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ABSTRACT 

Matrix methods of image reconstruction have not 
been used, in general, because of the large size of 
practical matrices, ill condition upon inversion and 
the success of Fourier-based techniques. An excep­
tion is the work that has been done at the Lawrence 
Berkeley Laboratory for imaging with accelerated 
radioactive ions. An extension of that work into more 
general imaging problems shows that, with a correct 
formulation of the problem, positron tomography with 
ring geometries results in well behaved matrices 
which can be used for image reconstruction with no 
distortion of the point response in the field of view 
and flexibility in the design of the instrument. 
Maximum Likelihood Estimator methods of reconstruc­
tion, which use the system matrices tailored to speci­
fic instruments and do not need matrix Inversion, are 
shown to result in good preliminary images. A paral­
lel processing computer structure based on multiple 
inexpensive microprocessors is proposed as a system 
to implement the matrix-MLE methods. 

INTRODUCTION 

Image reconstruction methods based on matrix in­
version were discussed quite early in the literature 
of computerized tomography!. Although a certain 
amount of work has been done in generating algorithms 
for the use of that basically simple metnod?, the 
large size of m e matrices resulting from practical 
applications, the bad behavior of the matrices under 
inversion and the success of Fourier based algorithms 
nas discouraged the continuation of the initial 
efforts. 

As part of the work carried out at the Lawrence 
Berkeley Laboratory in support of a heavy ion cancer 
therapy, it has become necessary to provide an imag­
ing capability for annihilation radiation resulting 
from radioactive ions injected by the SEVATRON^. 
The circumstances are such that it is ret possible to 
use a detector ring of conventional design. Inter­
ference with the oeam delivery and with patient posi­
tioning nave required the design of a detector system 
with an incomplete set of projections. The require­
ments or" the project forced us to give a second look 
jt aatrix reconstruction methods with findings that 
'eaa to the design and construction of a successful 
imaging instrument1'.5. 

Further examination of the properties of weight 
or response matrices resulting from accurate simula­
tions of detectors in ring geometry indicate that 
there M y be more merit to matrix-based reconstruc­
tion methods than «as apparent initially. First, 
• nil a proper description of the positron ring geome­
try, it is found that the resulting matrices are well 
senavec (low condition numbers, CN). Second, it is 
not necessary to in»-rt (or pseudo-invert) the very 
large iMtrires obtained in practice. Instead, one 
can use the maximum likelinooa estimator (HE) method 
of reconstruction Described by Sheep and Vardi* 
•men suites use of the weight matrices directly for 
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its implementation. The MLE method yields reconstruc­
tions with lower noise than filtered oackprojection 
techniques in simulations of positron emission tomo­
graphy without time-of-flight (TOF)^ and with 
TOF'. The improved quality reconstruction with 
real data from a conventional BGeO ring detector has 
recently been confirmed by Shepp et al^. 

Substantial advantages could result from the use 
of matrices in reconstruction. Since the matrices 
can be calculated accurately by a combination of 
Monte Carlo and deterministic methods, or can be 
measured directly, the image reconstruction process 
is precisely tailored to each specific instrument. 
Resulting images can be free of spatial distortion, 
witn the reconstructed image of a point having the 
same shape everywhere in the image volume. Moreover, 
there is added flexibility in the geometry of the 
instrument. A complete set of views is not a require­
ment and the response of the cetector system to a 
point source (before reconstruction) does not need to 
be space invariant. The utilization of all the radia­
tion detected 1n a multi-ring system, for example, is 
then possible. 

This paper will present the preliminary findings 
on which the above assertions are based, describe 
computer simulations and measurements with a 96-crys-
tal Bismuth Germanate (BGO) ring geometry, ano show 
results of image reconstructions. It will also pro­
pose a method for implementing the MLE algorithm for 
practical problems with parallel computer architec­
tures based on inexpensive microprocessors. Although 
the method to be discussed is not limited to positron 
emission tomography (PET), that specific application 
will be used as a framework for the ideas to be des­
cribed. 

THE SYSTEM MATRIX 

The concept of the system, weight or response 
matrix of an imaging device has been published in the 
context of positron emission imaging by one of the 
autnorsSMO. The physical meaning of the "blur­
ring" matrix obtained by multiplying the system mat­
rix by its transpose, the meaning of the eigenvalues 
and eigenvectors of the blurring matrix ana a des­
cription of the "pseudo" or generalized inverse for 
imaqe restoration has also been discussed in aetail 
in the publications. The basic ideas are well known 
in the general field of image restoration, as des­
cribed, for example, by Andrews ana HuntH. It 
will suit the purpose of this section, however, to 
describe briefly the basic concepts indicated above. 

