
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 1

Matrix-Based Evolutionary Computation
Zhi-Hui Zhan , Senior Member, IEEE, Jun Zhang , Fellow, IEEE, Ying Lin , Member, IEEE,

Jian-Yu Li , Student Member, IEEE, Ting Huang, Student Member, IEEE, Xiao-Qi Guo, Student Member, IEEE,
Feng-Feng Wei, Student Member, IEEE, Sam Kwong , Fellow, IEEE, Xin-Yi Zhang, Student Member, IEEE,

and Rui You, Student Member, IEEE

Abstract—Computational intelligence (CI), including artificial
neural network, fuzzy logic, and evolutionary computation (EC),
has rapidly developed nowadays. Especially, EC is a kind of algo-
rithm for knowledge creation and problem solving, playing a signif-
icant role in CI and artificial intelligence (AI). However, traditional
EC algorithms have faced great challenge of heavy computational
burden and long running time in large-scale (e.g., with many vari-
ables) problems. How to efficiently extend EC algorithms to solve
complex problems has become one of the most significant research
topics in CI and AI communities. To this aim, this paper proposes
a matrix-based EC (MEC) framework to extend traditional EC
algorithms for efficiently solving large-scale or super large-scale
optimization problems. The proposed framework is an entirely
new perspective on EC algorithm, from the solution representa-
tion to the evolutionary operators. In this framework, the whole
population (containing a set of individuals) is defined as a matrix,
where a row stands for an individual and a column stands for a
dimension (decision variable). This way, the parallel computing
functionalities of matrix can be directly and easily carried out on
the high performance computing resources to accelerate the com-
putational speed of evolutionary operators. This paper gives two
typical examples of MEC algorithms, named matrix-based genetic
algorithm and matrix-based particle swarm optimization. Their
matrix-based solution representations are presented and the evo-
lutionary operators based on the matrix are described. Moreover,
the time complexity is analyzed and the experiments are conducted
to show that these MEC algorithms are efficient in reducing the
computational time on large scale of decision variables. The MEC
is a promising way to extend EC to complex optimization problems

Manuscript received March 17, 2020; revised September 29, 2020 and De-
cember 2, 2020; accepted December 18, 2020. This work was supported in part
by the National Natural Science Foundations of China (NSFC) under Grants
61873097, 61822602, and 61772207, in part by the National Key Research
and Development Program of China under Grant 2019YFB2102102, in part
by the Key-Area Research and Development of Guangdong Province under
Grant 2020B010166002, in part by the Guangdong Natural Science Foundation
Research Team under Grant 2018B030312003, in part by the Guangdong-Hong
Kong Joint Innovation Platform under Grant 2018B050502006, and in part by
the Hong Kong GRF-RGC General Research Fund 9042816 (CityU 11209819)
(Corresponding author: Jun Zhang.)

Zhi-Hui Zhan, Jian-Yu Li, Ting Huang, Xiao-Qi Guo, Feng-Feng Wei, Xin-Yi
Zhang, and Rui You are with the School of Computer Science and Engineering,
South China University of Technology, Guangzhou 510006, China.

Jun Zhang is with the Hanyang University, Ansan 15588, Korea and
also with the Victoria University, Melbourne, VIC 8001, Australia (e-mail:
junzhang@ieee.org).

Ying Lin is with the Department of Psychology, Sun Yat-sen University,
Guangzhou 510006, China.

Sam Kwong is with the Department of Computer Science, City University of
Hong Kong, Hong Kong.

This article has supplementary downloadable material available at https://doi.
org/10.1109/TETCI.2020.3047410, provided by the authors.

Digital Object Identifier 10.1109/TETCI.2020.3047410

in big data environment, leading to a new research direction in CI
and AI.

Index Terms—Evolutionary computation (EC), matrix-based
evolutionary computation (MEC), genetic algorithm (GA), particle
swarm optimization (PSO).

I. INTRODUCTION

C
OMPUTATIONAL intelligence (CI) is a kind of biologi-
cally and linguistically motivated computational paradigm

that mainly contains three branches as artificial neural network
(ANN), logic inference, and evolutionary computation (EC),
which has lots of overlaps with artificial intelligence (AI) [1].
In fact, the IEEE CI Society (CIS) is directly related to AI
and covers the main researches of AI. The three big branches
of CI (i.e., logic, ANN, and EC) are mainly corresponding to
the three branches of AI to approach the human intelligence,
i.e., Symbolisms, Connectionism, and Evolutionism. Nowadays
CI and AI have extremely fast developed, including the great
success of deep learning (DL) and deep neural network (DNN)
in a large number of real-world applications, such as speech
recognition [2], chemical syntheses planning [3], and smart city
[4]. The success of DL and DNN are strongly related to the
big data (BD) resources and the high performance computing
(HPC) resources that substantially extend traditional ANN to
DNN and the applications [5]. Fig. 1 shows the relationship
among the algorithm, data, and computational power to illustrate
the development of CI. Specially, the BD resources make it
possible for DNN to be trained with good quality, while the HPC
resources like cloud computing, supercomputing, and graphic
process unit (GPU) make it possible for DNN to be executed
in an acceptable time. Therefore, the integration of Algorithms
(like ANN), Big data resources, and Computing resources (like
HPC) results in the A-B-C to make new CI techniques (like
DNN) greatly successful in complex problems in real-world
applications like industry, government, environment, economy,
finance, medicine, education, management, and ecology.

However, the DL and DNN are only parts but not all of the
CI and AI. As shown in Fig. 1, the three branches in CI achieve
the abilities of Knowledge Learning, Knowledge Reasoning, and
Knowledge Creation by approaches like ANN, logic inference,
and EC, respectively. During the history of CI, these three
branches on the one hand develop their own different techniques
and on the other hand also interact with each other. As shown in
Fig. 1, with the help of BD and HPC resources/techniques, not
only the ANN has been promoted to DL and DNN with greater

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0862-0514
https://orcid.org/0000-0001-7835-9871
https://orcid.org/0000-0003-4141-1490
https://orcid.org/0000-0002-6143-9207
https://orcid.org/0000-0001-7484-7261
mailto:junzhang@ieee.org
https://doi.org/10.1109/TETCI.2020.3047410


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Fig. 1. Development of computational intelligence.

knowledge learning ability that as reported in Nature [6] and Sci-

ence [7], but also the researches in the knowledge reasoning have
turned from simple logic inference to complex fuzzy system (FS)
to deal with complex problems. Moreover, being the approaches
for knowledge creation, which act as more significant intelligent
role in CI and AI, the EC algorithms have interacted with the
approaches in knowledge learning and knowledge reasoning for
a long time, resulting in evolutionary DNN [8], evolutionary DL
[9], evolutionary FS [10], fuzzy-based EC [11], and machine
learning enhanced EC [12]. More significantly, it is noted that
knowledge reasoning and knowledge learning mainly lead to
lower-level of AI, e.g., if the knowledge has been mastered by
human being, one can use ANN or DL to enable machine to learn
this knowledge so that the machine can replace the human being
to do something. However, EC is a nature-inspired approach for
knowledge creation and problem-solving, which can help human
to solve highly complicated and NP-hard problems. Therefore,
the EC can obtain something that human does not know, for
example, finding the most optimized solutions for the real-world
problems, such as large-scale supply chain network design [13],
mineral processing [14], airline crew rostering problem [15],
and virtual machine placement [16] and workflow management
[17] in cloud, which can be regarded as higher-level of AI.

Therefore, in the future development of CI and AI, more
attention would be paid to EC algorithms because they are a
kind of general problem-solving tools to achieve higher-level
AI. Moreover, the EC algorithms are independent on exact
problem model, making them one of the promising ways for
problem-solving and knowledge creation when there are no ex-
act approaches/models for the complex problems in nowadays’
complex environments. Therefore, this paper focuses on the EC
algorithms.

Traditional EC algorithms share a common framework like
Fig. 2, including initialization, fitness evaluation, and new pop-
ulation reproduction, to search for the global optimum gener-
ation by generation. Therefore, ECs are population-based and
iteration-based algorithms which have generally better global
search ability than other single-solution search algorithms.
The EC family includes evolutionary algorithms (EA) [18],
e.g., genetic algorithm (GA) [19], differential evolution (DE)
[20], and estimation of distribution algorithm (EDA) [21], and
swarm intelligence (SI) algorithms [22] like particle swarm
optimization (PSO) [23] and ant colony optimization (ACO)
[24]. Under the generic framework of Fig. 2, different kinds

Fig. 2. Generic framework of evolutionary computation algorithms.

of EC algorithms can have their own population reproduction
strategies. For example, GA is a typical EA that reproduces the
new population by selection, crossover, and mutation operations,
while PSO is a typical SI that reproduces the new population
by learning from personal and global guidance information,
including the velocity and position update, and the personally
best and globally best experiences update. Therefore, this paper
mainly focuses on these two EC algorithms.

