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ABSTRACT

Matrix methods of image reconstruction have not
been used, in general, because of the large size of
practical matrices, i1l condition upon inversion and
the success of Fourier-based technigques. An excep-
tion is the work that has been done at the Lawrence
Berkeley Laboratory for imaging with accelerated
radioactive ions. An extension of that work into more
general imaging problems shows that, with a correct
formulation of the problem, positron tomography with
ring geometries results in well behaved matrices
which can be used for image reconstruction with no
distortion of the point response in the field of view
and flexibility in the design of the instrument.
Maximum Likelihood Estimator methods of reconstruc-
tion, which use the system matrices tailored to speci-
tic instruments and do not need matrix inversion, are
shown to result in good preliminary images. A paral-
lel processing computer structure based on multiple
inexpensive microprocessors is proposed as a system
to implement the matrix-MLE methods.

INTRODUCTION

Image reconstruction methods based on matrix in-
version were discussed quite early in the literature
of computerized tomographyl. Although a certain
amount of work has been done in generating algorithms
for the use of that basically simple method2, the
large size of tne matrices resulting from practical
applications, the bad behavior of the matrices under
nversion and the success of Fourier based algorithms
nas discouraged the continuation of the initial
efforts.

As part of the work carried out at the Lawrence
Berkeley Laboratory in support of a heavy ion cancer
therapy, it has become necessary to provide an imag-
g conability for annihilation radiation resulting
from radicactive ions injected by the BEVATRON3.
The circumstances are such that it is rot possible to
use 3 detector ring of conventional design. Inter-
ference with the peam delivery and with patient posi-
tioning have required the design of a detector system
with an 1ncomplete set of projections. The require-
ments of the project forced us to give a second look
Jt matrix reconstruction methods with findings that
'2ad to the design and construction of a successful
unaging nstrumentd. S,

Further examination of the pruperties of weight
or response matrices resuliting from accurate simula-
tigns of detactors n ring geometry ingicate that
there Ay be more aerit 10 matrix-based reconstruc-
tion methods than was apparent wmatially, First,
with a proper description of the pOSILron ring geome-
try, 1t 1s found that the resulting matrices are weil
oenaved (low conaition aumbers, CN)}. Secona, it is
not necessary 3 nvert {or pseudo-invert) the wery
large matrarzs gttained in peactice, Instead, one
<an use the waximum 1ikelinooa estimator {MLE) method
of reconstruction oQescrided by Shepp ana varai 6
=hich Taxes use Of tne werght matrices directly for
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its implementation. The MLE method yields reconstruc-
tions with lower noise than filtered packprojection
techniques in simulations of positron emission tomo-
graghy without time-of-flight (TOF)6 and with
TOF/. The improved quality reconstruction with
real data from a conventional BGe0 ring detector has
recently been confirmed by Shepp et al8.

Substantial advantages could result from the use
of matrices in reconstruction. Since the matrices
can be :alculated accurately by a combination of
Monte Carlo and deterministic methods, or can be
measured airectly, the image reconstruction process
is precisely tailored to each specific instrument,
Resulting images can be free of spatial distortior,
with the reconstructed image of a point having the
same shape everywhere in the image volume. Moreover,
there is added flexibility in the geometry of the
instrument, A complete set of views is not a require-
ment and the response of the cetector system to a
point source (before reconstruction) does not need to
be space invariant, The utilization of all the radia-
tion detected in ¢ multi-ring system, for example, is
then possible.

This paper will present the preliminary findings
on which the above assertions are based, agescribe
computer simylations and measurements with a 96-crys-
tal Bismuth Germanate (BGO) ring geometry, and show
results of image reconstructions. [t will also pro-
pose a method for implementing the MLE algorithm for
practical problems with parallel computer architec-
tures based on inexpensive microprocessors. Although
the method to be discussed is not limited to positron
emission tomography (PET), that specific application
will be used as a frameworx for the ideas to be des-
cribed. :

THE SYSTEM MATRIX

The concept of the system, weight or response
matrix of an imaging device has been published in the
context of positron emission imaging by one of the
autnors9.10,  The physical meaning of the *blur-
ring” matrix obtained by multiplying the System mat-
rix by 1ts transpose, the meaning of the eigenvalues
and eigenvectors of the olurring matrix ana a des-
cription of the “pseudo" or generalized inverse for
imaje restoration has also been discussed in cetail
in the puplications. The basic idgeas are well kaown
in the general field of image restoration, as des-
cribed, for example, Dy Andrews ana Huntll. [t
#il1 suit the purpose of this section, however, to
describe brierly the basic concepts incicated above.