Consider an imaging system consisting of two rows 
of annim'ation radiation detectors that can rotate 
by an angle 4 about the center of an (n x n ) . HB 

array of pixels, as shown in Fig. 1. Coincidences 
will only be allowed between detectors which are 
facing eacn other directly, so that there can be N c 

coincidences at eacn position a. This PET system is 
derivea directly from the early x-ray CT systems, and 
we shall call it the X-CT system. We consider the 
case of uniform activity in each pixel. 
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Fig. 1 Representation of the PET problem in terms 
of the traditional X-ray CT geometry. The possible 
coincidences in a positron ring detector system are 
rebinned so that they conform to one of the coinci­
dences allowed in the X-CT problem. The casting of 
the problem in that fashion results in radial sampling 
at a distance d, equal to the detector dimensions. 

The system matrix A of the X-CT system is ob­
tained by assuming that a unit activity is placed in 
pixel No. 1, the detectors are made to step in N« 
angles from 0 s e < 180* spending equal time in each 
angle, and recording the resulting coincidence rates 
as the N c x N« elements of the first column of 
matrix A. The unit activity is then placed in pixels 
Nos. 2,3, ... to Np, each time obtaining one column 
of A. The resulting matrix has H c i n, rows and 
Np columns. 

In principle, the imaging problem consists in 
solving the equation 

A x . k (1) 

where x is an unknown vector of length Np corres­
ponding to some activity distribution~in the pixels 
ano k is a vector of length N c x Ng hich is the 
result of a measurement. Thus, the A matrix contains 
all the information about the pixel-detector system 
necessary to solve the linear imaging problem. The A 
matrix is also the set of probabilities p(b,d) that 
an annihilation gamma pair emitted by a pixel 0 will 
be detected in a tube d connecting a specific pair of 
opposing detectors. The probabilities p(b,d) provide 
all the information needed about a detector system 
for the NLE image reconstruction algorithm described 
by Shepp anj V*rai6. 

The solution to Eq. (1) is equivalent to solving 

AT A x . AT k (2) 

where A T is the transpose of A. We can then define 
A'- AT A and k' - A* k and rewrite Eq. (2) as 

A' x . k* (3) 

where A' is symmetric and of dimension Np x Np 
and x and k 1 are also of dimension H p. Matrix A' 
is the blurring matrix of the system. 

The solution to Eq. (3) would be straightforward 
if the inverse of A' could be:obtained with reason­
able ease and reliability for practical imaging sys­
tems. If we let B correspond to a "pseudo" inverse 
obtained from eigenvector decomposition of A, then 
the unknown activity distribution x can be found by 
carrying out the operation 

> . l k ' . (4) 

the matrix A as a prescription. Multiplication by 3 
corresponds to a filtering operation in wnicn each 
particular pixel nas its own filter function. Thus, 
image restoration using the information contained in 
a system matrix is equivalent to the filtering of a 
backprojectlon in wh<ch the basis functions used for 
the expansion of activity distributions are not the 
Fourier basis (as 'n standard filtered backprojection 
techniques), but are. Instead, the eigenvectors of 
the matrix A9,10. The implications of tne above 
observations are that an Imaging system does not have 
to have a space invariant response to a point source, 
and does not require what is usually called a com­
plete set of projections in order for a successful 
reconstruction to be feasible. 

Two main difficulties appear in attempting to 
solve the imaging problem by the pseudo-inverse: 
with the exception of some particular geometries in 
which the determination of the point of origin of 
gamma pairs offers relatively little ambiguitylO, 
the blurring matrices of positron detector systems 
appear to he very badly behaved. In particular, the 
condition number, CN (largest divided by smallest 
eigenvalue) of the blurring matrix for the X-CT geo­
metry is extremely high, implying very high sensitiv­
ity of the solution to statistical fluctuations in 
the experimental data. Condition numbers in the 
region of 2SO.0OO have been obtained for pixel arrays 
as small as 8 x 8 and pseudo inverses for 13 x 13 
pixel arrays have been found impossible to calculate 
even with a 48-bit aantissalO. 

The second difficulty is less fundamental in 
nature and it concerns the large size of the system 
and blurring matrices resulting from most practical 
detector systems. It would appear, however, that 
with the constantly improving price/performance 
ratios for microcomputers and memories, a solution 
can be found for this problem. Indeed, we want to 
propose one such solution in this paper. 