Due to the fact that EC algorithms are less sensitive to the
mathematical model of problems, they have been successfully
applied to many kinds of science and engineering optimization
problems that are difficult to be solved by traditional mathemati-
cal methods, such as in computer network [25], electromagnetic
engineering [26], Blockchain applications [27], mobile comput-
ing [28], and information security [29], which have speeded up
the development of the EC community in recent years. These
successes are significant in real-world applications for small-
or medium-scale problems. However, as the practical problems
become increasingly complex nowadays, the number of decision
variables can reach thousands or hundreds of thousand, result-
ing in large-scale or super large-scale optimization problems.
Moreover, the population size can be set very large to increase
the diversity when dealing with complex problems [30]. In
this sense, being a kind of population-based and iterative-based
algorithms, the EC algorithms may result in very heavy com-
putational burdens due to the large population or the large-scale
decision variables, or both. This is an obstacle that prevents
EC algorithms from being widely used nowadays. Therefore,
like the large-scale FS and DNN that are based on BD and HPC
resources/techniques to efficiently solve complex problems [31],
Fig. 1 shows the researches in designing efficient EC algorithms
with the help of BD and HPC for solving complex problems
have also become a pioneer approach.

In order to relieve the computational burden when dealing
with complex optimization problems, a promising way is to
design parallel or distributed EC (DEC) algorithms [32]. This
has become an emerging topic and has aroused great attention
from the EC researchers in recent years, like the distributed GA
[33], distributed DE [34], distributed PSO [35], and distributed
memetic algorithm [36]. The DEC always uses distributed com-
putational resources to execute the multiple populations or all
the individuals in parallel, which can reduce the running time



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAN et al.: MATRIX-BASED EVOLUTIONARY COMPUTATION 3

[37]. However, designing an effective DEC algorithm is ad hoc
based on the computational resources and is relied on the hard-
ware. Moreover, communication burden has to be considered.
This is difficult for practical applications. Therefore, a more
general way to extend the traditional EC framework is in great
need. Also, the existing DEC algorithms almost only consider
how to distribute the multiple populations or the individuals
to distributed computational resources [38]. Recently, a novel
generation-level parallelism PSO is proposed to enable the DEC
being executed in parallel in generation level [39]. However,
most existing DEC algorithms do not consider the potential
parallelism on the decision variables. That is, the DEC are
parallel in population level or individual level, or even in gener-

ation level, but not in dimension level. Therefore, more generic
and efficient DEC algorithms are in great need to fully utilize
the HPC resources like cloud computing, supercomputing, and
GPU.

In fact, the parallelism on dimension level is a significant
research topic in EC community but has not been studied in-
tensively. This may be due to the fact that it is not easy for
implementation. Refer to Fig. 2 again, the evolutionary opera-
tors such as the crossover and mutation in GA or the velocity
and position update in PSO are executed on the decision vari-
ables dimension by dimension. However, one may also further
consider whether the evolutionary operators can be executed
by manipulating all the dimensions simultaneously. Someone
may propose to also use multiple distributed computational
resources to parallel execute these dimensions. However, under
the traditional solution representation, this way is difficult if
not impossible for implementation. For example, although one
can separate all dimensions of the problem and deal with the
variables simultaneously when updating the velocity/position of
PSO, sophisticated programming skills are required. Moreover,
when executing the operators in GA like selection and crossover,
there are interactions among the variables vector, making it not
easy or impossible to separate and distribute the dimensions
to different resources for parallel computing. Therefore, a new
approach is needed if researchers want to have such a kind of
parallelism on dimension level.

This paper focuses on this particular issue and proposes a
matrix-based EC (MEC) algorithm to efficiently extend tradi-
tional EC to faster solve large-scale or super large-scale opti-
mization problems. Although there exists matrix-based imple-
mentation of DE [40], it uses the matrix scheme to enhance the
search ability but not to reduce the running time. Differently,
the MEC proposed in this paper focuses on the running time,
which is an entirely new perspective on EC algorithm, from the
solution representation to the evolutionary operators. Therefore,
the MEC is a new emerging and promising topic of EC and CI/AI
community. It is common that in traditional EC, an individual is
represented by a vector and the population is formed by a set of
individuals (vectors). Differently, the MEC does not represent
an individual alone, but define the whole population (contains
a set of individuals) as a matrix, where a row stands for one
individual and a column stands for one dimension (decision
variable). Matrix is easy for parallel computing. If the population

Fig. 3. Generic framework of matrix-based evolutionary computation.

of EC algorithm is represented by the matrix, MEC can use
the parallel computing functionalities of matrix to accelerate
the computational speed directly and easily. That is, the matrix
operations [41] such as addition (+), subtraction (–), multi-
plication (×), find maximization or minimization, and other
linear operations [42] have been widely studied in the parallel
and distributed computing community [43]. Consequently, the
evolutionary operators can be directly carried out in parallel
due to the functionality of matrix. More importantly, researchers
have developed many ripe parallel routines for matrix operations
on HPC resources like GPU, cloud computing platform, and
supercomputing platform [44]. This allows us to deploy the
MEC to these HPC platforms naturally. In this way, the MEC
can relive the heavy computational burden of large population
size and large scale of decision variables. Based on the above
advantages, the MEC can be a promising way to extend EC
algorithms to complex optimization problems in a very complex
big data environment. Similar to Fig. 2, the generic framework
of MEC algorithms is illustrated as Fig. 3. Moreover, the MEC
algorithms can be benefitted from the following three aspects:

Firstly, MEC is suitable for solving complex problems with
any size of scale. The dimensions (variables) do not need to be
decomposed and can be processed simultaneously because the
matrix can be naturally distributed on sufficient HPC computa-
tional resources. Therefore, the computational time of MEC is
not limited to the problem size.

Secondly, MEC can be beneficial from the bonuses of HPC.
It has no need to consider the manipulation of the distributed
resources to deal with the fussy issues like communication and
transformation. The MEC can be directly deployed on HPC
platforms like supercomputing and cloud computing. Therefore,
the computational time of MEC can be further promoted with
the development of supercomputing.

Thirdly, MEC is actually a true parallel and distributed algo-
rithm. The MEC is not only parallel on population level and
individual level, but also on dimension level. Therefore, the
MEC is more suitable for population-based algorithm to solve
large-scale or super large-scale optimization problems in shorter
computational time.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

This “EC-to-MEC” would be even more significant than that
of “ANN-to-DNN” because EC algorithms are more suitable
for optimization, knowledge creation, and problem solving, so
that the MEC is a promising way to solve complex optimization
problems in big data environment. The MEC will lead a new
development in EC to achieve higher-level CI and AI.

The rest of the paper is organized as follows. Section II
introduces the basic knowledge of matrix and some common
matrix-based representation or operators in MEC. Section III
and Section IV describe the MEC based on the two typical EC
algorithms, one is the matrix-based GA (MGA) and the other
is the matrix-based PSO (MPSO), respectively, including how
to implement the evolutionary operators according to the new
matrix-based representation. The time complexity of MEC (e.g.,
MGA and MPSO) is analyzed in Section V and the experiments
are conducted in Section VI to show the efficiency of MEC in
reducing computational burden. Finally, conclusions and future
works are given in Section VII.

II. BASIC KNOWLEDGE

A. Representations and Notations

Assume that there is a population with N individuals to solve
a D-dimensional problem (i.e., with D variables). In traditional
EC, an individual is represented by a vector as:

Xi = (xi1, xi2, . . . , xiD) (1)

where 1 ≤ i ≤ N is the index of the individual. However, in
MEC, the population is directly represented by a N × D matrix
X = (xij)N×D as:

X =

⎛

⎜

⎜

⎝

x11 . . . x1D

...
. . .

...

xN1 · · · xND

⎞

⎟

⎟

⎠

(2)

where a row represents an individual and a column represents a
dimension (variable).

Accommodated with the matrix-based representation, lower
bound and upper bound of the variables are represented by two
1 × D matrices L and U, respectively, while the fitness values
of all the individuals are recorded by an N × 1 matrix Fit.
Moreover, two matrices named Ones and R are also defined
to help carry out the evolutionary operator in MEC. The Ones

is a matrix whose elements are all 1, while the R is a random
matrix whose elements are randomly generated between [0, 1].
For convenience, the matrices used for MEC are notated and
described in Table I.

B. Common Operations

Under the above matrix-based representation, the implemen-
tation of MEC relates to different typical matrix operations.
Table II lists these related operations and gives their descriptions.
For simplicity, the matrices used in Table II, A and B, are N × D

if they do not have subscripts.

TABLE I
NOTATIONS OF THE MATRICES USED IN MATRIX-BASED EVOLUTIONARY

COMPUTATION

III. MATRIX-BASED GENETIC ALGORITHM

A. Representation and Initialization

The solution (individual) representation in MGA is shown as
the matrix X in (2). To initialize the population X randomly in
the feasible domain of each dimension, the X is initialized within
the L and U by the help of the matrices Ones and R as

X = OnesN×1 × (U −L) ◦RN×D +OnesN×1 ×L (3)

Herein the (3) is explained in details. Firstly, the subtraction
operation (–) between U and L results in a 1 × D matrix
that constrains the initialization range. Then, the multiplication
operation (×) between OnesN×1 and (U–L)1×D results in an
N × D matrix

⎛

⎜

⎜

⎝

u1 − l1 . . . uD − lD
...