Consider an imaging system consisting of two rows
of annimilation radiation detectors that can rotate
by an angle & about the center of anm {n x n)a Ny
array of pixels, as shown in Fig. 1. Coincidences
will only be allowed Detween detectors which are
facing eacn other girectly, so that there can be Nc
councidences at each position 8. This PET system 1
derivea directly from the eariy X-ray CT systems, and
we shall call it the X-CT system. We consider zhe
case of uwniform activity in each pixel.
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fig, 1
of the traditional X-ray CT geometry.
coincidences in a positron ring detector system are
rebinned so that they conform to one of the coinci-

Representation of the PET problem in terms
The passible

dences allowed in the X-CT problem, The casting of
the problem in that fashion results in radial sampling
at a distance d, equal to the detector dimensions.

The system matrix A of the X-CT system is ob-
tained by assuming that a unit activity is placed in
pixel No. 1,
angles from O 5 6 < 130" spending equal time in eac
angle, and recording the resuiting coincidence rates
as the Ne x elements of the first column of
matrix A, The uhit activity is then placed in pixels
Nos. 2,3, ... to Np, each time obtaining one column
of A. The resulting matrix has Nc x Ny rows and
8p columns.

In principle, the
solving the equation

imdging problem consists in

AXx =k (1)

where x 1is an unknown vector of lenath N, corres-
ponding to some activity distribution in tge pixels
ang k is a vector of length N. x Ng hich is the
result of a measurement. Thus, the A matrix contains
all the information about the pixel-detector system
necessary to solve the linear imaging problem, The A
watrix s also the set of probabilities p(b,d) that
an annthilation gasma pair emitted by a pixel b will
be detected in a tube a connecting a specific pair of
opposing adetectors. The probabilities p(b.d) provide
all the information needed about a detector Ssystem
far the MLE image reconstruction algorithm described
by Shepp and varaid,

The solut.on to £Q. (1) is equivalent to salving

AT A 2 = AT k {2)

the detectors are made to step in Ng»

where_AT is the transpose of A. We can then define
A'a AT A and k' = AT k and rewrite Eq. (2) as

A' x = k' (3)
where A' is symmetric and of dimension Ny x Np
and x and k' are also of dimension Kp, Matrix A’

is the blurring matrix of the system.

The solution to Eq. (3) would be straightforward
if the inverse of A' could be:.obtained with reason-
able ease and reliability for practical imaging sys-
tems. If we let B correspons. to a “pseudo® inverse
obtained from eigenvector decomposition of A, then
the unknown activity distribution x can be found by
carrying out the operation

x=Bk'. (4)
the matrix A as a prescription. Multiplication by 8
corresponds to a filtering operation in whicn each
particular pixel nas its own filter function. Thus,
image restoration using the information containea in
a system matrix is equivalent to the filtering of a
backprojection in whizh the basis functions used for
the sexpansion of activity distributions are not the
Fourier basis (as in standard filtered backprojection
techniques), but are, instead, the eigenvectors of
the matrix A9,10, The implications of tne above
observations are that an imaging system does not have
to have a space invariant response to a point source,
and does not require what is usually called a com-
plete set of projections in order for a successful
reconstruction to be feasible.

Two main difficulties appear in attempting to
solve the imaging problem by the pseudo-inverse:
with the exception of some particular geometries in
which the determination of the point of origin of
gamma pairs offers relatively little amoiguitylO,
the blurring matrices of positron detector systems
appear to he very badly behaved. In particular, the
condition number, CN (largest divided by smallest
eigenvalue) of the blurring matrix for the X-CT geo-
metry is extremely high, implying very high sensitiv-
ity of the solution to statistical fluctuations in
the experimental data. Condition numbers in the
region of 250,000 have been obtained for pixel arrays
as small as 8 x 8 and pseudo inverses tor 13 x 13
pixel arrays have been found impossible to calculate
even with a 48-bit mantissall,

The second difficulty is less funoamenta) in
nature and it concerns the large size of the system
and blurring matrices resulting from most practical
detector systems. [t would appear, however, that
with the constantly improving price/performance
rat1os for microcomputers and memories, a solution
can de found for this problem. Indeea, we want to
propose one such solution in this paper.