THE POSITRON RING GEOMETRY 

A close examination of the X-CT geometry of Fig. 1 
has been undertaken in order to find the reason for 
the very high CN' s encountered. Some of the find­
ings have been surprising. For example, a 2 x 2 
pixel array in which the detector lateral dimension 
is equal to the pixel side dirension results in a 
singular blurring matrix (its determinant, which can 
be calculated without truncation errors for sucn a 
small problem, is exactly zero). The singularity 
disappears when the detector side dimension is made 
smaller than the pixel dimension. This fact, coupled 



to an earlier observation that the CN of a blurring 
matrix increases rapidly as the pixel size approaches 
the sampling distance", leads one to the pre­
liminary conclusion that the X-CT problem is badly 
behaved because it is in violation of the sampling 
theorem. This point certainly deserves further analy­
sis, but it suggests that a more appropriate represen-
tatation of a positron ring detector problem in terms 
of the actual coincidences that can occur, instead of 
rebinning it into an X-CT geometry, can be better 
behaved. In the positron ring (PR) geometry, as des­
cribed in Fig. 2, the image plane is sampled at twice 
tne radial frequency than in the X-CT geometry for 
detectors and pixels of the same lateral dimension. 

25 x 25 pixel image array. The size of the image 
array was limited to 625 pixels in order to keep the 
lateral distance between pixel centers (1 cm) larger 
than the sampling distance (0.75 cm). 

The calculated system matrix has been multiplied 
by its transpose and the blurring matrix A" has been 
obtained. The eigenvalues of the 625 x 625 matrix 
have been calculated in a VAX-11/780 and the condi­
tion number has been found to be 1,323. The PR prob­
lems is, therefore, reasonably well behaved and amen­
able to exact solution, without the approximations 
implied by the use of Fourier-based algorithms. 

xH.»s-«as 

Fig 2 Scnematic drawing of a 96-crystal PET ring detector used for the computer imaging simulations and for 
the actual image operation experiments with moving detectors. The response matrix of the detector system was 
ootaineo for the Normal Image Plane (25 x 25 pixels) when all aetectors were active. The Reduced Image Plane 
(13 x 13 pixels) was used when only the detectors ;ndicated vitn tne solid lines were active, resulting in a 
severely limited nuaiber of coincidences. Radial sailing distance for the system is 0.5 d. For experiments 
with 4-point sampling, the center of the detector ring was assumed to move in the square pattern shown. For 
J-point interpolation, four interleaved sets of pixel centers were also used, as shown in the expanded section 
at the upper left side of the iwage plane. 

In order to confirm tne above expectation, the 
system matrix of a 96-crystal (BGeO) positron ring, as 
described in Fig. J. mas been calculated using a modi­
fied form of the computer program MATRIX, wliicn was 
very successful in calculating system matrices for a 
two-oinensionat planar positron camera (PEBA II)*. 
Figure 2 snows tne dimensions of the ring ana of the 

Figures 3 a) and b) show the calculated blurring 
functions for a central and one edge pixels, respec­
tively. The substantial differences between center 
and edge pixels are due to differences in solid ang­
les, in cryswl detection efficiency as a function of 
incidence angle and to crosstalk between neignooring 
crystals, effects which are included in trie MATRIX 
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calculation. Some unsymmetries apparent in Figs. 3 
are caused by small errors in the present method of 
computing the response matrices, which will be cor­
rected in the future. 

In order to test the correctness of the sampling 
concepts, we have assumed that the detector ring of 
Fig. 2 moves in such a way that its center comes to 
rest, for counting, at each of the four positions 
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Fig. 3 a) Blurring function of the complete detector system of Fig. 2 for the center pixel of the image 
This corresponds to the center column of the blurring matrix A", containing N p elements, plotted on the 
image plane, b) Ditto for a pixel at the edge of the image plane. 

plane, 
square 

The calculation of eigenvectors and of the pseudo 
inverse has not been undertaken at this time. He will 
only demonstrate the feasibility of tomographic imag­
ing using the calculated response matrices by means 
of the MLE method, which only needs the A matrix for 
its implementation. 

SAMPLING ANO INTERPOLATION 

The role of sampling of the image plane in the 
context of matrix methods is consistent with the 
general understanding of the subject: Increasing the 
sampling frequency by using a larger number of smal­
ler detectors and/or by incorporating motions In a 
detector system makes the CN of a blurring matrix 
smaller, for a fixed pixel dimension. In turn, this 
results in lower noise magnification factor. The 
"Signal Amplification" concept of Phelps et aU3,14 < 

which increases the signal-to-noise ratio in PET re­
constructions, is based on an equivalent argument, 
although cast in the more familiar spatial frequency 
domain. 

When motions are incorporated in the design of a 
detector system, the columns of a system matrix be­
come longer since they nava to incorporate the detec­
tor coincidence rates for one pixel at all the detec­
tor positions considered. In the case of TOF, each 
element of a matrix coluim becomes expanded to a TOF 
spectrum with as many bins as TOF bins. Fortunately 
there is a large number of zero {or near-zero) terms 
In every column, so that sparse matrix techniques can 
be used for storage and handling of the significant 
terms. 

forming a square with sides of 0.5 cm., as indicated 
in the center of the figure. This increases the 
sampling frequency by a factor of two in the x and y 
directions. Considering a column of A as a vector of 
a certain Euclidean norm, only elements with magni­
tude larger than 5S of the vector norm have been kept 
as significant. He find approximately 4S0 such ele­
ments in each column of the expanded A matrix (62S 
columns). The CN of the new blurring matrix is found 
to be 173, a substantial improvement over the value 
of 1323 for the itial problem. As discussed in 
Ref. 1C, the use of TOF information also reduces 
greatly the CN of the tomography problem. 