. . .
...

u1 − l1 · · · uD − lD

⎞

⎟

⎟

⎠

N×D

,

which is similar to that OnesN×1 × L1 × D as

OnesN×1 ×L1×D =

⎛

⎜

⎝

1
...
1

⎞

⎟

⎠
×
(

l1 · · · lD
)

=

⎛

⎜

⎜

⎝

l1 . . . lD
...

. . .
...

l1 · · · lD

⎞

⎟

⎟

⎠

N×D

(4)

That is, the Ones matrix is used to help the 1 × D (U–L)
matrix and L matrix to be extended to N × D matrices in which



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAN et al.: MATRIX-BASED EVOLUTIONARY COMPUTATION 5

TABLE II
TYPICAL OPERATIONS IN MATRIX AND THEIR NOTATIONS

all the rows are the same. Later, the formed N × D matrix

⎛

⎜

⎜

⎝

u1 − l1 . . . uD − lD
...

. . .
...

u1 − l1 · · · uD − lD

⎞

⎟

⎟

⎠

N×D

carries out the Hadamard product with a random N × D matrix
RN×D, also results in an N × D matrix. This matrix pluses with

the

⎛

⎜

⎜

⎝

l1 . . . lD
...

. . .
...

l1 · · · lD

⎞

⎟

⎟

⎠

N×D

and at last forms the randomly initialized X.
Therefore, (3) does not initialize the individuals one by one

like traditional GA, but performs on all the individuals and
all the dimensions simultaneously. More importantly, such an
implementation of parallelism has been supported by the parallel
routines of matrix toolbox and does not require the programming
skills of users.

After the initialization, all the individuals go through the
fitness evaluation and their fitness values are recorded in the
N × 1 matrix Fit as:

Fit = f(X) (5)

Moreover, the globally best fitness value (gBest_Fit) can be
directly determined by the matrix operation min or max as

gBest_Fit =

{

min(Fit), if it is a minimum problem
max(Fit), if it is a maximum problem

(6)

B. Selection

After the initialization and fitness evaluation, the MGA
goes through the evolutionary process by performing selection,
crossover, and mutation generation by generation. To select N

individuals from the population by a roulette wheel selection
operator, the roulette should be built and the individuals are
chosen based on it. The following steps illustrate this process.

Step 1: Calculate the probability matrix ProbN×1, which
indicates the selected chance of each individual. In the minimum
problems, the individual with lower fitness value has more
chance to be selected. At the same time, to ensure that the sum
of the selected probability of all individuals equals to 1, Prob is
calculated through the sum of fitness value subtracts each fitness
value and then divided by N-1 times of the sum of fitness. In
the maximum problems, the individual with higher fitness value
has more chance to be selected. Prob is calculated through each
fitness value divided by the sum of all fitness values. Therefore,
the Prob is calculated as

Prob =

{

Ones1×N×Fit−Fit

(N−1)×(Ones1×N×Fit) , minimum problem
Fit

Ones1×N×Fit
,maximum problem

(7)

where the multiplication operation between Ones1×N and Fit

is used to calculate the sum of fitness.
Step 2: Define a N × 1 roulette matrix ROU_MAT to record

the accumulated probability of each individual. The ROU_MAT

can be obtained by left multiply Prob with an N × N lower
triangular one-matrix LTRI as



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

ROU_MAT = LTRI × Prob

=

⎛

⎜

⎜

⎜

⎜

⎝

1 0 · · · 0

1 1 · · · 0
...

...
. . .

...

1 1 · · · 1

⎞

⎟

⎟

⎟

⎟

⎠

×

⎛

⎜

⎜

⎜

⎝

Prob1
Prob2

...
ProbN

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

Prob1
Prob1 + Prob2

...
Prob1 + · · ·+ ProbN

⎞

⎟

⎟

⎟

⎠

(8)

Therefore, the last element in ROU_MAT is Prob1 +Prob2 +
···+ProbN= 1. Similar to the roulette wheel selection operation
in traditional GA, the ROU_MAT is used to determine which
individual is selected. Given a random number between 0 and
1, then the first individual whose accumulated probability larger
than this number is selected. In order to select N individuals
at the same time, the Step 3 is designed based on the matrix
operation.

Step 3: Generate an N × 1 probability matrix R in which each
element is a random number between 0 and 1. To find the first
individual with the larger accumulated probability than each of
these random numbers, the algorithm has to compare the values
of elements in ROU_MAT and R. To do this, the algorithm right
multiplies a matrix Ones1×N to R to make the R an N×N matrix
whose all columns are the same. For ROU_MAT, the algorithm
firstly transposes it and then extend it to N × N where all rows
are the same. Then making the logical operation between the
extended R and the extended ROU_MAT to get a N×N selected
matrix named SEL_MAT:

SEL_MAT = (OnesN×1 ×ROU_MAT T )

≤ (RN×1 ×Ones1×N ) (9)

which is composed of 0 and 1, where 1 means the value in
roulette is not larger than the random value (i.e., ≤) and 0 means
larger. In (9), the left part of the logical operator is

OnesN×1 ×ACCUMT

=

⎛

⎜

⎝

Prob1 Prob1 + Prob2 · · · Prob1 + · · ·+ ProbN
...

. . .
...

Prob1 Prob1 + Prob2 · · · Prob1 + · · ·+ ProbN

⎞

⎟

⎠

N×N

.

Obviously, the values in each row are in ascending order. The
right part of (9) is

RN×1 ×Ones1×N =

⎛

⎜

⎝

R1 · · · R1

...
. . .

...
RN · · · RN

⎞

⎟

⎠

N×N

.

Therefore, the selected matrix SEL_MAT has the character-
istic that in each row the first several elements are 1 and the
rest elements are 0. In this sense, the index of the first 0 is the
individual that to be selected. It is also interesting to observe that
the sum of ones before this element is actually the same as its
index. Therefore, right multiplying an N × 1 matrix Ones can

get the index matrix SET_IND as

SEL_IND = SEL_MAT ×OnesN×1 (10)

Step 4: Replace the population with the selected individuals.
The matrix SET_IND determines which individuals are selected
and using index operation can extract them as (11). After that,
just copy X_SEL to X to replace the original population.

X_SEL = X[SEL_IND|1, . . . , D] (11)

X = X_SEL (12)

C. Crossover

In the crossover operator for GA, there is a crossover prob-
ability Pc that controls whether an individual takes part in the
crossover. In fact, the expected number of crossover individuals
is NC = N × Pc. In the MGA, to make the algorithm eas-
ier and more suitable for the matrix-based representation, the
MGA chooses the first NC individuals for crossover from the
population formed by the above selection operation. It should
be noted that the population has been randomly shuffled in the
selection operation and therefore these NC chosen individuals
are without loss of generality. If NC is odd, the MGA chooses
one more individual so that NC = NC + 1. Then the first half
of the individuals correspondingly mate with the second half
of the individuals one by one. This operation is legal out of
two considerations. Firstly, keeping the number of crossover
individuals to be a constant has less influence on the perfor-
mance. Traditionally, the number of crossover individuals in
each generation is dynamic. However, with a large number of
independent runs, the expected value is N × Pc. Therefore, the
MGA sets the number of crossover individuals NC as the fixed
value N × Pc during the evolution. Secondly, the randomness is
kept. Although the MGA chooses the first NC individuals and
mate the first half individuals with the second half individuals
directly, the roulette selection provides enough randomness to
the selected population in each generation. Roulette selection is
a totally random process and the order of selected individuals is
also random.

Crossover is that the variables before the crossover point in
the first parent combine with the variables after the crossover
point in the second parent to form one offspring and the other
variables of parents form the second offspring. In order to do this
operation using matrix, the MGA can build two matrices where
one matrix is composed of part of original values and part of
zeros and the other matrix consists of correspondingly part of
zeros and part of original values. Adding these two matrices can
directly result in the offspring matrix. The MGA achieves the
crossover by following procedure.

Step 1: Generate a NC
2 × 1 matrix C_POS randomly, where

each element is an integer between 1 and D, representing the
crossover position of each pair of individuals.

Step 2: Generate a 1 × D permutation matrix PERM = (1,
2, …, D).

Step 3: Right multiply a 1 × D Ones matrix to extend C_POS

to NC
2 ×D, with all the columns the same. Left multiply a

NC
2 × 1 Ones matrix to extend PERM to NC

2 ×D, with all the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAN et al.: MATRIX-BASED EVOLUTIONARY COMPUTATION 7

rows the same. Make a logical operation between the extended
C_POS and PERM to get the mask matrix MASK as

MASK NC

2
×D = (C_POS NC

2
×1 ×Ones1×D)

≤ (OnesNC

2
×1 × PERM1×D) (13)

This process is similar to (9) and MASK has the same charac-
teristic with SEL_MAT which consists of the first several zeros
and the remaining ones, but the meaning is different. In MASK,
the first several zeros mean the variables before the crossover
position will be discarded while the remaining ones mean the
variables after the crossover position need to be retained. Mean-
while, the complemented matrix MASKof the MASK is ob-
tained by MASK NC

2
×D = OnesNC

2
×D −MASK NC

2
×D.