THE POSITROM RING GEOMETRY

A close examination of the X-CT geometry of Fig. 1
has been undertaken in order to find the reason for
the very high CN" s encountered. Some of the fina-
ings have been surprising. For example, a 2 x 2
pixel array in which the detector lateral aimension
1s equal to the pixel side dimension results in a
singular blurring matrix (its determinant, which can
be calculated without truncation errors for such a
small probleam, is exactly zero). The singularity
disappears when the aetector side dGimension is made
smaller than the pixel dimension. This fact, coupiea




to an earlier observation that the CN of a blurring
matrix increases rapidl{ as the pixel size approaches
the sampling distance 2, leaas one to0 the pre-
liminary conclusion that the X-CT problem is badly
behaved because it is in violation of the sampling
theorem. This paint certaialy deserves further analy-
sis, but it suggests that a more appropriate represen-
tatation of a positron ring detector problem in terms
of the actual coincidences that can occur, instead of
rebinning it into an X-CT geometry, can be better
behaved. In the positron ring (PR) geometry, as des-
cribed in Fig. 2, the image plane is sampled at twice
the radial frequency than in the X-CT geometry for
detectors and pixels of the same lateral dimension.

25 x 25 pixel image array. The size of the image
array was limited to 625 pixels in order to keep the
lateral aistance between pixel centers (1 cm) larger
than the sampling distance (0.75 cm).

The calculated system matrix has been multiplied
by its transpose and the blurring matrix A‘ has been
obtained. The eigenvalues of the 625 x 625 matrix
have been calculated in a VAX-11/780 and the conai-
tion number has been found to be 1,323. The PR prob-
lems is, therefore, reasonably well behaved and amen-
able to exact solution, without the approximations
implied by the use of Fourier-based algorithms.

Fig. 2

the actual Image caneraticn experiments with moving detectors.
obtaineg for the ~ormal image Plane {25 x 25 pixels) when al) getectors were active.

MR, 5458435

Schematic drawing of a 96-crystal PET ring detector used for the computer imaging simulations ana for

The response matrix of the detector system was
The Reducea lmage Plane

{13 = 13 piaels) was used when only the detectors sndicated vitn tne solig lines were active, resulting in a

severely limitea autber of coincidences.

Radial sawpling distance for the system is 0.5 d.

For experiments

«ith d-point sampling, the center of the detector ring was assumed to move in the square pattern shown. For
3-point interpolation, four interieaved sets of pixel centers were also used, as shown 1n the expanded section

at the upper left sige of the image plane.

In arger to confirm tne above expectation, the
system matrix of a 96-crystal (BGed) positron ring, as
gescribed n Fig. 2, mas been caiculated using 3 modi-
fied form of the computer Program MATRIX, which was
very successful 1n calcufating system matrices for a
lwo-dimensional plamar positron camera (PEBA I1)9.
Figure 2 Shows the simensions of the ring anad of the

Figures 3 a) and b) show the calculated blurring
functions for a central and one edge pixels, respec-
tively. The substantial differences between center
and euge pixels are due to differences in solid ang-
les, in crystal detection efficiency as a function of
wcidence angic ang to crosstalk between neighbaring
crystals, effects which are included in the MATRIX



calculation, Some unsymmetries apparent in Figs. 3

are caused by small errors in the present method of
computing the response matrices, which will be cor-

rected in the future.

(a)

Fig. 3 a)
This corresponds to the center column of the blurring matrix A‘, containing Np elements, plotted on the square

image plane. &)

The calculation of eigenvectors and of the pseudo
inverse has not been undertaken at this time, We will
only demonstrate the feasibility of tomographic imag-
ing using the calculated response matrices by means
of the MLE method, which only reeds the A matrix for
its implementation.

SAMPLING ANO INTERPOLATION

The role of sampling of the image plane in the
context of matrix methods iS consistent with the
general understanding of the subject: Increasing the
sampling frequency by using a larger number of smal-
ier detectors and/or by incorporating motions in a
detector system makes the CN of a blurrino matrix
smaller, for a fixed pixel dimension. In turn, this
results in lower noise magnification factor. ~The
“Signal Amplification® concept of Phelps et ail3,l14,
which increases the signal-to-noise ratio in PET re-
constructions, 1S based on an equivalent argument,
although cast in the more familiar spatial frequency
domain,

When motions are incorporated in the design of a
detoctor system, the columns of a system satrix be-
come longer since they have to incorporate the detec-
tor coincidence rates for one pixel at all the detec-
tor Jositions consiaered. In the case of TOF, each
element of a matrix colurn becomes expanded to a TOF
spectrum with as many bins as TOF ains. Fortunately
there 15 a large aumber of zero {or near-zero)} terms
in every coluen, SO that sparse satrix technigues can
o¢ used for storage and handiing of the significaat
terms,

In order to test the correctness of the saupling
concepts, we have assumed that the detector ring o
Fig. 2 moves in such a way that its center comes to
rest, for counting, at each of the four positions

XBL 846-8453

Blurring function of the complete detector system of Fig. 2 for the center pixel of the image plane.