Independently of a sampling rate increase 
achieved by motion (or by skewed arrangement of de­
tectors, as in the case of PEBA II) 4, system mat­
rices can be generated that correspc o to different 
interleaved sets of pixels in the imaging plane. 
Each one of these independent matrices can be called 
a submatrix. One set of measured data can then be 
processed with the independent submatrices providing 
interpolated values of activity in the image plane. 
Ue have carried out simulations and imaging experi­
ments *>th four submatrices, each with 625 points, 
giving interpolation values every 0.5 cm in the x and 
y directions. An inset at the upper left hand side 
of the image plane in Fig. 2 shows the locations of 
the four sets of interleaved system points {pixel 
centers). 
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The significance of this interpolation technique 
is that the reconstruction of a large array of pixels 
can be broken down into several reconstructions of 
smaller interleaved arrays. The number of operations 
needed for a reconstruction can be expected to be 
proportional to the square of the number of pixels 
and, therefore, ihe smaller reconstructions can 
result in substantial savings in computation time. 

IMAGING SIMULATIONS 

For the purpose of carrying out a first test of 
the possibility of using system matrix information in 
conjunction with the MLE recontruction method, the 
imaging of two point sources has been simulated with 
the program MATRIX by calculating a set of detector 
responses for the positron ring of Fig. 2. Statisti­
cal fluctuations corresponding to 100 microCi in each 
source have been introduced into the coincidence data 
and probability functions obtained from system 
matrices-and from the Shepp and Vardi (S-V) model6 
have been used with the MLE algorithm to generate 
images. The activity of the sources was chosen rela­
tively high to avoid strong statistical effects in 
the results. 

Figures 4a) and b) show the images obtained with 
system matrix and the Shepp and Vardi (S-V) models, 
respectively. The point sources were placed at (x,y) 
* (0,0) and (9,-9) cm in the image plane. Four-point 
sampling of the image plane was assumed by motion of 
the ring in the square pattern shown in the center of 
Fig. 2 and 4-point interpolation was used by recon­
structing with four interleaved submitrices corres­
ponding to the four sets of pixels also shown in the 

figure (upper left image plane). Linear interpola­
tion was finally used to generate the 128 x 123 dis­
play from the 50 x 50 image. 

Measurements on the images of Figs. 4a) and b) 
indicate that the system matrix approach gives the 
correct intensity for both sources and that the shape 
of the corner source is almost identical to the cen­
tral one. The S-V model results in a value for the 
corner source which is only 57 of the correct one 
(no detector efficiency information in the S-V model) 
and its shape is distorted appreciably (no detector 
crosstalk in the model). We can conclude from this 
first experience that response matrices calculated 
specifically for a detector system can result in more 
accurate imaging, particularly in the peripheral 
regions of the image plane. 

IMAGING EXPERIMENTS 

Using two BGeO detectors of dimensions shown in 
Fig. 2 and some simple equipment, the positron ring 
of Fig. 2 has; been simulated by rotations in the 
horizontal plane. Each BGeO crystal was flanked by 
two identical crystals (not operating as detectors) 
and 0.5 mm tungsten separators were used. Energy 
threshold discriminators were set at approximately 
125 keV matching the conditions under which the sys­
tem matrices were generated. A Na-22 line source of 
undetermined uniformity of 14 cm length and two Na-22 
point sources embedded in plastic rods 3 cm in dia­
meter were placed in the image field of view. Their 
activities were approximately .078 microCi per cm, 
1.1 and .185 microCi, respectively. 
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Fig. 4 a) Results of computer simulation for tne reconstruction of two point sources at the center ana at 
(9,-9) cat in the image plane of Fig. 2. The MATRIX prograa was used to generate both the data and the response 
matrices of the instrument. Four-point sampling oy simulating motion, and '"-point interpolation by assuming 4 
sets of interleaved 25 i 25 pixels were used for the reconstruction by the MLE algorithm, b) Ditto using 
MATRIX for fata generation and the Sliepp-Vardi probability functions for the HIE algorithm. Since the latter 
Joes not include Jetector efficiency differences with detector material, incidence angle and position or detec­
tor crosstalk, tne point near the corner appears to be of lower activity than the center point, and it has 
distortion which is somewhat observable i.i the figure. 
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After data acquisition by a stationary ring (no 
4-point sampling), image reconstruction by the MLE 
algorithm using computed response matrices and also 
matrices obtained from the Shepp-Vardi (S-V) modelS 
were carried out. Four-point interpolation was used 
for both the matrix and the S-V-MLE reconstructions. 
With the weak sources used for the experiment and a 
counting time of 100 sec per position, a total of 
123,000 counts was gathered for the image. The ex­
istence of a 1.2 MeV gamma ray in the Na-22 source 1n 
time coincidence (but no angular relationship) with 
an annihilation pair results in a substantial number 
of background counts. The data obtained were also 
used for a fan-beam reconstruction with the Donner 
algorithm package?. 