Step 4: The offspring individuals are obtained by two steps.
Firstly, in this step the first NC/2 offspring individuals are
obtained as

OffSpring

[

1, . . . ,
NC

2

∣

∣

∣

∣

1, . . . , D

]

=X

[

1, . . . ,
NC

2

∣

∣

∣

∣

1, . . . , D

]

◦MASK

+X

[

NC

2
+ 1, . . . NC

∣

∣

∣

∣

1, . . . , D

]

◦MASK (14)

Herein, the Hadamard product between the first half of NC in-
dividuals and MASK (i.e.,X[1, . . . , NC

2 |1, . . . , D] ◦MASK)
is a matrix where each row stands for a pre-offspring individ-
ual with the first several elements are zero and the following
elements are all from the corresponding positions of X. Herein
the MGA use the “pre-offspring” because the first several el-
ements of the individuals are still needed to be crossed from
other parents. Therefore, the Hadamard product between the
second half of NC individuals and MASK (i.e., X[NC

2 +

1, . . . NC|1, . . . , D] ◦MASK) is to provide this information.
The sum of these two matrices results in the first NC/2 offspring
individuals.

Step 5: Secondly, in this step, the second NC/2 offspring
individuals are obtained as

OffSpring

[

NC

2
+1, . . . , NC

∣

∣

∣

∣

1, . . . , D

]

= X

[

NC

2
+1, . . . , NC

∣

∣

∣

∣

1, . . . , D

]

◦MASK

+ X

[

1, . . . ,
NC

2

∣

∣

∣

∣

1, . . . , D

]

◦MASK (15)

whose explanations are similar to that of (14).
Step 6: Using the index operation to replace the parent indi-

viduals using the offspring.

X[1, . . . NC|1, . . . , D] = OffSpring (16)

It should be noted that the individuals that do not take the
crossover operations remain the same as their previous genera-
tion.

D. Mutation

The mutation operator is done on genes rather than the in-
dividuals, which means each bit has a chance to mutate. The
process is to judge which bits need to mutate and then keep the
unchanged bits and reinitialize the mutated bits. The procedure
is as follows.

Step 1: Generate a random decimal matrixRN×D, where each
element is between 0 and 1, meaning the mutation rate of each
gene. If the mutation rate of a bit is smaller than Pm, it will
mutate. Otherwise, the gene is kept.

Step 2: Left multiply an N × 1 Ones matrix and right multiply
a 1 × D Ones matrix to extend the mutation probability Pm to
an N×D matrix PM. Each element in PM is Pm. Make a logical
operation between R and PM to determine which variables need
to mutate.

PM = OnesN×1 × Pm ×Ones1×D (17)

MUT _IND = R ≤ PM (18)

The result MUT_IND consists of most zeros and several ones,
where ones represent the mutation variables.

Step 4: Using Hadamard product to retain the unchanged
part and reinitialize the mutation positions. The reinitialization
process in (19) is the same as the initialization process in (3).

RE_X = OnesN×1 × (U −L) ◦RN×D +OnesN×1 ×L

(19)

X = X ◦ (1−MUT _IND) +RE_X ◦MUT _IND

(20)

In (20), matrix (1−MUT_IND) consists of most of the ones
which mean the unchanged variables and several zeros which are
to be reset. Unchanged index matrix Hadamard products with
population X and the mutation index matrix Hadamard products
with the reinitialization matrix. At last, the sum of these two
results is the population X after mutation.

E. Whole Algorithm

The pseudocode of MGA is outlined in Algorithm 1.

IV. MATRIX-BASED PARTICLE SWARM OPTIMIZATION

A. Representation and Initialization

The representation in MPSO is little different from MGA be-
cause MPSO not only has the population matrix X that represents
the positions of the individuals, but also has the matrices V and
pBest that represents the velocity and personal best position,
respectively. Herein, the X is initialized the same as (3) and the
V is initialized similar to the X, except that U is replaced by
Vmax and L is replaced by Vmin.

After the initialization of X and V, the MPSO can obtain the
fitness values of all the individuals through fitness evaluation
and record them in the N × 1 matrix Fit like (5). Moreover,
the pBest is set directly the same as X and the pBest_Fit is the
same as Fit. At last, the globally best fitness value (gBest_Fit)
is determined like (6). Moreover, assume that the optimization
problem is a maximization problem, the MPSO can use maxind



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Algorithm 1: Matrix-Based Genetic Algorithm.
Input: The size of population N, the dimension of the
problem D, the crossover rate Pc, the mutation rate Pm,
the maximal generation max_gen

Begin

/∗Initialization∗/
1: XN×D = OnesN×1 × (U −L)1×D ◦RN×D +

OnesN×1 ×L1×D

/∗Evaluation∗/
2: FitN×1 = f(X)

/∗Update the best solution∗/
3: gBest_Fit =

{

min(Fit), if it is aminimumproblem
max(Fit), if it is amaximumproblem

4: For g = 1 to max_gen Do

/∗Selection∗/

5: Prob =

{

Ones1×N×Fit−Fit

(N−1)×(Ones1×N×Fit) ,minimumproblem
Fit

Ones1×N×Fit
,maximumproblem

6: ROU_MATN×1 = LTRIN×N × Prob

7:
SEL_MAT

= (OnesN×1 ×ROU_MAT T ) ≤ (RN×1

×Ones1×N )
8: SEL_INDN×1 = SEL_MAT ×OnesN×1

9: X_SELN×D = X[SEL_IND|1, . . . , D]
10: X = X_SEL

/∗Crossover∗/
11: PERM = (1, 2, …, D)

12:

MASK NC

2
×D

= (C_POS NC

2
×1 ×Ones1×D)

≤ (OnesNC

2
×1 × PERM1×D)

13: MASK NC

2
×D =

OnesNC

2
×D −MASK NC

2
×D

14:
OffSpring[1, . . . , NC

2 |1, . . . , D]
= X[1, . . . , NC

2 |1, . . . , D] ◦MASK

+X[NC
2 + 1, . . . NC|1, . . . , D] ◦MASK

15:
OffSpring[NC

2 +1, . . . , NC|1, . . . , D]
= X[NC

2 +1, . . . , NC|1, . . . , D] ◦MASK

+X[1, . . . , NC
2 |1, . . . , D] ◦MASK

16: X[1, . . . NC|1, . . . , D] = OffSpring

/∗Mutation∗/
17: PMN×D = OnesN×1 × Pm ×Ones1×D

18: MUT _INDN×D = RN×D ≤ PM

19: RE_XN×D = OnesN×1 × (U −L) ◦
RN×D +OnesN×1 ×L

20: X = X ◦ (1−MUT _IND) +RE_X ◦
MUT _IND

/∗Evaluation∗/
21: FitN×1 = f(X)

/∗Update the best solution fitness∗/

22: gBest_Fit = {
min(Fit),minimumproblem
max(Fit),maximumproblem

23: End for

24: Output: The found best solution fitness
gBest_Fit.

End

operator to obtain the index of individual with the best pBest

fitness as

index = max ind(pBest_Fit) (21)

where the maxind() is defined in Table II.

B. Velocity and Position Update

During the iteration of MPSO, the individuals perform the
velocity update and position update generation by generation,
so as to gradually approach the global optimum. The velocity
and position can be updated by (22) and (23), respectively.

V = w × V + c1 ×R1 ◦ (pBest−X)

+ c2 ×R2 ◦ (Ones× gBest−X) (22)

X = X + V (23)

where w is the inertia weight, c1 and c2 are the acceleration
coefficients, R1 and R2 are two N × D matrices with uniformly
distributed random numbers.

It should be noted that gBest is 1 × D matrix that is actually
a row from the N × D matrix pBest. That is, the pBest of the
index (i.e., the globally best in (21)) individual is actually the
gBest = pBest(index). However, in order to make the N × D

matrix X can learn from the 1 × D matrix gBest, the (22) will
left multiply an N × 1 matrix Ones so that gBest is extended to
an N × D matrix where all the rows are the same, similar to the
process of Eq. (4).

