 /000
4 [0 0O
v 5 [110
GAUT6 [0 0 O
7 1110
8 |0 0o
9 |o 0o
10l0 0 0

where the first and second columns are the same to the sechimrcof l\/ﬁz1 and the second, fifth and seventh rows
are the same to the first row ofgl‘ﬁl. It apparently reduces the computing time than reconsitngahe entire matrix.
Lastly, according to Theorems 1 and 2, we have the upper amerlapproximations oft+1,

Re, af+l_{0.8 01 08 07010301 0 02020101 0.9}
—= X1’ X' X3 Xa' Xs  Xe X7 Xg Xg X1 X1 X2 Xi3
1 04107040304 004040404059

Re dtl=(—, —, =, —, —, —, —, =, —, =, ==, ==, %)
X1 X2 X3 X4 X5 Xs X7 Xg Xo X0 X11 X12 X13

5. Dynamic and static algorithms based on the matrix for compting approximations under the addition of
objects and attributes

According to the incremental mechanisms for computing exiprations while objects and attributes increase
over time in FDS, the static and dynamic algorithms are aged and analyzed in this section, respectively.

Let St = (U', Ctu DY, V¢, Y be an FDS at tim& The attribute setAC andAD and the object setU are added
into S' simultaneously at time+ 1. Suppos¢U! |=n, | C! |=m,| AU |= n*, | AC |= m*, then| U¥! |= " = n+n*
and| C*! |= m? = m+ m*, whereU%! = Ut U AU, C*! = Ct U AC.

Algorithm 1 is a matrix-based static algorithm for compagtiapproximations while objects and attributes are
increased simultaneously. Steps 2-14 are to compute thgorematrixMC " according to Definition 3, whose time
complexity isO(w). Steps 15-19 are to calculate the lower and upper appraxingby Theorem 1. Hence the
total time complexity igO(™ T 4 (1)?).

Algorithm 2 is a matrix-based incremental algorithm for afidg approximations when objects and attributes
are added simultaneously. Steps 2-15 are to update th@refaatrix MSI+1 in terms of Theorem 3, whose time

complexity isO(@), wheren denotes the numbers of “1” in the matM& andn < n?. Steps 17-22 are to compute
the relation matrixM$," by Definition 3, whose time complexity (™Y M)y - Steps 23-27 are to update
the interactive matriX\AS:jZU according to Theorem 4, which are the crucial steps for updatpproximations in
FDS, and the time complexity of updating operatiorO§U'/Rx1]|AU/Re1]). Step 28 is to calculate the lower
and upper approximations according to Theorem 1, whose ¢ineplexity isO((')?). Therefore, the total time
complexity of Algorithm 2 isO(% + w + ()? + |U'Y/Reut|]AU/Ree|[(m + m*)). To compare with the
static algorithm more clearly, the complexity of Algorithiris divided into five parts, namelﬂ(w +(n)?) =

o lT ML) ()2 4 MHDM 4 ppt(m 4+ m*)). It can be seen that the time complexity of Algorithm 2
is better than that of Algorithm 1. When the size of added aged attribute set is small, i.en; andm* are far
less tham andm, respectively, it is obvious that the time complexity of Atghm 2 is almost identical to that of
Algorithm 1. However, ifn* andm* are increased to andm, respectively, the last two terms of time complexity in
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Algorithm 1: The static algorithm for computing approximations in FDSle/attributes and objects are added
simultaneously

Input:
1. AnFDSS = (U,CuUD,V, f);
2. The added object saAtJ, the condition attribute sétC and the decision attribute s&D.

Output: The lower and upper approximations in FDS.

1 begin
2 for1<i<n'do // Compute the relation matrix mct by Definition 3;
3 fori<j<n’do
4 if ] =ithen // According to Proposition 1;
t+1

5 e =1,
6 else
7 if X € [Xj]ry,, then

Ct+1 _ Ct+1 -1
s | = =
9 else

t+1 t+1
: [ e o
11 end
12 end
13 end
14 end
15 for 1<i<n'do
16 for1<j<n do
17 | Compute Rqt+1d, Rets1d; // Compute the approximations by Theorem 1;
18 end
19 end
20 return Reiad, Rewa d.
21 end

Algorithm 1 could not be disregarded. Evidently, the lastt¢l)!/Reua||AU/Rewa|(m + m*™) of time complexity in
Algorithm 2 is far less than the sum of last two terms, %”ZL)’“ + nn*(m+ m*), in Algorithm 1. Thus, the dynamic
algorithm (Algorithm 2) is morefcient than the static algorithm (Algorithm 1) when a largenter of new objects
and attributes are added concurrently.