Ditto for a pixel at the edge of the image plane.

forming a square with sides of 0.5 cm., as indicated
in the center of the figure. This increases the
sampling frequency by a factor of two in the x and y
directions. Considering a column of A as a vector of
a certain Euclidean norm, only elements with magni-
tude larger than 5% of the vector norm have been kept
as significant. We find approximately 450 such ele-
ments in each column of the expanded A matrix (625
columns). The CN of the new blurring matrix is found
to be 173, a substantial improvesent over the value
of 1323 for the - itial problem. As aiscussed in
Ref. 10, the use of TOF information 2also reauces
greatly the CN of the tomography problem.

Independently of a sampling rate increase
achieved by motion {(or by skewed arrangement of de-
tectors, as in the case of PEBA I1)4, system mat-
rices can be generated that correspc 9 to aifferent
interleaved sets of pixels in the imaging plane.
Each one of these independent matrices can be called
a submatrix. One set of measured data can then be
processed with the independent submatrices providing
interpvlated values of activity in the image plane.
We have carried out simulations ana imaging experi-
®ents with four submatrices, each with 625 points,
giving interpolation values every 0.5 cm in the x and
y directions. An inset at the upper left hand side
of the image plane in Fig. 2 shows the locations of
the four sets of interleaved system points (pixel
centers).



The significance of this interpolation technique
is that the reconstruction of a large array of pixels
can be broken down into several reconstructions of
smaller interleaved arrays. The number of operations
needed for a reccnstruction can be expected to be
proportional to the square of the number of pixels
and, therefore, ihe smaller reconstructions can
result in substantial savings in computation time.

IMAGING STMULATIONS

For the purpose of carrying out a first test of
the possibility of using system matrix information in
conjunction with the MLE recontruction method, the
imaging of two point sources has been simulated with
the program MATRIX by calculating a set of detector
responses for the positron ring of Fig., 2. Statisti-
cal fluctuations corresponding to 100 microCi in each
source have been introduced into the coincidence data
and prabability functions obtained from system
matrices -and from the Shepp and Vardi (S-V) madelb
have been used with the MLE algorithm to generate
images. The activity of the sources was chosen rela-
tively high to avoid strong statistical effects in
the results.,

Figures 4a) and b) show the images obtained with
system matrix and the Shepp and Vardi (S-V} models,
respectively, The point sources were placed at (x,y)
= (0,0) and (9,-9) cm in the image plane. Four-point
sampling of the image plane was assumed by mation of
the ring in the square pattern shown in the center of
Fig. 2 and 4-point interpolation was used by recon-
structing with four interleaved submatrices corres-
ponding to the four sets of pixels also shown in the

Fig. A a}
{9,-9) cn in the image plane of Fig. 2.
‘natrices of the instryment.

sets of nterleaved 25 a 25 pixels were used for the reconstruction by the MLE algorithm. b)
VMATRIX for cata generation and the Shepp-vVardi probability functions for the MLE algorithm.

figure (upper left image plane). Linear interpola-
tion was finally used to generate the 128 x 128 dis-
play from the 50 x 50 image.

Measurements on the images of Figs. 4a) and b)
indicate that the system matrix approach gives the
correct intensity for both sources and that the shape
of the corner source is almost identical to the cen-
tral one. The 5-V model results in a value for the
corner source which is only 57 of the correct one
(no detector efficiency information in the S5-V model)
and its shape is distorted appreciably (no detector
crosstalk in the model}. We can conclude from this
first experience that response matrices calculated
specifically for a detector system can result in more
accurate imaging, particularly in the peripheral
regions of the image plane.

IMAGING EXPERIMENTS

Using two BGeO detectors of dimensions shown in
Fig. 2 and some simple equipment, the pasitron ring
of Fig. 2 hay been simulated by rotctions in the
horizontal plane. Each BGe0 crystal was flanked by
two identical crystals (not operating as detectors)
and 0.5 mm tungsten separaturs were used. Energy
threshold discriminators were set at approximately
125 keV matching the conditions under which the sys-
tem matrices were generated. A Na-22 line source of
undetermined uniformity of 14 cm length and two Na-22
point sources embedded in plastic rods 3 cm in dia-
meter were placed in the image field of view. Their
activities were approximately .078 microCi per cm,
1.1 and .185 microCt, respectively.

. XBL 845-8432

Results of computer simulation for the reconstruction of two point sources at the center ang at
The MATRIX program was used to generate both the data and the response
Four-point sampling Ly simulating motion, and 4-point interpolation by assuming 4

Ditto using
Since the latter

Jdoes not include setector =fficiency differences with detector material, incidence angle and position or detec-
tor crosstalk, the pownt near the corner appears to be of lower 4ctivity than the center point, and it has

JUSTOrtion which is somewhat observable ia the figure.