As the elements in V and X should be not out of the bound,
the detection and handling of the bounds will be performed on
V and X immediately after they have been updated. This can be
carried out through logic operation and Hadamard product. For
better descriptions, the MPSO takes the X and its upper bound U

as an example. The detection and handling for the upper bound
can be represented as

LOGICN×D = X > (Ones×U) (24)

Herein, the 1 × D matrix U is firstly expanded to an N × D

matrix, where each row is the same with each other, similar as
the process of Eq. (4), and then compared with the N × D matrix
X. The LOGIC records the elements in X that are larger than the
corresponding upper bound. That is, an element in LOGIC, say
lij, is 1 if the element of row i and column j in X is larger than
jth value of 1 × D matrix U. Otherwise, it will be 0. In this way,
the handling of upper bound can be achieved by:

X = LOGIC ◦U+(1−LOGIC) ◦X (25)

The aim of this operation is to set the value out of the upper
bound as the upper bound. To be more specifically, the element
of X will be set as the value of the corresponding upper bound
if the element in the same position of LOGIC is 1, while the
element of X will not be changed if the element in the same
position of LOGIC is 0, which is similar to Eq. (20). It should
be noted that the operation to deal with the lower bound of X

is similar to the operation to deal with the upper bound, and
therefore is not repeated herein.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAN et al.: MATRIX-BASED EVOLUTIONARY COMPUTATION 9

C. Update of Personal and Global Best Positions

After the update of velocities and positions, the Fit will be
re-calculated through fitness evaluation. Then the personal best
position pBest should be updated according to the relationship
between Fit and pBest_Fit. The relationship can be determined
by using logic operation and Hadamard product operation.
Firstly, to find which individuals have found positions that are
better than their previous pBest, an N× 1 matrix LOGIC is com-
puted through logic operation as (26) or (27) for maximization
or minimization problem, respectively.

LOGIC = pBest_Fit > Fit (26)

LOGIC = pBest_Fit < Fit (27)

Then, the personal best positions matrix and the personal best
fitness matrix can be updated through Hadamard product, which
are illustrated in (28) and (29).

pBest = LOGIC ×Ones ◦X

+(1−LOGIC ×Ones) ◦ pBest (28)

pBest_Fit = LOGIC ◦ Fit

+ (1−LOGIC) ◦ pBest_Fit (29)

The main idea of (28) and (29) are the same, which are similar
to Eq. (20). The difference between them is that a 1 × D matrix
Ones is employed in (28) to expand the LOGIC because the size
of X and pBest are N × D.

After the update of personal best positions and fitness values,
the new global best position and its corresponding index can be
determined again by (21).

The MPSO will finish if the stop criteria (i.e., the maximum
of generation is reached) are met. Otherwise, the algorithm will
run into next generation.

D. Whole Algorithm

To provide a demonstration of the complete MPSO algorithm,
its pseudo code is given in Algorithm 2. For simplicity, this
pseudo code is the version of MPSO for maximization problems.

V. TIME COMPLEXITY ANALYSES

A. Time Complexity of Common Operators

Before discussing the time complexity of MGA and MPSO,
this paper firstly analyzes the time complexity (TC) of common
operators, so that the later descriptions can be clearer. Among
the common operators defined in Section II, there are only three
kinds of operators that require different TCs, they are bitwise
operator, multiplication operator, and max(min) operator.

1) Bitwise Operator: The bitwise operator performs calcu-
lations in a bit-by-bit fashion, which includes matrix addition,
matrix subtraction, and Hadamard product. Therefore, these
operators on N × D matrix needs N × D bit-by-bit calculations,
resulting in the time complexity as O(N×D). However, as MEC

Algorithm 2: Matrix-Based Particle Swarm Optimization.
Input: The size of population N, the dimension of the
problem D, the parameters w, the c1 and c2, maximal
generation max_gen

Begin

/∗Initialization∗/
1: XN×D = OnesN×1 × (U −L)1×D ◦RN×D +

OnesN×1 ×L1×D

2: V N×D = OnesN×1 × (V max− V min)1×D ◦
RN×D +OnesN×1 × V min1×D

/∗Evaluation∗/
3: FitN×1 = f(X)

/∗Update the best solution∗/
4: gBest = X[max ind(Fit)|1, . . . , D]

/∗Update the best fitness∗/
5: gBest_Fit = max(Fit)

/∗Update the personal best position∗/
6: pBest = X

/∗Update the personal best fitness∗/
7: pBest_Fit = Fit

8: For g = 1 to max_gen Do

/∗Update velocity∗/

9:
V = w × V + c1 ×R1 ◦ (pBest−X)
+ c2 ×R2 ◦ (Ones× gBest−X)

/∗Perform bound detection and handling on V ∗/
10: LOGICN×D = V > (Ones× V max)
11: V = LOGIC ◦ V max+(1−LOGIC) ◦ V
12: LOGICN×D = V < (Ones× V min)
13: V = LOGIC ◦ V min+(1−LOGIC) ◦ V

/∗Update position∗/
14: X = X + V

15: /∗ Perform bound detection and handling on X∗/
16: LOGICN×D = X > (Ones×U)
17: X = LOGIC ◦U+(1−LOGIC) ◦X
18: LOGICN×D = X < (Ones×L)
19: X = LOGIC ◦L+(1−LOGIC) ◦X

/∗Evaluation∗/
20: FitN×1 = f(X)

/∗Update the personal best position∗/
21: LOGIC = pBest_Fit > Fit

22:
pBest = LOGIC ·Ones ◦X
+(1−LOGIC ·Ones) ◦ pBest

/∗Update the personal best fitness∗/

23:
pBest_Fit = LOGIC ◦ Fit

+(1−LOGIC) ◦ pBest_Fit
/∗Update the best solution∗/

24: gBest = pBest[max ind(pBest_Fit)|1, . . . , D]
/∗Update the best solution fitness∗/

25: gBest_Fit = max(pBest_Fit)
26: End for

27: Output: The found best solution fitness gBest_Fit.
End



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

can use the parallel routine of matrix to execute all these N × D

bit-by-bit calculations simultaneously on a set of resources, the
time complexity can be further reduced to O(N×D

P
), where P is

the number of the parallel processes [41].
2) Multiplication Operator: For the multiplication between

a J × K matrix and a K × L matrix, the TC is O(J × K × L).
However, the matrix multiplication can be accelerated by many
methods, such as block matrix multiplication [45], Fox algo-
rithm [46], and Cannon algorithm. Therefore, in MEC, the TC
of the multiplication operator can be reduced to O(J×K×L

P
),

where P is also the number of parallel processes [47].
3) Max (Min) and Maxind (Minind) Operator: The max

(min) operator is to find the maximum (minimum) value in an
array. By employing enough processes and divide-and-conquer
mechanism, its TC is O(log2N) on single instruction multiple
data with exclusive read exclusive write (SIMD-EREW) ma-
chine, and is O(1) on SIMD with concurrent read concurrent
write (SIMD-CRCW) machine [47]. As SIMD-EREW is com-
monly used, this paper employ the O(log2N) as the TC for max
(min) operator. Similarly, the maxind (minind) operator is to get
the index of maximum (minimum) value in an array. Therefore,
they share the same TC with the max and min operators.

B. Time Complexity of Matrix-Based Genetic Algorithm

This part gives the theoretical analysis of the TC of each part
of MGA, including initialization, roulette selection, crossover,
mutation, and the globally best solution update. Finally, this part
will make also a comprehensive analysis of MGA.

1) Initialization: According to (3), the random initialization
uses the matrix multiplication and bitwise operation. Multiplica-
tion’s TC is O(N × 1 × D). For Hadamard product, subtraction,
and addition operations, the TC is O(N × D). Since the fitness
evaluation is problem-dependent, its TC is not taken into con-
siderations. Therefore, the TC of initialization is O(N×D

P
) with

P processors.
2) Roulette Selection: In the selection, the ma-

trix operations include multiplication, subtraction,
and logical operations. For multiplication, the TC is
O(1 × N × 1 + N × N × 1 + N × 1 × N + N × N × 1), which
is O(N2). Subtraction and logical operation are both bitwise
operations, so the TC of is O(N × D ). Therefore, the TC of the
roulette selection is O(N×D+N2

P
) with P processors.

3) Crossover: There are multiplication operation and three
kinds of bitwise operations (i.e., logical, Hadamard product, and
complementation) in the crossover. The TC of multiplication is
O(NC

2 × 1×D + 1×D × NC
2 ) , which is O(D × NC

2 ). The
TC of the bitwise operations in the crossover is O(D × NC

2 ).

Therefore, the total TC of crossover is O(
D×NC

2

P
). with P

processors.
4) Mutation: The reinitialization in the mutation is the same

with the initialization of the algorithm. The TC of the multipli-
cation operator in mutation is O(1 × N × D) while the TC of
the bitwise operators in mutation is O(N × D). Therefore, the
TC of the mutation is O(N×D

P
) with P processors.

5) Update the Globally Best Solution: This operation is to
find and update the globally best solution. Its TC is the same as
max (min) operator with O(log2N).

From the analyses above, the total TC of initialization, selec-

tion, crossover, and mutation in MGA is O(
N×D+N2+D×NC

2

P
).

Since NC = N × Pc (i.e., the expected number of crossover
individuals as defined in Section III-C) and Pc <1, the final TC
can be written as O(N×D+N2

P
). Suppose that P ≥ NC

2 , the TC
of finding the best solution is O(log2 N) and the TC of MGA is
O(N×D+N2

P
+ log2N).