6. Experimental evaluations

To demonstrate theffectiveness of our proposed incremental algorithm, the ewaijpe experiments are de-
signed and the results are discussed in this section. S gs#ds are obtained from the UCI Repository of Ma-
chine Learning Databases (www.ics.uci.2dmlearnMLRepository.html). The description of data sets is listed
Table 3, which is ordered by the number of samples in an aswgmdder. Since there is no fuzzy membership in-
formation on decision attributes of the experimental dite,membership of each object is calculated according to
A(X)=1- ma)(d(x’cl),‘é(&‘gz)w,d(x’cm», whereA (X) is the membership of the objextin theith decision classg; is the
center ofith decision class which is computed by the mean ofttineecision class, andi(x, ¢;) is the Euclid distance
between the objectand theith class centeg;. All experiments are performed on personal computer witéliGore
i5-4200U CPU 1.60GHZ, 4.0 GB of memory, running Win 7. Aldbms are coded in Matlab 2012.

6.1. A comparison of computationglieiency between the static and dynamic algorithms under dluiitian of dif-
ferent sizes of objects and attributes

In this subsection, to compare the performance betweeao atat dynamic algorithms when addingfdrent sizes
of data set, we select 50% attributes and objects from théendata set as the basic data set and 10%, 20%, ..., 100%
attributes and objects are taken out from the remaining 58t skt as the incremental data set. The experimental
results are illustrated in Table 4 and Figure 1. Table 4 imgis the comparison of computational time between static
and dynamic algorithms on six data sets, which are liste@&biel3. The tendency of running time with the addition
of different sizes of data sets are shown in Figure 1. In each sutefiurigure 1, thex-coordinate pertains to the
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Algorithm 2: The dynamic algorithm for computing approximations in FDBile attributes and objects are
added simultaneously

25

26
27

28
29
30

Input:

1. AnFDSS = (U,CUD,V, f);

2. The relation matrix at time MSE = (nﬁt)nxn;
3. Original unions of equivalent classes at titn&!/Rxt = {E1, Ea, ..., Er);
4. The added object saU, the condition attribute s&tC and the decision attribute s&D.

Output: The lower and upper approximations in FDS.
begin

end

for 1<i<ndo // Compute

fori<j<ndo
Compute m:C;
if rrﬁt ==0then
nﬁ.”l = %“1 = nﬁ‘ are constant;
else
; C__
if rrﬁ é+_11 thegm ;
| m;  =mp  =m; are constant;
else
| rchul _ ijiHl — 0
end
end
end
Compute the equivalence classes /Rat1.

end
for 1<i<n*do
fori<j<n*do
| Compute m;Y;
end
Compute the equivalence classés)/Rqt+1.
end
for 1<i < |U'Y/Raal do
for 1< j <|AU/Rx+| do
Ut,AU

mp

Compute
end

end
Compute the lower and upper approximatioFQMJ, Rcula

return Ret.1d andRead.

ct+1
Ut

ct+l

= (mj

the relation matrix Mﬁtc = (”\Ajc)nxn, M Inxns

// Compute the relation matrix by Definition 3;

1
// Update the relation matrix MC by Theorem 3;
P Ut y

t+1
// Compute the relation matrix MXJ = (”\Aju)mxn*;

// Compute the relation matrix by Definition 3;

Mcul

// Compute the relation matrix Mj .,

Ut,AU .
= (mij" Jnnt >

// Update the relation matrix by Theorem 4;

// Compute the approximations by Theorem 1;

Table 3: A description of data sets

Data sets Abbreviation Samples Attributes Classes
1 Phishing Websites Phishing 2456 30 2 UCl
2 Chess Chess 3196 36 2 UCl
3 Optical Recognition of Handwritten Digits Optical 5620 64 10 ucCl
4 Turkiye Student Evaluation Turkiye 5820 32 13 UCl
5 Statlog (Landsat Satellite) Statlog 6435 36 7 ucCl
6 Musk (Version 2) Musk 6598 168 2 ucCl

11
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Table 4. A comparison of static and incremental algorithersus diferent updating ratios when adding the objects
and attributes simultaneously.