After data acquisition by a stationary ring (no
4-point sampling), image reconstruction by the MLE
algorithm using computed response matrices and alsg
matrices obtained from the Shepp-Vardi (S-V) model6
were carried out. Four-point interpolation was used
for both the matrix and the S-V-MLE reconstructions.
With the weak sources used for the experiment and a
counting time of 100 sec per position, a total of
123,000 counts was gathered for the image. The ex-
istence of a 1.2 MeV gamma ray in the Na-22 source in
_time coincidence (but no angular relationship) with
an annihilation pair resuits in a substantial number
of background counts. The data obtained were also
used for a fan-beam reconstruction with the Donner
algorithm package2.

Figures 5a), b) and c¢) show the images generated
by the matrix-MLE, S-V-MLE and the fan-beam filtered
backprojection methods, respectively. All three have
been reconstructed on a 50 x 50 pixel image plare,
with linear interpulation to 128 x 128. There is a
large degree of similarity between the two MLE re-
sults. Expansion of the vertical scales of Figs. 5a)
ana b) by a factor of 4 shows no meaningful differ-
ences either. Evidently, an assessment of the advan-
tages of using accurately calculated system matrices
will require more extensive research than can be
shown at this time.

Fig. 5 Results of reconstructions

usiag
rotating B8GeQ getectors simulating the geodetry of
Fig. 2 and small Na-22 sources:

image

a) Complate detector ring, 123,000 counts in the
mage, Reconstruction dy using the calculated res-
ponse matrix for the system and the MLE aigorithm.
Statwonary ring, (no d-point sampling) and & inter-
leavea sets of piuxel ceaters, for a 30 x SO pixel
recanstruction,

b) Same data as a), reconstructed using the
Shepp Vardd calculated probability functions, also
with 50 x 50 pixels by interleaving.

XBL 8410-4097

c) Same data as a), reconstructed using the fan
bec:m filtered backprojection tachnique. The line
sturce is almost impossible to find among the many
artifacts and noise. The reconstruction wac made for
50 x S0 pixels. When & 25 x 25 pixel reconstruction
was carried out, mnoise and artifacts were of lower
frequency but information in the image did not appear
0 be Dbetter. Notice that this image .S mirrored
with respect to a) ana b).



There is a striking difference, however, between
the MLE and the fan-beam reconstructions. Recon-
struction artifacts and/or noise in the fan-beam
image have obscured the presence of the line source,
which is clear in the MLE reconstruction. This
finding is in agreement with the expectation that the
MLE algorithm would be most useful in severely count
limited images, when the Poisson nature of the posi-
tron annihilation process would be most noticeableb
and with the conclusions reached by Shepé: et al by
comparing images frum a real PR instrumentS.

SEVERELY LIMITED NUMBER OF PROJECTIONS

For the purpose of testing the idea that the
matrix~MLE method does not need a complete set of
projections to give a useful reconstruction, it has
been assumed that the ring of Fig. 2 has been modi-
fied by removing 44 of the 96 detectors. The remain-
ing detectors are arranged in 4 groups of 13 detec-
tors each (shown in solid lines in Fig, 2) and a de-
tector of one of the groups can have coincidences only
with any of the datectors of the opposing giuup, The
number of coincidences has been reduced from 2352 to
338, A new reduced image plane of 13 x 13 cm has been
defined (169 pixels) for the new instrument. The CN
of the new system matrix is near 19,000, considerably
worse than in the case of the complete ring. Two

TN 881D-40%

Fig. & Recanstruction of 3-point sources on the
Reduced Image Plane of Fig. 2, with only the four
groups of detectars inawcateg with solid lines in
that figure. [n spite of the severe cutl in projec-
twons and  angles, only one significant artifact
appears in the upper left nang, at the conjunction of
the projection of the large peak and one of the two
smaliler pears. Only 20,100 counts were collecteg for
the “maye.

Na-22 point sources of 1.1 and .1&5 microCi and one
flat source of 1.6 cm diameter and activity .35
microCi embedded in plastic have neen imaged. The
total number of counts in the image is 20,100, and
the result is shown in Fig. 6. In spite of the low
number of counts and the unfavorable CN, the three
point sources have been imaged reasonably well. 0Only
one artifact of substantial magnitude has appeared,
the far left peak in Fig. 6) and the related ridge
connecting it to the large peak.