C. Time Complexity of Matrix-Based Particle Swarm

Optimization

This part gives the theoretical analysis of the TC of each part
of MPSO, including initialization, velocity and position update,
and personal and global best position update. Finally, this part
will also make a comprehensive analysis of MPSO.

1) Initialization: Like the initialization in MGA, the MPSO
performs initializations for X and V through the matrix multi-
plication and bitwise operations. The TC for multiplication is
O(N × 1 × D), while for Hadamard product, subtraction, and
addition operations, the TC is O(N × D). Therefore, the total
TC of initialization in MPSO is O(N×D

P
) with P processors. It

should be noted that the TC of fitness evaluation has not been
considered due to its problem-dependent feature.

2) Velocity and Position Update: As shown in (22) to (25),
the operations for velocity and position update are all bitwise
operations, which have the TC of O(N × D). Therefore, the
TC for velocity and position update is also O(N×D

P
) with P

processors.
3) Personal and Global Best Position Update: When com-

puting the matrix of gBest and pBest, the TC for (26), (27),
and (29) are O(N × D) since they are bitwise operations,
while the TC for the maxind operation in (21) is O(log2 N).
In addition, the matrix multiplication in (28) have the TC of
O(N × 1 × D). Hence, the TC for computing gBest and pBest

is O(N×D
P

+ log2N) with P processors.
Based on the above analyses, the total TC of MPSO is

O(N×D
P

+ log2N) when using N individuals and P processers
to optimize the D-dimensional problems.

At last, the TC of the common operators and the MGA and
MPSO are summarized in Table III.

VI. EXPERIMENTAL STUDIES

A. Experimental Configurations

The efficiency of MEC is that it can accelerate the com-
putational speed but not improve the problem-solving ability.
Therefore, this part conducts the experiments based on a typical
Sphere function herein to evaluate the computational efficiency
of MEC. The Sphere function is defined as

f (x) =

D
∑

j=1

x2
j , − 5.12 ≤ xj ≤ 5.12 (30)

where D is the dimension of the problem and is set as 100.
To ensure the fairness of the comparisons, the EC and MEC

algorithms use the same parameters and run on the same ma-
chines. The population size N is 100 and the maximal generation
is 3000. The experiments are implemented by Matlab 2014 and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAN et al.: MATRIX-BASED EVOLUTIONARY COMPUTATION 11

TABLE III
TC OF THE COMMON OPERATORS AND THE MATRIX-BASED GENETIC

ALGORITHM AND MATRIX-BASED PARTICLE SWARM OPTIMIZATION

Fig. 4. Convergence curves of different EC and MEC algorithms.

are run in machine with 4 cores, configured as Intel(R) Xeon(R)
CPU E3-1225 with 3.3 GHz, 8G memory, and Ubuntu 16.04.2
LTS operation system.

B. Comparisons on Problem-Solving Ability

The fitness values of different EC and MEC algorithms during
the evolutionary process are compared in Fig. 4. The compar-
isons results show that the problem-solving abilities of MGA
and GA are the same, and so are the PSO and MPSO. This is
because that the MEC can use matrix-based population represen-
tation and operator to perform efficient population reproduction
in EC algorithms, which can improve the computational time
efficiency without influencing the problem-solving ability of
original EC algorithms.

Fig. 5. Computational time efficiency of MEC algorithms with different
population size N. (a) GA and MGA. (b) PSO and MPSO.

Fig. 6. Computational time efficiency of MEC algorithms on different dimen-
sions D. (a) GA and MGA. (b) PSO and MPSO.

C. Comparisons on Computational Speed

As for the comparisons on the efficiency of computational
speed, this part conducts experiments on different population
size N, different dimension D, and different number of CPU
cores. It should be noted that the computational time for fitness
evaluation is not included in the comparisons because the MEC
only accelerates the computational efficiency of evolutionary
operators.

Firstly, the experiment fixes the dimension D as 100 and the
number of CPU cores as 4, while the population size N varies
from 100 to 10000. The experimental results are compared in
Fig. 5. The experimental results show that the efficiency of MEC
in computational time becomes more evident as the number of
population size increases, no matter for MGA or MPSO. This
indicates that when the algorithm uses a large population size
to deal with large-scale or super large-scale optimization, the
advantages of MEC will become more significant in reducing
the computational time.

Secondly, the experiment fixes the population size N as 100
and the number of CPU cores as 4, while the dimension D varies
from 100 to 10000. The experimental results are compared in
Fig. 6. The experimental results show that the computational
time efficiency of MEC also becomes more evident as the
number of problem dimension increases, no matter for MGA
or MPSO. Therefore, the MEC algorithms are much more suit-
able for solving large-scale or super large-scale optimization
problems by reducing the computational time.

Finally, the experiment fixes the population size N as 100 and
the dimension D as 100, while the number of CPU cores varies
from 1 to 64. Herein, the experimental environments is changed
to the machine with 68 cores, configured as Intel(R) Xeon
Phi (TM) CPU 7250 with 1.40 GHz, and with 112G memory.
The speedup results are compared in Fig. 7. The experimental



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Fig. 7. Speedup of MEC algorithms with different number of CPU cores.

results show that the speedup of MEC becomes more evident as
the more CPU cores are used, no matter for MGA or MPSO.
Therefore, the advantages of MEC algorithms will be more
significant if one can deploy the algorithms in rich-resources
computational environments.

D. Discussion

The above contents have shown the great superiority and
advantage of the MEC. However, to be honest, the matrix-based
idea for EC algorithms is still a new methodology and there
are some issues that need further researches and studies in the
future.

As shown in the Fig. 3, when an existing EC algorithm is
extended to its MEC version, there are two key issues that
should be addressed. One is the matrix-based solution repre-
sentation and the other is the matrix-based population repro-
duction. In fact, the matrix-based solution representation of
different MEC algorithms is similar, which has been clearly
described in Section III-A where MGA is used as an example.
Similarly, as described in Section IV-A for the matrix-based
solution representation in MPSO, the implementation is the
same as that in MGA. While for the matrix-based population
reproduction, the implementations of different EC algorithms
may be somewhat different, which may result in some difficulties
in the implementation.

This paper has fully described the implementations of MGA
and MPSO in detail because they are the two typical evolution-
ary algorithm and swarm intelligence algorithm respectively.
Moreover, in the Supplemental Material, this paper has also
provided the implementations of matrix-based DE (MDE) and
matrix-based EDA (MEDA) detailly because they are also two
widely-used EC algorithms for optimization problems. The
implementations detail of these four algorithms can serve as
helpful references when extending other EC algorithms into
matrix-based versions. However, it is difficult to give all the
implementations of all different EC algorithms in this single
paper. Therefore, this paper has put these issues in the future
works and hope more and more related works can appear in the
near future.

VII. CONCLUSION

The MEC proposed in this paper is an entirely new and
groundbreaking perspective to extend traditional EC by intro-
ducing the matrix-based operation. The MEC uses a matrix to
represent the whole population of the algorithm, where a row
stands for an individual and a column stands for a dimension
(variable). In this way, this paper has successfully developed
the MGA and MPSO. Their solution representations are similar
and their evolutionary operators, e.g., the selection, crossover,
and mutation operators in MGA, and the velocity update, po-
sition update, and personal best position update in MPSO,
have been fully designed and described based on the matrix
representations. Moreover, two other EC algorithms named DE
and EDA are extended to their matrix-based versions, resulting
in the MDE and MEDA, respectively, and are detailed in the
Supplemental Material. The time complexity analyses on both
MGA and MPSO also show that MEC has greatly reduced the
computational time of traditional EC algorithms, especially on
very large-scale optimization problems. Therefore, the MEC
can be very promising in the computational time when solving
complex optimization problems in big data environment. The
future work will on the one hand develop MEC algorithms based
on other typical EC algorithms and on the other hand try to
apply MEC algorithms to various kinds of complex problems in
real-world applications. For other MEC algorithms, apart from
the MGA, MPSO, MDE, and MEDA detailed in this paper, the
implementation of matrix-based ACO and others are worthy
studied. Moreover, when based on special EC algorithms for
special optimization problems, the special matrix-based evolu-
tionary operators in dealing with large-scale [48], dynamic [49],
multimodal [50], multi-objective [51], many-objective [52], and
constrained issues [53] are also worthy studied.

REFERENCES

[1] J. C. Bezdek, “(Computational) intelligence: What’s in a name?,” IEEE

Syst., Man, Cybern. Mag., vol. 2, no. 2, pp. 4–14, Apr. 2016.
[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.
[3] M. H. S. Segler, M. Preuss, and M. P. Waller, “Planning chemical syn-

theses with deep neural networks and symbolic AI,” Nature, vol. 555,
pp. 604–610, 2018.

[4] Q. Chen et al., “A survey on an emerging area: Deep learning for smart city
data,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 3, no. 5, pp. 392–410,
Oct. 2019.

[5] Y. Ong and A. Gupta, “AIR5: Five pillars of artificial intelligence research,”
IEEE Trans. Emerg. Top. Comput. Intell., vol. 3, no. 5, pp. 411–415,
Oct. 2019.