Figures 5a), b) and c) show the images generated 
by the matrix-MLE, S-V-MLE and the fan-beam filtered 
backprojection methoos, respectively. All three have 
been reconstructed on a 50 x 50 pixel image plane, 
with linear interpolation to 128 x 128. There is a 
large degree of similarity between the two HLE re­
sults. Expansion of the vertical scales of Figs. 5a) 
and b) by a factor of 4 shows no meaningful differ­
ences either. Evidently, an assessment of the advan­
tages of using accurately calculated system matrices 
will require more extensive research than can be 
shown at this time. 

Fig. 5 Results of image reconstructions using 
rotating BGeO detectors simulating the gecoetry of 
Fig. 2 and small Na-22 sources: 

t) Complete detector ring, 123,000 counts in the 
image. Reconstruction by using the calculated res­
ponse matrix for the system and the H E algorithm. 
Stationary ring, (no 4-point sampling) and * inter­
leaved sets of pixel centers, for a 50 x SO pixel 
reconstruction. 

b) Some data as a), reconstructed using the 
Shepp Vardi calculated probability functions, also 
with 50 x 50 pixels by interleaving. 
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c) Same data as a), reconstructed using the fan 
beciti filtered backprojection technique. The line 
source is almost imoossiole to find aaiong the many 
artifacts and noise. The reconstruction was trade for 
SO x SO pixels. When a 25 x 25 pixel reconstruction 
was carried out, noise and artifacts were of lower 
frequency but information in the image did not appear 
to be better. Notice that tnis isage s mirrored 
with respect to a) and b). 
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There is a striking difference, however, between 
the MLE and the fan-beam reconstructions. Recon­
struction artifacts and/or noise in the fan-beam 
image have obscured the presence of the line source, 
which is clear in the MLE reconstruction. This 
finding is in agreement with the expectation that the 
MLE algorithm would be most useful in severely count 
limited images, when the Poisson nature of the posi­
tron annihilation process would be most noticeable^ 
and with the conclusions reached by Shepp et al by 
comparing images frum a real PR instruments. 

SEVERELY LIMITED NUMBER OF PROJECTIONS 

For the purpose of testing the idea that the 
matrix-MLE method does not need a complete set of 
projections to give a useful reconstruction. It has 
been assumed that the ring of Fig. 2 has been modi­
fied by removing 44 of the 96 detectors. The remain­
ing detectors are arranged in 4 groups of 13 detec­
tors each (shown in solid lines in Fig. 2) and a de­
tector of one of the group* can have coincidences only 
with any of the datectors of the opposing gruup. The 
number of coincidences has been reduced from 2352 to 
338. A new reduced image plane of 13 x 13 cm has been 
defined (109 pixels) for the new instrument. The CN 
of the new system matrix 1s near 19,000, considerably 
worse than in the case of the complete ring. Two 

rag. 6 Reconstruction of 3-point sources on the 
Seduced Image Plane of Fig. 2, with only the four 
groups of detectors indicated with solid lines in 
that figure. In spue of m e severe cut in projec­
tions and angles, an}* one significant artifact 
appears in tne upper left IOTO, at the conjunction of 
the projection of the Urge peak ana one of the two 
smaller j**is. Only 219,100 counts were collected for 
tne 'mage. 

Na-22 point sources of 1.1 and ASS microCi and one 
flat source of 1.6 cm diameter and activity .35 
microCi embedded in plastic have oeen imaged. The 
total number of counts in the image is 20,100, and 
the result is shown in Fig. 6. In spite of the low 
number of counts and the unfavorable CN, the three 
point sources have been imaged reasonably well. Only 
one artifact of substantial magnitude has appeared, 
the far left peak in Fig. 6) and the related ridge 
connecting it to the large peak. 

MULTIPROCESSING CONCEPTS 

There is little doubt that the MLE method re­
quires a very large amount of fast memory to store 
the probability functions for any problem of practi­
cal size. In particular, in the case of multi-ring 
systems with utilization of all the detected raoia-
tion, vast amounts of matrix element storage would be 
needed. Shepp et at 6-' have recognized the problem 
and resorted to calculating the required probabilities 
as they were needed for the reconstructions which they 
have published, a method which would evidently be too 
slow for a practical implementation of the algorithm. 