MULTIPROCESSING CONCEPTS

There is little doubt that the MLE method re-
quires a very large amount of fast memory to store
the probability functions for any problem of practi-
cal size. [n particular, in the case of multi-ring
systems with utilization of all the detected raaia-
tion, vast amounts of matrix element storage would be
needed. Shepp et at6,7 have recognized the problem
and resorted to calculating the required probabilities
as they were needed for the reconstructions which they
have published, a method which would evidently be too
slow for a practical implementation of the algorithm.

In order to find a practical and economical solu-
tion to the problem of implementing the matrix-MLE
algorithm, attention has been turned towargs multipro-
cessing in a manner that appears to be somewhat uncon-
ventional but promising: using large numbers of read-
ily available complete microprocessor boards, and
large amounts of inexpensive memory in a modular archi
tecture such that a user can increase or decrease the
number of boards depending on the size of the recon-
struction problem at hand. Initfal tests carried out
by comparing performance of a VAX-780, a PDP-11/34 and
a modest I8M-PC fitted with the 8087 floating point
processor lend support to the above idea.

The tests that have been carried out fall into
two categories: bench-mark speed tests and practical
computing limitations tests. For bench-mark tests, we
have coded a sparse vector dot product routine, which
is one of the two most important loops in the MLE re-
construction and compared the performance of the
three computers. The results are given in the follow-
ing table and corraspond to the time needea to carry
out the dot product of a full 4096 .lement floating
point vector with a 200 element vector in sparse stor-
age form (each element contains one integer address
ana one floating point value):

TABLE 1 - SPARSE VECTOR DOT °SRODUCT PERFORMANCE

Computer Single Precisiin Double Precision
VAX-780 0.16 secs 0.25 secs
POP-11/34 1.43 secs 1.75 secs
[BM-PC/8087 3.24 secs 3.41 secs

The VAX and PDP codes were written in FORTRAN,
while the [BM-PC code was written in (C-language ang
the resulting assembly lanquage program modified
slightly for some degree of optimization. The re-
sults indicate that in single precision, the VAX is
only 20 times faster than the [BM-PC ana in double
precision the factor is decreased to 13.6 (notice
that the 8087 processor is a double precision unit).
The speeg of the PJP-11/34 (with its standard float-
g point processor) is anly a factor of two higher
thin the [BM-PC. This factor resained approximately
constant when the tests were carried out with a
monte-Carlo Compton scattering caiculation.
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Fig. 7 Preliminary form of a multiprocessar system
for the efficient implementation of the MLE algoritim.
Segmantad memories whose contents can be connected to
the different microprocessors in a few microseconds
in a rotation manner allow for a linear increase in
computing power with increased number of processors
without memory contention or arbitration. The latter
would ‘nvariably result in speed saturation effects.

The backprojsction of Eq. 7 can be carried out in
parallel by making each segment of vector e,
€] ... &g, residing in the different sections of
the R-memory, simultaneously available to each
pracessor. Each processor computes dot products of
its private copy of part of vector e with its private
copy of the appropriate n.q) columis of A and the
results will be partial values of the ngq) elements
of the backprojection vector b.

The seaments of e are rotated upwards (P con-
nected to 2, P2 to e3 ... pq to £1) by
memory switching, new partial dot products are
accumulated and the rotation continues until each
processor has seen each segment of e. At that point,
aach grocessor has caiculated iq elements of the
hackpre jection b, which is sto in segments of the
R-memory.

The A-memory and the R-memory are formed of q
indapendent sectors, and each sector iS hardware
switched to a processor, avoiding the time needed for
word-by-word data flows and avoiding arditration
conflicts when 211 the proce-sors are Simultaneously
reading their sagments of tne A-memory or R-memory.

With the matrix A stored by columns in sparse
format, the product of £g. S hecomes more comolica-
ted. With individual segments of vector x available
to 2ach of the g processors, dot products of rows of
A with vector x have to de computed. IF each segment

of the A memory contains complete columns of matrix A,
then partial dot products of x with the elements of
the desired rows from one sector of the A-memory can
be formed. All sectors of the A-memory are hardware
switched in sequence to all the processors, until
each processor has had access to all of matrix A.
Simultaneously, the segments of x are rotated up-
wards. At the end of par2llel processing with matrix
and vector switching, each pracessor has the values
of m = Nc/q different elements of vector h accumu-
lated in the R-memory.

The download, control, interaction and cross-bar
processors coordinate the general input-ocutput, carry
out the necessary control and memory switching opera-
tions, monitor convergence of the iterative process
and eventually activate the display processor.

* The cluster of Fig. 7 can be replicated a number
of times, with the contral processor of each cluster
responding to a central control processor which does
the ultimate directing of all activities. Each
cluster would process one of the initerleaved sub-
images into which a complete image is separated, as
discussed above, The multiplication of processing
capacity with increase of number of processors q or
replication of clusters is assured by the lack of an
arbitration need for memory read and write operations.
Data needed by a processor is always available upon
demand in either the A, R or local nemories.