[6] D. Silver et al., “Mastering the game of go with deep neural networks and
tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[7] D. Silver et al., “A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play,” Science, vol. 362, no. 6419,
pp. 1140–1144, 2018.

[8] Y. Sun, G. G. Yen, and Y. Zhang, “Evolving unsupervised deep neural
networks for learning meaningful representations,” IEEE Trans. Evol.

Comput., vol. 23, no. 1, pp. 89–103, Feb. 2019.
[9] Y. Guo, J. Y. Li, and Z. H. Zhan, “Efficient hyperparameter optimization

for convolution neural networks in deep learning: A distributed parti-
cle swarm optimization approach,” Cybern. Syst., to be published, doi:
10.1080/01969722.2020.1827797.

[10] S. M. Nekooei and G. Chen, “Cooperative coevolution design of multi-
level fuzzy logic controllers for media access control in wireless body
area networks,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 3,
pp. 336–350, Jun. 2020.

https://dx.doi.org/10.1080/01969722.2020.1827797


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAN et al.: MATRIX-BASED EVOLUTIONARY COMPUTATION 13

[11] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung, “Adaptive particle
swarm optimization,” IEEE Trans. Syst. Man, Cybern. B, vol. 39, no. 6,
pp. 1362–1381, Dec. 2009.

[12] J. Zhang et al., “Evolutionary computation meets machine learning:
A survey,” IEEE Comput. Intell. Mag., vol. 6, no. 4, pp. 68–75,
Nov. 2011.

[13] X. Zhang, K. J. Du, Z. H. Zhan, S. Kwong, T. L. Gu, and J. Zhang,
“Cooperative co-evolutionary bare-bones particle swarm optimization
with function independent decomposition for large-scale supply chain
network design with uncertainties,” IEEE Trans. Cybern., vol. 50, no. 10,
pp. 4454–4468, Oct. 2020.

[14] J. Ding, C. Yang, Q. Xiao, T. Chai, and Y. Jin, “Dynamic evolutionary
multiobjective optimization for raw ore allocation in mineral process-
ing,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 3, no. 1, pp. 36–48,
Feb. 2019.

[15] S. Zhou, Z. H. Zhan, Z. Chen, S. Kwong, and J. Zhang, “A multi-objective
ant colony system algorithm for airline crew rostering problem with
fairness and satisfaction,” IEEE Trans. Intell. Transp. Syst., to be published,
doi: 10.1109/TITS.2020.2994779.

[16] X. F. Liu, Z. H. Zhan, J. D. Deng, Y. Li, T. Gu, and J. Zhang, “An
energy efficient ant colony system for virtual machine placement in cloud
computing,” IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 113–128,
Feb. 2018.

[17] X. Xu, S. Fu, W. Li, F. Dai, H. Gao, and V. Chang, “Multi-objective data
placement for workflow management in cloud infrastructure using NSGA-
II,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 5, pp. 605–615,
Oct. 2020.

[18] J. Y. Li, Z. H. Zhan, C. Wang, H. Jin, and J. Zhang, “Boosting data-driven
evolutionary algorithm with localized data generation,” IEEE Trans. Evol.

Comput., vol. 24, no. 5, pp. 923–937, Oct. 2020.
[19] J. Y. Li, Z. H. Zhan, H. Wang, and J. Zhang, “Data-driven evolutionary

algorithm with perturbation-based ensemble surrogates,” IEEE Trans.

Cybern., to be published, doi: 10.1109/TCYB.2020.3008280.
[20] Z. J. Wang et al., “Automatic niching differential evolution with

contour prediction approach for multimodal optimization prob-
lems,” IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 114–128,
Feb. 2020.

[21] Z. G. Chen, Y. Lin, Y. Gong, Z. H. Zhan, and J. Zhang, “Maximizing
lifetime of range-adjustable wireless sensor networks: A neighborhood-
based estimation of distribution algorithm,” IEEE Trans. Cybern., to be
published, doi: 10.1109/TCYB.2020.2977858.

[22] J. Kennedy, R. C. Eberhart, and Y. H. Shi, Swarm Intelligence. San Mateo,
CA: Morgan Kaufmann, 2001.

[23] X. Xia et al., “Triple archives particle swarm optimization,” IEEE Trans.

Cybern., vol. 50, no. 12, pp. 4862–4875, Dec. 2020.
[24] Z. G. Chen et al., “Multiobjective cloud workflow scheduling: A multiple

populations ant colony system approach,” IEEE Trans. Cybern., vol. 49,
no. 8, pp. 2912–2926, Aug. 2019.

[25] V. Šešum-Čavić, E. Kühn, and L. Fleischhacker, “Efficient search and
lookup in unstructured P2P overlay networks inspired by swarm in-
telligence,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 3,
pp. 351–368, Jun. 2020.

[26] M. O. Akinsolu, B. Liu, V. Grout, P. I. Lazaridis, M. E. Mognaschi, and P.
D. Barba, “A parallel surrogate model assisted evolutionary algorithm for
electromagnetic design optimization,” IEEE Trans. Emerg. Top. Comput.

Intell., vol. 3, no. 2, pp. 93–105, Apr. 2019.
[27] Z. Zhou, B. Wang, Y. Guo, and Y. Zhang, “Blockchain and computational

intelligence inspired incentive-compatible demand response in internet of
electric vehicles,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 3, no. 3,
pp. 205–216, Jun. 2019.

[28] T. Wei, J. Zhong, and J. Zhang, “An energy-efficient partition-based
framework with continuous ant colony optimization for target tracking
in mobile sensor networks,” IEEE Trans. Emerg. Top. Comput. Intell., to
be published, doi: 10.1109/TETCI.2019.2940978.

[29] R. Wang and W. Ji, “Computational intelligence for information secu-
rity: A survey,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 5,
pp. 616–629, Oct. 2020.

[30] P. Huang, Y. Wang, K. Wang, and K. Yang, “Differential evolution with
a variable population size for deployment optimization in a UAV-assisted
IoT data collection system,” IEEE Trans. Emerg. Top. Comput. Intell.,
vol. 4, no. 3, pp. 324–335, Jun. 2020.

[31] M. Asim, Y. Wang, K. Wang, and P. Huang, “A review on computational
intelligence techniques in cloud and edge computing,” IEEE Trans. Emerg.

Top. Comput. Intell., vol. 4, no. 6, pp. 742–763, Dec. 2020.

[32] Z. H. Zhan et al., “Cloudde: A heterogeneous differential evolution al-
gorithm and its distributed cloud version,” IEEE Trans. Parallel Distrib.

Syst., vol. 28, no. 3, pp. 704–716, Mar. 2017.
[33] Z. J. Wang, Z. H. Zhan, and J. Zhang, “Solving the energy efficient cover-

age problem in wireless sensor networks: A distributed genetic algorithm
approach with hierarchical fitness evaluation,” Energies, vol. 11, no. 12,
pp. 1–14, Dec. 2018.

[34] Z. H. Zhan, Z. J. Wang, H. Jin, and J. Zhang, “Adaptive distributed dif-
ferential evolution,” IEEE Trans. Cybern., vol. 50, no. 11, pp. 4633–4647,
Nov. 2020.

[35] Z. J. Wang, Z. H. Zhan, S. Kwong, H. Jin, and J. Zhang, “Adap-
tive granularity learning distributed particle swarm optimization for
large-scale optimization,” IEEE Trans. Cybern., to be published, doi:
10.1109/TCYB.2020.2977956.

[36] Y. F. Ge et al., “Distributed memetic algorithm for outsourced
database fragmentation,” IEEE Trans. Cybern., to be published, doi:
10.1109/TCYB.2020.3027962.

[37] Y. J. Gong et al., “Distributed evolutionary algorithms and their models:
A survey of the state-of-the-art,” Appl. Soft Comput. J., vol. 34, no. 2013,
pp. 286–300, 2015.

[38] Z. J. Wang et al., “Dynamic group learning distributed particle swarm
optimization for large-scale optimization and its application in cloud
workflow scheduling,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2715–2729,
Jun. 2020.

[39] J. Y. Li, Z. H. Zhang, R. D. Liu, C. Wang, S. Kwong, and J. Zhang,
“Generation-level parallelism for evolutionary computation: A pipeline-
based parallel particle swarm optimization,” IEEE Trans. Cybern., to be
published, doi: 10.1109/TCYB.2020.3028070.

[40] J. S. Pan, Z. Meng, H. Xu, and X. Li, “A matrix-based implementation of
DE algorithm: The compensation and deficiency,” in Proc. Int. Conf. Ind.,

Eng. Other Appl. Appl. Intell. Syst., 2017, pp. 72–81.
[41] L. García, J. Cuenca, and D. Giménez, “On optimization techniques for the

matrix multiplication on hybrid {CPU+GPU} platforms,” Ann. Multicore

GPU Prog., vol. 1, no. 1, pp. 10–18, 2014.
[42] G. Bernabé, J. Cuenca, L. P. García, and D. Giménez, “Tuning basic linear

algebra routines for hybrid CPU+GPU platforms,” Procedia Comput. Sci.,
vol. 29, pp. 30–39, 2014.