Phishing Chess Optical Turkiye Statlog Musk

Insertrate Static Dynamic Static Dynamic Static Dynamicati8t Dynamic Static Dynamic Static Dynamic
10% 5.155 2426 11574 4911 31996 25.188 30.366 24.6296431. 27.196 34.277 3.351
20% 6.225 3.081 13.967 7.552 38.655 29.254 39.081 29.71158@1. 28.503 41.510 5.914
30% 7.467 3,997 16.394 8.693 51.230 31.661 50.271 34.74392@8. 31.523 52.451 8.746
40% 9.202 4.695 19.516 10.776 60.266 37.379 55.351 37.46428B1 34.924 60.930 11.494
50%  10.664 5.703 22.219 12.338 69.054 40.177 72.027 41.859126 40.511 78.201 14.507
60% 12415 6.566 25.696 13.537 82.285 43.763 80.684 45458438 43.712 95.161 18.573
70%  14.808 7.763 30.126 15.401 95.829 51.416 102.225 50.992113 49.184 113.914 20.901
80%  17.217 8.743 32957 16.856 112.820 59.495 114.431 46.244.266 55.491 137.987 24.639
90%  18.519 9.949 38.234 19.783 130.904 63.281 136.791 43.3B2.167 62.729 165.719 31.620
100% 22.671 11.092 42.449 23.652 144559 73.251 154.59723%40.158.107 75.069 188.678 33.390
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Figure 1: A comparison of computational time between thiécsédgorithm (Algorithm 1) and incremental algorithm
(Algorithm 2) with increasing size of attributes and obgesimultaneously.

rate of the objects and attributes added to the basic dafeosethe rest of data set and tlgecoordinate pertains to
the computational time of static and dynamic algorithms.

It is easy to observe from Table 4 and Figure 1 that the runtimgs of static and incremental algorithms rise
with increasing ratio of data set. And the gap becomes gredten the size of data set increases. Furthermore, the
computational time of the incremental algorithm keepsiptastly lower than the static algorithm when the same rate
of data are added from the rest of data set. Hence, the expstahresults demonstrate that the dynamic algorithm
is more dficient than the static algorithm when keeping the basic datarschanged and addingf@irent ratios of
objects and attributes simultaneously.
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Table 5: The incremental speedup ratio versus each test set

Data Set
Test Set Phishing Chess Optical Turkiye Statlog Musk
1 1.922 2.502 1.825 1.434 1.001 1.025
2 2.797 3.265 1.780 1.592 1.038 1.085
3 2.794 2.479 1.569 1.285 1.081 1.094
4 2.102 2,571 1.388 1.198 1.081 1.023
5 1.992 2.144 1.167 1.157 1.088 1.109
6 1.888 1.940 1.291 1.135 1.099 1.110
7 1.873 1.960 1.356 1.131 1.102 1.105
8 1.841 1.673 1.347 1.147 1.109 1.117
9 1.676 1.596 1.214 1.154 1.106 1.113
average 2.098 2.237 1.438 1.248 1.078 1.087

6.2. Performance comparison with the growing sizes of data s

In this subsection, to compare running times between the siad incremental algorithms when the size of
original data set grows, we extract 10%, 20%, ..., 90% datestsset 1, test set 2, ..., test set 9 from each data
set which is listed in Table 3, respectivelyg., the original data set is increased by 10% gradually. Therdtta
of which size is the 5% of test set is appended to the test set fne rest of each data set. In order to show the
advantage of incremental algorithm, the speedup ratio oh &t set is depicted in Table 5. The computational time
of static and incremental algorithms when objects andbaiteis are added simultaneously are shown in Figure 2,
wherex-coordinate pertains to the number of test set angitbeordinate pertains to the computational time of static
and dynamic algorithms.
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Figure 2: A comparison of computational time between stalgorithm (Algorithm 1) and incremental algorithm
(Algorithm 2) when the original data set grows.