Using modern 32-bit microprocessor boards with
1.76 Megabytes per board, we estimate that a computer
with 16 MLE processing boards would complete one
iteration of a 32 x 32 pixel subimage from an instru-
ment 1ike the Columbia University PET Scanner (one
ring with 63 detectars, with an effective increase in
detector pairs by a factor of 36 by motion)8 in
approximately 9 seconds. Sixteen clusters would then
carry out the complete 128 x 128 reconstruction (one
32 x 32 subimage per cluster) at a rate of 9 seconds
per iteration. A oaumber of factors remain to be
studied with both the MLE algorithm convergence as a
function of detector ring design (condition number of
matrix), and with the utilization of symmetry in the
response matrices. Those factors could result in
substantial savings in computation times.

THE BACKPROJECTION-MLE VARIATION

There is one interesting variation on the utili-
zation of the MLE algorithm that deserves attention.
¥e will call this variation the backprojection-MLE
method. The normal matrix-MLE solves the imaging
equation A x » k, as described by £q. 1. It uses the
experimentally obtained vector k to obtain the image
% using the system matrix values A as the probability
function for the MLE process. Aan alternative would
be to solve the problem A' x = k* of Eq. 3, where A'
= AT A and k' = AT k. Vector k' is the backpro-
jection of k using matrix A as a prescription and A*
is the blurring matrix of the imaging system. The
blurring matrix can be interpreted as a probability
function a*(i,j) that activity in pizal i of the true
image will zppear in pixel j of the backprojection.
The interasting point about this development is that
matriz A' is symmetric and it contains as many col-
umns as pizels. Although it is not sparse, except to
a significant extent in the case of TOF tosography,
the number of matrixn elements that needs to be handled
by the '.E algorithe s considerably reduced. The
simplification in calculation procedure for the back-
projection-MLE method is sigaificant. From the theo-
retical point of view, however, it (s not clear at
this time whether the fundamental premise of the MLE



Factors like memory capacity and allocation of
memory and CPU time are important in determining
performance of a large computer system. On the other
hand, software support can be a problem with small
machines designed primarily for personal use. In
order to assess possible limitations in those areas,
a complete matrix-MLE algorithm has been written in
FORTRAN and has been run in the three computers indi-
cated above. In each case, the system matrix for the
96 crystal ring of Fig. 2 has been used (single point
sampling), and the experimental data that gave the
results of Figs. 5 were loaded into the machines.
The system matrix contained approximately 70,000
significant elements and the results vector allowed
2592 coincidence pairs.

For the calculations with the VYAX-780 memory
allocation was increased to approximately 750 kilo~-
bytes, so that no swapping between fast memory and
disk would obscure the results. A 97% CPU utiliza-
tion was maintained during the computations. The
results converged to 0.5% accuracy in the large peak
of Fig. 5a) in 16 iterations. After all the input
matrices and data were loaded, each iteration took
1.75 seconds {single precision arithmetic).

The [8M-r{ turned out only slightly more diffi-
cult to program and debug than the VAX, since its
16-bit main processor cannot address directly all its
memory. The FORTRAN used for this particular test is
quite complete, however, and provides access to all
the memary througn the definition of COMMON blocks.
With 640 kilobytes of memary, the [BM-PC had no dif-
ficulty containing the complete system matrix and
experimental data. The iteration time was 30 seconds
(double precision operations from single precision
data) corresponding to a factor of 17 slower than the
VAX-780, a value which is consistent with the dot
product benchmark tests indicated above. Results
obtained with the P0OP-11/34 cannot be considered to
be in the same range with the above two machines.
The limitation of 128 kilobytes of memory makes for
considerable disk swapping and iterations take
approximately three minutes, even with a fast array
processor doing the calculations.

The above findings point towards a specific
direction far implementation of the matrix-MLE met-
hods at a reasonable cost: A microprocessor beard
1ike tnat of the IBM-PC with the 8083/8087 processors
and 640 kilobytes of memory may cost in the order of
$1500. Twenty of those boards {plus one additional
control board) connected in a suitable architecture
would have the computing power of a YAX-780 for that
specific problem at a cost of 331,500 (excluding
peripherals and development), considerably lower than
a4 VAX-780 ana 12.3 megabytes of expensive memory.
Siuze the 8088/8087 processors are outdated, one can
expect even more favorable price/perforsance ritios
for the new 32-bit “super-micros™ which are now find-
ing appiication i1n mass produced personal and busi-
ness computers.