[43] G. Bernabé, J. Cuenca, L. P. García, and D. Giménez, “Auto-tuning
techniques for linear algebra routines on hybrid platforms,” J. Comput.

Sci., vol. 10, pp. 299–310, 2015.
[44] P. Alonso, R. Reddy, and A. Lastovetsky, “Experimental study of six dif-

ferent implementations of parallel matrix multiplication on heterogeneous
computational clusters of multicore processors,” in Proc. Euromicro Conf.

Parallel, Distrib. Netw.-Based Process., 2010, pp. 263–270.
[45] J. Choi, “A new parallel matrix multiplication algorithm on distributed-

memory concurrent computers,” Concurrency Pract. Exp., vol. 10, no. 8,
pp. 655–670, 1998.

[46] G. C. Fox, S. W. Otto, and A. J. G. Hey, “A matrix algorithms on
a hypercube I: Matrix multiplication,” Parallel Comput, vol. 4, no. 1,
pp. 17–31, Feb. 1987.

[47] S. Ubéda, “Pyramidal thinning algorithm for SIMD parallel machines,”
Pattern Recognit, vol. 28, no. 12, pp. 1993–2000, 1995.

[48] J. R. Jian, Z. H. Zhan, and J. Zhang, “Large-scale evolutionary optimiza-
tion: A survey and experimental comparative study,” Int. J. Mach. Learn.

Cybern., vol. 11, no. 3, pp. 729–745, Mar. 2020.
[49] X. F. Liu et al., “Neural network-based information transfer for dynamic

optimization,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 5,
pp. 1557–1570, May 2020.

[50] Z. G. Chen, Z. H. Zhan, H. Wang, and J. Zhang, “Distributed individuals for
multiple peaks: A novel differential evolution for multimodal optimization
problems,” IEEE Trans. Evol. Comput., vol. 24, no. 4, pp. 708–719,
Aug. 2020.

[51] Z. H. Zhan, J. Li, J. Cao, J. Zhang, H. Chung, and Y. H. Shi, “Multiple
populations for multiple objectives: A coevolutionary technique for solv-
ing multiobjective optimization problems,” IEEE Trans. Cybern., vol. 43,
no. 2, pp. 445–463, Apr. 2013.

[52] X. F. Liu, Z. H. Zhan, Y. Gao, J. Zhang, S. Kwong, and J. Zhang,
“Coevolutionary particle swarm optimization with bottleneck objective
learning strategy for many-objective optimization,” IEEE Trans. Evol.

Comput., vol. 23, no. 4, pp. 587–602, Aug. 2019.
[53] W. Xu, J. Xu, D. He, and K. C. Tan, “An evolutionary constraint-handling

technique for parametric optimization of a cancer immunotherapy model,”
IEEE Trans. Emerg. Top. Comput. Intell., vol. 3, no. 2, pp. 151–162,
Apr. 2019.

https://dx.doi.org/10.1109/TITS.2020.2994779
https://dx.doi.org/10.1109/TCYB.2020.3008280
https://dx.doi.org/10.1109/TCYB.2020.2977858
https://dx.doi.org/10.1109/TETCI.2019.2940978
https://dx.doi.org/10.1109/TCYB.2020.2977956
https://dx.doi.org/10.1109/TCYB.2020.3027962
https://dx.doi.org/10.1109/TCYB.2020.3028070


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

Zhi-Hui Zhan (Senior Member, IEEE) received the
bachelor’s and Ph.D. degrees in computer science
from Sun Yat-sen University, Guangzhou, China,
in 2007 and 2013, respectively. He is currently the
Changjiang Scholar Young Professor with the School
of Computer Science and Engineering, South China
University of Technology, Guangzhou, China. His
current research interests include evolutionary com-
putation algorithms, swarm intelligence algorithms,
deep learning, and their applications in real-world
problems, and in environments of cloud computing

and big data. Dr. Zhan was the recipient of the IEEE Computational Intelligence
Society, Outstanding Ph.D. Dissertation, and the China Computer Federation
(CCF) Outstanding Ph.D. Dissertation. He was also the recipient of the Out-
standing Youth Science Foundation from the National Natural Science Foun-
dations of China in 2018 and the Wu Wen-Jun Artificial Intelligence Excellent
Youth from the Chinese Association for Artificial Intelligence in 2017. He is
listed as one of the most cited Chinese researchers in computer science. He is
currently an Associate Editor for the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, the Neurocomputing, and the International Journal of Swarm

Intelligence Research.

Jun Zhang (Fellow, IEEE) received the Ph.D. degree
from the City University of Hong Kong, Kowloon,
Hong Kong, in 2002. He is currently a Korea Brain
Pool Fellow Professor with Hanyang University,
South Korea, and a Visiting Scholar with Victoria
University, Australia. He has authored or coauthored
more than 300 technical papers in his research fields,
which include computational intelligence algorithms
and applications. Dr. Zhang was the recipient of the
Changjiang Chair Professor from the Ministry of
Education, China, in 2013 and the China National

Funds for Distinguished Young Scientists from the National Natural Science
Foundation of China in 2011. He is currently an Associate Editor for the IEEE
TRANSACTIONS ON EVOLUTIONARY COMPUTATION and the IEEE TRANSAC-
TIONS ON CYBERNETICS.

Ying Lin (Member, IEEE) received the Ph.D. degree
in 2012 in computer science from Sun Yat-sen Univer-
sity, Guangzhou, China, where she is currently an As-
sociate Professor with the Department of Psychology.
Her main research interests include computational
intelligence and its applications in psychometrics and
neuroimaging.

Jian-Yu Li (Student Member, IEEE) received the
bachelor’s degree in 2018 in computer science and
technology from the South China University of Tech-
nology, Guangzhou, China, where he is currently
working toward the Ph.D. degree in computer science
and technology with the School of Computer Sci-
ence and Engineering. His research interests mainly
include computational intelligence, data-driven op-
timization, machine learning, and their applications
in real-world problems, and in environments of dis-
tributed computing and big data.

Ting Huang (Student Member, IEEE) is currently
working toward the Ph.D. degree from the School
of Computer Science and Engineering, South China
University of Technology, China. Her current re-
search interests include evolutionary computation,
swarm intelligence, multisolution optimization, and
their real-world applications.

Xiao-Qi Guo (Student Member, IEEE) received the
bachelor’s degree in 2018 in computer science and
technology from the South China University of Tech-
nology, Guangzhou, China, where she is currently
working toward the Ph.D. degree. Her current re-
search interests include evolutionary computation and
their applications on expensive optimization prob-
lems or in distributed networks.

Feng-Feng Wei (Student member, IEEE) received the
bachelor’s degree in 2019 in computer science and
technology from the South China University of Tech-
nology, Guangzhou, China, where she is currently
working toward the Ph.D. degree in computer science
and technology. Her current research interests include
data-driven evolutionary computation, evolutionary
constrained optimization, and cooperative coevolu-
tionary algorithms.

Sam Kwong (Fellow, IEEE) received the B.S. degree
in electrical engineering from the State University of
New York at Buffalo, Buffalo, NY, USA, in 1983,
the M.S. degree in electrical engineering from the
University of Waterloo, Waterloo, ON, Canada, in
1985, and the Ph.D. degree from the University of
Hagen, Hagen, Germany, in 1996. From 1985 to 1987,
he was a Diagnostic Engineer with Control Data
Canada, where he designed the diagnostic software
to detect the manufactured faults of the VLSI chips
in the cyber 430 machine. Then, he joined the Bell

Northern Research, Canada, as a Member of the Scientific Staff. In 1990, he
joined as a Lecturer with the Department of Electronics Engineering, City
University of Hong Kong, Hong Kong. He is currently the Chair Professor with
the Department of Computer Science. His research interests include pattern
recognition, evolutionary computations, and video analytics. Prof. Kwong was
elevated to an IEEE Fellow for his contributions to optimization techniques
for cybernetics and video coding in 2014. He is the Vice President of the IEEE
Systems, Man, and Cybernetics. He was also appointed as an IEEE Distinguished
Lecturer of the IEEE SMC Society in March 2017. He is currently an Associate
Editor for the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION.

Xin-Yi Zhang (Student Member, IEEE) received the
bachelor’s degree in 2018 in computer science and
technology from the South China University of Tech-
nology, Guangzhou, China, where she is currently
working toward the master’s degree in computer sci-
ence and technology. Her current research interests
include data-driven evolutionary computation, fuzzy
system, and combinational optimization in intelligent
transportation.

Rui You (Student Member, IEEE) received the bache-
lor’s degree in 2018 in computer science and technol-
ogy from the South China University of Technology,
Guangzhou, China, where he is currently working
toward the master’s degree in computer science and
technology. His current research interests include the
estimation of distribution algorithms, data-driven op-
timization, and their applications.