In order to find a practical and economical solu­
tion to the problem of implementing the matrix-MLE 
algorithm, attention has been turned towards multipro­
cessing in a manner that appears to be somewhat uncon­
ventional but promising: using large numbers of read­
ily available complete microprocessor boards, and 
large amounts of inexpensive memory in a modular archi 
tecture such that a user can increase or decrease the 
number of boards depending on the size of the recon­
struction problem at hand. Initial tests carried out 
by comparing performance of a VAX-780, a PDP-11/34 and 
a modest ISM-PC fitted with the 8087 floating paint 
processor lend support to the above idea. 

The tests that have been carried out fall into 
two categories: bench-mark speed tests and practical 
computing limitations tests. For bench-mark tests, we 
have coded a sparse vector dot product routine, which 
is one of the two most important loops in the MLE re­
construction and compared the performance of the 
three computers. The results are given in the follow­
ing table and correspond to the time needed to carry 
out the dot product of a full 4096 ..lement floating 
point vector with a 200 element vector in sparse stor­
age form (each element contains one integer address 
and one floating point value): 

TABLE I - SPARSE VECTOR DOT PRODUCT PERFORMANCE 

Computer Single Precision Double Precision 

VAX-780 0.16 sees 0.25 sees 
POP-11/34 1.43 sees 1.75 sees 
IBN-PC/8087 3.24 sees 3.41 sees 

The VAX and POP codes were written in FORTRAN, 
while the IBM-PC code was written in C-language ana 
tne resulting assembly language program modified 
slightly for some degree of optimisation. The re­
sults indicate that in single precision, the VAX is 
only 20 tines faster than the IBM-PC and in double 
precision tne factor is decreased to 13.6 (notice 
that the 6087 processor is a double precision unit). 
The speed of the PDP-U/34 (with its standard float­
ing point processor) is only a factor of two higher 
tnin the ISM-PC. This factor remained approximately 
constant when the tests were carried out with a 
Monte-Carlo Compton scattering calculation. 
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Fig. 7 Preliminary form of a multiprocessor system 
for the efficient implementation of the MLE algorithm. 
Segmented memories whose contents can be connected to 
the different microprocessors In a few microseconds 
in a rotation manner allow for a linear increase in 
computing power with increased number of processors 
without memory contention or arbitration. The latter 
would 'nviriably result in speed saturation effects. 

The backprojection of Eq. 7 can be carried out in 
parallel by making each segment of vector e, 
e\ ... e q, residing in the different sections of 
the R-memory, simultaneously available to each 
processor. Each processor computes dot products of 
its private copy of part of vector e with its private 
copy of the appropriate nr0i columns of A and the 
results will be partial values of the n e oi elements 
of the backprojection vector b. 

The segments of e are rotated upwards (Pj con­
nected to ej, ?z to e 3 ... p q to el) by 
>nemory switching, new partial dot products are 
accumulated and the rotation continues until each 
processor has seen each segment of e. At that point, 
each processor *>as calculated !tj/q elements of the 
backprcjection b, which is stored in segments of the 
R memory. 

The A-memory and the R-fflemory are farmed of q 
independent sectors, and each sector is hardware 
witched to a processor, avoiding the time needed for 
word-by-word data flows atd avoiding arbitration 
conflicts when all the proeesors are simultaneously 
reading their segments of tme A-memory or B memory. 

Kith the matrix A stored by columns in sparse 
format, the product of £q. 5 becomes more comolica-
ted. With individual segments of vector * available 
to each of the q processors, dot {products of rows of 
A with vector t have to lie computed. If each segment 

of the A memory contains complete columns of matrix A, 
then partial dot products of x with the elements of 
the desired rows from one sector of the A-memory can 
be formed. All sectors of the A-memory are hardware 
switched in sequence to all the processors, until 
each processor has had access to all of matrix A. 
Simultaneously, the segments of x are rotated up­
wards. At the end of parallel processing with matrix 
and vector switching, each processor has the values 
of m - N c/q different elements of vector h accumu­
lated in the R-memory. 

The download, control, interaction and cross-bar 
processors coordinate the general input-output, carry 
out the necessary control and memory switching opera­
tions, monitor convergence of the iterative process 
and eventually activate the display processor. 

' The cluster of Fig. 7 can be replicated a number 
of times, with the control processor of each cluster 
responding to a central control processor which does 
the ultimate directing of all activities. Each 
cluster would process one of the Interleaved sub-
images into which a complete Image is separated, as 
discussed above. The multiplication of processing 
capacity with Increase of number of processors q or 
replication of clusters is assured by the lack of an 
arbitration need for memory read and write operations. 
Data needed by a processor is always available upon 
demand In either the A, R or local memories. 