A _PRELININARY MGLTI-PROCESSOR ARCHITECTURE

bt

Although the defimition of a final, detailed
architecture for the matrix-MLE multiprocessor will
require sybstantial resa2arch, an analysis of the MLE
algorithm from the point of view of multiprocessing
will De given hece. Thi_ il :llow the defimition
of a preliminary processor siructure «hICh Could De
the starting point for more complete research.

The é:rocess of image reconstruction by the MLE
algorithmb (matrix-MLE or S-V-MLE) can be described
readily in terms of a general emission tomography
problem by the use of vector algebra. We consider
first the image space to be divided into Np pixels
(or voxels, for a true 3-dimensional reconstruction).
Each pixel is represented by one element of a vector
x whose value we want to find. Since the MLE is an
iterative procedure, we let x represent an old value
for the vector and x' represent a new value after one
more iteration,

As a result of a measurement, an imaging instru-
ment will yield a vector of results k. The length of
this vector will be Nc. For a non-TOF positron ring
system, Nc will be the total number of possible
coincidences, including those between different rings
in a multiring system. For TOF tomography, Ne will
be the number of coincidences multiplied by the num-
ber of bins in the TOF measurement and for SPECT, it
will be the number of divisions of the imaging camera
times the number of positions in the camera
rotation. The system matrix A of an imaging
instrument will have elements a(i,]) corresponding to
the probabilities that a point source at the jth
pixel will give a response in the ith element of the
results vector k. Matrix A will have N; rows and
Np columns and, in general, will be very sparse.

It will be convenient to define a vector h of
length N¢ given by

hadAx {5)

which corresponds to the results vector that the
imaging instrument would yield if the activity in the
imaging space were x. Further, let an error vector e
with elements

k(i) 7 h{(1) for h{i) 40
e(i) = ( ) {5)
( 0 for h(i) =0

be defined and its backprojection

h-ATe (7)

be obtained. Then, tiic MLE algorithm calculates the
new values x' by

the products

x*(j) = z{j) p(3). (8)

In order to define a preliminary architecture for
the above iterative procedure, ‘et's consider the
matrix A as being stored by colusns in sparse vector
format. As described in Fig. 7, assuse wsat q pro-
cessors, P{,P2, ... Pq, forming a cluster, are
availabie for the calculation and that each has
direct cCess to matrix A, Nncg) columns at a time
(segments A), ... Aq). The two most interesting
operations that will Jetermine the success of a mwul-
tiprocessor architecture are the dot proaucts of
Eqs. 5 amd 7.
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algorithm is valid for this variation. Although the

. numbers of coincidences counted during an imaging

experiment in a particular “tube® is Poisson distri-
buted, the linear combination of tube values con-
tained in a backprojection element will not bLe a
Poisson variable any longer. What effect that has on
the reconstructed images will have to be investigated.

CONCLUSION

The MLE algorithm has been receiving considerable
attention in the emission tomography literature dur-
ing the last few years. There seems to be a general
agreement about the better signal-to-noise ratios
that the method will give, when compared to filtered
backprojection by computer simulation techniques.

: The correctness of the above axpectation has recently

been verified by Shepp et al8 with true data from a
positron ring. The method appears to remain, how-
ever, in the "wish list* of workers in ET because it
is very cumbersome to use in a practical situation.

In this paper we huve confirmed ine results of
Shepp et al by showing the superior images created by
the MLE algorithm from data with a low number of
counts and we propose that using probability func-
tions that have been calculated accurately for a
specific imaging device can glve a more faithful
reproduction of the object imaged. The preliminary
results shown here are rot sufficient to determine
under which conditions it is of advantage to use true
response functions, and further research is nesded in
that direction. The expactation is that, with the
advent of high resolution PET instruments, the use of
true response functions will bscome important, since
effects of gamma penetration in neighbor detectors
and efficiency effects are accounted for by the
response functions.

Along with the general present day realization
that large ET instruments require specialized compu-
ters for image acquisition ani/or reconstruction, we
show that it is possible to design a multiprocessor
structure based on mass produced processors that can
accommodate the MLE algoritim. The fundamental char-
acteristics of such a system are 1) the use of large
amounts of inexpensive memory for storage of the
probability functions and intermediate results and 2)
a configuration for that memory {fast switching) that
allows a rotation of portions of those prodability
functions and resuits in such a fashion <hat sesmory
arbitration becomes unnecessary. The result is a
structure that allows for linear increase in computa~
tion speed with increased nusber of processors.

Work on the two main areas of the work prasented
nere will continue with the aim of bringing the
potential of the MLE algueitha to the practical worla.
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