In Table 5, the incremental algorithm achieves 2.797-1p&&dup over the static algorithm on the Phishing data
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set. And the average speedup ratio on eafilerdint data set is from 1.078- 2.237. Obviously, the increaaietgo-
rithm performs better than the static algorithm when thgio&l data set grows. Figure 2 shows that the computational
time of incremental algorithm is much faster than the s@tjorithm with the growth of original data set. In addition,
the diferences are getting larger with the increasing size of &sf which demonstrates the much better performance
of our presented algorithm when the original data set besdarger.

6.3. Comparisons with the reference algorithm

Although there were not related algorithms for maintenasfaeugh approximations in FDS where both objects
and attributes increase over time, Chen et al. introducéttaemental method for computing approximations with the
variation of attributes (CIA for short) [32] and Zeng et atepented a dynamic algorithm for updating approximations
under the variation of objects (ZIO for short) [30]. In ordercompare our proposed algorithm with these two
incremental algorithms with single-dimensional variatiof FDS, we combine them to deal with the simultaneous
variation of objects and attributes in FDS. The combinedrtigm is abbreviated as CHZIO for convenience in
this paper.

Table 6 shows the speedup ratio between the computatiomad f our proposed algorithm and GH&IO when
inserting diferent proportion of data. It is evidently that our method iscinfaster than the combined method. And
the average speedup ratio increases with the number of eamféach data set. Figure 3 shows the running time of
our incremental algorithm and CkXIO with the diferent adding ratio. Clearly, the performance of our metisod i
better than the combined method. Since that the combinduhdenly considers the incremental mechanism with the
single-dimensional variation of objects or attributegtits the interactive information which can reduce theirat
when adding objects and attributes simultaneously. Howyeue proposed approach not only handles the individual
variation’ impacts on the structure of approximations, also takes into account the interaction between adding
attributes and inserting objects. Moreover, accordingitedfem 4, the updating of interactive matrix is that mugtipl
matrix elements or even several rows and columns of mateixaarewed by utilizing the previous matrix information.
Hence, our method is mordheient than the combined method through updating the strecfiapproximations
under the independent variation of objects and attributes.

Table 6: The incremental speedup ratio between the conigoghtimes of our incremental algorithm and GH&IO

Data Set
Insert rate Phishing Chess Optical Turkiye Statlog Musk

10% 18.106 19.252 3295.830 5072.693 6634.820 27612.330
20% 14.964 16.909 2843.597 4233.077 6458.600 17402.735
30% 12.895 21.727 2665.665 4092.389 6368.522 12386.122
40% 12.163 28.369 2308.833 4829.983 5816.108 9914.626
50% 10.710 28.132 2187.322 4364.921 5079.422 7937.799
60% 11.066 26.389 2020.844 4145.912 5156.450 6455.063
70% 12.240 24.396 1767.120 3852.931 4919.663 5959.542
80% 13.148 22.481 1545.254 3502.400 7111.295 5113.529
90% 15.243 20.512 1478.272 3119.385 7155.473 3993.029
100% 18.321 17.893 1301.878 2847.486 6267.194 3978.997
average 13.886 22.606 2141.461 4006.118 6096.755 10Q75.37

7. Conclusions

In this paper, we defined a novel matrix operator for the gobn of rough fuzzy approximations. To improve
the dficiency of computing approximations in FDS when objects atribates are added simultaneously, we pro-
posed the dynamic mechanisms for maintenance of rough fygasoximations based on matrix. Then we developed
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Figure 3: A comparison of computational time between ourdneental algorithm and CIAZIO.

a matrix-based incremental algorithm for updating appr@tions in FDS. Finally, we designed comparative exper-
iments for validating the féectiveness of the proposed incremental algorithm. Expantai results demonstrated
that the performance of dynamic algorithm is better tharstadc and combined algorithms. Furthermore, the more
objects and attributes are added to the data set, the rimiercy of dynamic algorithm will be achieved. Consider-
ing attributes with preference-ordered domains in FDS, vlldnmtegrate the proposed method and dominance-based
rough set model to update approximations under dynamig/feazironments in the future.
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