Using modern 32-b1t microprocessor boards with 
1.7S Megabytes per board, wt estimate that a computer 
with 16 MLE processing boards would complete one 
Iteration of a 32 x 32 pixel sublmage from an Instru­
ment like the Columbia University PET Scanner (one 
ring with S3 detectors, with an effective increase in 
detector pairs by a factor of 36 by motion) 8 in 
approximately 9 seconds. Sixteen clusters would then 
carry out the complete 128 x 128 reconstruction (one 
32 x 32 subimage per cluster) at a rate of 9 seconds 
per iteration. A number of factors remain to be 
studied with both the MLE algorithm convergence as a 
function of detector ring design (condition number of 
matrix), and with the utilization of symmetry in the 
response matrices. Those factors could result in 
substantial savings in computation times. 

THE BACKPROJECTIOH-MLS VARIATION 

There is one interesting variation on the utili­
zation of the MLE algorithm that deserves attention. 
Ue will call this variation the backprojection-MLE 
method. The normal matrlx-MLE solves the Imaging 
equation A x » k, as described by Eq. 1. It uses the 
experimentally obtained vector k to obtain the image 
x using the system matrix values A as the probability 
function for the HLE process. An alternative would 
be to solve the problem A' x - k' of Eq. 3, where A* 
• nj A and k" > A T k. Vector k a is the backpro­
jection of k using matrix A as a prescription and A' 
is the blurring matrix of the Imaging system. The 
blurring matrix can be interpreted as a probability 
function a'(i.j) that activity in pixel i of the true 
image will traetr in pixel j of the backprojection. 
The interesting point about this development is that 
matrix A' is symmetric and it contains as many col­
umns as pixels. Although it is not sparse, except to 
a significant extent in the case of TOF tomography, 
the number of matrix elements that needs to be handled 
by the »«.£ algorithm is considerably reduced. The 
simplification in calculation procedure for the back-
projection-MLE method is significant. From the theo­
retical point of view, however, it Is not clear at 
this time whether the fundamental premise of the HLE 



Factors like memory capacity and allocation of 
memory and CPU time are important in determining 
performance of a large computer system. On the other 
hand, software support can be a problem with small 
machines designed primarily for personal use. In 
order to assess possible limitations In those areas, 
a complete matrix-MLE algorithm has been written in 
FORTRAN and has been run in the three computers indi­
cated above. In each case, the system matrix for the 
96 crystal ring of Fig. 2 has been used (single point 
sampling), and the experimental data that gave the 
results of Figs. 5 were loaded into the machines. 
The system matrix contained approximately 70,000 
significant elements and the results vector allowed 
2592 coincidence pairs. 

For the calculations with the VAX-780 memory 
allocation was increased to approximately 750 kilo­
bytes, so that no swapping between fast memory and 
disk would obscure the results. A 97% CPU utiliza­
tion was maintained during the computations. The 
results converged to 0.5S accuracy 1n the large peak 
of Fig. 5a) In 16 iterations. After all the Input 
matrices and data were loaded, each iteration took 
1.7S seconds (single precision arithmetic). 

The IBM-cC turned out only slightly more diffi­
cult to program and debug than the VAX, since Its 
16-bit main processor cannot address directly all Its 
memory. The FORTRAN used for this particular test is 
quite complete, however, and provides access to all 
the memory through the definition of COMMON blocks, 
with 640 kilobytes of memory, the IBM-PC had no dif­
ficulty containing the complete system matrix and 
experimental data. The iteration time was 30 seconds 
(double precision operations from single precision 
data) corresponding to a factor of 17 slower than the 
VAX-780, a value which 1s consistent with the dot 
product benchmark tests indicated above. Results 
obtained with the PDP-11/34 cannot be considered to 
be in the same range with the above two machines. 
The limitation of 128 kilobytes of memory makes for 
considerable disk swapping and Iterations take 
approximately three minutes, even with a fast array 
processor doing the calculations. 

The above findings point towards a specific 
direction far implementation of the matrix-MLE met­
hods at a reasonable cost: A microprocessor board 
like tnat of the IBM-PC with the 8088/8087 processors 
and 640 kilobytes of memory may cost In the order of 
J15O0. Twenty of those boards (plus one additional 
control board) connected in a suitable architecture 
would have the computing power of a VAX-780 for that 
specific problem at a cost of 131.500 (excluding 
peripherals and development), considerably lower than 
a VAX-780 and 12.8 megabytes of expensive memory. 
Su.ee the 8088/8037 processors are outdated, one can 
expect even mare favorable price/performance ratios 
for the new 32-hit *super-micras" which are now find­
ing application in mass produced personal and busi­
ness computers. 

A PREHHHWtt MULTI-PROCESSOR ARCHITECTURE 

pea  TM m  Aicamiw 
Although the definition of a final, detailed 

architecture for the watrix-*L£ Multiprocessor Mill 
require substantial research, an analysis of the NLE 
algorithm from the point of view of multiprocessing 
will be given here. Ttn. will >|1OM the definition 
of a preliminary processor structure which could be 
the starting point for more complete research. 

The process of image reconstruction by the MLE 
algorithms (matrix-MLE or S-V-MLE) can be described 
readily in terms of a general emission tomography 
problem by the use of vector algebra. We consider 
first the Image space to be divided into N p pixels 
(or voxels, for a true 3-dimensional reconstruction). 
Each pixel is represented by one element of a vector 
x whose value we want to find. Since the MLE is an 
iterative procedure, we let x represent an old value 
for the vector and x' represent a new value after one 
more iteration. 

As a result of a measurement, an imaging instru­
ment will yield a vector of results k. The length of 
this vector will be N c. For a non-TOF positron ring 
system, N c will be the total number of possible 
coincidences, including those between different rings 
in a multiring system. For TOF tomography, N c will 
be the number of coincidences multiplied by the num­
ber of bins in the TOF measurement and for SPECT, 1t 
will be the number of divisions of the imaging camera 
times the number of positions In the camera 
rotation. The system matrix A of an imaging 
instrument will have elements a(1,j) corresponding to 
the probabilities that a point source at the jth 
pixel will give a response In the 1th element of the 
results vector k. Matrix A will have N c rows and 
Np columns and, in general, will be very sparse. 

It will be convenient to define a vector h of 
length N c given by 

h > A x (5) 

which corresponds to the results vector that the 
imaging Instrument would yield if the activity in the 
imaging space were .<. Further, let an error vector e 
with elements 

{ k(1) / h(1) for h(i) *0 
e(1) - ( (6) 

( 0 for h(i) -0 

be defined and its backprojection 

b . AT e (7) 

be obtained. Then, the MLE algorithm calculates the 
new values x' by 

the products 

»'(j) - x(j) o(j). (8) 

In order to define a preliminary architecture for 
the above iterative procedure, *et's consider the 
matrix A as being stored by columns in sparse vector 
format. As described in Fig. 7, assume niat q pro­
cessors, Pi,P2, ... Po. forming a cluster, are 
available for the calculation and that each has 
direct access to matrix A, n c o | columns at a time 
(segments A], ... Aq). The two most interesting 
operations that will determine the success of a mul­
tiprocessor architecture are the dot products of 
£qs. S and 7. 
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algorithm is valid for this variation. Although the 
numbers of coincidences counted during an imaging 
experiment in a particular "tube" Is Poisson distri­
buted, the linear combination of tube values con­
tained in a backprojection element will not be a 
Poisson variable any longer. What effect that has on 
the reconstructed images will have to be investigated. 

CONCLUSION 

The MLE algorithm has been receiving considerable 
attention in the emission tomography literature dur­
ing the last few years. There seems to be a general 
agreement about the better signal-to-noise ratios 
that the method will give, when compared to filtered 
backprojeciion by computer simulation techniques. 
The correctness of the above expectation has recently 
been verified by Shepp et al8 with true data from a 
positron ring. The method appears to remain, how­
ever, in the "wish list" of workers in ET because it 
is very cumbersome to use in a practical situation. 

In this paper we have confirmed t M results of 
Shepp et al by showing the superior images created by 
the MLE algorithm from data with a low number of 
counts and we propose that using probability func­
tions that have been calculated accurately for a 
specific imaging device can give a more faithful 
reproduction of the object imaged. The preliminary 
results shown here are rot sufficient to determine 
under which conditions it is of advantage to use true 
response functions, and further research Is needed in 
that direction. The expectation Is that, with the 
advent of high resolution PET Instruments, the use of 
true response functions will become Important, since 
effects of gamma penetration in neighbor detectors 
and efficiency effects are accounted for by the 
response functions. 

Along with the general present day realization 
that large ET instruments require specialized compu­
ters for image acquisition ana/or reconstruction, we 
show that it is possible to design a multiprocessor 
structure based on mass produced processors that can 
accommodate the NLE algorithm. The fundamental char­
acteristics of such a system are 1) the use of Urge 
amounts of inexpensive memory for storage of the 
probability functions and intermediate results and 2) 
a configuration for that memory (fast switching) that 
allows a rotation of portions of those probability 
functions and results In such a fashion that memory 
arbitration becomes unnecessary. The result Is a 
structure that allows for linear Increase in computa­
tion speed with increased number of processors. 

work on the two main areas of the work presented 
here will continue with the aim of bringing the 
potential of the MLE algorithm to the practical world. 
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